xref: /linux/drivers/misc/mei/vsc-tp.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2023, Intel Corporation.
4  * Intel Visual Sensing Controller Transport Layer Linux driver
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/cleanup.h>
9 #include <linux/crc32.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/irq.h>
15 #include <linux/irqreturn.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/platform_device.h>
19 #include <linux/spi/spi.h>
20 #include <linux/types.h>
21 
22 #include "vsc-tp.h"
23 
24 #define VSC_TP_RESET_PIN_TOGGLE_INTERVAL_MS	20
25 #define VSC_TP_ROM_BOOTUP_DELAY_MS		10
26 #define VSC_TP_ROM_XFER_POLL_TIMEOUT_US		(500 * USEC_PER_MSEC)
27 #define VSC_TP_ROM_XFER_POLL_DELAY_US		(20 * USEC_PER_MSEC)
28 #define VSC_TP_WAIT_FW_POLL_TIMEOUT		(2 * HZ)
29 #define VSC_TP_WAIT_FW_POLL_DELAY_US		(20 * USEC_PER_MSEC)
30 #define VSC_TP_MAX_XFER_COUNT			5
31 
32 #define VSC_TP_PACKET_SYNC			0x31
33 #define VSC_TP_CRC_SIZE				sizeof(u32)
34 #define VSC_TP_MAX_MSG_SIZE			2048
35 /* SPI xfer timeout size */
36 #define VSC_TP_XFER_TIMEOUT_BYTES		700
37 #define VSC_TP_PACKET_PADDING_SIZE		1
38 #define VSC_TP_PACKET_SIZE(pkt) \
39 	(sizeof(struct vsc_tp_packet) + le16_to_cpu((pkt)->len) + VSC_TP_CRC_SIZE)
40 #define VSC_TP_MAX_PACKET_SIZE \
41 	(sizeof(struct vsc_tp_packet) + VSC_TP_MAX_MSG_SIZE + VSC_TP_CRC_SIZE)
42 #define VSC_TP_MAX_XFER_SIZE \
43 	(VSC_TP_MAX_PACKET_SIZE + VSC_TP_XFER_TIMEOUT_BYTES)
44 #define VSC_TP_NEXT_XFER_LEN(len, offset) \
45 	(len + sizeof(struct vsc_tp_packet) + VSC_TP_CRC_SIZE - offset + VSC_TP_PACKET_PADDING_SIZE)
46 
47 struct vsc_tp_packet {
48 	__u8 sync;
49 	__u8 cmd;
50 	__le16 len;
51 	__le32 seq;
52 	__u8 buf[] __counted_by(len);
53 };
54 
55 struct vsc_tp {
56 	/* do the actual data transfer */
57 	struct spi_device *spi;
58 
59 	/* bind with mei framework */
60 	struct platform_device *pdev;
61 
62 	struct gpio_desc *wakeuphost;
63 	struct gpio_desc *resetfw;
64 	struct gpio_desc *wakeupfw;
65 
66 	/* command sequence number */
67 	u32 seq;
68 
69 	/* command buffer */
70 	void *tx_buf;
71 	void *rx_buf;
72 
73 	atomic_t assert_cnt;
74 	wait_queue_head_t xfer_wait;
75 
76 	vsc_tp_event_cb_t event_notify;
77 	void *event_notify_context;
78 
79 	/* used to protect command download */
80 	struct mutex mutex;
81 };
82 
83 /* GPIO resources */
84 static const struct acpi_gpio_params wakeuphost_gpio = { 0, 0, false };
85 static const struct acpi_gpio_params wakeuphostint_gpio = { 1, 0, false };
86 static const struct acpi_gpio_params resetfw_gpio = { 2, 0, false };
87 static const struct acpi_gpio_params wakeupfw = { 3, 0, false };
88 
89 static const struct acpi_gpio_mapping vsc_tp_acpi_gpios[] = {
90 	{ "wakeuphost-gpios", &wakeuphost_gpio, 1 },
91 	{ "wakeuphostint-gpios", &wakeuphostint_gpio, 1 },
92 	{ "resetfw-gpios", &resetfw_gpio, 1 },
93 	{ "wakeupfw-gpios", &wakeupfw, 1 },
94 	{}
95 };
96 
