xref: /linux/drivers/misc/sgi-gru/grukservices.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * SN Platform GRU Driver
3  *
4  *              KERNEL SERVICES THAT USE THE GRU
5  *
6  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/miscdevice.h>
30 #include <linux/proc_fs.h>
31 #include <linux/interrupt.h>
32 #include <linux/uaccess.h>
33 #include <linux/delay.h>
34 #include <linux/export.h>
35 #include <asm/io_apic.h>
36 #include "gru.h"
37 #include "grulib.h"
38 #include "grutables.h"
39 #include "grukservices.h"
40 #include "gru_instructions.h"
41 #include <asm/uv/uv_hub.h>
42 
43 /*
44  * Kernel GRU Usage
45  *
46  * The following is an interim algorithm for management of kernel GRU
47  * resources. This will likely be replaced when we better understand the
48  * kernel/user requirements.
49  *
50  * Blade percpu resources reserved for kernel use. These resources are
51  * reserved whenever the the kernel context for the blade is loaded. Note
52  * that the kernel context is not guaranteed to be always available. It is
53  * loaded on demand & can be stolen by a user if the user demand exceeds the
54  * kernel demand. The kernel can always reload the kernel context but
55  * a SLEEP may be required!!!.
56  *
57  * Async Overview:
58  *
59  * 	Each blade has one "kernel context" that owns GRU kernel resources
60  * 	located on the blade. Kernel drivers use GRU resources in this context
61  * 	for sending messages, zeroing memory, etc.
62  *
63  * 	The kernel context is dynamically loaded on demand. If it is not in
64  * 	use by the kernel, the kernel context can be unloaded & given to a user.
65  * 	The kernel context will be reloaded when needed. This may require that
66  * 	a context be stolen from a user.
67  * 		NOTE: frequent unloading/reloading of the kernel context is
68  * 		expensive. We are depending on batch schedulers, cpusets, sane
69  * 		drivers or some other mechanism to prevent the need for frequent
70  *	 	stealing/reloading.
71  *
72  * 	The kernel context consists of two parts:
73  * 		- 1 CB & a few DSRs that are reserved for each cpu on the blade.
74  * 		  Each cpu has it's own private resources & does not share them
75  * 		  with other cpus. These resources are used serially, ie,
76  * 		  locked, used & unlocked  on each call to a function in
77  * 		  grukservices.
78  * 		  	(Now that we have dynamic loading of kernel contexts, I
79  * 		  	 may rethink this & allow sharing between cpus....)
80  *
81  *		- Additional resources can be reserved long term & used directly
82  *		  by UV drivers located in the kernel. Drivers using these GRU
83  *		  resources can use asynchronous GRU instructions that send
84  *		  interrupts on completion.
85  *		  	- these resources must be explicitly locked/unlocked
86  *		  	- locked resources prevent (obviously) the kernel
87  *		  	  context from being unloaded.
88  *			- drivers using these resource directly issue their own
89  *			  GRU instruction and must wait/check completion.
90  *
91  * 		  When these resources are reserved, the caller can optionally
92  * 		  associate a wait_queue with the resources and use asynchronous
93  * 		  GRU instructions. When an async GRU instruction completes, the
94  * 		  driver will do a wakeup on the event.
95  *
96  */
97 
98 
99 #define ASYNC_HAN_TO_BID(h)	((h) - 1)
100 #define ASYNC_BID_TO_HAN(b)	((b) + 1)
101 #define ASYNC_HAN_TO_BS(h)	gru_base[ASYNC_HAN_TO_BID(h)]
102 
103 #define GRU_NUM_KERNEL_CBR	1
104 #define GRU_NUM_KERNEL_DSR_BYTES 256
105 #define GRU_NUM_KERNEL_DSR_CL	(GRU_NUM_KERNEL_DSR_BYTES /		\
106 					GRU_CACHE_LINE_BYTES)
107 
108 /* GRU instruction attributes for all instructions */
109 #define IMA			IMA_CB_DELAY
110 
111 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
112 #define __gru_cacheline_aligned__                               \
113 	__attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
114 
115 #define MAGIC	0x1234567887654321UL
116 
117 /* Default retry count for GRU errors on kernel instructions */
118 #define EXCEPTION_RETRY_LIMIT	3
119 
120 /* Status of message queue sections */
121 #define MQS_EMPTY		0
122 #define MQS_FULL		1
123 #define MQS_NOOP		2
124 
125 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
126 /* optimized for x86_64 */
127 struct message_queue {
128 	union gru_mesqhead	head __gru_cacheline_aligned__;	/* CL 0 */
129 	int			qlines;				/* DW 1 */
130 	long 			hstatus[2];
131 	void 			*next __gru_cacheline_aligned__;/* CL 1 */
132 	void 			*limit;
133 	void 			*start;
134 	void 			*start2;
135 	char			data ____cacheline_aligned;	/* CL 2 */
136 };
137 
138 /* First word in every message - used by mesq interface */
139 struct message_header {
140 	char	present;
141 	char	present2;
142 	char 	lines;
143 	char	fill;
144 };
145 
146 #define HSTATUS(mq, h)	((mq) + offsetof(struct message_queue, hstatus[h]))
147 
148 /*
149  * Reload the blade's kernel context into a GRU chiplet. Called holding
150  * the bs_kgts_sema for READ. Will steal user contexts if necessary.
