1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SN Platform GRU Driver 4 * 5 * FAULT HANDLER FOR GRU DETECTED TLB MISSES 6 * 7 * This file contains code that handles TLB misses within the GRU. 8 * These misses are reported either via interrupts or user polling of 9 * the user CB. 10 * 11 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/spinlock.h> 17 #include <linux/mm.h> 18 #include <linux/hugetlb.h> 19 #include <linux/device.h> 20 #include <linux/io.h> 21 #include <linux/uaccess.h> 22 #include <linux/security.h> 23 #include <linux/sync_core.h> 24 #include <linux/prefetch.h> 25 #include "gru.h" 26 #include "grutables.h" 27 #include "grulib.h" 28 #include "gru_instructions.h" 29 #include <asm/uv/uv_hub.h> 30 31 /* Return codes for vtop functions */ 32 #define VTOP_SUCCESS 0 33 #define VTOP_INVALID -1 34 #define VTOP_RETRY -2 35 36 37 /* 38 * Test if a physical address is a valid GRU GSEG address 39 */ 40 static inline int is_gru_paddr(unsigned long paddr) 41 { 42 return paddr >= gru_start_paddr && paddr < gru_end_paddr; 43 } 44 45 /* 46 * Find the vma of a GRU segment. Caller must hold mmap_lock. 47 */ 48 struct vm_area_struct *gru_find_vma(unsigned long vaddr) 49 { 50 struct vm_area_struct *vma; 51 52 vma = vma_lookup(current->mm, vaddr); 53 if (vma && vma->vm_ops == &gru_vm_ops) 54 return vma; 55 return NULL; 56 } 57 58 /* 59 * Find and lock the gts that contains the specified user vaddr. 60 * 61 * Returns: 62 * - *gts with the mmap_lock locked for read and the GTS locked. 63 * - NULL if vaddr invalid OR is not a valid GSEG vaddr. 64 */ 65 66 static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr) 67 { 68 struct mm_struct *mm = current->mm; 69 struct vm_area_struct *vma; 70 struct gru_thread_state *gts = NULL; 71 72 mmap_read_lock(mm); 73 vma = gru_find_vma(vaddr); 74 if (vma) 75 gts = gru_find_thread_state(vma, TSID(vaddr, vma)); 76 if (gts) 77 mutex_lock(>s->ts_ctxlock); 78 else 79 mmap_read_unlock(mm); 80 return gts; 81 } 82 83 static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr) 84 { 85 struct mm_struct *mm = current->mm; 86 struct vm_area_struct *vma; 87 struct gru_thread_state *gts = ERR_PTR(-EINVAL); 88 89 mmap_write_lock(mm); 90 vma = gru_find_vma(vaddr); 91 if (!vma) 92 goto err; 93 94 gts = gru_alloc_thread_state(vma, TSID(vaddr, vma)); 95 if (IS_ERR(gts)) 96 goto err; 97 mutex_lock(>s->ts_ctxlock); 98 mmap_write_downgrade(mm); 99 return gts; 100 101 err: 102 mmap_write_unlock(mm); 103 return gts; 104 } 105 106 /* 107 * Unlock a GTS that was previously locked with gru_find_lock_gts(). 108 */ 109 static void gru_unlock_gts(struct gru_thread_state *gts) 110 { 111 mutex_unlock(>s->ts_ctxlock); 112 mmap_read_unlock(current->mm); 113 } 114 115 /* 116 * Set a CB.istatus to active using a user virtual address. This must be done 117 * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY. 118 * If the line is evicted, the status may be lost. The in-cache update 119 * is necessary to prevent the user from seeing a stale cb.istatus that will 120 * change as soon as the TFH restart is complete. Races may cause an 121 * occasional failure to clear the cb.istatus, but that is ok. 122 */ 123 static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk) 124 { 125 if (cbk) { 126 cbk->istatus = CBS_ACTIVE; 127 } 128 } 129 130 /* 131 * Read & clear a TFM 132 * 133 * The GRU has an array of fault maps. A map is private to a cpu 134 * Only one cpu will be accessing a cpu's fault map. 135 * 136 * This function scans the cpu-private fault map & clears all bits that 137 * are set. The