1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved. 7 */ 8 9 /* 10 * Cross Partition Communication (XPC) support - standard version. 11 * 12 * XPC provides a message passing capability that crosses partition 13 * boundaries. This module is made up of two parts: 14 * 15 * partition This part detects the presence/absence of other 16 * partitions. It provides a heartbeat and monitors 17 * the heartbeats of other partitions. 18 * 19 * channel This part manages the channels and sends/receives 20 * messages across them to/from other partitions. 21 * 22 * There are a couple of additional functions residing in XP, which 23 * provide an interface to XPC for its users. 24 * 25 * 26 * Caveats: 27 * 28 * . Currently on sn2, we have no way to determine which nasid an IRQ 29 * came from. Thus, xpc_send_IRQ_sn2() does a remote amo write 30 * followed by an IPI. The amo indicates where data is to be pulled 31 * from, so after the IPI arrives, the remote partition checks the amo 32 * word. The IPI can actually arrive before the amo however, so other 33 * code must periodically check for this case. Also, remote amo 34 * operations do not reliably time out. Thus we do a remote PIO read 35 * solely to know whether the remote partition is down and whether we 36 * should stop sending IPIs to it. This remote PIO read operation is 37 * set up in a special nofault region so SAL knows to ignore (and 38 * cleanup) any errors due to the remote amo write, PIO read, and/or 39 * PIO write operations. 40 * 41 * If/when new hardware solves this IPI problem, we should abandon 42 * the current approach. 43 * 44 */ 45 46 #include <linux/module.h> 47 #include <linux/slab.h> 48 #include <linux/sysctl.h> 49 #include <linux/device.h> 50 #include <linux/delay.h> 51 #include <linux/reboot.h> 52 #include <linux/kdebug.h> 53 #include <linux/kthread.h> 54 #include "xpc.h" 55 56 #ifdef CONFIG_X86_64 57 #include <asm/traps.h> 58 #endif 59 60 /* define two XPC debug device structures to be used with dev_dbg() et al */ 61 62 struct device_driver xpc_dbg_name = { 63 .name = "xpc" 64 }; 65 66 struct device xpc_part_dbg_subname = { 67 .init_name = "", /* set to "part" at xpc_init() time */ 68 .driver = &xpc_dbg_name 69 }; 70 71 struct device xpc_chan_dbg_subname = { 72 .init_name = "", /* set to "chan" at xpc_init() time */ 73 .driver = &xpc_dbg_name 74 }; 75 76 struct device *xpc_part = &xpc_part_dbg_subname; 77 struct device *xpc_chan = &xpc_chan_dbg_subname; 78 79 static int xpc_kdebug_ignore; 80 81 /* systune related variables for /proc/sys directories */ 82 83 static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; 84 static int xpc_hb_min_interval = 1; 85 static int xpc_hb_max_interval = 10; 86 87 static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL; 88 static int xpc_hb_check_min_interval = 10; 89 static int xpc_hb_check_max_interval = 120; 90 91 int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT; 92 static int xpc_disengage_min_timelimit; /* = 0 */ 93 static int xpc_disengage_max_timelimit = 120; 94 95 static struct ctl_table xpc_sys_xpc_hb_dir[] = { 96 { 97 .procname = "hb_interval", 98 .data = &xpc_hb_interval, 99 .maxlen = sizeof(int), 100 .mode = 0644, 101 .proc_handler = proc_dointvec_minmax, 102 .extra1 = &xpc_hb_min_interval, 103 .extra2 = &xpc_hb_max_interval}, 104 { 105 .procname = "hb_check_interval", 106 .data = &xpc_hb_check_interval, 107 .maxlen = sizeof(int), 108 .mode = 0644, 109 .proc_handler = proc_dointvec_minmax, 110 .extra1 = &xpc_hb_check_min_interval, 111 .extra2 = &xpc_hb_check_max_interval}, 112 {} 113 }; 114 static struct ctl_table xpc_sys_xpc_dir[] = { 115 { 116 .procname = "hb", 117 .mode = 0555, 118 .child = xpc_sys_xpc_hb_dir}, 119 { 120 .procname = "disengage_timelimit", 121 .data = &xpc_disengage_timelimit, 122 .maxlen = sizeof(int), 123 .mode = 0644, 124 .proc_handler = proc_dointvec_minmax, 125 .extra1 = &xpc_disengage_min_timelimit, 126 .extra2 = &xpc_disengage_max_timelimit}, 127 {} 128 }; 129 static struct ctl_table xpc_sys_dir[] = { 130 { 131 .procname = "xpc", 132 .mode = 0555, 133 .child = xpc_sys_xpc_dir}, 134 {} 135 }; 136 static struct ctl_table_header *xpc_sysctl; 137 138 /* non-zero if any remote partition disengage was timed out */ 139 int xpc_disengage_timedout; 140 141 /* #of activate IRQs received and not yet processed */ 142 int xpc_activate_IRQ_rcvd; 143 DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock); 144 145 /* IRQ handler notifies this wait queue on receipt of an IRQ */ 146 DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq); 147 148 static unsigned long xpc_hb_check_timeout; 149 static struct timer_list xpc_hb_timer; 150 151 /* notification that the xpc_hb_checker thread has exited */ 152 static DECLARE_COMPLETION(xpc_hb_checker_exited); 153 154 /* notification that the xpc_discovery thread has exited */ 155 static DECLARE_COMPLETION(xpc_discovery_exited); 156 157 static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *); 158 159 static int xpc_system_reboot(struct notifier_block *, unsigned long, void *); 160 static struct notifier_block xpc_reboot_notifier = { 161 .notifier_call = xpc_system_reboot, 162 }; 163 164 static int xpc_system_die(struct notifier_block *, unsigned long, void *); 165 static struct notifier_block xpc_die_notifier = { 166 .notifier_call = xpc_system_die, 167 }; 168 169 struct xpc_arch_operations xpc_arch_ops; 170 171 /* 172 * Timer function to enforce the timelimit on the partition disengage. 