151  */
152 static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
153 {
154 	struct gru_state *gru;
155 	struct gru_thread_state *kgts;
156 	void *vaddr;
157 	int ctxnum, ncpus;
158 
159 	up_read(&bs->bs_kgts_sema);
160 	down_write(&bs->bs_kgts_sema);
161 
162 	if (!bs->bs_kgts) {
163 		bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
164 		bs->bs_kgts->ts_user_blade_id = blade_id;
165 	}
166 	kgts = bs->bs_kgts;
167 
168 	if (!kgts->ts_gru) {
169 		STAT(load_kernel_context);
170 		ncpus = uv_blade_nr_possible_cpus(blade_id);
171 		kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
172 			GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
173 		kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
174 			GRU_NUM_KERNEL_DSR_BYTES * ncpus +
175 				bs->bs_async_dsr_bytes);
176 		while (!gru_assign_gru_context(kgts)) {
177 			msleep(1);
178 			gru_steal_context(kgts);
179 		}
180 		gru_load_context(kgts);
181 		gru = bs->bs_kgts->ts_gru;
182 		vaddr = gru->gs_gru_base_vaddr;
183 		ctxnum = kgts->ts_ctxnum;
184 		bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
185 		bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
186 	}
187 	downgrade_write(&bs->bs_kgts_sema);
188 }
189 
190 /*
191  * Free all kernel contexts that are not currently in use.
192  *   Returns 0 if all freed, else number of inuse context.
193  */
194 static int gru_free_kernel_contexts(void)
195 {
196 	struct gru_blade_state *bs;
197 	struct gru_thread_state *kgts;
198 	int bid, ret = 0;
199 
200 	for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
201 		bs = gru_base[bid];
202 		if (!bs)
203 			continue;
204 
205 		/* Ignore busy contexts. Don't want to block here.  */
206 		if (down_write_trylock(&bs->bs_kgts_sema)) {
207 			kgts = bs->bs_kgts;
208 			if (kgts && kgts->ts_gru)
209 				gru_unload_context(kgts, 0);
210 			bs->bs_kgts = NULL;
211 			up_write(&bs->bs_kgts_sema);
212 			kfree(kgts);
213 		} else {
214 			ret++;
215 		}
216 	}
217 	return ret;
218 }
219 
220 /*
221  * Lock & load the kernel context for the specified blade.
222  */
223 static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
224 {
225 	struct gru_blade_state *bs;
226 	int bid;
227 
228 	STAT(lock_kernel_context);
229 again:
230 	bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
231 	bs = gru_base[bid];
232 
233 	/* Handle the case where migration occurred while waiting for the sema */
234 	down_read(&bs->bs_kgts_sema);
235 	if (blade_id < 0 && bid != uv_numa_blade_id()) {
236 		up_read(&bs->bs_kgts_sema);
237 		goto again;
238 	}
239 	if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
240 		gru_load_kernel_context(bs, bid);
241 	return bs;
242 
243 }
244 
245 /*
246  * Unlock the kernel context for the specified blade. Context is not
247  * unloaded but may be stolen before next use.
248  */
249 static void gru_unlock_kernel_context(int blade_id)
250 {
251 	struct gru_blade_state *bs;
252 
253 	bs = gru_base[blade_id];
254 	up_read(&bs->bs_kgts_sema);
255 	STAT(unlock_kernel_context);
256 }
257 
258 /*
259  * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
260  * 	- returns with preemption disabled
261  */
262 static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
263 {
264 	struct gru_blade_state *bs;
265 	int lcpu;
266 
267 	BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
268 	preempt_disable();
269 	bs = gru_lock_kernel_context(-1);
270 	lcpu = uv_blade_processor_id();
271 	*cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
272 	*dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
273 	return 0;
274 }
275 
276 /*
277  * Free the current cpus reserved DSR/CBR resources.
278  */
279 static void gru_free_cpu_resources(void *cb, void *dsr)
280 {
281 	gru_unlock_kernel_context(uv_numa_blade_id());
282 	preempt_enable();
283 }
284 
285 /*
286  * Reserve GRU resources to be used asynchronously.
