xref: /linux/drivers/misc/sgi-xp/xpc_main.c (revision 95298d63c67673c654c08952672d016212b26054)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8 
9 /*
10  * Cross Partition Communication (XPC) support - standard version.
11  *
12  *	XPC provides a message passing capability that crosses partition
13  *	boundaries. This module is made up of two parts:
14  *
15  *	    partition	This part detects the presence/absence of other
16  *			partitions. It provides a heartbeat and monitors
17  *			the heartbeats of other partitions.
18  *
19  *	    channel	This part manages the channels and sends/receives
20  *			messages across them to/from other partitions.
21  *
22  *	There are a couple of additional functions residing in XP, which
23  *	provide an interface to XPC for its users.
24  *
25  *
26  *	Caveats:
27  *
28  *	  . Currently on sn2, we have no way to determine which nasid an IRQ
29  *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
30  *	    followed by an IPI. The amo indicates where data is to be pulled
31  *	    from, so after the IPI arrives, the remote partition checks the amo
32  *	    word. The IPI can actually arrive before the amo however, so other
33  *	    code must periodically check for this case. Also, remote amo
34  *	    operations do not reliably time out. Thus we do a remote PIO read
35  *	    solely to know whether the remote partition is down and whether we
36  *	    should stop sending IPIs to it. This remote PIO read operation is
37  *	    set up in a special nofault region so SAL knows to ignore (and
38  *	    cleanup) any errors due to the remote amo write, PIO read, and/or
39  *	    PIO write operations.
40  *
41  *	    If/when new hardware solves this IPI problem, we should abandon
42  *	    the current approach.
43  *
44  */
45 
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/sysctl.h>
49 #include <linux/device.h>
50 #include <linux/delay.h>
51 #include <linux/reboot.h>
52 #include <linux/kdebug.h>
53 #include <linux/kthread.h>
54 #include "xpc.h"
55 
56 #ifdef CONFIG_X86_64
57 #include <asm/traps.h>
58 #endif
59 
60 /* define two XPC debug device structures to be used with dev_dbg() et al */
61 
62 static struct device_driver xpc_dbg_name = {
63 	.name = "xpc"
64 };
65 
66 static struct device xpc_part_dbg_subname = {
67 	.init_name = "",	/* set to "part" at xpc_init() time */
68 	.driver = &xpc_dbg_name
69 };
70 
71 static struct device xpc_chan_dbg_subname = {
72 	.init_name = "",	/* set to "chan" at xpc_init() time */
73 	.driver = &xpc_dbg_name
74 };
75 
76 struct device *xpc_part = &xpc_part_dbg_subname;
77 struct device *xpc_chan = &xpc_chan_dbg_subname;
78 
79 static int xpc_kdebug_ignore;
80 
81 /* systune related variables for /proc/sys directories */
82 
83 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
84 static int xpc_hb_min_interval = 1;
85 static int xpc_hb_max_interval = 10;
86 
87 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
88 static int xpc_hb_check_min_interval = 10;
89 static int xpc_hb_check_max_interval = 120;
90 
91 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
92 static int xpc_disengage_min_timelimit;	/* = 0 */
93 static int xpc_disengage_max_timelimit = 120;
94 
95 static struct ctl_table xpc_sys_xpc_hb_dir[] = {
96 	{
97 	 .procname = "hb_interval",
98 	 .data = &xpc_hb_interval,
99 	 .maxlen = sizeof(int),
100 	 .mode = 0644,
101 	 .proc_handler = proc_dointvec_minmax,
102 	 .extra1 = &xpc_hb_min_interval,
103 	 .extra2 = &xpc_hb_max_interval},
104 	{
105 	 .procname = "hb_check_interval",
106 	 .data = &xpc_hb_check_interval,
107 	 .maxlen = sizeof(int),
108 	 .mode = 0644,
109 	 .proc_handler = proc_dointvec_minmax,
110 	 .extra1 = &xpc_hb_check_min_interval,
111 	 .extra2 = &xpc_hb_check_max_interval},
112 	{}
113 };
114 static struct ctl_table xpc_sys_xpc_dir[] = {
115 	{
116 	 .procname = "hb",
117 	 .mode = 0555,
118 	 .child = xpc_sys_xpc_hb_dir},
119 	{
120 	 .procname = "disengage_timelimit",
121 	 .data = &xpc_disengage_timelimit,
122 	 .maxlen = sizeof(int),
123 	 .mode = 0644,
124 	 .proc_handler = proc_dointvec_minmax,
125 	 .extra1 = &xpc_disengage_min_timelimit,
126 	 .extra2 = &xpc_disengage_max_timelimit},
127 	{}
128 };
129 static struct ctl_table xpc_sys_dir[] = {
130 	{
131 	 .procname = "xpc",
132 	 .mode = 0555,
133 	 .child = xpc_sys_xpc_dir},
134 	{}
135 };
136 static struct ctl_table_header *xpc_sysctl;
137 
138 /* non-zero if any remote partition disengage was timed out */
139 int xpc_disengage_timedout;
140 
141 /* #of activate IRQs received and not yet processed */
142 int xpc_activate_IRQ_rcvd;
143 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
144 
145 /* IRQ handler notifies this wait queue on receipt of an IRQ */
146 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
147 
148 static unsigned long xpc_hb_check_timeout;
149 static struct timer_list xpc_hb_timer;
150 
151 /* notification that the xpc_hb_checker thread has exited */
152 static DECLARE_COMPLETION(xpc_hb_checker_exited);
153 
154 /* notification that the xpc_discovery thread has exited */
155 static DECLARE_COMPLETION(xpc_discovery_exited);
156 
157 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
158 
159 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
160 static struct notifier_block xpc_reboot_notifier = {
161 	.notifier_call = xpc_system_reboot,
162 };
163 
164 static int xpc_system_die(struct notifier_block *, unsigned long, void *);
165 static struct notifier_block xpc_die_notifier = {
166 	.notifier_call = xpc_system_die,
167 };
168 
169 struct xpc_arch_operations xpc_arch_ops;
170 
171 /*
172  * Timer function to enforce the timelimit on the partition disengage.