function returns a bitmap that indicates the bits that 138 * were cleared. Note that sense the maps may be updated asynchronously by 139 * the GRU, atomic operations must be used to clear bits. 140 */ 141 static void get_clear_fault_map(struct gru_state *gru, 142 struct gru_tlb_fault_map *imap, 143 struct gru_tlb_fault_map *dmap) 144 { 145 unsigned long i, k; 146 struct gru_tlb_fault_map *tfm; 147 148 tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id()); 149 prefetchw(tfm); /* Helps on hardware, required for emulator */ 150 for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) { 151 k = tfm->fault_bits[i]; 152 if (k) 153 k = xchg(&tfm->fault_bits[i], 0UL); 154 imap->fault_bits[i] = k; 155 k = tfm->done_bits[i]; 156 if (k) 157 k = xchg(&tfm->done_bits[i], 0UL); 158 dmap->fault_bits[i] = k; 159 } 160 161 /* 162 * Not functionally required but helps performance. (Required 163 * on emulator) 164 */ 165 gru_flush_cache(tfm); 166 } 167 168 /* 169 * Atomic (interrupt context) & non-atomic (user context) functions to 170 * convert a vaddr into a physical address. The size of the page 171 * is returned in pageshift. 172 * returns: 173 * 0 - successful 174 * < 0 - error code 175 * 1 - (atomic only) try again in non-atomic context 176 */ 177 static int non_atomic_pte_lookup(struct vm_area_struct *vma, 178 unsigned long vaddr, int write, 179 unsigned long *paddr, int *pageshift) 180 { 181 struct page *page; 182 183 #ifdef CONFIG_HUGETLB_PAGE 184 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 185 #else 186 *pageshift = PAGE_SHIFT; 187 #endif 188 if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page) <= 0) 189 return -EFAULT; 190 *paddr = page_to_phys(page); 191 put_page(page); 192 return 0; 193 } 194 195 /* 196 * atomic_pte_lookup 197 * 198 * Convert a user virtual address to a physical address 199 * Only supports Intel large pages (2MB only) on x86_64. 200 * ZZZ - hugepage support is incomplete 201 * 202 * NOTE: mmap_lock is already held on entry to this function. This 203 * guarantees existence of the page tables. 204 */ 205 static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, 206 int write, unsigned long *paddr, int *pageshift) 207 { 208 pgd_t *pgdp; 209 p4d_t *p4dp; 210 pud_t *pudp; 211 pmd_t *pmdp; 212 pte_t pte; 213 214 pgdp = pgd_offset(vma->vm_mm, vaddr); 215 if (unlikely(pgd_none(*pgdp))) 216 goto err; 217 218 p4dp = p4d_offset(pgdp, vaddr); 219 if (unlikely(p4d_none(*p4dp))) 220 goto err; 221 222 pudp = pud_offset(p4dp, vaddr); 223 if (unlikely(pud_none(*pudp))) 224 goto err; 225 226 pmdp = pmd_offset(pudp, vaddr); 227 if (unlikely(pmd_none(*pmdp))) 228 goto err; 229 #ifdef CONFIG_X86_64 230 if (unlikely(pmd_leaf(*pmdp))) 231 pte = ptep_get((pte_t *)pmdp); 232 else 233 #endif 234 pte = *pte_offset_kernel(pmdp, vaddr); 235 236 if (unlikely(!pte_present(pte) || 237 (write && (!pte_write(pte) || !pte_dirty(pte))))) 238 return 1; 239 240 *paddr = pte_pfn(pte) << PAGE_SHIFT; 241 #ifdef CONFIG_HUGETLB_PAGE 242 *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; 243 #else 244 *pageshift = PAGE_SHIFT; 245 #endif 246 return 0; 247 248 err: 249 return 1; 250 } 251 252 static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr, 253 int write, int atomic, unsigned long *gpa, int *pageshift) 254 { 255 struct mm_struct *mm = gts->ts_mm; 256 struct vm_area_struct *vma; 257 unsigned long paddr; 258 int ret, ps; 259 260 vma = find_vma(mm, vaddr); 261 if (!vma) 262 goto inval; 263 264 /* 265 * Atomic lookup is faster & usually works even if called in non-atomic 266 * context. 