xref: /linux/drivers/misc/uacce/uacce.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 #include <linux/compat.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/iommu.h>
5 #include <linux/module.h>
6 #include <linux/poll.h>
7 #include <linux/slab.h>
8 #include <linux/uacce.h>
9 
10 static dev_t uacce_devt;
11 static DEFINE_XARRAY_ALLOC(uacce_xa);
12 
13 static const struct class uacce_class = {
14 	.name = UACCE_NAME,
15 };
16 
17 /*
18  * If the parent driver or the device disappears, the queue state is invalid and
19  * ops are not usable anymore.
20  */
21 static bool uacce_queue_is_valid(struct uacce_queue *q)
22 {
23 	return q->state == UACCE_Q_INIT || q->state == UACCE_Q_STARTED;
24 }
25 
26 static int uacce_start_queue(struct uacce_queue *q)
27 {
28 	int ret;
29 
30 	if (q->state != UACCE_Q_INIT)
31 		return -EINVAL;
32 
33 	if (q->uacce->ops->start_queue) {
34 		ret = q->uacce->ops->start_queue(q);
35 		if (ret < 0)
36 			return ret;
37 	}
38 
39 	q->state = UACCE_Q_STARTED;
40 	return 0;
41 }
42 
43 static int uacce_put_queue(struct uacce_queue *q)
44 {
45 	struct uacce_device *uacce = q->uacce;
46 
47 	if ((q->state == UACCE_Q_STARTED) && uacce->ops->stop_queue)
48 		uacce->ops->stop_queue(q);
49 
50 	if ((q->state == UACCE_Q_INIT || q->state == UACCE_Q_STARTED) &&
51 	     uacce->ops->put_queue)
52 		uacce->ops->put_queue(q);
53 
54 	q->state = UACCE_Q_ZOMBIE;
55 
56 	return 0;
57 }
58 
59 static long uacce_fops_unl_ioctl(struct file *filep,
60 				 unsigned int cmd, unsigned long arg)
61 {
62 	struct uacce_queue *q = filep->private_data;
63 	struct uacce_device *uacce = q->uacce;
64 	long ret = -ENXIO;
65 
66 	/*
67 	 * uacce->ops->ioctl() may take the mmap_lock when copying arg to/from
68 	 * user. Avoid a circular lock dependency with uacce_fops_mmap(), which
69 	 * gets called with mmap_lock held, by taking uacce->mutex instead of
70 	 * q->mutex. Doing this in uacce_fops_mmap() is not possible because
71 	 * uacce_fops_open() calls iommu_sva_bind_device(), which takes
72 	 * mmap_lock, while holding uacce->mutex.
73 	 */
74 	mutex_lock(&uacce->mutex);
75 	if (!uacce_queue_is_valid(q))
76 		goto out_unlock;
77 
78 	switch (cmd) {
79 	case UACCE_CMD_START_Q:
80 		ret = uacce_start_queue(q);
81 		break;
82 	case UACCE_CMD_PUT_Q:
83 		ret = uacce_put_queue(q);
84 		break;
85 	default:
86 		if (uacce->ops->ioctl)
87 			ret = uacce->ops->ioctl(q, cmd, arg);
88 		else
89 			ret = -EINVAL;
90 	}
91 out_unlock:
92 	mutex_unlock(&uacce->mutex);
93 	return ret;
94 }
95 
96 #ifdef CONFIG_COMPAT
97 static long uacce_fops_compat_ioctl(struct file *filep,
98 				   unsigned int cmd, unsigned long arg)
99 {
100 	arg = (unsigned long)compat_ptr(arg);
101 
102 	return uacce_fops_unl_ioctl(filep, cmd, arg);
103 }
104 #endif
105 
106 static int uacce_bind_queue(struct uacce_device *uacce, struct uacce_queue *q)
107 {
108 	u32 pasid;
109 	struct iommu_sva *handle;
110 
111 	if (!(uacce->flags & UACCE_DEV_SVA))
112 		return 0;