173 */ 174 static void 175 xpc_timeout_partition_disengage(struct timer_list *t) 176 { 177 struct xpc_partition *part = from_timer(part, t, disengage_timer); 178 179 DBUG_ON(time_is_after_jiffies(part->disengage_timeout)); 180 181 (void)xpc_partition_disengaged(part); 182 183 DBUG_ON(part->disengage_timeout != 0); 184 DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part))); 185 } 186 187 /* 188 * Timer to produce the heartbeat. The timer structures function is 189 * already set when this is initially called. A tunable is used to 190 * specify when the next timeout should occur. 191 */ 192 static void 193 xpc_hb_beater(struct timer_list *unused) 194 { 195 xpc_arch_ops.increment_heartbeat(); 196 197 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) 198 wake_up_interruptible(&xpc_activate_IRQ_wq); 199 200 xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ); 201 add_timer(&xpc_hb_timer); 202 } 203 204 static void 205 xpc_start_hb_beater(void) 206 { 207 xpc_arch_ops.heartbeat_init(); 208 timer_setup(&xpc_hb_timer, xpc_hb_beater, 0); 209 xpc_hb_beater(0); 210 } 211 212 static void 213 xpc_stop_hb_beater(void) 214 { 215 del_timer_sync(&xpc_hb_timer); 216 xpc_arch_ops.heartbeat_exit(); 217 } 218 219 /* 220 * At periodic intervals, scan through all active partitions and ensure 221 * their heartbeat is still active. If not, the partition is deactivated. 222 */ 223 static void 224 xpc_check_remote_hb(void) 225 { 226 struct xpc_partition *part; 227 short partid; 228 enum xp_retval ret; 229 230 for (partid = 0; partid < xp_max_npartitions; partid++) { 231 232 if (xpc_exiting) 233 break; 234 235 if (partid == xp_partition_id) 236 continue; 237 238 part = &xpc_partitions[partid]; 239 240 if (part->act_state == XPC_P_AS_INACTIVE || 241 part->act_state == XPC_P_AS_DEACTIVATING) { 242 continue; 243 } 244 245 ret = xpc_arch_ops.get_remote_heartbeat(part); 246 if (ret != xpSuccess) 247 XPC_DEACTIVATE_PARTITION(part, ret); 248 } 249 } 250 251 /* 252 * This thread is responsible for nearly all of the partition 253 * activation/deactivation. 254 */ 255 static int 256 xpc_hb_checker(void *ignore) 257 { 258 int force_IRQ = 0; 259 260 /* this thread was marked active by xpc_hb_init() */ 261 262 set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU)); 263 264 /* set our heartbeating to other partitions into motion */ 265 xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ); 266 xpc_start_hb_beater(); 267 268 while (!xpc_exiting) { 269 270 dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have " 271 "been received\n", 272 (int)(xpc_hb_check_timeout - jiffies), 273 xpc_activate_IRQ_rcvd); 274 275 /* checking of remote heartbeats is skewed by IRQ handling */ 276 if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) { 277 xpc_hb_check_timeout = jiffies + 278 (xpc_hb_check_interval * HZ); 279 280 dev_dbg(xpc_part, "checking remote heartbeats\n"); 281 xpc_check_remote_hb(); 282 283 /* 284 * On sn2 we need to periodically recheck to ensure no 285 * IRQ/amo pairs have been missed. 286 */ 287 if (is_shub()) 288 force_IRQ = 1; 289 } 290 291 /* check for outstanding IRQs */ 292 if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) { 293 force_IRQ = 0; 294 dev_dbg(xpc_part, "processing activate IRQs " 295 "received\n"); 296 xpc_arch_ops.process_activate_IRQ_rcvd(); 297 } 298 299 /* wait for IRQ or timeout */ 300 (void)wait_event_interruptible(xpc_activate_IRQ_wq, 301 (time_is_before_eq_jiffies( 302 xpc_hb_check_timeout) || 303 xpc_activate_IRQ_rcvd > 0 || 304 xpc_exiting)); 305 } 306 307 xpc_stop_hb_beater(); 308 309 dev_dbg(xpc_part, "heartbeat checker is exiting\n"); 310 311 /* mark this thread as having exited */ 312 complete(&xpc_hb_checker_exited); 313 return 0; 314 } 315 316 /* 317 * This thread will attempt to discover other partitions to activate 318 * based on info provided by SAL. This new thread is short lived and 319 * will exit once discovery is complete. 320 */ 321 static int 322 xpc_initiate_discovery(void *ignore) 323 { 324 xpc_discovery(); 325 326 dev_dbg(xpc_part, "discovery thread is exiting\n"); 327 328 /* mark this thread as having exited */ 329 complete(&xpc_discovery_exited); 330 return 0; 331 } 332 333 /* 334 * The first kthread assigned to a newly activated partition is the one 335 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to 336 * that kthread until the partition is brought down, at which time that kthread 337 * returns back to XPC HB. (The return of that kthread will signify to XPC HB 338 * that XPC has dismantled all communication infrastructure for the associated 339 * partition.) This kthread becomes the channel manager for that partition. 