267 */ 268 rmb(); /* Must/check ms_range_active before loading PTEs */ 269 ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps); 270 if (ret) { 271 if (atomic) 272 goto upm; 273 if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps)) 274 goto inval; 275 } 276 if (is_gru_paddr(paddr)) 277 goto inval; 278 paddr = paddr & ~((1UL << ps) - 1); 279 *gpa = uv_soc_phys_ram_to_gpa(paddr); 280 *pageshift = ps; 281 return VTOP_SUCCESS; 282 283 inval: 284 return VTOP_INVALID; 285 upm: 286 return VTOP_RETRY; 287 } 288 289 290 /* 291 * Flush a CBE from cache. The CBE is clean in the cache. Dirty the 292 * CBE cacheline so that the line will be written back to home agent. 293 * Otherwise the line may be silently dropped. This has no impact 294 * except on performance. 295 */ 296 static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe) 297 { 298 if (unlikely(cbe)) { 299 cbe->cbrexecstatus = 0; /* make CL dirty */ 300 gru_flush_cache(cbe); 301 } 302 } 303 304 /* 305 * Preload the TLB with entries that may be required. Currently, preloading 306 * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to 307 * the end of the bcopy tranfer, whichever is smaller. 308 */ 309 static void gru_preload_tlb(struct gru_state *gru, 310 struct gru_thread_state *gts, int atomic, 311 unsigned long fault_vaddr, int asid, int write, 312 unsigned char tlb_preload_count, 313 struct gru_tlb_fault_handle *tfh, 314 struct gru_control_block_extended *cbe) 315 { 316 unsigned long vaddr = 0, gpa; 317 int ret, pageshift; 318 319 if (cbe->opccpy != OP_BCOPY) 320 return; 321 322 if (fault_vaddr == cbe->cbe_baddr0) 323 vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1; 324 else if (fault_vaddr == cbe->cbe_baddr1) 325 vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1; 326 327 fault_vaddr &= PAGE_MASK; 328 vaddr &= PAGE_MASK; 329 vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE); 330 331 while (vaddr > fault_vaddr) { 332 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 333 if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write, 334 GRU_PAGESIZE(pageshift))) 335 return; 336 gru_dbg(grudev, 337 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n", 338 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, 339 vaddr, asid, write, pageshift, gpa); 340 vaddr -= PAGE_SIZE; 341 STAT(tlb_preload_page); 342 } 343 } 344 345 /* 346 * Drop a TLB entry into the GRU. The fault is described by info in an TFH. 347 * Input: 348 * cb Address of user CBR. Null if not running in user context 349 * Return: 350 * 0 = dropin, exception, or switch to UPM successful 351 * 1 = range invalidate active 352 * < 0 = error code 353 * 354 */ 355 static int gru_try_dropin(struct gru_state *gru, 356 struct gru_thread_state *gts, 357 struct gru_tlb_fault_handle *tfh, 358 struct gru_instruction_bits *cbk) 359 { 360 struct gru_control_block_extended *cbe = NULL; 361 unsigned char tlb_preload_count = gts->ts_tlb_preload_count; 362 int pageshift = 0, asid, write, ret, atomic = !cbk, indexway; 363 unsigned long gpa = 0, vaddr = 0; 364 365 /* 366 * NOTE: The GRU contains magic hardware that eliminates races between 367 * TLB invalidates and TLB dropins. If an invalidate occurs 368 * in the window between reading the TFH and the subsequent TLB dropin, 369 * the dropin is ignored. This eliminates the need for additional locks. 370 */ 371 372 /* 373 * Prefetch the CBE if doing TLB preloading 374 */ 375 if (unlikely(tlb_preload_count)) { 376 cbe = gru_tfh_to_cbe(tfh); 377 prefetchw(cbe); 378 } 379 380 /* 381 * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call. 382 * Might be a hardware race OR a stupid user. Ignore FMM because FMM 383 * is a transient state. 