113 
114 	handle = iommu_sva_bind_device(uacce->parent, current->mm);
115 	if (IS_ERR(handle))
116 		return PTR_ERR(handle);
117 
118 	pasid = iommu_sva_get_pasid(handle);
119 	if (pasid == IOMMU_PASID_INVALID) {
120 		iommu_sva_unbind_device(handle);
121 		return -ENODEV;
122 	}
123 
124 	q->handle = handle;
125 	q->pasid = pasid;
126 	return 0;
127 }
128 
129 static void uacce_unbind_queue(struct uacce_queue *q)
130 {
131 	if (!q->handle)
132 		return;
133 	iommu_sva_unbind_device(q->handle);
134 	q->handle = NULL;
135 }
136 
137 static int uacce_fops_open(struct inode *inode, struct file *filep)
138 {
139 	struct uacce_device *uacce;
140 	struct uacce_queue *q;
141 	int ret;
142 
143 	uacce = xa_load(&uacce_xa, iminor(inode));
144 	if (!uacce)
145 		return -ENODEV;
146 
147 	q = kzalloc(sizeof(struct uacce_queue), GFP_KERNEL);
148 	if (!q)
149 		return -ENOMEM;
150 
151 	mutex_lock(&uacce->mutex);
152 
153 	if (!uacce->parent) {
154 		ret = -EINVAL;
155 		goto out_with_mem;
156 	}
157 
158 	ret = uacce_bind_queue(uacce, q);
159 	if (ret)
160 		goto out_with_mem;
161 
162 	q->uacce = uacce;
163 
164 	if (uacce->ops->get_queue) {
165 		ret = uacce->ops->get_queue(uacce, q->pasid, q);
166 		if (ret < 0)
167 			goto out_with_bond;
168 	}
169 
170 	init_waitqueue_head(&q->wait);
171 	filep->private_data = q;
172 	q->state = UACCE_Q_INIT;
173 	q->mapping = filep->f_mapping;
174 	mutex_init(&q->mutex);
175 	list_add(&q->list, &uacce->queues);
176 	mutex_unlock(&uacce->mutex);
177 
178 	return 0;
179 
180 out_with_bond:
181 	uacce_unbind_queue(q);
182 out_with_mem:
183 	kfree(q);
184 	mutex_unlock(&uacce->mutex);
185 	return ret;
186 }
187 
188 static int uacce_fops_release(struct inode *inode, struct file *filep)
189 {
190 	struct uacce_queue *q = filep->private_data;
191 	struct uacce_device *uacce = q->uacce;
192 
193 	mutex_lock(&uacce->mutex);
194 	uacce_put_queue(q);
195 	uacce_unbind_queue(q);
196 	list_del(&q->list);
197 	mutex_unlock(&uacce->mutex);
198 	kfree(q);
199 
200 	return 0;
201 }
202 
203 static void uacce_vma_close(struct vm_area_struct *vma)
204 {
205 	struct uacce_queue *q = vma->vm_private_data;
206 
207 	if (vma->vm_pgoff < UACCE_MAX_REGION) {
208 		struct uacce_qfile_region *qfr = q->qfrs[vma->vm_pgoff];
209 
210 		mutex_lock(&q->mutex);
211 		q->qfrs[vma->vm_pgoff] = NULL;
212 		mutex_unlock(&q->mutex);
213 		kfree(qfr);
214 	}
215 }
216 
217 static const struct vm_operations_struct uacce_vm_ops = {
218 	.close = uacce_vma_close,
219 };
220 
221 static int uacce_fops_mmap(struct file *filep, struct vm_area_struct *vma)
222 {
223 	struct uacce_queue *q = filep->private_data;
224 	struct uacce_device *uacce = q->uacce;
225 	struct uacce_qfile_region *qfr;
226 	enum uacce_qfrt type = UACCE_MAX_REGION;
227 	int ret = 0;
228 
229 	if (vma->vm_pgoff < UACCE_MAX_REGION)
230 		type = vma->vm_pgoff;
231 	else
232 		return -EINVAL;
233 
234 	qfr = kzalloc(sizeof(*qfr), GFP_KERNEL);
235 	if (!qfr)
236 		return -ENOMEM;