340 * 341 * Each active partition has a channel manager, who, besides connecting and 342 * disconnecting channels, will ensure that each of the partition's connected 343 * channels has the required number of assigned kthreads to get the work done. 344 */ 345 static void 346 xpc_channel_mgr(struct xpc_partition *part) 347 { 348 while (part->act_state != XPC_P_AS_DEACTIVATING || 349 atomic_read(&part->nchannels_active) > 0 || 350 !xpc_partition_disengaged(part)) { 351 352 xpc_process_sent_chctl_flags(part); 353 354 /* 355 * Wait until we've been requested to activate kthreads or 356 * all of the channel's message queues have been torn down or 357 * a signal is pending. 358 * 359 * The channel_mgr_requests is set to 1 after being awakened, 360 * This is done to prevent the channel mgr from making one pass 361 * through the loop for each request, since he will 362 * be servicing all the requests in one pass. The reason it's 363 * set to 1 instead of 0 is so that other kthreads will know 364 * that the channel mgr is running and won't bother trying to 365 * wake him up. 366 */ 367 atomic_dec(&part->channel_mgr_requests); 368 (void)wait_event_interruptible(part->channel_mgr_wq, 369 (atomic_read(&part->channel_mgr_requests) > 0 || 370 part->chctl.all_flags != 0 || 371 (part->act_state == XPC_P_AS_DEACTIVATING && 372 atomic_read(&part->nchannels_active) == 0 && 373 xpc_partition_disengaged(part)))); 374 atomic_set(&part->channel_mgr_requests, 1); 375 } 376 } 377 378 /* 379 * Guarantee that the kzalloc'd memory is cacheline aligned. 380 */ 381 void * 382 xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) 383 { 384 /* see if kzalloc will give us cachline aligned memory by default */ 385 *base = kzalloc(size, flags); 386 if (*base == NULL) 387 return NULL; 388 389 if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) 390 return *base; 391 392 kfree(*base); 393 394 /* nope, we'll have to do it ourselves */ 395 *base = kzalloc(size + L1_CACHE_BYTES, flags); 396 if (*base == NULL) 397 return NULL; 398 399 return (void *)L1_CACHE_ALIGN((u64)*base); 400 } 401 402 /* 403 * Setup the channel structures necessary to support XPartition Communication 404 * between the specified remote partition and the local one. 405 */ 406 static enum xp_retval 407 xpc_setup_ch_structures(struct xpc_partition *part) 408 { 409 enum xp_retval ret; 410 int ch_number; 411 struct xpc_channel *ch; 412 short partid = XPC_PARTID(part); 413 414 /* 415 * Allocate all of the channel structures as a contiguous chunk of 416 * memory. 417 */ 418 DBUG_ON(part->channels != NULL); 419 part->channels = kcalloc(XPC_MAX_NCHANNELS, 420 sizeof(struct xpc_channel), 421 GFP_KERNEL); 422 if (part->channels == NULL) { 423 dev_err(xpc_chan, "can't get memory for channels\n"); 424 return xpNoMemory; 425 } 426 427 /* allocate the remote open and close args */ 428 429 part->remote_openclose_args = 430 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE, 431 GFP_KERNEL, &part-> 432 remote_openclose_args_base); 433 if (part->remote_openclose_args == NULL) { 434 dev_err(xpc_chan, "can't get memory for remote connect args\n"); 435 ret = xpNoMemory; 436 goto out_1; 437 } 438 439 part->chctl.all_flags = 0; 440 spin_lock_init(&part->chctl_lock); 441 442 atomic_set(&part->channel_mgr_requests, 1); 443 init_waitqueue_head(&part->channel_mgr_wq); 444 445 part->nchannels = XPC_MAX_NCHANNELS; 446 447 atomic_set(&part->nchannels_active, 0); 448 atomic_set(&part->nchannels_engaged, 0); 449 450 for (ch_number = 0; ch_number < part->nchannels; ch_number++) { 451 ch = &part->channels[ch_number]; 452 453 ch->partid = partid; 454 ch->number = ch_number; 455 ch->flags = XPC_C_DISCONNECTED; 456 457 atomic_set(&ch->kthreads_assigned, 0); 458 atomic_set(&ch->kthreads_idle, 0); 459 atomic_set(&ch->kthreads_active, 0); 460 461 atomic_set(&ch->references, 0); 462 atomic_set(&ch->n_to_notify, 0); 463 464 spin_lock_init(&ch->lock); 465 init_completion(&ch->wdisconnect_wait); 466 467 atomic_set(&ch->n_on_msg_allocate_wq, 0); 468 init_waitqueue_head(&ch->msg_allocate_wq); 469 init_waitqueue_head(&ch->idle_wq); 470 } 471 472 ret = xpc_arch_ops.setup_ch_structures(part); 473 if (ret != xpSuccess) 474 goto out_2; 475 476 /* 477 * With the setting of the partition setup_state to XPC_P_SS_SETUP, 478 * we're declaring that this partition is ready to go. 479 */ 480 part->setup_state = XPC_P_SS_SETUP; 481 482 return xpSuccess; 483 484 /* setup of ch structures failed */ 485 out_2: 486 kfree(part->remote_openclose_args_base); 487 part->remote_openclose_args = NULL; 488 out_1: 489 kfree(part->channels); 490 part->channels = NULL; 491 return ret; 492 } 493 494 /* 495 * Teardown the channel structures necessary to support XPartition Communication 496 * between the specified remote partition and the local one. 497 */ 498 static void 499 xpc_teardown_ch_structures(struct xpc_partition *part) 500 { 501 DBUG_ON(atomic_read(&part->nchannels_engaged) != 0); 502 DBUG_ON(atomic_read(&part->nchannels_active) != 0); 503 504 /* 505 * Make this partition inaccessible to local processes by marking it 506 * as no longer setup. Then wait before proceeding with the teardown 507 * until all existing references cease. 