287  *   Note: currently supports only 1 reservation per blade.
288  *
289  * 	input:
290  * 		blade_id  - blade on which resources should be reserved
291  * 		cbrs	  - number of CBRs
292  * 		dsr_bytes - number of DSR bytes needed
293  *	output:
294  *		handle to identify resource
295  *		(0 = async resources already reserved)
296  */
297 unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
298 			struct completion *cmp)
299 {
300 	struct gru_blade_state *bs;
301 	struct gru_thread_state *kgts;
302 	int ret = 0;
303 
304 	bs = gru_base[blade_id];
305 
306 	down_write(&bs->bs_kgts_sema);
307 
308 	/* Verify no resources already reserved */
309 	if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
310 		goto done;
311 	bs->bs_async_dsr_bytes = dsr_bytes;
312 	bs->bs_async_cbrs = cbrs;
313 	bs->bs_async_wq = cmp;
314 	kgts = bs->bs_kgts;
315 
316 	/* Resources changed. Unload context if already loaded */
317 	if (kgts && kgts->ts_gru)
318 		gru_unload_context(kgts, 0);
319 	ret = ASYNC_BID_TO_HAN(blade_id);
320 
321 done:
322 	up_write(&bs->bs_kgts_sema);
323 	return ret;
324 }
325 
326 /*
327  * Release async resources previously reserved.
328  *
329  *	input:
330  *		han - handle to identify resources
331  */
332 void gru_release_async_resources(unsigned long han)
333 {
334 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
335 
336 	down_write(&bs->bs_kgts_sema);
337 	bs->bs_async_dsr_bytes = 0;
338 	bs->bs_async_cbrs = 0;
339 	bs->bs_async_wq = NULL;
340 	up_write(&bs->bs_kgts_sema);
341 }
342 
343 /*
344  * Wait for async GRU instructions to complete.
345  *
346  *	input:
347  *		han - handle to identify resources
348  */
349 void gru_wait_async_cbr(unsigned long han)
350 {
351 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
352 
353 	wait_for_completion(bs->bs_async_wq);
354 	mb();
355 }
356 
357 /*
358  * Lock previous reserved async GRU resources
359  *
360  *	input:
361  *		han - handle to identify resources
362  *	output:
363  *		cb  - pointer to first CBR
364  *		dsr - pointer to first DSR
365  */
366 void gru_lock_async_resource(unsigned long han,  void **cb, void **dsr)
367 {
368 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
369 	int blade_id = ASYNC_HAN_TO_BID(han);
370 	int ncpus;
371 
372 	gru_lock_kernel_context(blade_id);
373 	ncpus = uv_blade_nr_possible_cpus(blade_id);
374 	if (cb)
375 		*cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
376 	if (dsr)
377 		*dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
378 }
379 
380 /*
381  * Unlock previous reserved async GRU resources
382  *
383  *	input:
384  *		han - handle to identify resources
385  */
386 void gru_unlock_async_resource(unsigned long han)
387 {
388 	int blade_id = ASYNC_HAN_TO_BID(han);
389 
390 	gru_unlock_kernel_context(blade_id);
391 }
392 
393 /*----------------------------------------------------------------------*/
394 int gru_get_cb_exception_detail(void *cb,
395 		struct control_block_extended_exc_detail *excdet)
396 {
397 	struct gru_control_block_extended *cbe;
398 	struct gru_thread_state *kgts = NULL;
399 	unsigned long off;
400 	int cbrnum, bid;
401 
402 	/*
403 	 * Locate kgts for cb. This algorithm is SLOW but
404 	 * this function is rarely called (ie., almost never).
405 	 * Performance does not matter.