173  */
174 static void
175 xpc_timeout_partition_disengage(struct timer_list *t)
176 {
177 	struct xpc_partition *part = from_timer(part, t, disengage_timer);
178 
179 	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
180 
181 	(void)xpc_partition_disengaged(part);
182 
183 	DBUG_ON(part->disengage_timeout != 0);
184 	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
185 }
186 
187 /*
188  * Timer to produce the heartbeat.  The timer structures function is
189  * already set when this is initially called.  A tunable is used to
190  * specify when the next timeout should occur.
191  */
192 static void
193 xpc_hb_beater(struct timer_list *unused)
194 {
195 	xpc_arch_ops.increment_heartbeat();
196 
197 	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
198 		wake_up_interruptible(&xpc_activate_IRQ_wq);
199 
200 	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
201 	add_timer(&xpc_hb_timer);
202 }
203 
204 static void
205 xpc_start_hb_beater(void)
206 {
207 	xpc_arch_ops.heartbeat_init();
208 	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
209 	xpc_hb_beater(0);
210 }
211 
212 static void
213 xpc_stop_hb_beater(void)
214 {
215 	del_timer_sync(&xpc_hb_timer);
216 	xpc_arch_ops.heartbeat_exit();
217 }
218 
219 /*
220  * At periodic intervals, scan through all active partitions and ensure
221  * their heartbeat is still active.  If not, the partition is deactivated.
222  */
223 static void
224 xpc_check_remote_hb(void)
225 {
226 	struct xpc_partition *part;
227 	short partid;
228 	enum xp_retval ret;
229 
230 	for (partid = 0; partid < xp_max_npartitions; partid++) {
231 
232 		if (xpc_exiting)
233 			break;
234 
235 		if (partid == xp_partition_id)
236 			continue;
237 
238 		part = &xpc_partitions[partid];
239 
240 		if (part->act_state == XPC_P_AS_INACTIVE ||
241 		    part->act_state == XPC_P_AS_DEACTIVATING) {
242 			continue;
243 		}
244 
245 		ret = xpc_arch_ops.get_remote_heartbeat(part);
246 		if (ret != xpSuccess)
247 			XPC_DEACTIVATE_PARTITION(part, ret);
248 	}
249 }
250 
251 /*
252  * This thread is responsible for nearly all of the partition
253  * activation/deactivation.
254  */
255 static int
256 xpc_hb_checker(void *ignore)
257 {
258 	int force_IRQ = 0;
259 
260 	/* this thread was marked active by xpc_hb_init() */
261 
262 	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
263 
264 	/* set our heartbeating to other partitions into motion */
265 	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
266 	xpc_start_hb_beater();
267 
268 	while (!xpc_exiting) {
269 
270 		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
271 			"been received\n",
272 			(int)(xpc_hb_check_timeout - jiffies),
273 			xpc_activate_IRQ_rcvd);
274 
275 		/* checking of remote heartbeats is skewed by IRQ handling */
276 		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
277 			xpc_hb_check_timeout = jiffies +
278 			    (xpc_hb_check_interval * HZ);
279 
280 			dev_dbg(xpc_part, "checking remote heartbeats\n");
281 			xpc_check_remote_hb();
282 		}
283 
284 		/* check for outstanding IRQs */
285 		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
286 			force_IRQ = 0;
287 			dev_dbg(xpc_part, "processing activate IRQs "
288 				"received\n");
289 			xpc_arch_ops.process_activate_IRQ_rcvd();
290 		}
291 
292 		/* wait for IRQ or timeout */
293 		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
294 					       (time_is_before_eq_jiffies(
295 						xpc_hb_check_timeout) ||
296 						xpc_activate_IRQ_rcvd > 0 ||
297 						xpc_exiting));
298 	}
299 
300 	xpc_stop_hb_beater();
301 
302 	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
303 
304 	/* mark this thread as having exited */
305 	complete(&xpc_hb_checker_exited);
306 	return 0;
307 }
308 
309 /*
310  * This thread will attempt to discover other partitions to activate
311  * based on info provided by SAL. This new thread is short lived and
312  * will exit once discovery is complete.
313  */
314 static int
315 xpc_initiate_discovery(void *ignore)
316 {
317 	xpc_discovery();
318 
319 	dev_dbg(xpc_part, "discovery thread is exiting\n");
320 
321 	/* mark this thread as having exited */
322 	complete(&xpc_discovery_exited);
323 	return 0;
324 }
325 
326 /*
327  * The first kthread assigned to a newly activated partition is the one
328  * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
329  * that kthread until the partition is brought down, at which time that kthread
330  * returns back to XPC HB. (The return of that kthread will signify to XPC HB
331  * that XPC has dismantled all communication infrastructure for the associated
332  * partition.) This kthread becomes the channel manager for that partition.
333  *
334  * Each active partition has a channel manager, who, besides connecting and
335  * disconnecting channels, will ensure that each of the partition's connected
336  * channels has the required number of assigned kthreads to get the work done.