508 */ 509 DBUG_ON(part->setup_state != XPC_P_SS_SETUP); 510 part->setup_state = XPC_P_SS_WTEARDOWN; 511 512 wait_event(part->teardown_wq, (atomic_read(&part->references) == 0)); 513 514 /* now we can begin tearing down the infrastructure */ 515 516 xpc_arch_ops.teardown_ch_structures(part); 517 518 kfree(part->remote_openclose_args_base); 519 part->remote_openclose_args = NULL; 520 kfree(part->channels); 521 part->channels = NULL; 522 523 part->setup_state = XPC_P_SS_TORNDOWN; 524 } 525 526 /* 527 * When XPC HB determines that a partition has come up, it will create a new 528 * kthread and that kthread will call this function to attempt to set up the 529 * basic infrastructure used for Cross Partition Communication with the newly 530 * upped partition. 531 * 532 * The kthread that was created by XPC HB and which setup the XPC 533 * infrastructure will remain assigned to the partition becoming the channel 534 * manager for that partition until the partition is deactivating, at which 535 * time the kthread will teardown the XPC infrastructure and then exit. 536 */ 537 static int 538 xpc_activating(void *__partid) 539 { 540 short partid = (u64)__partid; 541 struct xpc_partition *part = &xpc_partitions[partid]; 542 unsigned long irq_flags; 543 544 DBUG_ON(partid < 0 || partid >= xp_max_npartitions); 545 546 spin_lock_irqsave(&part->act_lock, irq_flags); 547 548 if (part->act_state == XPC_P_AS_DEACTIVATING) { 549 part->act_state = XPC_P_AS_INACTIVE; 550 spin_unlock_irqrestore(&part->act_lock, irq_flags); 551 part->remote_rp_pa = 0; 552 return 0; 553 } 554 555 /* indicate the thread is activating */ 556 DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ); 557 part->act_state = XPC_P_AS_ACTIVATING; 558 559 XPC_SET_REASON(part, 0, 0); 560 spin_unlock_irqrestore(&part->act_lock, irq_flags); 561 562 dev_dbg(xpc_part, "activating partition %d\n", partid); 563 564 xpc_arch_ops.allow_hb(partid); 565 566 if (xpc_setup_ch_structures(part) == xpSuccess) { 567 (void)xpc_part_ref(part); /* this will always succeed */ 568 569 if (xpc_arch_ops.make_first_contact(part) == xpSuccess) { 570 xpc_mark_partition_active(part); 571 xpc_channel_mgr(part); 572 /* won't return until partition is deactivating */ 573 } 574 575 xpc_part_deref(part); 576 xpc_teardown_ch_structures(part); 577 } 578 579 xpc_arch_ops.disallow_hb(partid); 580 xpc_mark_partition_inactive(part); 581 582 if (part->reason == xpReactivating) { 583 /* interrupting ourselves results in activating partition */ 584 xpc_arch_ops.request_partition_reactivation(part); 585 } 586 587 return 0; 588 } 589 590 void 591 xpc_activate_partition(struct xpc_partition *part) 592 { 593 short partid = XPC_PARTID(part); 594 unsigned long irq_flags; 595 struct task_struct *kthread; 596 597 spin_lock_irqsave(&part->act_lock, irq_flags); 598 599 DBUG_ON(part->act_state != XPC_P_AS_INACTIVE); 600 601 part->act_state = XPC_P_AS_ACTIVATION_REQ; 602 XPC_SET_REASON(part, xpCloneKThread, __LINE__); 603 604 spin_unlock_irqrestore(&part->act_lock, irq_flags); 605 606 kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d", 607 partid); 608 if (IS_ERR(kthread)) { 609 spin_lock_irqsave(&part->act_lock, irq_flags); 610 part->act_state = XPC_P_AS_INACTIVE; 611 XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__); 612 spin_unlock_irqrestore(&part->act_lock, irq_flags); 613 } 614 } 615 616 void 617 xpc_activate_kthreads(struct xpc_channel *ch, int needed) 618 { 619 int idle = atomic_read(&ch->kthreads_idle); 620 int assigned = atomic_read(&ch->kthreads_assigned); 621 int wakeup; 622 623 DBUG_ON(needed <= 0); 624 625 if (idle > 0) { 626 wakeup = (needed > idle) ? idle : needed; 627 needed -= wakeup; 628 629 dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, " 630 "channel=%d\n", wakeup, ch->partid, ch->number); 631 632 /* only wakeup the requested number of kthreads */ 633 wake_up_nr(&ch->idle_wq, wakeup); 634 } 635 636 if (needed <= 0) 637 return; 638 639 if (needed + assigned > ch->kthreads_assigned_limit) { 640 needed = ch->kthreads_assigned_limit - assigned; 641 if (needed <= 0) 642 return; 643 } 644 645 dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n", 646 needed, ch->partid, ch->number); 647 648 xpc_create_kthreads(ch, needed, 0); 649 } 650 651 /* 652 * This function is where XPC's kthreads wait for messages to deliver. 653 */ 654 static void 655 xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch) 656 { 657 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 658 xpc_arch_ops.n_of_deliverable_payloads; 659 660 do { 661 /* deliver messages to their intended recipients */ 662 663 while (n_of_deliverable_payloads(ch) > 0 && 664 !