384 */ 385 if (tfh->status != TFHSTATUS_EXCEPTION) { 386 gru_flush_cache(tfh); 387 sync_core(); 388 if (tfh->status != TFHSTATUS_EXCEPTION) 389 goto failnoexception; 390 STAT(tfh_stale_on_fault); 391 } 392 if (tfh->state == TFHSTATE_IDLE) 393 goto failidle; 394 if (tfh->state == TFHSTATE_MISS_FMM && cbk) 395 goto failfmm; 396 397 write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0; 398 vaddr = tfh->missvaddr; 399 asid = tfh->missasid; 400 indexway = tfh->indexway; 401 if (asid == 0) 402 goto failnoasid; 403 404 rmb(); /* TFH must be cache resident before reading ms_range_active */ 405 406 /* 407 * TFH is cache resident - at least briefly. Fail the dropin 408 * if a range invalidate is active. 409 */ 410 if (atomic_read(>s->ts_gms->ms_range_active)) 411 goto failactive; 412 413 ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); 414 if (ret == VTOP_INVALID) 415 goto failinval; 416 if (ret == VTOP_RETRY) 417 goto failupm; 418 419 if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) { 420 gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift); 421 if (atomic || !gru_update_cch(gts)) { 422 gts->ts_force_cch_reload = 1; 423 goto failupm; 424 } 425 } 426 427 if (unlikely(cbe) && pageshift == PAGE_SHIFT) { 428 gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe); 429 gru_flush_cache_cbe(cbe); 430 } 431 432 gru_cb_set_istatus_active(cbk); 433 gts->ustats.tlbdropin++; 434 tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write, 435 GRU_PAGESIZE(pageshift)); 436 gru_dbg(grudev, 437 "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x," 438 " rw %d, ps %d, gpa 0x%lx\n", 439 atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid, 440 indexway, write, pageshift, gpa); 441 STAT(tlb_dropin); 442 return 0; 443 444 failnoasid: 445 /* No asid (delayed unload). */ 446 STAT(tlb_dropin_fail_no_asid); 447 gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 448 if (!cbk) 449 tfh_user_polling_mode(tfh); 450 else 451 gru_flush_cache(tfh); 452 gru_flush_cache_cbe(cbe); 453 return -EAGAIN; 454 455 failupm: 456 /* Atomic failure switch CBR to UPM */ 457 tfh_user_polling_mode(tfh); 458 gru_flush_cache_cbe(cbe); 459 STAT(tlb_dropin_fail_upm); 460 gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 461 return 1; 462 463 failfmm: 464 /* FMM state on UPM call */ 465 gru_flush_cache(tfh); 466 gru_flush_cache_cbe(cbe); 467 STAT(tlb_dropin_fail_fmm); 468 gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state); 469 return 0; 470 471 failnoexception: 472 /* TFH status did not show exception pending */ 473 gru_flush_cache(tfh); 474 gru_flush_cache_cbe(cbe); 475 if (cbk) 476 gru_flush_cache(cbk); 477 STAT(tlb_dropin_fail_no_exception); 478 gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n", 479 tfh, tfh->status, tfh->state); 480 return 0; 481 482 failidle: 483 /* TFH state was idle - no miss pending */ 484 gru_flush_cache(tfh); 485 gru_flush_cache_cbe(cbe); 486 if (cbk) 487 gru_flush_cache(cbk); 488 STAT(tlb_dropin_fail_idle); 489 gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state); 490 return 0; 491 492 failinval: 493 /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */ 494 tfh_exception(tfh); 495 gru_flush_cache_cbe(cbe); 496 STAT(tlb_dropin_fail_invalid); 497 gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); 498 return -EFAULT; 499 500 failactive: 501 /* Range invalidate active. Switch to UPM iff atomic */ 502 if (!cbk) 503 tfh_user_polling_mode(tfh); 504 else 505 gru_flush_cache(tfh); 506 gru_flush_cache_cbe(cbe); 507 STAT(tlb_dropin_fail_range_active); 508 gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n", 509 tfh, vaddr); 510 return 1; 511 } 512 513 /* 514 * Process an external interrupt from the GRU. This interrupt is 515 * caused by a TLB miss. 516 * Note that this is the interrupt handler that is registered with linux 517 * interrupt handlers. 