406 	 */
407 	for_each_possible_blade(bid) {
408 		if (!gru_base[bid])
409 			break;
410 		kgts = gru_base[bid]->bs_kgts;
411 		if (!kgts || !kgts->ts_gru)
412 			continue;
413 		off = cb - kgts->ts_gru->gs_gru_base_vaddr;
414 		if (off < GRU_SIZE)
415 			break;
416 		kgts = NULL;
417 	}
418 	BUG_ON(!kgts);
419 	cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
420 	cbe = get_cbe(GRUBASE(cb), cbrnum);
421 	gru_flush_cache(cbe);	/* CBE not coherent */
422 	sync_core();
423 	excdet->opc = cbe->opccpy;
424 	excdet->exopc = cbe->exopccpy;
425 	excdet->ecause = cbe->ecause;
426 	excdet->exceptdet0 = cbe->idef1upd;
427 	excdet->exceptdet1 = cbe->idef3upd;
428 	gru_flush_cache(cbe);
429 	return 0;
430 }
431 
432 char *gru_get_cb_exception_detail_str(int ret, void *cb,
433 				      char *buf, int size)
434 {
435 	struct gru_control_block_status *gen = (void *)cb;
436 	struct control_block_extended_exc_detail excdet;
437 
438 	if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
439 		gru_get_cb_exception_detail(cb, &excdet);
440 		snprintf(buf, size,
441 			"GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
442 			"excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
443 			gen, excdet.opc, excdet.exopc, excdet.ecause,
444 			excdet.exceptdet0, excdet.exceptdet1);
445 	} else {
446 		snprintf(buf, size, "No exception");
447 	}
448 	return buf;
449 }
450 
451 static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
452 {
453 	while (gen->istatus >= CBS_ACTIVE) {
454 		cpu_relax();
455 		barrier();
456 	}
457 	return gen->istatus;
458 }
459 
460 static int gru_retry_exception(void *cb)
461 {
462 	struct gru_control_block_status *gen = (void *)cb;
463 	struct control_block_extended_exc_detail excdet;
464 	int retry = EXCEPTION_RETRY_LIMIT;
465 
466 	while (1)  {
467 		if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
468 			return CBS_IDLE;
469 		if (gru_get_cb_message_queue_substatus(cb))
470 			return CBS_EXCEPTION;
471 		gru_get_cb_exception_detail(cb, &excdet);
472 		if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
473 				(excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
474 			break;
475 		if (retry-- == 0)
476 			break;
477 		gen->icmd = 1;
478 		gru_flush_cache(gen);
479 	}
480 	return CBS_EXCEPTION;
481 }
482 
483 int gru_check_status_proc(void *cb)
484 {
485 	struct gru_control_block_status *gen = (void *)cb;
486 	int ret;
487 
488 	ret = gen->istatus;
489 	if (ret == CBS_EXCEPTION)
490 		ret = gru_retry_exception(cb);
491 	rmb();
492 	return ret;
493 
494 }
495 
496 int gru_wait_proc(void *cb)
497 {
498 	struct gru_control_block_status *gen = (void *)cb;
499 	int ret;
500 
501 	ret = gru_wait_idle_or_exception(gen);
502 	if (ret == CBS_EXCEPTION)
503 		ret = gru_retry_exception(cb);
504 	rmb();
505 	return ret;
506 }
507 
508 void gru_abort(int ret, void *cb, char *str)
509 {
510 	char buf[GRU_EXC_STR_SIZE];
511 
512 	panic("GRU FATAL ERROR: %s - %s\n", str,
513 	      gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
514 }
515 
516 void gru_wait_abort_proc(void *cb)
517 {
518 	int ret;
519 
520 	ret = gru_wait_proc(cb);
521 	if (ret)
522 		gru_abort(ret, cb, "gru_wait_abort");
523 }
524 
525 
526 /*------------------------------ MESSAGE QUEUES -----------------------------*/
527 
528 /* Internal status . These are NOT returned to the user. */
529 #define MQIE_AGAIN		-1	/* try again */
530 
531 
532 /*
533  * Save/restore the "present" flag that is in the second line of 2-line
534  * messages
535  */
536 static inline int get_present2(void *p)
537 {
538 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
539 	return mhdr->present;
540 }
541 
542 static inline void restore_present2(void *p, int val)
543 {
544 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
545 	mhdr->present = val;
546 }
547 
548 /*
549  * Create a message queue.
550  * 	qlines - message queue size in cache lines. Includes 2-line header.
551  */
552 int gru_create_message_queue(struct gru_message_queue_desc *mqd,
553 		void *p, unsigned int bytes, int nasid, int vector, int apicid)
554 {
555 	struct message_queue *mq = p;
556 	unsigned int qlines;
557 
558 	qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
559 	memset(mq, 0, bytes);
560 	mq->start = &mq->data;
561 	mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
562 	mq->next = &mq->data;
563 	mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
564 	mq->qlines = qlines;
565 	mq->hstatus[0] = 0;
566 	mq->hstatus[1] = 1;
567 	mq->head = gru_mesq_head(2, qlines / 2 + 1);
568 	mqd->mq = mq;
569 	mqd->mq_gpa = uv_gpa(mq);
570 	mqd->qlines = qlines;
571 	mqd->interrupt_pnode = nasid >> 1;
572 	mqd->interrupt_vector = vector;
573 	mqd->interrupt_apicid = apicid;
574 	return 0;
575 }
576 EXPORT_SYMBOL_GPL(gru_create_message_queue);
577 
578 /*
579  * Send a NOOP message to a message queue
580  * 	Returns:
581  * 		 0 - if queue is full after the send. This is the normal case
582  * 		     but various races can change this.