337  */
338 static void
339 xpc_channel_mgr(struct xpc_partition *part)
340 {
341 	while (part->act_state != XPC_P_AS_DEACTIVATING ||
342 	       atomic_read(&part->nchannels_active) > 0 ||
343 	       !xpc_partition_disengaged(part)) {
344 
345 		xpc_process_sent_chctl_flags(part);
346 
347 		/*
348 		 * Wait until we've been requested to activate kthreads or
349 		 * all of the channel's message queues have been torn down or
350 		 * a signal is pending.
351 		 *
352 		 * The channel_mgr_requests is set to 1 after being awakened,
353 		 * This is done to prevent the channel mgr from making one pass
354 		 * through the loop for each request, since he will
355 		 * be servicing all the requests in one pass. The reason it's
356 		 * set to 1 instead of 0 is so that other kthreads will know
357 		 * that the channel mgr is running and won't bother trying to
358 		 * wake him up.
359 		 */
360 		atomic_dec(&part->channel_mgr_requests);
361 		(void)wait_event_interruptible(part->channel_mgr_wq,
362 				(atomic_read(&part->channel_mgr_requests) > 0 ||
363 				 part->chctl.all_flags != 0 ||
364 				 (part->act_state == XPC_P_AS_DEACTIVATING &&
365 				 atomic_read(&part->nchannels_active) == 0 &&
366 				 xpc_partition_disengaged(part))));
367 		atomic_set(&part->channel_mgr_requests, 1);
368 	}
369 }
370 
371 /*
372  * Guarantee that the kzalloc'd memory is cacheline aligned.
373  */
374 void *
375 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
376 {
377 	/* see if kzalloc will give us cachline aligned memory by default */
378 	*base = kzalloc(size, flags);
379 	if (*base == NULL)
380 		return NULL;
381 
382 	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
383 		return *base;
384 
385 	kfree(*base);
386 
387 	/* nope, we'll have to do it ourselves */
388 	*base = kzalloc(size + L1_CACHE_BYTES, flags);
389 	if (*base == NULL)
390 		return NULL;
391 
392 	return (void *)L1_CACHE_ALIGN((u64)*base);
393 }
394 
395 /*
396  * Setup the channel structures necessary to support XPartition Communication
397  * between the specified remote partition and the local one.
398  */
399 static enum xp_retval
400 xpc_setup_ch_structures(struct xpc_partition *part)
401 {
402 	enum xp_retval ret;
403 	int ch_number;
404 	struct xpc_channel *ch;
405 	short partid = XPC_PARTID(part);
406 
407 	/*
408 	 * Allocate all of the channel structures as a contiguous chunk of
409 	 * memory.
410 	 */
411 	DBUG_ON(part->channels != NULL);
412 	part->channels = kcalloc(XPC_MAX_NCHANNELS,
413 				 sizeof(struct xpc_channel),
414 				 GFP_KERNEL);
415 	if (part->channels == NULL) {
416 		dev_err(xpc_chan, "can't get memory for channels\n");
417 		return xpNoMemory;
418 	}
419 
420 	/* allocate the remote open and close args */
421 
422 	part->remote_openclose_args =
423 	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
424 					  GFP_KERNEL, &part->
425 					  remote_openclose_args_base);
426 	if (part->remote_openclose_args == NULL) {
427 		dev_err(xpc_chan, "can't get memory for remote connect args\n");
428 		ret = xpNoMemory;
429 		goto out_1;
430 	}
431 
432 	part->chctl.all_flags = 0;
433 	spin_lock_init(&part->chctl_lock);
434 
435 	atomic_set(&part->channel_mgr_requests, 1);
436 	init_waitqueue_head(&part->channel_mgr_wq);
437 
438 	part->nchannels = XPC_MAX_NCHANNELS;
439 
440 	atomic_set(&part->nchannels_active, 0);
441 	atomic_set(&part->nchannels_engaged, 0);
442 
443 	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
444 		ch = &part->channels[ch_number];
445 
446 		ch->partid = partid;
447 		ch->number = ch_number;
448 		ch->flags = XPC_C_DISCONNECTED;
449 
450 		atomic_set(&ch->kthreads_assigned, 0);
451 		atomic_set(&ch->kthreads_idle, 0);
452 		atomic_set(&ch->kthreads_active, 0);
453 
454 		atomic_set(&ch->references, 0);
455 		atomic_set(&ch->n_to_notify, 0);
456 
457 		spin_lock_init(&ch->lock);
458 		init_completion(&ch->wdisconnect_wait);
459 
460 		atomic_set(&ch->n_on_msg_allocate_wq, 0);
461 		init_waitqueue_head(&ch->msg_allocate_wq);
462 		init_waitqueue_head(&ch->idle_wq);
463 	}
464 
465 	ret = xpc_arch_ops.setup_ch_structures(part);
466 	if (ret != xpSuccess)
467 		goto out_2;
468 
469 	/*
470 	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
471 	 * we're declaring that this partition is ready to go.
472 	 */
473 	part->setup_state = XPC_P_SS_SETUP;
474 
475 	return xpSuccess;
476 
477 	/* setup of ch structures failed */
478 out_2:
479 	kfree(part->remote_openclose_args_base);
480 	part->remote_openclose_args = NULL;
481 out_1:
482 	kfree(part->channels);
483 	part->channels = NULL;
484 	return ret;
485 }
486 
487 /*
488  * Teardown the channel structures necessary to support XPartition Communication
489  * between the specified remote partition and the local one.
490  */
491 static void
492 xpc_teardown_ch_structures(struct xpc_partition *part)
493 {
494 	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
495 	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
496 
497 	/*
498 	 * Make this partition inaccessible to local processes by marking it
499 	 * as no longer setup. Then wait before proceeding with the teardown
500 	 * until all existing references cease.