518 */ 519 static irqreturn_t gru_intr(int chiplet, int blade) 520 { 521 struct gru_state *gru; 522 struct gru_tlb_fault_map imap, dmap; 523 struct gru_thread_state *gts; 524 struct gru_tlb_fault_handle *tfh = NULL; 525 struct completion *cmp; 526 int cbrnum, ctxnum; 527 528 STAT(intr); 529 530 gru = &gru_base[blade]->bs_grus[chiplet]; 531 if (!gru) { 532 dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n", 533 raw_smp_processor_id(), chiplet); 534 return IRQ_NONE; 535 } 536 get_clear_fault_map(gru, &imap, &dmap); 537 gru_dbg(grudev, 538 "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n", 539 smp_processor_id(), chiplet, gru->gs_gid, 540 imap.fault_bits[0], imap.fault_bits[1], 541 dmap.fault_bits[0], dmap.fault_bits[1]); 542 543 for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) { 544 STAT(intr_cbr); 545 cmp = gru->gs_blade->bs_async_wq; 546 if (cmp) 547 complete(cmp); 548 gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n", 549 gru->gs_gid, cbrnum, cmp ? cmp->done : -1); 550 } 551 552 for_each_cbr_in_tfm(cbrnum, imap.fault_bits) { 553 STAT(intr_tfh); 554 tfh = get_tfh_by_index(gru, cbrnum); 555 prefetchw(tfh); /* Helps on hdw, required for emulator */ 556 557 /* 558 * When hardware sets a bit in the faultmap, it implicitly 559 * locks the GRU context so that it cannot be unloaded. 560 * The gts cannot change until a TFH start/writestart command 561 * is issued. 562 */ 563 ctxnum = tfh->ctxnum; 564 gts = gru->gs_gts[ctxnum]; 565 566 /* Spurious interrupts can cause this. Ignore. */ 567 if (!gts) { 568 STAT(intr_spurious); 569 continue; 570 } 571 572 /* 573 * This is running in interrupt context. Trylock the mmap_lock. 574 * If it fails, retry the fault in user context. 575 */ 576 gts->ustats.fmm_tlbmiss++; 577 if (!gts->ts_force_cch_reload && 578 mmap_read_trylock(gts->ts_mm)) { 579 gru_try_dropin(gru, gts, tfh, NULL); 580 mmap_read_unlock(gts->ts_mm); 581 } else { 582 tfh_user_polling_mode(tfh); 583 STAT(intr_mm_lock_failed); 584 } 585 } 586 return IRQ_HANDLED; 587 } 588 589 irqreturn_t gru0_intr(int irq, void *dev_id) 590 { 591 return gru_intr(0, uv_numa_blade_id()); 592 } 593 594 irqreturn_t gru1_intr(int irq, void *dev_id) 595 { 596 return gru_intr(1, uv_numa_blade_id()); 597 } 598 599 irqreturn_t gru_intr_mblade(int irq, void *dev_id) 600 { 601 int blade; 602 603 for_each_possible_blade(blade) { 604 if (uv_blade_nr_possible_cpus(blade)) 605 continue; 606 gru_intr(0, blade); 607 gru_intr(1, blade); 608 } 609 return IRQ_HANDLED; 610 } 611 612 613 static int gru_user_dropin(struct gru_thread_state *gts, 614 struct gru_tlb_fault_handle *tfh, 615 void *cb) 616 { 617 struct gru_mm_struct *gms = gts->ts_gms; 618 int ret; 619 620 gts->ustats.upm_tlbmiss++; 621 while (1) { 622 wait_event(gms->ms_wait_queue, 623 atomic_read(&gms->ms_range_active) == 0); 624 prefetchw(tfh); /* Helps on hdw, required for emulator */ 625 ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb); 626 if (ret <= 0) 627 return ret; 628 STAT(call_os_wait_queue); 629 } 630 } 631 632 /* 633 * This interface is called as a result of a user detecting a "call OS" bit 634 * in a user CB. Normally means that a TLB fault has occurred. 