583  *		-1 - if mesq sent successfully but queue not full
584  *		>0 - unexpected error. MQE_xxx returned
585  */
586 static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
587 				void *mesg)
588 {
589 	const struct message_header noop_header = {
590 					.present = MQS_NOOP, .lines = 1};
591 	unsigned long m;
592 	int substatus, ret;
593 	struct message_header save_mhdr, *mhdr = mesg;
594 
595 	STAT(mesq_noop);
596 	save_mhdr = *mhdr;
597 	*mhdr = noop_header;
598 	gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
599 	ret = gru_wait(cb);
600 
601 	if (ret) {
602 		substatus = gru_get_cb_message_queue_substatus(cb);
603 		switch (substatus) {
604 		case CBSS_NO_ERROR:
605 			STAT(mesq_noop_unexpected_error);
606 			ret = MQE_UNEXPECTED_CB_ERR;
607 			break;
608 		case CBSS_LB_OVERFLOWED:
609 			STAT(mesq_noop_lb_overflow);
610 			ret = MQE_CONGESTION;
611 			break;
612 		case CBSS_QLIMIT_REACHED:
613 			STAT(mesq_noop_qlimit_reached);
614 			ret = 0;
615 			break;
616 		case CBSS_AMO_NACKED:
617 			STAT(mesq_noop_amo_nacked);
618 			ret = MQE_CONGESTION;
619 			break;
620 		case CBSS_PUT_NACKED:
621 			STAT(mesq_noop_put_nacked);
622 			m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
623 			gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
624 						IMA);
625 			if (gru_wait(cb) == CBS_IDLE)
626 				ret = MQIE_AGAIN;
627 			else
628 				ret = MQE_UNEXPECTED_CB_ERR;
629 			break;
630 		case CBSS_PAGE_OVERFLOW:
631 			STAT(mesq_noop_page_overflow);
632 			/* fallthru */
633 		default:
634 			BUG();
635 		}
636 	}
637 	*mhdr = save_mhdr;
638 	return ret;
639 }
640 
641 /*
642  * Handle a gru_mesq full.
643  */
644 static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
645 				void *mesg, int lines)
646 {
647 	union gru_mesqhead mqh;
648 	unsigned int limit, head;
649 	unsigned long avalue;
650 	int half, qlines;
651 
652 	/* Determine if switching to first/second half of q */
653 	avalue = gru_get_amo_value(cb);
654 	head = gru_get_amo_value_head(cb);
655 	limit = gru_get_amo_value_limit(cb);
656 
657 	qlines = mqd->qlines;
658 	half = (limit != qlines);
659 
660 	if (half)
661 		mqh = gru_mesq_head(qlines / 2 + 1, qlines);
662 	else
663 		mqh = gru_mesq_head(2, qlines / 2 + 1);
664 
665 	/* Try to get lock for switching head pointer */
666 	gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
667 	if (gru_wait(cb) != CBS_IDLE)
668 		goto cberr;
669 	if (!gru_get_amo_value(cb)) {
670 		STAT(mesq_qf_locked);
671 		return MQE_QUEUE_FULL;
672 	}
673 
674 	/* Got the lock. Send optional NOP if queue not full, */
675 	if (head != limit) {
676 		if (send_noop_message(cb, mqd, mesg)) {
677 			gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
678 					XTYPE_DW, IMA);
679 			if (gru_wait(cb) != CBS_IDLE)
680 				goto cberr;
681 			STAT(mesq_qf_noop_not_full);
682 			return MQIE_AGAIN;
683 		}
684 		avalue++;
685 	}
686 
687 	/* Then flip queuehead to other half of queue. */
688 	gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
689 							IMA);
690 	if (gru_wait(cb) != CBS_IDLE)
691 		goto cberr;
692 
693 	/* If not successfully in swapping queue head, clear the hstatus lock */
694 	if (gru_get_amo_value(cb) != avalue) {
695 		STAT(mesq_qf_switch_head_failed);
696 		gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
697 							IMA);
698 		if (gru_wait(cb) != CBS_IDLE)
699 			goto cberr;
700 	}
701 	return MQIE_AGAIN;
702 cberr:
703 	STAT(mesq_qf_unexpected_error);
704 	return MQE_UNEXPECTED_CB_ERR;
705 }
706 
707 /*
708  * Handle a PUT failure. Note: if message was a 2-line message, one of the
709  * lines might have successfully have been written. Before sending the
710  * message, "present" must be cleared in BOTH lines to prevent the receiver
711  * from prematurely seeing the full message.