501 	 */
502 	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
503 	part->setup_state = XPC_P_SS_WTEARDOWN;
504 
505 	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
506 
507 	/* now we can begin tearing down the infrastructure */
508 
509 	xpc_arch_ops.teardown_ch_structures(part);
510 
511 	kfree(part->remote_openclose_args_base);
512 	part->remote_openclose_args = NULL;
513 	kfree(part->channels);
514 	part->channels = NULL;
515 
516 	part->setup_state = XPC_P_SS_TORNDOWN;
517 }
518 
519 /*
520  * When XPC HB determines that a partition has come up, it will create a new
521  * kthread and that kthread will call this function to attempt to set up the
522  * basic infrastructure used for Cross Partition Communication with the newly
523  * upped partition.
524  *
525  * The kthread that was created by XPC HB and which setup the XPC
526  * infrastructure will remain assigned to the partition becoming the channel
527  * manager for that partition until the partition is deactivating, at which
528  * time the kthread will teardown the XPC infrastructure and then exit.
529  */
530 static int
531 xpc_activating(void *__partid)
532 {
533 	short partid = (u64)__partid;
534 	struct xpc_partition *part = &xpc_partitions[partid];
535 	unsigned long irq_flags;
536 
537 	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
538 
539 	spin_lock_irqsave(&part->act_lock, irq_flags);
540 
541 	if (part->act_state == XPC_P_AS_DEACTIVATING) {
542 		part->act_state = XPC_P_AS_INACTIVE;
543 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
544 		part->remote_rp_pa = 0;
545 		return 0;
546 	}
547 
548 	/* indicate the thread is activating */
549 	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
550 	part->act_state = XPC_P_AS_ACTIVATING;
551 
552 	XPC_SET_REASON(part, 0, 0);
553 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
554 
555 	dev_dbg(xpc_part, "activating partition %d\n", partid);
556 
557 	xpc_arch_ops.allow_hb(partid);
558 
559 	if (xpc_setup_ch_structures(part) == xpSuccess) {
560 		(void)xpc_part_ref(part);	/* this will always succeed */
561 
562 		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
563 			xpc_mark_partition_active(part);
564 			xpc_channel_mgr(part);
565 			/* won't return until partition is deactivating */
566 		}
567 
568 		xpc_part_deref(part);
569 		xpc_teardown_ch_structures(part);
570 	}
571 
572 	xpc_arch_ops.disallow_hb(partid);
573 	xpc_mark_partition_inactive(part);
574 
575 	if (part->reason == xpReactivating) {
576 		/* interrupting ourselves results in activating partition */
577 		xpc_arch_ops.request_partition_reactivation(part);
578 	}
579 
580 	return 0;
581 }
582 
583 void
584 xpc_activate_partition(struct xpc_partition *part)
585 {
586 	short partid = XPC_PARTID(part);
587 	unsigned long irq_flags;
588 	struct task_struct *kthread;
589 
590 	spin_lock_irqsave(&part->act_lock, irq_flags);
591 
592 	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
593 
594 	part->act_state = XPC_P_AS_ACTIVATION_REQ;
595 	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
596 
597 	spin_unlock_irqrestore(&part->act_lock, irq_flags);
598 
599 	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
600 			      partid);
601 	if (IS_ERR(kthread)) {
602 		spin_lock_irqsave(&part->act_lock, irq_flags);
603 		part->act_state = XPC_P_AS_INACTIVE;
604 		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
605 		spin_unlock_irqrestore(&part->act_lock, irq_flags);
606 	}
607 }
608 
609 void
610 xpc_activate_kthreads(struct xpc_channel *ch, int needed)
611 {
612 	int idle = atomic_read(&ch->kthreads_idle);
613 	int assigned = atomic_read(&ch->kthreads_assigned);
614 	int wakeup;
615 
616 	DBUG_ON(needed <= 0);
617 
618 	if (idle > 0) {
619 		wakeup = (needed > idle) ? idle : needed;
620 		needed -= wakeup;
621 
622 		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
623 			"channel=%d\n", wakeup, ch->partid, ch->number);
624 
625 		/* only wakeup the requested number of kthreads */
626 		wake_up_nr(&ch->idle_wq, wakeup);
627 	}
628 
629 	if (needed <= 0)
630 		return;
631 
632 	if (needed + assigned > ch->kthreads_assigned_limit) {
633 		needed = ch->kthreads_assigned_limit - assigned;
634 		if (needed <= 0)
635 			return;
636 	}
637 
638 	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
639 		needed, ch->partid, ch->number);
640 
641 	xpc_create_kthreads(ch, needed, 0);
642 }
643 
644 /*
645  * This function is where XPC's kthreads wait for messages to deliver.