237 
238 	vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_WIPEONFORK);
239 	vma->vm_ops = &uacce_vm_ops;
240 	vma->vm_private_data = q;
241 	qfr->type = type;
242 
243 	mutex_lock(&q->mutex);
244 	if (!uacce_queue_is_valid(q)) {
245 		ret = -ENXIO;
246 		goto out_with_lock;
247 	}
248 
249 	if (q->qfrs[type]) {
250 		ret = -EEXIST;
251 		goto out_with_lock;
252 	}
253 
254 	switch (type) {
255 	case UACCE_QFRT_MMIO:
256 	case UACCE_QFRT_DUS:
257 		if (!uacce->ops->mmap) {
258 			ret = -EINVAL;
259 			goto out_with_lock;
260 		}
261 
262 		ret = uacce->ops->mmap(q, vma, qfr);
263 		if (ret)
264 			goto out_with_lock;
265 		break;
266 
267 	default:
268 		ret = -EINVAL;
269 		goto out_with_lock;
270 	}
271 
272 	q->qfrs[type] = qfr;
273 	mutex_unlock(&q->mutex);
274 
275 	return ret;
276 
277 out_with_lock:
278 	mutex_unlock(&q->mutex);
279 	kfree(qfr);
280 	return ret;
281 }
282 
283 static __poll_t uacce_fops_poll(struct file *file, poll_table *wait)
284 {
285 	struct uacce_queue *q = file->private_data;
286 	struct uacce_device *uacce = q->uacce;
287 	__poll_t ret = 0;
288 
289 	mutex_lock(&q->mutex);
290 	if (!uacce_queue_is_valid(q))
291 		goto out_unlock;
292 
293 	poll_wait(file, &q->wait, wait);
294 
295 	if (uacce->ops->is_q_updated && uacce->ops->is_q_updated(q))
296 		ret = EPOLLIN | EPOLLRDNORM;
297 
298 out_unlock:
299 	mutex_unlock(&q->mutex);
300 	return ret;
301 }
302 
303 static const struct file_operations uacce_fops = {
304 	.owner		= THIS_MODULE,
305 	.open		= uacce_fops_open,
306 	.release	= uacce_fops_release,
307 	.unlocked_ioctl	= uacce_fops_unl_ioctl,
308 #ifdef CONFIG_COMPAT
309 	.compat_ioctl	= uacce_fops_compat_ioctl,
310 #endif
311 	.mmap		= uacce_fops_mmap,
312 	.poll		= uacce_fops_poll,
313 };
314 
315 #define to_uacce_device(dev) container_of(dev, struct uacce_device, dev)
316 
317 static ssize_t api_show(struct device *dev,
318 			struct device_attribute *attr, char *buf)
319 {
320 	struct uacce_device *uacce = to_uacce_device(dev);
321 
322 	return sysfs_emit(buf, "%s\n", uacce->api_ver);
323 }
324 
325 static ssize_t flags_show(struct device *dev,
326 			  struct device_attribute *attr, char *buf)
327 {
328 	struct uacce_device *uacce = to_uacce_device(dev);
329 
330 	return sysfs_emit(buf, "%u\n", uacce->flags);
331 }
332 
333 static ssize_t available_instances_show(struct device *dev,
334 					struct device_attribute *attr,
335 					char *buf)
336 {
337 	struct uacce_device *uacce = to_uacce_device(dev);
338 
339 	if (!uacce->ops->get_available_instances)
340 		return -ENODEV;
341 
342 	return sysfs_emit(buf, "%d\n",
343 		       uacce->ops->get_available_instances(uacce));
344 }
345 
346 static ssize_t algorithms_show(struct device *dev,
347 			       struct device_attribute *attr, char *buf)
348 {
349 	struct uacce_device *uacce = to_uacce_device(dev);
350 
351 	return sysfs_emit(buf, "%s\n", uacce->algs);
352 }
353 
354 static ssize_t region_mmio_size_show(struct device *dev,