97 static irqreturn_t vsc_tp_isr(int irq, void *data)
98 {
99 	struct vsc_tp *tp = data;
100 
101 	atomic_inc(&tp->assert_cnt);
102 
103 	wake_up(&tp->xfer_wait);
104 
105 	return IRQ_WAKE_THREAD;
106 }
107 
108 static irqreturn_t vsc_tp_thread_isr(int irq, void *data)
109 {
110 	struct vsc_tp *tp = data;
111 
112 	if (tp->event_notify)
113 		tp->event_notify(tp->event_notify_context);
114 
115 	return IRQ_HANDLED;
116 }
117 
118 /* wakeup firmware and wait for response */
119 static int vsc_tp_wakeup_request(struct vsc_tp *tp)
120 {
121 	int ret;
122 
123 	gpiod_set_value_cansleep(tp->wakeupfw, 0);
124 
125 	ret = wait_event_timeout(tp->xfer_wait,
126 				 atomic_read(&tp->assert_cnt),
127 				 VSC_TP_WAIT_FW_POLL_TIMEOUT);
128 	if (!ret)
129 		return -ETIMEDOUT;
130 
131 	return read_poll_timeout(gpiod_get_value_cansleep, ret, ret,
132 				 VSC_TP_WAIT_FW_POLL_DELAY_US,
133 				 VSC_TP_WAIT_FW_POLL_TIMEOUT, false,
134 				 tp->wakeuphost);
135 }
136 
137 static void vsc_tp_wakeup_release(struct vsc_tp *tp)
138 {
139 	atomic_dec_if_positive(&tp->assert_cnt);
140 
141 	gpiod_set_value_cansleep(tp->wakeupfw, 1);
142 }
143 
144 static int vsc_tp_dev_xfer(struct vsc_tp *tp, void *obuf, void *ibuf, size_t len)
145 {
146 	struct spi_message msg = { 0 };
147 	struct spi_transfer xfer = {
148 		.tx_buf = obuf,
149 		.rx_buf = ibuf,
150 		.len = len,
151 	};
152 
153 	spi_message_init_with_transfers(&msg, &xfer, 1);
154 
155 	return spi_sync_locked(tp->spi, &msg);
156 }
157 
158 static int vsc_tp_xfer_helper(struct vsc_tp *tp, struct vsc_tp_packet *pkt,
159 			      void *ibuf, u16 ilen)
160 {
161 	int ret, offset = 0, cpy_len, src_len, dst_len = sizeof(struct vsc_tp_packet);
162 	int next_xfer_len = VSC_TP_PACKET_SIZE(pkt) + VSC_TP_XFER_TIMEOUT_BYTES;
163 	u8 *src, *crc_src, *rx_buf = tp->rx_buf;
164 	int count_down = VSC_TP_MAX_XFER_COUNT;
165 	u32 recv_crc = 0, crc = ~0;
166 	struct vsc_tp_packet ack;
167 	u8 *dst = (u8 *)&ack;
168 	bool synced = false;
169 
170 	do {
171 		ret = vsc_tp_dev_xfer(tp, pkt, rx_buf, next_xfer_len);
172 		if (ret)
173 			return ret;
174 		memset(pkt, 0, VSC_TP_MAX_XFER_SIZE);
175 
176 		if (synced) {
177 			src = rx_buf;
178 			src_len = next_xfer_len;
179 		} else {
180 			src = memchr(rx_buf, VSC_TP_PACKET_SYNC, next_xfer_len);
181 			if (!src)
182 				continue;
183 			synced = true;
184 			src_len = next_xfer_len - (src - rx_buf);
185 		}
186 
187 		/* traverse received data */
188 		while (src_len > 0) {
189 			cpy_len = min(src_len, dst_len);
190 			memcpy(dst, src, cpy_len);
191 			crc_src = src;
192 			src += cpy_len;
193 			src_len -= cpy_len;
194 			dst += cpy_len;
195 			dst_len -= cpy_len;
196 
197 			if (offset < sizeof(ack)) {
198 				offset += cpy_len;
199 				crc = crc32(crc, crc_src, cpy_len);
200 
201 				if (!src_len)
202 					continue;
203 
204 				if (le16_to_cpu(ack.len)) {
205 					dst = ibuf;
206 					dst_len = min(ilen, le16_to_cpu(ack.len));