635 * cb - user virtual address of the CB 636 */ 637 int gru_handle_user_call_os(unsigned long cb) 638 { 639 struct gru_tlb_fault_handle *tfh; 640 struct gru_thread_state *gts; 641 void *cbk; 642 int ucbnum, cbrnum, ret = -EINVAL; 643 644 STAT(call_os); 645 646 /* sanity check the cb pointer */ 647 ucbnum = get_cb_number((void *)cb); 648 if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB) 649 return -EINVAL; 650 651 again: 652 gts = gru_find_lock_gts(cb); 653 if (!gts) 654 return -EINVAL; 655 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 656 657 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) 658 goto exit; 659 660 if (gru_check_context_placement(gts)) { 661 gru_unlock_gts(gts); 662 gru_unload_context(gts, 1); 663 goto again; 664 } 665 666 /* 667 * CCH may contain stale data if ts_force_cch_reload is set. 668 */ 669 if (gts->ts_gru && gts->ts_force_cch_reload) { 670 gts->ts_force_cch_reload = 0; 671 gru_update_cch(gts); 672 } 673 674 ret = -EAGAIN; 675 cbrnum = thread_cbr_number(gts, ucbnum); 676 if (gts->ts_gru) { 677 tfh = get_tfh_by_index(gts->ts_gru, cbrnum); 678 cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr, 679 gts->ts_ctxnum, ucbnum); 680 ret = gru_user_dropin(gts, tfh, cbk); 681 } 682 exit: 683 gru_unlock_gts(gts); 684 return ret; 685 } 686 687 /* 688 * Fetch the exception detail information for a CB that terminated with 689 * an exception. 690 */ 691 int gru_get_exception_detail(unsigned long arg) 692 { 693 struct control_block_extended_exc_detail excdet; 694 struct gru_control_block_extended *cbe; 695 struct gru_thread_state *gts; 696 int ucbnum, cbrnum, ret; 697 698 STAT(user_exception); 699 if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet))) 700 return -EFAULT; 701 702 gts = gru_find_lock_gts(excdet.cb); 703 if (!gts) 704 return -EINVAL; 705 706 gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); 707 ucbnum = get_cb_number((void *)excdet.cb); 708 if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) { 709 ret = -EINVAL; 710 } else if (gts->ts_gru) { 711 cbrnum = thread_cbr_number(gts, ucbnum); 712 cbe = get_cbe_by_index(gts->ts_gru, cbrnum); 713 gru_flush_cache(cbe); /* CBE not coherent */ 714 sync_core(); /* make sure we are have current data */ 715 excdet.opc = cbe->opccpy; 716 excdet.exopc = cbe->exopccpy; 717 excdet.ecause = cbe->ecause; 718 excdet.exceptdet0 = cbe->idef1upd; 719 excdet.exceptdet1 = cbe->idef3upd; 720 excdet.cbrstate = cbe->cbrstate; 721 excdet.cbrexecstatus = cbe->cbrexecstatus; 722 gru_flush_cache_cbe(cbe); 723 ret = 0; 724 } else { 725 ret = -EAGAIN; 726 } 727 gru_unlock_gts(gts); 728 729 gru_dbg(grudev, 730 "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, " 731 "exdet0 0x%lx, exdet1 0x%x\n", 732 excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus, 733 excdet.ecause, excdet.exceptdet0, excdet.exceptdet1); 734 if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet))) 735 ret = -EFAULT; 736 return ret; 737 } 738 739 /* 740 * User request to unload a context. Content is saved for possible reload. 