355 				     struct device_attribute *attr, char *buf)
356 {
357 	struct uacce_device *uacce = to_uacce_device(dev);
358 
359 	return sysfs_emit(buf, "%lu\n",
360 		       uacce->qf_pg_num[UACCE_QFRT_MMIO] << PAGE_SHIFT);
361 }
362 
363 static ssize_t region_dus_size_show(struct device *dev,
364 				    struct device_attribute *attr, char *buf)
365 {
366 	struct uacce_device *uacce = to_uacce_device(dev);
367 
368 	return sysfs_emit(buf, "%lu\n",
369 		       uacce->qf_pg_num[UACCE_QFRT_DUS] << PAGE_SHIFT);
370 }
371 
372 static ssize_t isolate_show(struct device *dev,
373 			    struct device_attribute *attr, char *buf)
374 {
375 	struct uacce_device *uacce = to_uacce_device(dev);
376 
377 	return sysfs_emit(buf, "%d\n", uacce->ops->get_isolate_state(uacce));
378 }
379 
380 static ssize_t isolate_strategy_show(struct device *dev, struct device_attribute *attr, char *buf)
381 {
382 	struct uacce_device *uacce = to_uacce_device(dev);
383 	u32 val;
384 
385 	val = uacce->ops->isolate_err_threshold_read(uacce);
386 
387 	return sysfs_emit(buf, "%u\n", val);
388 }
389 
390 static ssize_t isolate_strategy_store(struct device *dev, struct device_attribute *attr,
391 				   const char *buf, size_t count)
392 {
393 	struct uacce_device *uacce = to_uacce_device(dev);
394 	unsigned long val;
395 	int ret;
396 
397 	if (kstrtoul(buf, 0, &val) < 0)
398 		return -EINVAL;
399 
400 	if (val > UACCE_MAX_ERR_THRESHOLD)
401 		return -EINVAL;
402 
403 	ret = uacce->ops->isolate_err_threshold_write(uacce, val);
404 	if (ret)
405 		return ret;
406 
407 	return count;
408 }
409 
410 static DEVICE_ATTR_RO(api);
411 static DEVICE_ATTR_RO(flags);
412 static DEVICE_ATTR_RO(available_instances);
413 static DEVICE_ATTR_RO(algorithms);
414 static DEVICE_ATTR_RO(region_mmio_size);
415 static DEVICE_ATTR_RO(region_dus_size);
416 static DEVICE_ATTR_RO(isolate);
417 static DEVICE_ATTR_RW(isolate_strategy);
418 
419 static struct attribute *uacce_dev_attrs[] = {
420 	&dev_attr_api.attr,
421 	&dev_attr_flags.attr,
422 	&dev_attr_available_instances.attr,
423 	&dev_attr_algorithms.attr,
424 	&dev_attr_region_mmio_size.attr,
425 	&dev_attr_region_dus_size.attr,
426 	&dev_attr_isolate.attr,
427 	&dev_attr_isolate_strategy.attr,
428 	NULL,
429 };
430 
431 static umode_t uacce_dev_is_visible(struct kobject *kobj,
432 				    struct attribute *attr, int n)
433 {
434 	struct device *dev = kobj_to_dev(kobj);
435 	struct uacce_device *uacce = to_uacce_device(dev);
436 
437 	if (((attr == &dev_attr_region_mmio_size.attr) &&
438 	    (!uacce->qf_pg_num[UACCE_QFRT_MMIO])) ||
439 	    ((attr == &dev_attr_region_dus_size.attr) &&
440 	    (!uacce->qf_pg_num[UACCE_QFRT_DUS])))
441 		return 0;
442 
443 	if (attr == &dev_attr_isolate_strategy.attr &&
444 	    (!uacce->ops->isolate_err_threshold_read &&
445 	     !uacce->ops->isolate_err_threshold_write))
446 		return 0;
447 
448 	if (attr == &dev_attr_isolate.attr && !uacce->ops->get_isolate_state)
449 		return 0;
450 
451 	return attr->mode;