712  */
713 static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
714 			void *mesg, int lines)
715 {
716 	unsigned long m, *val = mesg, gpa, save;
717 	int ret;
718 
719 	m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
720 	if (lines == 2) {
721 		gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
722 		if (gru_wait(cb) != CBS_IDLE)
723 			return MQE_UNEXPECTED_CB_ERR;
724 	}
725 	gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
726 	if (gru_wait(cb) != CBS_IDLE)
727 		return MQE_UNEXPECTED_CB_ERR;
728 
729 	if (!mqd->interrupt_vector)
730 		return MQE_OK;
731 
732 	/*
733 	 * Send a cross-partition interrupt to the SSI that contains the target
734 	 * message queue. Normally, the interrupt is automatically delivered by
735 	 * hardware but some error conditions require explicit delivery.
736 	 * Use the GRU to deliver the interrupt. Otherwise partition failures
737 	 * could cause unrecovered errors.
738 	 */
739 	gpa = uv_global_gru_mmr_address(mqd->interrupt_pnode, UVH_IPI_INT);
740 	save = *val;
741 	*val = uv_hub_ipi_value(mqd->interrupt_apicid, mqd->interrupt_vector,
742 				dest_Fixed);
743 	gru_vstore_phys(cb, gpa, gru_get_tri(mesg), IAA_REGISTER, IMA);
744 	ret = gru_wait(cb);
745 	*val = save;
746 	if (ret != CBS_IDLE)
747 		return MQE_UNEXPECTED_CB_ERR;
748 	return MQE_OK;
749 }
750 
751 /*
752  * Handle a gru_mesq failure. Some of these failures are software recoverable
753  * or retryable.
754  */
755 static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
756 				void *mesg, int lines)
757 {
758 	int substatus, ret = 0;
759 
760 	substatus = gru_get_cb_message_queue_substatus(cb);
761 	switch (substatus) {
762 	case CBSS_NO_ERROR:
763 		STAT(mesq_send_unexpected_error);
764 		ret = MQE_UNEXPECTED_CB_ERR;
765 		break;
766 	case CBSS_LB_OVERFLOWED:
767 		STAT(mesq_send_lb_overflow);
768 		ret = MQE_CONGESTION;
769 		break;
770 	case CBSS_QLIMIT_REACHED:
771 		STAT(mesq_send_qlimit_reached);
772 		ret = send_message_queue_full(cb, mqd, mesg, lines);
773 		break;
774 	case CBSS_AMO_NACKED:
775 		STAT(mesq_send_amo_nacked);
776 		ret = MQE_CONGESTION;
777 		break;
778 	case CBSS_PUT_NACKED:
779 		STAT(mesq_send_put_nacked);
780 		ret = send_message_put_nacked(cb, mqd, mesg, lines);
781 		break;
782 	case CBSS_PAGE_OVERFLOW:
783 		STAT(mesq_page_overflow);
784 		/* fallthru */
785 	default:
786 		BUG();
787 	}
788 	return ret;
789 }
790 
791 /*
792  * Send a message to a message queue
793  * 	mqd	message queue descriptor
794  * 	mesg	message. ust be vaddr within a GSEG
795  * 	bytes	message size (<= 2 CL)
796  */
797 int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
798 				unsigned int bytes)
799 {
800 	struct message_header *mhdr;
801 	void *cb;
802 	void *dsr;
803 	int istatus, clines, ret;
804 
805 	STAT(mesq_send);
806 	BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
807 
808 	clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
809 	if (gru_get_cpu_resources(bytes, &cb, &dsr))
810 		return MQE_BUG_NO_RESOURCES;
811 	memcpy(dsr, mesg, bytes);
812 	mhdr = dsr;
813 	mhdr->present = MQS_FULL;
814 	mhdr->lines = clines;
815 	if (clines == 2) {
816 		mhdr->present2 = get_present2(mhdr);
817 		restore_present2(mhdr, MQS_FULL);
818 	}
819 
820 	do {
821 		ret = MQE_OK;
822 		gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
823 		istatus = gru_wait(cb);
824 		if (istatus != CBS_IDLE)
825 			ret = send_message_failure(cb, mqd, dsr, clines);
826 	} while (ret == MQIE_AGAIN);
827 	gru_free_cpu_resources(cb, dsr);
828 
829 	if (ret)
830 		STAT(mesq_send_failed);
831 	return ret;
832 }
833 EXPORT_SYMBOL_GPL(gru_send_message_gpa);
834 
835 /*
836  * Advance the receive pointer for the queue to the next message.