741 */ 742 static int gru_unload_all_contexts(void) 743 { 744 struct gru_thread_state *gts; 745 struct gru_state *gru; 746 int gid, ctxnum; 747 748 if (!capable(CAP_SYS_ADMIN)) 749 return -EPERM; 750 foreach_gid(gid) { 751 gru = GID_TO_GRU(gid); 752 spin_lock(&gru->gs_lock); 753 for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) { 754 gts = gru->gs_gts[ctxnum]; 755 if (gts && mutex_trylock(>s->ts_ctxlock)) { 756 spin_unlock(&gru->gs_lock); 757 gru_unload_context(gts, 1); 758 mutex_unlock(>s->ts_ctxlock); 759 spin_lock(&gru->gs_lock); 760 } 761 } 762 spin_unlock(&gru->gs_lock); 763 } 764 return 0; 765 } 766 767 int gru_user_unload_context(unsigned long arg) 768 { 769 struct gru_thread_state *gts; 770 struct gru_unload_context_req req; 771 772 STAT(user_unload_context); 773 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 774 return -EFAULT; 775 776 gru_dbg(grudev, "gseg 0x%lx\n", req.gseg); 777 778 if (!req.gseg) 779 return gru_unload_all_contexts(); 780 781 gts = gru_find_lock_gts(req.gseg); 782 if (!gts) 783 return -EINVAL; 784 785 if (gts->ts_gru) 786 gru_unload_context(gts, 1); 787 gru_unlock_gts(gts); 788 789 return 0; 790 } 791 792 /* 793 * User request to flush a range of virtual addresses from the GRU TLB 794 * (Mainly for testing). 795 */ 796 int gru_user_flush_tlb(unsigned long arg) 797 { 798 struct gru_thread_state *gts; 799 struct gru_flush_tlb_req req; 800 struct gru_mm_struct *gms; 801 802 STAT(user_flush_tlb); 803 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 804 return -EFAULT; 805 806 gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg, 807 req.vaddr, req.len); 808 809 gts = gru_find_lock_gts(req.gseg); 810 if (!gts) 811 return -EINVAL; 812 813 gms = gts->ts_gms; 814 gru_unlock_gts(gts); 815 gru_flush_tlb_range(gms, req.vaddr, req.len); 816 817 return 0; 818 } 819 820 /* 821 * Fetch GSEG statisticss 822 */ 823 long gru_get_gseg_statistics(unsigned long arg) 824 { 825 struct gru_thread_state *gts; 826 struct gru_get_gseg_statistics_req req; 827 828 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 829 return -EFAULT; 830 831 /* 832 * The library creates arrays of contexts for threaded programs. 833 * If no gts exists in the array, the context has never been used & all 834 * statistics are implicitly 0. 835 */ 836 gts = gru_find_lock_gts(req.gseg); 837 if (gts) { 838 memcpy(&req.stats, >s->ustats, sizeof(gts->ustats)); 839 gru_unlock_gts(gts); 840 } else { 841 memset(&req.stats, 0, sizeof(gts->ustats)); 842 } 843 844 if (copy_to_user((void __user *)arg, &req, sizeof(req))) 845 return -EFAULT; 846 847 return 0; 848 } 849 850 /* 851 * Register the current task as the user of the GSEG slice. 852 * Needed for TLB fault interrupt targeting. 853 */ 854 int gru_set_context_option(unsigned long arg) 855 { 856 struct gru_thread_state *gts; 857 struct gru_set_context_option_req req; 858 int ret = 0; 859 860 STAT(set_context_option); 861 if (copy_from_user(&req, (void __user *)arg, sizeof(req))) 862 return -EFAULT; 863 gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1); 864 865 gts = gru_find_lock_gts(req.gseg); 866 if (!gts) { 867 gts = gru_alloc_locked_gts(req.gseg); 868 if (IS_ERR(gts)) 869 return PTR_ERR(gts); 870 } 871 872 switch (req.op) { 873 case sco_blade_chiplet: 874 /* Select blade/chiplet for GRU context */ 875 if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB || 876 req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || 877 (req.val1 >= 0 && !gru_base[req.val1])) { 878 ret = -EINVAL; 879 } else { 880 gts->ts_user_blade_id = req.val1; 881 gts->ts_user_chiplet_id = req.val0; 882 if (gru_check_context_placement(gts)) { 883 gru_unlock_gts(gts); 884 gru_unload_context(gts, 1); 885 return ret; 886 } 887 } 888 break; 889 case sco_gseg_owner: 890 /* Register the current task as the GSEG owner */ 891 gts->ts_tgid_owner = current->tgid; 892 break; 893 case sco_cch_req_slice: 894 /* Set the CCH slice option */ 895 gts->ts_cch_req_slice = req.val1 & 3; 896 break; 897 default: 898 ret = -EINVAL; 899 } 900 gru_unlock_gts(gts); 901 902 return ret; 903 } 904