646  */
647 static void
648 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
649 {
650 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
651 		xpc_arch_ops.n_of_deliverable_payloads;
652 
653 	do {
654 		/* deliver messages to their intended recipients */
655 
656 		while (n_of_deliverable_payloads(ch) > 0 &&
657 		       !(ch->flags & XPC_C_DISCONNECTING)) {
658 			xpc_deliver_payload(ch);
659 		}
660 
661 		if (atomic_inc_return(&ch->kthreads_idle) >
662 		    ch->kthreads_idle_limit) {
663 			/* too many idle kthreads on this channel */
664 			atomic_dec(&ch->kthreads_idle);
665 			break;
666 		}
667 
668 		dev_dbg(xpc_chan, "idle kthread calling "
669 			"wait_event_interruptible_exclusive()\n");
670 
671 		(void)wait_event_interruptible_exclusive(ch->idle_wq,
672 				(n_of_deliverable_payloads(ch) > 0 ||
673 				 (ch->flags & XPC_C_DISCONNECTING)));
674 
675 		atomic_dec(&ch->kthreads_idle);
676 
677 	} while (!(ch->flags & XPC_C_DISCONNECTING));
678 }
679 
680 static int
681 xpc_kthread_start(void *args)
682 {
683 	short partid = XPC_UNPACK_ARG1(args);
684 	u16 ch_number = XPC_UNPACK_ARG2(args);
685 	struct xpc_partition *part = &xpc_partitions[partid];
686 	struct xpc_channel *ch;
687 	int n_needed;
688 	unsigned long irq_flags;
689 	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
690 		xpc_arch_ops.n_of_deliverable_payloads;
691 
692 	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
693 		partid, ch_number);
694 
695 	ch = &part->channels[ch_number];
696 
697 	if (!(ch->flags & XPC_C_DISCONNECTING)) {
698 
699 		/* let registerer know that connection has been established */
700 
701 		spin_lock_irqsave(&ch->lock, irq_flags);
702 		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
703 			ch->flags |= XPC_C_CONNECTEDCALLOUT;
704 			spin_unlock_irqrestore(&ch->lock, irq_flags);
705 
706 			xpc_connected_callout(ch);
707 
708 			spin_lock_irqsave(&ch->lock, irq_flags);
709 			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
710 			spin_unlock_irqrestore(&ch->lock, irq_flags);
711 
712 			/*
713 			 * It is possible that while the callout was being
714 			 * made that the remote partition sent some messages.
715 			 * If that is the case, we may need to activate
716 			 * additional kthreads to help deliver them. We only
717 			 * need one less than total #of messages to deliver.
718 			 */
719 			n_needed = n_of_deliverable_payloads(ch) - 1;
720 			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
721 				xpc_activate_kthreads(ch, n_needed);
722 
723 		} else {
724 			spin_unlock_irqrestore(&ch->lock, irq_flags);
725 		}
726 
727 		xpc_kthread_waitmsgs(part, ch);
728 	}
729 
730 	/* let registerer know that connection is disconnecting */
731 
732 	spin_lock_irqsave(&ch->lock, irq_flags);
733 	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
734 	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
735 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
736 		spin_unlock_irqrestore(&ch->lock, irq_flags);
737 
738 		xpc_disconnect_callout(ch, xpDisconnecting);
739 
740 		spin_lock_irqsave(&ch->lock, irq_flags);
741 		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
742 	}
743 	spin_unlock_irqrestore(&ch->lock, irq_flags);
744 
745 	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
746 	    atomic_dec_return(&part->nchannels_engaged) == 0) {
747 		xpc_arch_ops.indicate_partition_disengaged(part);
748 	}
749 
750 	xpc_msgqueue_deref(ch);
751 
752 	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
753 		partid, ch_number);
754 
755 	xpc_part_deref(part);
756 	return 0;
757 }
758 
759 /*
760  * For each partition that XPC has established communications with, there is
761  * a minimum of one kernel thread assigned to perform any operation that
762  * may potentially sleep or block (basically the callouts to the asynchronous
763  * functions registered via xpc_connect()).
764  *
765  * Additional kthreads are created and destroyed by XPC as the workload
766  * demands.
767  *
768  * A kthread is assigned to one of the active channels that exists for a given
769  * partition.
770  */
771 void
772 xpc_create_kthreads(struct xpc_channel *ch, int needed,
773 		    int ignore_disconnecting)
774 {
775 	unsigned long irq_flags;
776 	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
777 	struct xpc_partition *part = &xpc_partitions[ch->partid];
778 	struct task_struct *kthread;
779 	void (*indicate_partition_disengaged) (struct xpc_partition *) =
780 		xpc_arch_ops.indicate_partition_disengaged;
781 
782 	while (needed-- > 0) {
783 
784 		/*
785 		 * The following is done on behalf of the newly created
786 		 * kthread. That kthread is responsible for doing the
787 		 * counterpart to the following before it exits.
788 		 */
789 		if (ignore_disconnecting) {
790 			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
791 				/* kthreads assigned had gone to zero */
792 				BUG_ON(!(ch->flags &
793 					 XPC_C_DISCONNECTINGCALLOUT_MADE));
794 				break;
795 			}
796 
797 		} else if (ch->flags & XPC_C_DISCONNECTING) {
798 			break;
799 
800 		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
801 			   atomic_inc_return(&part->nchannels_engaged) == 1) {
802 			xpc_arch_ops.indicate_partition_engaged(part);
803 		}
804 		(void)xpc_part_ref(part);
805 		xpc_msgqueue_ref(ch);
806 
807 		kthread = kthread_run(xpc_kthread_start, (void *)args,
808 				      "xpc%02dc%d", ch->partid, ch->number);
809 		if (IS_ERR(kthread)) {
810 			/* the fork failed */
811 
812 			/*
813 			 * NOTE: if (ignore_disconnecting &&
814 			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
815 			 * then we'll deadlock if all other kthreads assigned
816 			 * to this channel are blocked in the channel's
817 			 * registerer, because the only thing that will unblock
818 			 * them is the xpDisconnecting callout that this
819 			 * failed kthread_run() would have made.
820 			 */
821 
822 			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
823 			    atomic_dec_return(&part->nchannels_engaged) == 0) {
824 				indicate_partition_disengaged(part);
825 			}
826 			xpc_msgqueue_deref(ch);
827 			xpc_part_deref(part);
828 
829 			if (atomic_read(&ch->kthreads_assigned) <
830 			    ch->kthreads_idle_limit) {
831 				/*
832 				 * Flag this as an error only if we have an
833 				 * insufficient #of kthreads for the channel
834 				 * to function.