207 				} else {
208 					dst = (u8 *)&recv_crc;
209 					dst_len = sizeof(recv_crc);
210 				}
211 			} else if (offset < sizeof(ack) + le16_to_cpu(ack.len)) {
212 				offset += cpy_len;
213 				crc = crc32(crc, crc_src, cpy_len);
214 
215 				if (src_len) {
216 					int remain = sizeof(ack) + le16_to_cpu(ack.len) - offset;
217 
218 					cpy_len = min(src_len, remain);
219 					offset += cpy_len;
220 					crc = crc32(crc, src, cpy_len);
221 					src += cpy_len;
222 					src_len -= cpy_len;
223 					if (src_len) {
224 						dst = (u8 *)&recv_crc;
225 						dst_len = sizeof(recv_crc);
226 						continue;
227 					}
228 				}
229 				next_xfer_len = VSC_TP_NEXT_XFER_LEN(le16_to_cpu(ack.len), offset);
230 			} else if (offset < sizeof(ack) + le16_to_cpu(ack.len) + VSC_TP_CRC_SIZE) {
231 				offset += cpy_len;
232 
233 				if (src_len) {
234 					/* terminate the traverse */
235 					next_xfer_len = 0;
236 					break;
237 				}
238 				next_xfer_len = VSC_TP_NEXT_XFER_LEN(le16_to_cpu(ack.len), offset);
239 			}
240 		}
241 	} while (next_xfer_len > 0 && --count_down);
242 
243 	if (next_xfer_len > 0)
244 		return -EAGAIN;
245 
246 	if (~recv_crc != crc || le32_to_cpu(ack.seq) != tp->seq) {
247 		dev_err(&tp->spi->dev, "recv crc or seq error\n");
248 		return -EINVAL;
249 	}
250 
251 	if (ack.cmd == VSC_TP_CMD_ACK || ack.cmd == VSC_TP_CMD_NACK ||
252 	    ack.cmd == VSC_TP_CMD_BUSY) {
253 		dev_err(&tp->spi->dev, "recv cmd ack error\n");
254 		return -EAGAIN;
255 	}
256 
257 	return min(le16_to_cpu(ack.len), ilen);
258 }
259 
260 /**
261  * vsc_tp_xfer - transfer data to firmware
262  * @tp: vsc_tp device handle
263  * @cmd: the command to be sent to the device
264  * @obuf: the tx buffer to be sent to the device
265  * @olen: the length of tx buffer
266  * @ibuf: the rx buffer to receive from the device
267  * @ilen: the length of rx buffer
268  * Return: the length of received data in case of success,
269  *	otherwise negative value
270  */
271 int vsc_tp_xfer(struct vsc_tp *tp, u8 cmd, const void *obuf, size_t olen,
272 		void *ibuf, size_t ilen)
273 {
274 	struct vsc_tp_packet *pkt = tp->tx_buf;
275 	u32 crc;
276 	int ret;
277 
278 	if (!obuf || !ibuf || olen > VSC_TP_MAX_MSG_SIZE)
279 		return -EINVAL;
280 
281 	guard(mutex)(&tp->mutex);
282 
283 	pkt->sync = VSC_TP_PACKET_SYNC;
284 	pkt->cmd = cmd;
285 	pkt->len = cpu_to_le16(olen);
286 	pkt->seq = cpu_to_le32(++tp->seq);
287 	memcpy(pkt->buf, obuf, olen);
288 
289 	crc = ~crc32(~0, (u8 *)pkt, sizeof(pkt) + olen);
290 	memcpy(pkt->buf + olen, &crc, sizeof(crc));
291 
292 	ret = vsc_tp_wakeup_request(tp);
293 	if (unlikely(ret))
294 		dev_err(&tp->spi->dev, "wakeup firmware failed ret: %d\n", ret);
295 	else
296 		ret = vsc_tp_xfer_helper(tp, pkt, ibuf, ilen);
297 
298 	vsc_tp_wakeup_release(tp);
299 
300 	return ret;
301 }
302 EXPORT_SYMBOL_NS_GPL(vsc_tp_xfer, VSC_TP);
303 
304 /**