(ch->flags & XPC_C_DISCONNECTING)) { 665 xpc_deliver_payload(ch); 666 } 667 668 if (atomic_inc_return(&ch->kthreads_idle) > 669 ch->kthreads_idle_limit) { 670 /* too many idle kthreads on this channel */ 671 atomic_dec(&ch->kthreads_idle); 672 break; 673 } 674 675 dev_dbg(xpc_chan, "idle kthread calling " 676 "wait_event_interruptible_exclusive()\n"); 677 678 (void)wait_event_interruptible_exclusive(ch->idle_wq, 679 (n_of_deliverable_payloads(ch) > 0 || 680 (ch->flags & XPC_C_DISCONNECTING))); 681 682 atomic_dec(&ch->kthreads_idle); 683 684 } while (!(ch->flags & XPC_C_DISCONNECTING)); 685 } 686 687 static int 688 xpc_kthread_start(void *args) 689 { 690 short partid = XPC_UNPACK_ARG1(args); 691 u16 ch_number = XPC_UNPACK_ARG2(args); 692 struct xpc_partition *part = &xpc_partitions[partid]; 693 struct xpc_channel *ch; 694 int n_needed; 695 unsigned long irq_flags; 696 int (*n_of_deliverable_payloads) (struct xpc_channel *) = 697 xpc_arch_ops.n_of_deliverable_payloads; 698 699 dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n", 700 partid, ch_number); 701 702 ch = &part->channels[ch_number]; 703 704 if (!(ch->flags & XPC_C_DISCONNECTING)) { 705 706 /* let registerer know that connection has been established */ 707 708 spin_lock_irqsave(&ch->lock, irq_flags); 709 if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) { 710 ch->flags |= XPC_C_CONNECTEDCALLOUT; 711 spin_unlock_irqrestore(&ch->lock, irq_flags); 712 713 xpc_connected_callout(ch); 714 715 spin_lock_irqsave(&ch->lock, irq_flags); 716 ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE; 717 spin_unlock_irqrestore(&ch->lock, irq_flags); 718 719 /* 720 * It is possible that while the callout was being 721 * made that the remote partition sent some messages. 722 * If that is the case, we may need to activate 723 * additional kthreads to help deliver them. We only 724 * need one less than total #of messages to deliver. 725 */ 726 n_needed = n_of_deliverable_payloads(ch) - 1; 727 if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING)) 728 xpc_activate_kthreads(ch, n_needed); 729 730 } else { 731 spin_unlock_irqrestore(&ch->lock, irq_flags); 732 } 733 734 xpc_kthread_waitmsgs(part, ch); 735 } 736 737 /* let registerer know that connection is disconnecting */ 738 739 spin_lock_irqsave(&ch->lock, irq_flags); 740 if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) && 741 !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) { 742 ch->flags |= XPC_C_DISCONNECTINGCALLOUT; 743 spin_unlock_irqrestore(&ch->lock, irq_flags); 744 745 xpc_disconnect_callout(ch, xpDisconnecting); 746 747 spin_lock_irqsave(&ch->lock, irq_flags); 748 ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE; 749 } 750 spin_unlock_irqrestore(&ch->lock, irq_flags); 751 752 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 753 atomic_dec_return(&part->nchannels_engaged) == 0) { 754 xpc_arch_ops.indicate_partition_disengaged(part); 755 } 756 757 xpc_msgqueue_deref(ch); 758 759 dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n", 760 partid, ch_number); 761 762 xpc_part_deref(part); 763 return 0; 764 } 765 766 /* 767 * For each partition that XPC has established communications with, there is 768 * a minimum of one kernel thread assigned to perform any operation that 769 * may potentially sleep or block (basically the callouts to the asynchronous 770 * functions registered via xpc_connect()). 771 * 772 * Additional kthreads are created and destroyed by XPC as the workload 773 * demands. 774 * 775 * A kthread is assigned to one of the active channels that exists for a given 776 * partition. 777 */ 778 void 779 xpc_create_kthreads(struct xpc_channel *ch, int needed, 780 int ignore_disconnecting) 781 { 782 unsigned long irq_flags; 783 u64 args = XPC_PACK_ARGS(ch->partid, ch->number); 784 struct xpc_partition *part = &xpc_partitions[ch->partid]; 785 struct task_struct *kthread; 786 void (*indicate_partition_disengaged) (struct xpc_partition *) = 787 xpc_arch_ops.indicate_partition_disengaged; 788 789 while (needed-- > 0) { 790 791 /* 792 * The following is done on behalf of the newly created 793 * kthread. That kthread is responsible for doing the 794 * counterpart to the following before it exits. 795 */ 796 if (ignore_disconnecting) { 797 if (!atomic_inc_not_zero(&ch->kthreads_assigned)) { 798 /* kthreads assigned had gone to zero */ 799 BUG_ON(!(ch->flags & 800 XPC_C_DISCONNECTINGCALLOUT_MADE)); 801 break; 802 } 803 804 } else if (ch->flags & XPC_C_DISCONNECTING) { 805 break; 806 807 } else if (atomic_inc_return(&ch->kthreads_assigned) == 1 && 808 atomic_inc_return(&part->nchannels_engaged) == 1) { 809 xpc_arch_ops.indicate_partition_engaged(part); 810 } 811 (void)xpc_part_ref(part); 812 xpc_msgqueue_ref(ch); 813 814 kthread = kthread_run(xpc_kthread_start, (void *)args, 815 "xpc%02dc%d", ch->partid, ch->number); 816 if (IS_ERR(kthread)) { 817 /* the fork failed */ 818 819 /* 820 * NOTE: if (ignore_disconnecting && 821 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true, 822 * then we'll deadlock if all other kthreads assigned 823 * to this channel are blocked in the channel's 824 * registerer, because the only thing that will unblock 825 * them is the xpDisconnecting callout that this 826 * failed kthread_run() would have made. 827 */ 828 829 if (atomic_dec_return(&ch->kthreads_assigned) == 0 && 830 atomic_dec_return(&part->nchannels_engaged) == 0) { 831 indicate_partition_disengaged(part); 832 } 833 xpc_msgqueue_deref(ch); 834 xpc_part_deref(part); 835 836 if (atomic_read(&ch->kthreads_assigned) < 837 ch->kthreads_idle_limit) { 838 /* 839 * Flag this as an error only if we have an 840 * insufficient #of kthreads for the channel 841 * to function. 