452 }
453 
454 static struct attribute_group uacce_dev_group = {
455 	.is_visible	= uacce_dev_is_visible,
456 	.attrs		= uacce_dev_attrs,
457 };
458 
459 __ATTRIBUTE_GROUPS(uacce_dev);
460 
461 static void uacce_release(struct device *dev)
462 {
463 	struct uacce_device *uacce = to_uacce_device(dev);
464 
465 	kfree(uacce);
466 }
467 
468 static unsigned int uacce_enable_sva(struct device *parent, unsigned int flags)
469 {
470 	int ret;
471 
472 	if (!(flags & UACCE_DEV_SVA))
473 		return flags;
474 
475 	flags &= ~UACCE_DEV_SVA;
476 
477 	ret = iommu_dev_enable_feature(parent, IOMMU_DEV_FEAT_IOPF);
478 	if (ret) {
479 		dev_err(parent, "failed to enable IOPF feature! ret = %pe\n", ERR_PTR(ret));
480 		return flags;
481 	}
482 
483 	ret = iommu_dev_enable_feature(parent, IOMMU_DEV_FEAT_SVA);
484 	if (ret) {
485 		dev_err(parent, "failed to enable SVA feature! ret = %pe\n", ERR_PTR(ret));
486 		iommu_dev_disable_feature(parent, IOMMU_DEV_FEAT_IOPF);
487 		return flags;
488 	}
489 
490 	return flags | UACCE_DEV_SVA;
491 }
492 
493 static void uacce_disable_sva(struct uacce_device *uacce)
494 {
495 	if (!(uacce->flags & UACCE_DEV_SVA))
496 		return;
497 
498 	iommu_dev_disable_feature(uacce->parent, IOMMU_DEV_FEAT_SVA);
499 	iommu_dev_disable_feature(uacce->parent, IOMMU_DEV_FEAT_IOPF);
500 }
501 
502 /**
503  * uacce_alloc() - alloc an accelerator
504  * @parent: pointer of uacce parent device
505  * @interface: pointer of uacce_interface for register
506  *
507  * Returns uacce pointer if success and ERR_PTR if not
508  * Need check returned negotiated uacce->flags
509  */
510 struct uacce_device *uacce_alloc(struct device *parent,
511 				 struct uacce_interface *interface)
512 {
513 	unsigned int flags = interface->flags;
514 	struct uacce_device *uacce;
515 	int ret;
516 
517 	uacce = kzalloc(sizeof(struct uacce_device), GFP_KERNEL);
518 	if (!uacce)
519 		return ERR_PTR(-ENOMEM);
520 
521 	flags = uacce_enable_sva(parent, flags);
522 
523 	uacce->parent = parent;
524 	uacce->flags = flags;
525 	uacce->ops = interface->ops;
526 
527 	ret = xa_alloc(&uacce_xa, &uacce->dev_id, uacce, xa_limit_32b,
528 		       GFP_KERNEL);
529 	if (ret < 0)
530 		goto err_with_uacce;
531 
532 	INIT_LIST_HEAD(&uacce->queues);
533 	mutex_init(&uacce->mutex);
534 	device_initialize(&uacce->dev);
535 	uacce->dev.devt = MKDEV(MAJOR(uacce_devt), uacce->dev_id);
536 	uacce->dev.class = &uacce_class;
537 	uacce->dev.groups = uacce_dev_groups;
538 	uacce->dev.parent = uacce->parent;
539 	uacce->dev.release = uacce_release;
540 	dev_set_name(&uacce->dev, "%s-%d", interface->name, uacce->dev_id);
541 
542 	return uacce;
543 
544 err_with_uacce:
545 	uacce_disable_sva(uacce);
546 	kfree(uacce);
547 	return ERR_PTR(ret);
548 }
549 EXPORT_SYMBOL_GPL(uacce_alloc);
550 
551 /**
552  * uacce_register() - add the accelerator to cdev and export to user space
553  * @uacce: The initialized uacce device
554  *
555  * Return 0 if register succeeded, or an error.