305  * vsc_tp_rom_xfer - transfer data to rom code
306  * @tp: vsc_tp device handle
307  * @obuf: the data buffer to be sent to the device
308  * @ibuf: the buffer to receive data from the device
309  * @len: the length of tx buffer and rx buffer
310  * Return: 0 in case of success, negative value in case of error
311  */
312 int vsc_tp_rom_xfer(struct vsc_tp *tp, const void *obuf, void *ibuf, size_t len)
313 {
314 	size_t words = len / sizeof(__be32);
315 	int ret;
316 
317 	if (len % sizeof(__be32) || len > VSC_TP_MAX_MSG_SIZE)
318 		return -EINVAL;
319 
320 	guard(mutex)(&tp->mutex);
321 
322 	/* rom xfer is big endian */
323 	cpu_to_be32_array(tp->tx_buf, obuf, words);
324 
325 	ret = read_poll_timeout(gpiod_get_value_cansleep, ret,
326 				!ret, VSC_TP_ROM_XFER_POLL_DELAY_US,
327 				VSC_TP_ROM_XFER_POLL_TIMEOUT_US, false,
328 				tp->wakeuphost);
329 	if (ret) {
330 		dev_err(&tp->spi->dev, "wait rom failed ret: %d\n", ret);
331 		return ret;
332 	}
333 
334 	ret = vsc_tp_dev_xfer(tp, tp->tx_buf, ibuf ? tp->rx_buf : NULL, len);
335 	if (ret)
336 		return ret;
337 
338 	if (ibuf)
339 		be32_to_cpu_array(ibuf, tp->rx_buf, words);
340 
341 	return ret;
342 }
343 
344 /**
345  * vsc_tp_reset - reset vsc transport layer
346  * @tp: vsc_tp device handle
347  */
348 void vsc_tp_reset(struct vsc_tp *tp)
349 {
350 	disable_irq(tp->spi->irq);
351 
352 	/* toggle reset pin */
353 	gpiod_set_value_cansleep(tp->resetfw, 0);
354 	msleep(VSC_TP_RESET_PIN_TOGGLE_INTERVAL_MS);
355 	gpiod_set_value_cansleep(tp->resetfw, 1);
356 
357 	/* wait for ROM */
358 	msleep(VSC_TP_ROM_BOOTUP_DELAY_MS);
359 
360 	/*
361 	 * Set default host wakeup pin to non-active
362 	 * to avoid unexpected host irq interrupt.
363 	 */
364 	gpiod_set_value_cansleep(tp->wakeupfw, 1);
365 
366 	atomic_set(&tp->assert_cnt, 0);
367 }
368 EXPORT_SYMBOL_NS_GPL(vsc_tp_reset, VSC_TP);
369 
370 /**
371  * vsc_tp_need_read - check if device has data to sent
372  * @tp: vsc_tp device handle
373  * Return: true if device has data to sent, otherwise false
374  */
375 bool vsc_tp_need_read(struct vsc_tp *tp)
376 {
377 	if (!atomic_read(&tp->assert_cnt))
378 		return false;
379 	if (!gpiod_get_value_cansleep(tp->wakeuphost))
380 		return false;
381 	if (!gpiod_get_value_cansleep(tp->wakeupfw))
382 		return false;
383 
384 	return true;
385 }
386 EXPORT_SYMBOL_NS_GPL(vsc_tp_need_read, VSC_TP);
387 
388 /**
389  * vsc_tp_register_event_cb - register a callback function to receive event
390  * @tp: vsc_tp device handle
391  * @event_cb: callback function
392  * @context: execution context of event callback
393  * Return: 0 in case of success, negative value in case of error
394  */
395 int vsc_tp_register_event_cb(struct vsc_tp *tp, vsc_tp_event_cb_t event_cb,
396 			    void *context)
397 {
398 	tp->event_notify = event_cb;
399 	tp->event_notify_context = context;
400 
401 	return 0;
402 }
403 EXPORT_SYMBOL_NS_GPL(vsc_tp_register_event_cb, VSC_TP);