842 */ 843 spin_lock_irqsave(&ch->lock, irq_flags); 844 XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources, 845 &irq_flags); 846 spin_unlock_irqrestore(&ch->lock, irq_flags); 847 } 848 break; 849 } 850 } 851 } 852 853 void 854 xpc_disconnect_wait(int ch_number) 855 { 856 unsigned long irq_flags; 857 short partid; 858 struct xpc_partition *part; 859 struct xpc_channel *ch; 860 int wakeup_channel_mgr; 861 862 /* now wait for all callouts to the caller's function to cease */ 863 for (partid = 0; partid < xp_max_npartitions; partid++) { 864 part = &xpc_partitions[partid]; 865 866 if (!xpc_part_ref(part)) 867 continue; 868 869 ch = &part->channels[ch_number]; 870 871 if (!(ch->flags & XPC_C_WDISCONNECT)) { 872 xpc_part_deref(part); 873 continue; 874 } 875 876 wait_for_completion(&ch->wdisconnect_wait); 877 878 spin_lock_irqsave(&ch->lock, irq_flags); 879 DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED)); 880 wakeup_channel_mgr = 0; 881 882 if (ch->delayed_chctl_flags) { 883 if (part->act_state != XPC_P_AS_DEACTIVATING) { 884 spin_lock(&part->chctl_lock); 885 part->chctl.flags[ch->number] |= 886 ch->delayed_chctl_flags; 887 spin_unlock(&part->chctl_lock); 888 wakeup_channel_mgr = 1; 889 } 890 ch->delayed_chctl_flags = 0; 891 } 892 893 ch->flags &= ~XPC_C_WDISCONNECT; 894 spin_unlock_irqrestore(&ch->lock, irq_flags); 895 896 if (wakeup_channel_mgr) 897 xpc_wakeup_channel_mgr(part); 898 899 xpc_part_deref(part); 900 } 901 } 902 903 static int 904 xpc_setup_partitions(void) 905 { 906 short partid; 907 struct xpc_partition *part; 908 909 xpc_partitions = kcalloc(xp_max_npartitions, 910 sizeof(struct xpc_partition), 911 GFP_KERNEL); 912 if (xpc_partitions == NULL) { 913 dev_err(xpc_part, "can't get memory for partition structure\n"); 914 return -ENOMEM; 915 } 916 917 /* 918 * The first few fields of each entry of xpc_partitions[] need to 919 * be initialized now so that calls to xpc_connect() and 920 * xpc_disconnect() can be made prior to the activation of any remote 921 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE 922 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING 923 * PARTITION HAS BEEN ACTIVATED. 924 */ 925 for (partid = 0; partid < xp_max_npartitions; partid++) { 926 part = &xpc_partitions[partid]; 927 928 DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part)); 929 930 part->activate_IRQ_rcvd = 0; 931 spin_lock_init(&part->act_lock); 932 part->act_state = XPC_P_AS_INACTIVE; 933 XPC_SET_REASON(part, 0, 0); 934 935 timer_setup(&part->disengage_timer, 936 xpc_timeout_partition_disengage, 0); 937 938 part->setup_state = XPC_P_SS_UNSET; 939 init_waitqueue_head(&part->teardown_wq); 940 atomic_set(&part->references, 0); 941 } 942 943 return xpc_arch_ops.setup_partitions(); 944 } 945 946 static void 947 xpc_teardown_partitions(void) 948 { 949 xpc_arch_ops.teardown_partitions(); 950 kfree(xpc_partitions); 951 } 952 953 static void 954 xpc_do_exit(enum xp_retval reason) 955 { 956 short partid; 957 int active_part_count, printed_waiting_msg = 0; 958 struct xpc_partition *part; 959 unsigned long printmsg_time, disengage_timeout = 0; 960 961 /* a 'rmmod XPC' and a 'reboot' cannot both end up here together */ 962 DBUG_ON(xpc_exiting == 1); 963 964 /* 965 * Let the heartbeat checker thread and the discovery thread 966 * (if one is running) know that they should exit. Also wake up 967 * the heartbeat checker thread in case it's sleeping. 968 */ 969 xpc_exiting = 1; 970 wake_up_interruptible(&xpc_activate_IRQ_wq); 971 972 /* wait for the discovery thread to exit */ 973 wait_for_completion(&xpc_discovery_exited); 974 975 /* wait for the heartbeat checker thread to exit */ 976 wait_for_completion(&xpc_hb_checker_exited); 977 978 /* sleep for a 1/3 of a second or so */ 979 (void)msleep_interruptible(300); 980 981 /* wait for all partitions to become inactive */ 982 983 printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 984 xpc_disengage_timedout = 0; 985 986 do { 987 active_part_count = 0; 988 989 for (partid = 0; partid < xp_max_npartitions; partid++) { 990 part = &xpc_partitions[partid]; 991 992 if (xpc_partition_disengaged(part) && 993 part->act_state == XPC_P_AS_INACTIVE) { 994 continue; 995 } 996 997 active_part_count++; 998 999 XPC_DEACTIVATE_PARTITION(part, reason); 1000 1001 if (part->disengage_timeout > disengage_timeout) 1002 disengage_timeout = part->disengage_timeout; 1003 } 1004 1005 if (xpc_arch_ops.any_partition_engaged()) { 1006 if (time_is_before_jiffies(printmsg_time)) { 1007 dev_info(xpc_part, "waiting for remote " 1008 "partitions to deactivate, timeout in " 1009 "%ld seconds\n", (disengage_timeout - 1010 jiffies) / HZ); 1011 printmsg_time = jiffies + 1012 (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ); 1013 printed_waiting_msg = 1; 1014 } 1015 1016 } else if (active_part_count > 0) { 1017 if (printed_waiting_msg) { 1018 dev_info(xpc_part, "waiting for local partition" 1019 " to deactivate\n"); 1020 printed_waiting_msg = 0; 1021 } 1022 1023 } else { 1024 if (!xpc_disengage_timedout) { 1025 dev_info(xpc_part, "all partitions have " 1026 "deactivated\n"); 1027 } 1028 break; 1029 } 1030 1031 /* sleep for a 1/3 of a second or so */ 1032 (void)msleep_interruptible(300); 1033 1034 } while (1); 1035 1036 DBUG_ON(xpc_arch_ops.any_partition_engaged()); 1037 1038 xpc_teardown_rsvd_page(); 1039 1040 if (reason == xpUnloading) { 1041 (void)unregister_die_notifier(&xpc_die_notifier); 1042 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1043 } 1044 1045 /* clear the interface to XPC's functions */ 1046 xpc_clear_interface(); 1047 1048 if (xpc_sysctl) 1049 unregister_sysctl_table(xpc_sysctl); 1050 1051 xpc_teardown_partitions(); 1052 1053 if (is_shub()) 1054 xpc_exit_sn2(); 1055 else if (is_uv()) 1056 xpc_exit_uv(); 1057 } 1058 1059 /* 1060 * This function is called when the system is being rebooted. 1061 */ 1062 static int 1063 xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused) 1064 { 1065 enum xp_retval reason; 1066 1067 switch (event) { 1068 case SYS_RESTART: 1069 reason = xpSystemReboot; 1070 break; 1071 case SYS_HALT: 1072 reason = xpSystemHalt; 1073 break; 1074 case SYS_POWER_OFF: 1075 reason = xpSystemPoweroff; 1076 break; 1077 default: 1078 reason = xpSystemGoingDown; 1079 } 1080 1081 xpc_do_exit(reason); 1082 return NOTIFY_DONE; 1083 } 1084 1085 /* Used to only allow one cpu to complete disconnect */ 1086 static unsigned int xpc_die_disconnecting; 1087 1088 /* 1089 * Notify other partitions to deactivate from us by first disengaging from all 1090 * references to our memory. 1091 */ 1092 static void 1093 xpc_die_deactivate(void) 1094 { 1095 struct xpc_partition *part; 1096 short partid; 1097 int any_engaged; 1098 long keep_waiting; 1099 long wait_to_print; 1100 1101 if (cmpxchg(&xpc_die_disconnecting, 0, 1)) 1102 return; 1103 1104 /* keep xpc_hb_checker thread from doing anything (just in case) */ 1105 xpc_exiting = 1; 1106 1107 xpc_arch_ops.disallow_all_hbs(); /*indicate we're deactivated */ 1108 1109 for (partid = 0; partid < xp_max_npartitions; partid++) { 1110 part = &xpc_partitions[partid]; 1111 1112 if (xpc_arch_ops.partition_engaged(partid) || 1113 part->act_state != XPC_P_AS_INACTIVE) { 1114 xpc_arch_ops.request_partition_deactivation(part); 1115 xpc_arch_ops.indicate_partition_disengaged(part); 1116 } 1117 } 1118 1119 /* 1120 * Though we requested that all other partitions deactivate from us, 1121 * we only wait until they've all disengaged or we've reached the 1122 * defined timelimit. 1123 * 1124 * Given that one iteration through the following while-loop takes 1125 * approximately 200 microseconds, calculate the #of loops to take 1126 * before bailing and the #of loops before printing a waiting message. 1127 */ 1128 keep_waiting = xpc_disengage_timelimit * 1000 * 5; 1129 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5; 1130 1131 while (1) { 1132 any_engaged = xpc_arch_ops.any_partition_engaged(); 1133 if (!any_engaged) { 1134 dev_info(xpc_part, "all partitions have deactivated\n"); 1135 break; 1136 } 1137 1138 if (!keep_waiting--) { 1139 for (partid = 0; partid < xp_max_npartitions; 1140 partid++) { 1141 if (xpc_arch_ops.partition_engaged(partid)) { 1142 dev_info(xpc_part, "deactivate from " 1143 "remote partition %d timed " 1144 "out\n", partid); 1145 } 1146 } 1147 break; 1148 } 1149 1150 if (!wait_to_print--) { 1151 dev_info(xpc_part, "waiting for remote partitions to " 1152 "deactivate, timeout in %ld seconds\n", 1153 keep_waiting / (1000 * 5)); 1154 wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1155 1000 * 5; 1156 } 1157 1158 udelay(200); 1159 } 1160 } 1161 1162 /* 1163 * This function is called when the system is being restarted or halted due 1164 * to some sort of system failure. If this is the case we need to notify the 1165 * other partitions to disengage from all references to our memory. 1166 * This function can also be called when our heartbeater could be offlined 1167 * for a time. In this case we need to notify other partitions to not worry 1168 * about the lack of a heartbeat. 