835 				 */
836 				spin_lock_irqsave(&ch->lock, irq_flags);
837 				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
838 						       &irq_flags);
839 				spin_unlock_irqrestore(&ch->lock, irq_flags);
840 			}
841 			break;
842 		}
843 	}
844 }
845 
846 void
847 xpc_disconnect_wait(int ch_number)
848 {
849 	unsigned long irq_flags;
850 	short partid;
851 	struct xpc_partition *part;
852 	struct xpc_channel *ch;
853 	int wakeup_channel_mgr;
854 
855 	/* now wait for all callouts to the caller's function to cease */
856 	for (partid = 0; partid < xp_max_npartitions; partid++) {
857 		part = &xpc_partitions[partid];
858 
859 		if (!xpc_part_ref(part))
860 			continue;
861 
862 		ch = &part->channels[ch_number];
863 
864 		if (!(ch->flags & XPC_C_WDISCONNECT)) {
865 			xpc_part_deref(part);
866 			continue;
867 		}
868 
869 		wait_for_completion(&ch->wdisconnect_wait);
870 
871 		spin_lock_irqsave(&ch->lock, irq_flags);
872 		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
873 		wakeup_channel_mgr = 0;
874 
875 		if (ch->delayed_chctl_flags) {
876 			if (part->act_state != XPC_P_AS_DEACTIVATING) {
877 				spin_lock(&part->chctl_lock);
878 				part->chctl.flags[ch->number] |=
879 				    ch->delayed_chctl_flags;
880 				spin_unlock(&part->chctl_lock);
881 				wakeup_channel_mgr = 1;
882 			}
883 			ch->delayed_chctl_flags = 0;
884 		}
885 
886 		ch->flags &= ~XPC_C_WDISCONNECT;
887 		spin_unlock_irqrestore(&ch->lock, irq_flags);
888 
889 		if (wakeup_channel_mgr)
890 			xpc_wakeup_channel_mgr(part);
891 
892 		xpc_part_deref(part);
893 	}
894 }
895 
896 static int
897 xpc_setup_partitions(void)
898 {
899 	short partid;
900 	struct xpc_partition *part;
901 
902 	xpc_partitions = kcalloc(xp_max_npartitions,
903 				 sizeof(struct xpc_partition),
904 				 GFP_KERNEL);
905 	if (xpc_partitions == NULL) {
906 		dev_err(xpc_part, "can't get memory for partition structure\n");
907 		return -ENOMEM;
908 	}
909 
910 	/*
911 	 * The first few fields of each entry of xpc_partitions[] need to
912 	 * be initialized now so that calls to xpc_connect() and
913 	 * xpc_disconnect() can be made prior to the activation of any remote
914 	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
915 	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
916 	 * PARTITION HAS BEEN ACTIVATED.
917 	 */
918 	for (partid = 0; partid < xp_max_npartitions; partid++) {
919 		part = &xpc_partitions[partid];
920 
921 		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
922 
923 		part->activate_IRQ_rcvd = 0;
924 		spin_lock_init(&part->act_lock);
925 		part->act_state = XPC_P_AS_INACTIVE;
926 		XPC_SET_REASON(part, 0, 0);
927 
928 		timer_setup(&part->disengage_timer,
929 			    xpc_timeout_partition_disengage, 0);
930 
931 		part->setup_state = XPC_P_SS_UNSET;
932 		init_waitqueue_head(&part->teardown_wq);
933 		atomic_set(&part->references, 0);
934 	}
935 
936 	return xpc_arch_ops.setup_partitions();
937 }
938 
939 static void
940 xpc_teardown_partitions(void)
941 {
942 	xpc_arch_ops.teardown_partitions();
943 	kfree(xpc_partitions);
944 }
945 
946 static void
947 xpc_do_exit(enum xp_retval reason)
948 {
949 	short partid;
950 	int active_part_count, printed_waiting_msg = 0;
951 	struct xpc_partition *part;
952 	unsigned long printmsg_time, disengage_timeout = 0;
953 
954 	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
955 	DBUG_ON(xpc_exiting == 1);
956 
957 	/*
958 	 * Let the heartbeat checker thread and the discovery thread
959 	 * (if one is running) know that they should exit. Also wake up
960 	 * the heartbeat checker thread in case it's sleeping.
961 	 */
962 	xpc_exiting = 1;
963 	wake_up_interruptible(&xpc_activate_IRQ_wq);
964 
965 	/* wait for the discovery thread to exit */
966 	wait_for_completion(&xpc_discovery_exited);
967 
968 	/* wait for the heartbeat checker thread to exit */
969 	wait_for_completion(&xpc_hb_checker_exited);
970 
971 	/* sleep for a 1/3 of a second or so */
972 	(void)msleep_interruptible(300);
973 
974 	/* wait for all partitions to become inactive */
975 
976 	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
977 	xpc_disengage_timedout = 0;
978 
979 	do {
980 		active_part_count = 0;
981 
982 		for (partid = 0; partid < xp_max_npartitions; partid++) {
983 			part = &xpc_partitions[partid];
984 
985 			if (xpc_partition_disengaged(part) &&
986 			    part->act_state == XPC_P_AS_INACTIVE) {
987 				continue;
988 			}
989 
990 			active_part_count++;
991 
992 			XPC_DEACTIVATE_PARTITION(part, reason);
993 
994 			if (part->disengage_timeout > disengage_timeout)
995 				disengage_timeout = part->disengage_timeout;
996 		}
997 
998 		if (xpc_arch_ops.any_partition_engaged()) {
999 			if (time_is_before_jiffies(printmsg_time)) {
1000 				dev_info(xpc_part, "waiting for remote "
1001 					 "partitions to deactivate, timeout in "
1002 					 "%ld seconds\n", (disengage_timeout -
1003 					 jiffies) / HZ);
1004 				printmsg_time = jiffies +
1005 				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1006 				printed_waiting_msg = 1;
1007 			}
1008 
1009 		} else if (active_part_count > 0) {
1010 			if (printed_waiting_msg) {
1011 				dev_info(xpc_part, "waiting for local partition"
1012 					 " to deactivate\n");
1013 				printed_waiting_msg = 0;
1014 			}
1015 
1016 		} else {
1017 			if (!xpc_disengage_timedout) {
1018 				dev_info(xpc_part, "all partitions have "
1019 					 "deactivated\n");
1020 			}
1021 			break;
1022 		}
1023 
1024 		/* sleep for a 1/3 of a second or so */
1025 		(void)msleep_interruptible(300);
1026 
1027 	} while (1);
1028 
1029 	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1030 
1031 	xpc_teardown_rsvd_page();
1032 
1033 	if (reason == xpUnloading) {
1034 		(void)unregister_die_notifier(&xpc_die_notifier);
1035 		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1036 	}
1037 
1038 	/* clear the interface to XPC's functions */
1039 	xpc_clear_interface();
1040 
1041 	if (xpc_sysctl)
1042 		unregister_sysctl_table(xpc_sysctl);
1043 
1044 	xpc_teardown_partitions();
1045 
1046 	if (is_uv())
1047 		xpc_exit_uv();
1048 }
1049 
1050 /*
1051  * This function is called when the system is being rebooted.