556  */
557 int uacce_register(struct uacce_device *uacce)
558 {
559 	if (!uacce)
560 		return -ENODEV;
561 
562 	uacce->cdev = cdev_alloc();
563 	if (!uacce->cdev)
564 		return -ENOMEM;
565 
566 	uacce->cdev->ops = &uacce_fops;
567 	uacce->cdev->owner = THIS_MODULE;
568 
569 	return cdev_device_add(uacce->cdev, &uacce->dev);
570 }
571 EXPORT_SYMBOL_GPL(uacce_register);
572 
573 /**
574  * uacce_remove() - remove the accelerator
575  * @uacce: the accelerator to remove
576  */
577 void uacce_remove(struct uacce_device *uacce)
578 {
579 	struct uacce_queue *q, *next_q;
580 
581 	if (!uacce)
582 		return;
583 
584 	/*
585 	 * uacce_fops_open() may be running concurrently, even after we remove
586 	 * the cdev. Holding uacce->mutex ensures that open() does not obtain a
587 	 * removed uacce device.
588 	 */
589 	mutex_lock(&uacce->mutex);
590 	/* ensure no open queue remains */
591 	list_for_each_entry_safe(q, next_q, &uacce->queues, list) {
592 		/*
593 		 * Taking q->mutex ensures that fops do not use the defunct
594 		 * uacce->ops after the queue is disabled.
595 		 */
596 		mutex_lock(&q->mutex);
597 		uacce_put_queue(q);
598 		mutex_unlock(&q->mutex);
599 		uacce_unbind_queue(q);
600 
601 		/*
602 		 * unmap remaining mapping from user space, preventing user still
603 		 * access the mmaped area while parent device is already removed
604 		 */
605 		unmap_mapping_range(q->mapping, 0, 0, 1);
606 	}
607 
608 	/* disable sva now since no opened queues */
609 	uacce_disable_sva(uacce);
610 
611 	if (uacce->cdev)
612 		cdev_device_del(uacce->cdev, &uacce->dev);
613 	xa_erase(&uacce_xa, uacce->dev_id);
614 	/*
615 	 * uacce exists as long as there are open fds, but ops will be freed
616 	 * now. Ensure that bugs cause NULL deref rather than use-after-free.
617 	 */
618 	uacce->ops = NULL;
619 	uacce->parent = NULL;
620 	mutex_unlock(&uacce->mutex);
621 	put_device(&uacce->dev);
622 }
623 EXPORT_SYMBOL_GPL(uacce_remove);
624 
625 static int __init uacce_init(void)
626 {
627 	int ret;
628 
629 	ret = class_register(&uacce_class);
630 	if (ret)
631 		return ret;
632 
633 	ret = alloc_chrdev_region(&uacce_devt, 0, MINORMASK, UACCE_NAME);
634 	if (ret)
635 		class_unregister(&uacce_class);
636 
637 	return ret;
638 }
639 
640 static __exit void uacce_exit(void)
641 {
642 	unregister_chrdev_region(uacce_devt, MINORMASK);
643 	class_unregister(&uacce_class);
644 }
645 
646 subsys_initcall(uacce_init);
647 module_exit(uacce_exit);
648 
649 MODULE_LICENSE("GPL");
650 MODULE_AUTHOR("HiSilicon Tech. Co., Ltd.");
651 MODULE_DESCRIPTION("Accelerator interface for Userland applications");
652