1169 */ 1170 static int 1171 xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args) 1172 { 1173 #ifdef CONFIG_IA64 /* !!! temporary kludge */ 1174 switch (event) { 1175 case DIE_MACHINE_RESTART: 1176 case DIE_MACHINE_HALT: 1177 xpc_die_deactivate(); 1178 break; 1179 1180 case DIE_KDEBUG_ENTER: 1181 /* Should lack of heartbeat be ignored by other partitions? */ 1182 if (!xpc_kdebug_ignore) 1183 break; 1184 1185 /* fall through */ 1186 case DIE_MCA_MONARCH_ENTER: 1187 case DIE_INIT_MONARCH_ENTER: 1188 xpc_arch_ops.offline_heartbeat(); 1189 break; 1190 1191 case DIE_KDEBUG_LEAVE: 1192 /* Is lack of heartbeat being ignored by other partitions? */ 1193 if (!xpc_kdebug_ignore) 1194 break; 1195 1196 /* fall through */ 1197 case DIE_MCA_MONARCH_LEAVE: 1198 case DIE_INIT_MONARCH_LEAVE: 1199 xpc_arch_ops.online_heartbeat(); 1200 break; 1201 } 1202 #else 1203 struct die_args *die_args = _die_args; 1204 1205 switch (event) { 1206 case DIE_TRAP: 1207 if (die_args->trapnr == X86_TRAP_DF) 1208 xpc_die_deactivate(); 1209 1210 if (((die_args->trapnr == X86_TRAP_MF) || 1211 (die_args->trapnr == X86_TRAP_XF)) && 1212 !user_mode(die_args->regs)) 1213 xpc_die_deactivate(); 1214 1215 break; 1216 case DIE_INT3: 1217 case DIE_DEBUG: 1218 break; 1219 case DIE_OOPS: 1220 case DIE_GPF: 1221 default: 1222 xpc_die_deactivate(); 1223 } 1224 #endif 1225 1226 return NOTIFY_DONE; 1227 } 1228 1229 int __init 1230 xpc_init(void) 1231 { 1232 int ret; 1233 struct task_struct *kthread; 1234 1235 dev_set_name(xpc_part, "part"); 1236 dev_set_name(xpc_chan, "chan"); 1237 1238 if (is_shub()) { 1239 /* 1240 * The ia64-sn2 architecture supports at most 64 partitions. 1241 * And the inability to unregister remote amos restricts us 1242 * further to only support exactly 64 partitions on this 1243 * architecture, no less. 1244 */ 1245 if (xp_max_npartitions != 64) { 1246 dev_err(xpc_part, "max #of partitions not set to 64\n"); 1247 ret = -EINVAL; 1248 } else { 1249 ret = xpc_init_sn2(); 1250 } 1251 1252 } else if (is_uv()) { 1253 ret = xpc_init_uv(); 1254 1255 } else { 1256 ret = -ENODEV; 1257 } 1258 1259 if (ret != 0) 1260 return ret; 1261 1262 ret = xpc_setup_partitions(); 1263 if (ret != 0) { 1264 dev_err(xpc_part, "can't get memory for partition structure\n"); 1265 goto out_1; 1266 } 1267 1268 xpc_sysctl = register_sysctl_table(xpc_sys_dir); 1269 1270 /* 1271 * Fill the partition reserved page with the information needed by 1272 * other partitions to discover we are alive and establish initial 1273 * communications. 1274 */ 1275 ret = xpc_setup_rsvd_page(); 1276 if (ret != 0) { 1277 dev_err(xpc_part, "can't setup our reserved page\n"); 1278 goto out_2; 1279 } 1280 1281 /* add ourselves to the reboot_notifier_list */ 1282 ret = register_reboot_notifier(&xpc_reboot_notifier); 1283 if (ret != 0) 1284 dev_warn(xpc_part, "can't register reboot notifier\n"); 1285 1286 /* add ourselves to the die_notifier list */ 1287 ret = register_die_notifier(&xpc_die_notifier); 1288 if (ret != 0) 1289 dev_warn(xpc_part, "can't register die notifier\n"); 1290 1291 /* 1292 * The real work-horse behind xpc. This processes incoming 1293 * interrupts and monitors remote heartbeats. 1294 */ 1295 kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME); 1296 if (IS_ERR(kthread)) { 1297 dev_err(xpc_part, "failed while forking hb check thread\n"); 1298 ret = -EBUSY; 1299 goto out_3; 1300 } 1301 1302 /* 1303 * Startup a thread that will attempt to discover other partitions to 1304 * activate based on info provided by SAL. This new thread is short 1305 * lived and will exit once discovery is complete. 1306 */ 1307 kthread = kthread_run(xpc_initiate_discovery, NULL, 1308 XPC_DISCOVERY_THREAD_NAME); 1309 if (IS_ERR(kthread)) { 1310 dev_err(xpc_part, "failed while forking discovery thread\n"); 1311 1312 /* mark this new thread as a non-starter */ 1313 complete(&xpc_discovery_exited); 1314 1315 xpc_do_exit(xpUnloading); 1316 return -EBUSY; 1317 } 1318 1319 /* set the interface to point at XPC's functions */ 1320 xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect, 1321 xpc_initiate_send, xpc_initiate_send_notify, 1322 xpc_initiate_received, xpc_initiate_partid_to_nasids); 1323 1324 return 0; 1325 1326 /* initialization was not successful */ 1327 out_3: 1328 xpc_teardown_rsvd_page(); 1329 1330 (void)unregister_die_notifier(&xpc_die_notifier); 1331 (void)unregister_reboot_notifier(&xpc_reboot_notifier); 1332 out_2: 1333 if (xpc_sysctl) 1334 unregister_sysctl_table(xpc_sysctl); 1335 1336 xpc_teardown_partitions(); 1337 out_1: 1338 if (is_shub()) 1339 xpc_exit_sn2(); 1340 else if (is_uv()) 1341 xpc_exit_uv(); 1342 return ret; 1343 } 1344 1345 module_init(xpc_init); 1346 1347 void __exit 1348 xpc_exit(void) 1349 { 1350 xpc_do_exit(xpUnloading); 1351 } 1352 1353 module_exit(xpc_exit); 1354 1355 MODULE_AUTHOR("Silicon Graphics, Inc."); 1356 MODULE_DESCRIPTION("Cross Partition Communication (XPC) support"); 1357 MODULE_LICENSE("GPL"); 1358 1359 module_param(xpc_hb_interval, int, 0); 1360 MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between " 1361 "heartbeat increments."); 1362 1363 module_param(xpc_hb_check_interval, int, 0); 1364 MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between " 1365 "heartbeat checks."); 1366 1367 module_param(xpc_disengage_timelimit, int, 0); 1368 MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait " 1369 "for disengage to complete."); 1370 1371 module_param(xpc_kdebug_ignore, int, 0); 1372 MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by " 1373 "other partitions when dropping into kdebug."); 1374