1052  */
1053 static int
1054 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1055 {
1056 	enum xp_retval reason;
1057 
1058 	switch (event) {
1059 	case SYS_RESTART:
1060 		reason = xpSystemReboot;
1061 		break;
1062 	case SYS_HALT:
1063 		reason = xpSystemHalt;
1064 		break;
1065 	case SYS_POWER_OFF:
1066 		reason = xpSystemPoweroff;
1067 		break;
1068 	default:
1069 		reason = xpSystemGoingDown;
1070 	}
1071 
1072 	xpc_do_exit(reason);
1073 	return NOTIFY_DONE;
1074 }
1075 
1076 /* Used to only allow one cpu to complete disconnect */
1077 static unsigned int xpc_die_disconnecting;
1078 
1079 /*
1080  * Notify other partitions to deactivate from us by first disengaging from all
1081  * references to our memory.
1082  */
1083 static void
1084 xpc_die_deactivate(void)
1085 {
1086 	struct xpc_partition *part;
1087 	short partid;
1088 	int any_engaged;
1089 	long keep_waiting;
1090 	long wait_to_print;
1091 
1092 	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1093 		return;
1094 
1095 	/* keep xpc_hb_checker thread from doing anything (just in case) */
1096 	xpc_exiting = 1;
1097 
1098 	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1099 
1100 	for (partid = 0; partid < xp_max_npartitions; partid++) {
1101 		part = &xpc_partitions[partid];
1102 
1103 		if (xpc_arch_ops.partition_engaged(partid) ||
1104 		    part->act_state != XPC_P_AS_INACTIVE) {
1105 			xpc_arch_ops.request_partition_deactivation(part);
1106 			xpc_arch_ops.indicate_partition_disengaged(part);
1107 		}
1108 	}
1109 
1110 	/*
1111 	 * Though we requested that all other partitions deactivate from us,
1112 	 * we only wait until they've all disengaged or we've reached the
1113 	 * defined timelimit.
1114 	 *
1115 	 * Given that one iteration through the following while-loop takes
1116 	 * approximately 200 microseconds, calculate the #of loops to take
1117 	 * before bailing and the #of loops before printing a waiting message.
1118 	 */
1119 	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1120 	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1121 
1122 	while (1) {
1123 		any_engaged = xpc_arch_ops.any_partition_engaged();
1124 		if (!any_engaged) {
1125 			dev_info(xpc_part, "all partitions have deactivated\n");
1126 			break;
1127 		}
1128 
1129 		if (!keep_waiting--) {
1130 			for (partid = 0; partid < xp_max_npartitions;
1131 			     partid++) {
1132 				if (xpc_arch_ops.partition_engaged(partid)) {
1133 					dev_info(xpc_part, "deactivate from "
1134 						 "remote partition %d timed "
1135 						 "out\n", partid);
1136 				}
1137 			}
1138 			break;
1139 		}
1140 
1141 		if (!wait_to_print--) {
1142 			dev_info(xpc_part, "waiting for remote partitions to "
1143 				 "deactivate, timeout in %ld seconds\n",
1144 				 keep_waiting / (1000 * 5));
1145 			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1146 			    1000 * 5;
1147 		}
1148 
1149 		udelay(200);
1150 	}
1151 }
1152 
1153 /*
1154  * This function is called when the system is being restarted or halted due
1155  * to some sort of system failure. If this is the case we need to notify the
1156  * other partitions to disengage from all references to our memory.
1157  * This function can also be called when our heartbeater could be offlined
1158  * for a time. In this case we need to notify other partitions to not worry
1159  * about the lack of a heartbeat.