837  */
838 void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
839 {
840 	struct message_queue *mq = mqd->mq;
841 	struct message_header *mhdr = mq->next;
842 	void *next, *pnext;
843 	int half = -1;
844 	int lines = mhdr->lines;
845 
846 	if (lines == 2)
847 		restore_present2(mhdr, MQS_EMPTY);
848 	mhdr->present = MQS_EMPTY;
849 
850 	pnext = mq->next;
851 	next = pnext + GRU_CACHE_LINE_BYTES * lines;
852 	if (next == mq->limit) {
853 		next = mq->start;
854 		half = 1;
855 	} else if (pnext < mq->start2 && next >= mq->start2) {
856 		half = 0;
857 	}
858 
859 	if (half >= 0)
860 		mq->hstatus[half] = 1;
861 	mq->next = next;
862 }
863 EXPORT_SYMBOL_GPL(gru_free_message);
864 
865 /*
866  * Get next message from message queue. Return NULL if no message
867  * present. User must call next_message() to move to next message.
868  * 	rmq	message queue
869  */
870 void *gru_get_next_message(struct gru_message_queue_desc *mqd)
871 {
872 	struct message_queue *mq = mqd->mq;
873 	struct message_header *mhdr = mq->next;
874 	int present = mhdr->present;
875 
876 	/* skip NOOP messages */
877 	while (present == MQS_NOOP) {
878 		gru_free_message(mqd, mhdr);
879 		mhdr = mq->next;
880 		present = mhdr->present;
881 	}
882 
883 	/* Wait for both halves of 2 line messages */
884 	if (present == MQS_FULL && mhdr->lines == 2 &&
885 				get_present2(mhdr) == MQS_EMPTY)
886 		present = MQS_EMPTY;
887 
888 	if (!present) {
889 		STAT(mesq_receive_none);
890 		return NULL;
891 	}
892 
893 	if (mhdr->lines == 2)
894 		restore_present2(mhdr, mhdr->present2);
895 
896 	STAT(mesq_receive);
897 	return mhdr;
898 }
899 EXPORT_SYMBOL_GPL(gru_get_next_message);
900 
901 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
902 
903 /*
904  * Load a DW from a global GPA. The GPA can be a memory or MMR address.
905  */
906 int gru_read_gpa(unsigned long *value, unsigned long gpa)
907 {
908 	void *cb;
909 	void *dsr;
910 	int ret, iaa;
911 
912 	STAT(read_gpa);
913 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
914 		return MQE_BUG_NO_RESOURCES;
915 	iaa = gpa >> 62;
916 	gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
917 	ret = gru_wait(cb);
918 	if (ret == CBS_IDLE)
919 		*value = *(unsigned long *)dsr;
920 	gru_free_cpu_resources(cb, dsr);
921 	return ret;
922 }
923 EXPORT_SYMBOL_GPL(gru_read_gpa);
924 
925 
926 /*
927  * Copy a block of data using the GRU resources
928  */
929 int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
930 				unsigned int bytes)
931 {
932 	void *cb;
933 	void *dsr;
934 	int ret;
935 
936 	STAT(copy_gpa);
937 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
938 		return MQE_BUG_NO_RESOURCES;
939 	gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
940 		  XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
941 	ret = gru_wait(cb);
942 	gru_free_cpu_resources(cb, dsr);
943 	return ret;
944 }
945 EXPORT_SYMBOL_GPL(gru_copy_gpa);
946 
947 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
948 /* 	Temp - will delete after we gain confidence in the GRU		*/
949 
950 static int quicktest0(unsigned long arg)
951 {
952 	unsigned long word0;
953 	unsigned long word1;
954 	void *cb;
955 	void *dsr;
956 	unsigned long *p;
957 	int ret = -EIO;
958 
959 	if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
960 		return MQE_BUG_NO_RESOURCES;
961 	p = dsr;
962 	word0 = MAGIC;
963 	word1 = 0;
964 
965 	gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
966 	if (gru_wait(cb) != CBS_IDLE) {
967 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
968 		goto done;
969 	}
970 
971 	if (*p != MAGIC) {
972 		printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
973 		goto done;
974 	}
975 	gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
976 	if (gru_wait(cb) != CBS_IDLE) {
977 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
978 		goto done;
979 	}
980 
981 	if (word0 != word1 || word1 != MAGIC) {
982 		printk(KERN_DEBUG
983 		       "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
984 		     smp_processor_id(), word1, MAGIC);
985 		goto done;
986 	}
987 	ret = 0;
988 
989 done:
990 	gru_free_cpu_resources(cb, dsr);
991 	return ret;
992 }
993 
994 #define ALIGNUP(p, q)	((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
995 