1160  */
1161 static int
1162 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1163 {
1164 #ifdef CONFIG_IA64		/* !!! temporary kludge */
1165 	switch (event) {
1166 	case DIE_MACHINE_RESTART:
1167 	case DIE_MACHINE_HALT:
1168 		xpc_die_deactivate();
1169 		break;
1170 
1171 	case DIE_KDEBUG_ENTER:
1172 		/* Should lack of heartbeat be ignored by other partitions? */
1173 		if (!xpc_kdebug_ignore)
1174 			break;
1175 
1176 		/* fall through */
1177 	case DIE_MCA_MONARCH_ENTER:
1178 	case DIE_INIT_MONARCH_ENTER:
1179 		xpc_arch_ops.offline_heartbeat();
1180 		break;
1181 
1182 	case DIE_KDEBUG_LEAVE:
1183 		/* Is lack of heartbeat being ignored by other partitions? */
1184 		if (!xpc_kdebug_ignore)
1185 			break;
1186 
1187 		/* fall through */
1188 	case DIE_MCA_MONARCH_LEAVE:
1189 	case DIE_INIT_MONARCH_LEAVE:
1190 		xpc_arch_ops.online_heartbeat();
1191 		break;
1192 	}
1193 #else
1194 	struct die_args *die_args = _die_args;
1195 
1196 	switch (event) {
1197 	case DIE_TRAP:
1198 		if (die_args->trapnr == X86_TRAP_DF)
1199 			xpc_die_deactivate();
1200 
1201 		if (((die_args->trapnr == X86_TRAP_MF) ||
1202 		     (die_args->trapnr == X86_TRAP_XF)) &&
1203 		    !user_mode(die_args->regs))
1204 			xpc_die_deactivate();
1205 
1206 		break;
1207 	case DIE_INT3:
1208 	case DIE_DEBUG:
1209 		break;
1210 	case DIE_OOPS:
1211 	case DIE_GPF:
1212 	default:
1213 		xpc_die_deactivate();
1214 	}
1215 #endif
1216 
1217 	return NOTIFY_DONE;
1218 }
1219 
1220 static int __init
1221 xpc_init(void)
1222 {
1223 	int ret;
1224 	struct task_struct *kthread;
1225 
1226 	dev_set_name(xpc_part, "part");
1227 	dev_set_name(xpc_chan, "chan");
1228 
1229 	if (is_uv()) {
1230 		ret = xpc_init_uv();
1231 
1232 	} else {
1233 		ret = -ENODEV;
1234 	}
1235 
1236 	if (ret != 0)
1237 		return ret;
1238 
1239 	ret = xpc_setup_partitions();
1240 	if (ret != 0) {
1241 		dev_err(xpc_part, "can't get memory for partition structure\n");
1242 		goto out_1;
1243 	}
1244 
1245 	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
1246 
1247 	/*
1248 	 * Fill the partition reserved page with the information needed by
1249 	 * other partitions to discover we are alive and establish initial
1250 	 * communications.
1251 	 */
1252 	ret = xpc_setup_rsvd_page();
1253 	if (ret != 0) {
1254 		dev_err(xpc_part, "can't setup our reserved page\n");
1255 		goto out_2;
1256 	}
1257 
1258 	/* add ourselves to the reboot_notifier_list */
1259 	ret = register_reboot_notifier(&xpc_reboot_notifier);
1260 	if (ret != 0)
1261 		dev_warn(xpc_part, "can't register reboot notifier\n");
1262 
1263 	/* add ourselves to the die_notifier list */
1264 	ret = register_die_notifier(&xpc_die_notifier);
1265 	if (ret != 0)
1266 		dev_warn(xpc_part, "can't register die notifier\n");
1267 
1268 	/*
1269 	 * The real work-horse behind xpc.  This processes incoming
1270 	 * interrupts and monitors remote heartbeats.
1271 	 */
1272 	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1273 	if (IS_ERR(kthread)) {
1274 		dev_err(xpc_part, "failed while forking hb check thread\n");
1275 		ret = -EBUSY;
1276 		goto out_3;
1277 	}
1278 
1279 	/*
1280 	 * Startup a thread that will attempt to discover other partitions to
1281 	 * activate based on info provided by SAL. This new thread is short
1282 	 * lived and will exit once discovery is complete.
1283 	 */
1284 	kthread = kthread_run(xpc_initiate_discovery, NULL,
1285 			      XPC_DISCOVERY_THREAD_NAME);
1286 	if (IS_ERR(kthread)) {
1287 		dev_err(xpc_part, "failed while forking discovery thread\n");
1288 
1289 		/* mark this new thread as a non-starter */
1290 		complete(&xpc_discovery_exited);
1291 
1292 		xpc_do_exit(xpUnloading);
1293 		return -EBUSY;
1294 	}
1295 
1296 	/* set the interface to point at XPC's functions */
1297 	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1298 			  xpc_initiate_send, xpc_initiate_send_notify,
1299 			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1300 
1301 	return 0;
1302 
1303 	/* initialization was not successful */
1304 out_3:
1305 	xpc_teardown_rsvd_page();
1306 
1307 	(void)unregister_die_notifier(&xpc_die_notifier);
1308 	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1309 out_2:
1310 	if (xpc_sysctl)
1311 		unregister_sysctl_table(xpc_sysctl);
1312 
1313 	xpc_teardown_partitions();
1314 out_1:
1315 	if (is_uv())
1316 		xpc_exit_uv();
1317 	return ret;
1318 }
1319 
1320 module_init(xpc_init);
1321 
1322 static void __exit
1323 xpc_exit(void)
1324 {
1325 	xpc_do_exit(xpUnloading);
1326 }
1327 
1328 module_exit(xpc_exit);
1329 
1330 MODULE_AUTHOR("Silicon Graphics, Inc.");
1331 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1332 MODULE_LICENSE("GPL");
1333 
1334 module_param(xpc_hb_interval, int, 0);
1335 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1336 		 "heartbeat increments.");
1337 
1338 module_param(xpc_hb_check_interval, int, 0);
1339 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1340 		 "heartbeat checks.");
1341 
1342 module_param(xpc_disengage_timelimit, int, 0);
1343 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1344 		 "for disengage to complete.");
1345 
1346 module_param(xpc_kdebug_ignore, int, 0);
1347 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1348 		 "other partitions when dropping into kdebug.");
1349