996 static int quicktest1(unsigned long arg)
997 {
998 	struct gru_message_queue_desc mqd;
999 	void *p, *mq;
1000 	unsigned long *dw;
1001 	int i, ret = -EIO;
1002 	char mes[GRU_CACHE_LINE_BYTES], *m;
1003 
1004 	/* Need  1K cacheline aligned that does not cross page boundary */
1005 	p = kmalloc(4096, 0);
1006 	if (p == NULL)
1007 		return -ENOMEM;
1008 	mq = ALIGNUP(p, 1024);
1009 	memset(mes, 0xee, sizeof(mes));
1010 	dw = mq;
1011 
1012 	gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
1013 	for (i = 0; i < 6; i++) {
1014 		mes[8] = i;
1015 		do {
1016 			ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
1017 		} while (ret == MQE_CONGESTION);
1018 		if (ret)
1019 			break;
1020 	}
1021 	if (ret != MQE_QUEUE_FULL || i != 4) {
1022 		printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
1023 		       smp_processor_id(), ret, i);
1024 		goto done;
1025 	}
1026 
1027 	for (i = 0; i < 6; i++) {
1028 		m = gru_get_next_message(&mqd);
1029 		if (!m || m[8] != i)
1030 			break;
1031 		gru_free_message(&mqd, m);
1032 	}
1033 	if (i != 4) {
1034 		printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1035 			smp_processor_id(), i, m, m ? m[8] : -1);
1036 		goto done;
1037 	}
1038 	ret = 0;
1039 
1040 done:
1041 	kfree(p);
1042 	return ret;
1043 }
1044 
1045 static int quicktest2(unsigned long arg)
1046 {
1047 	static DECLARE_COMPLETION(cmp);
1048 	unsigned long han;
1049 	int blade_id = 0;
1050 	int numcb = 4;
1051 	int ret = 0;
1052 	unsigned long *buf;
1053 	void *cb0, *cb;
1054 	struct gru_control_block_status *gen;
1055 	int i, k, istatus, bytes;
1056 
1057 	bytes = numcb * 4 * 8;
1058 	buf = kmalloc(bytes, GFP_KERNEL);
1059 	if (!buf)
1060 		return -ENOMEM;
1061 
1062 	ret = -EBUSY;
1063 	han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1064 	if (!han)
1065 		goto done;
1066 
1067 	gru_lock_async_resource(han, &cb0, NULL);
1068 	memset(buf, 0xee, bytes);
1069 	for (i = 0; i < numcb; i++)
1070 		gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1071 				XTYPE_DW, 4, 1, IMA_INTERRUPT);
1072 
1073 	ret = 0;
1074 	k = numcb;
1075 	do {
1076 		gru_wait_async_cbr(han);
1077 		for (i = 0; i < numcb; i++) {
1078 			cb = cb0 + i * GRU_HANDLE_STRIDE;
1079 			istatus = gru_check_status(cb);
1080 			if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1081 				break;
1082 		}
1083 		if (i == numcb)
1084 			continue;
1085 		if (istatus != CBS_IDLE) {
1086 			printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1087 			ret = -EFAULT;
1088 		} else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1089 				buf[4 * i + 3]) {
1090 			printk(KERN_DEBUG "GRU:%d quicktest2:cb %d,  buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1091 			       smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1092 			ret = -EIO;
1093 		}
1094 		k--;
1095 		gen = cb;
1096 		gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1097 	} while (k);
1098 	BUG_ON(cmp.done);
1099 
1100 	gru_unlock_async_resource(han);
1101 	gru_release_async_resources(han);
1102 done:
1103 	kfree(buf);
1104 	return ret;
1105 }
1106 
1107 #define BUFSIZE 200
1108 static int quicktest3(unsigned long arg)
1109 {
1110 	char buf1[BUFSIZE], buf2[BUFSIZE];
1111 	int ret = 0;
1112 
1113 	memset(buf2, 0, sizeof(buf2));
1114 	memset(buf1, get_cycles() & 255, sizeof(buf1));
1115 	gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1116 	if (memcmp(buf1, buf2, BUFSIZE)) {
1117 		printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1118 		ret = -EIO;
1119 	}
1120 	return ret;
1121 }
1122 
1123 /*
1124  * Debugging only. User hook for various kernel tests
1125  * of driver & gru.
1126  */
1127 int gru_ktest(unsigned long arg)
1128 {
1129 	int ret = -EINVAL;
1130 
1131 	switch (arg & 0xff) {
1132 	case 0:
1133 		ret = quicktest0(arg);
1134 		break;
1135 	case 1:
1136 		ret = quicktest1(arg);
1137 		break;
1138 	case 2:
1139 		ret = quicktest2(arg);
1140 		break;
1141 	case 3:
1142 		ret = quicktest3(arg);
1143 		break;
1144 	case 99:
1145 		ret = gru_free_kernel_contexts();
1146 		break;
1147 	}
1148 	return ret;
1149 
1150 }
1151 
1152 int gru_kservices_init(void)
1153 {
1154 	return 0;
1155 }
1156 
1157 void gru_kservices_exit(void)
1158 {
1159 	if (gru_free_kernel_contexts())
1160 		BUG();
1161 }
1162 
1163