404 
405 /**
406  * vsc_tp_request_irq - request irq for vsc_tp device
407  * @tp: vsc_tp device handle
408  */
409 int vsc_tp_request_irq(struct vsc_tp *tp)
410 {
411 	struct spi_device *spi = tp->spi;
412 	struct device *dev = &spi->dev;
413 	int ret;
414 
415 	irq_set_status_flags(spi->irq, IRQ_DISABLE_UNLAZY);
416 	ret = request_threaded_irq(spi->irq, vsc_tp_isr, vsc_tp_thread_isr,
417 				   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
418 				   dev_name(dev), tp);
419 	if (ret)
420 		return ret;
421 
422 	return 0;
423 }
424 EXPORT_SYMBOL_NS_GPL(vsc_tp_request_irq, VSC_TP);
425 
426 /**
427  * vsc_tp_free_irq - free irq for vsc_tp device
428  * @tp: vsc_tp device handle
429  */
430 void vsc_tp_free_irq(struct vsc_tp *tp)
431 {
432 	free_irq(tp->spi->irq, tp);
433 }
434 EXPORT_SYMBOL_NS_GPL(vsc_tp_free_irq, VSC_TP);
435 
436 /**
437  * vsc_tp_intr_synchronize - synchronize vsc_tp interrupt
438  * @tp: vsc_tp device handle
439  */
440 void vsc_tp_intr_synchronize(struct vsc_tp *tp)
441 {
442 	synchronize_irq(tp->spi->irq);
443 }
444 EXPORT_SYMBOL_NS_GPL(vsc_tp_intr_synchronize, VSC_TP);
445 
446 /**
447  * vsc_tp_intr_enable - enable vsc_tp interrupt
448  * @tp: vsc_tp device handle
449  */
450 void vsc_tp_intr_enable(struct vsc_tp *tp)
451 {
452 	enable_irq(tp->spi->irq);
453 }
454 EXPORT_SYMBOL_NS_GPL(vsc_tp_intr_enable, VSC_TP);
455 
456 /**
457  * vsc_tp_intr_disable - disable vsc_tp interrupt
458  * @tp: vsc_tp device handle
459  */
460 void vsc_tp_intr_disable(struct vsc_tp *tp)
461 {
462 	disable_irq(tp->spi->irq);
463 }
464 EXPORT_SYMBOL_NS_GPL(vsc_tp_intr_disable, VSC_TP);
465 
466 static int vsc_tp_match_any(struct acpi_device *adev, void *data)
467 {
468 	struct acpi_device **__adev = data;
469 
470 	*__adev = adev;
471 
472 	return 1;
473 }
474 
475 static int vsc_tp_probe(struct spi_device *spi)
476 {
477 	struct vsc_tp *tp;
478 	struct platform_device_info pinfo = {
479 		.name = "intel_vsc",
480 		.data = &tp,
481 		.size_data = sizeof(tp),
482 		.id = PLATFORM_DEVID_NONE,
483 	};
484 	struct device *dev = &spi->dev;
485 	struct platform_device *pdev;
486 	struct acpi_device *adev;
487 	int ret;
488 
489 	tp = devm_kzalloc(dev, sizeof(*tp), GFP_KERNEL);
490 	if (!tp)
491 		return -ENOMEM;
492 
493 	tp->tx_buf = devm_kzalloc(dev, VSC_TP_MAX_XFER_SIZE, GFP_KERNEL);
494 	if (!tp->tx_buf)
495 		return -ENOMEM;
496 
497 	tp->rx_buf = devm_kzalloc(dev, VSC_TP_MAX_XFER_SIZE, GFP_KERNEL);
498 	if (!tp->rx_buf)
499 		return -ENOMEM;
500 
501 	ret = devm_acpi_dev_add_driver_gpios(dev, vsc_tp_acpi_gpios);
502 	if (ret)
503 		return ret;
504 
505 	tp->wakeuphost = devm_gpiod_get(dev, "wakeuphost", GPIOD_IN);
506 	if (IS_ERR(tp->wakeuphost))
507 		return PTR_ERR(tp->wakeuphost);
508 
509 	tp->resetfw = devm_gpiod_get(dev, "resetfw", GPIOD_OUT_HIGH);
510 	if (IS_ERR(tp->resetfw))
511 		return PTR_ERR(tp->resetfw);
512 
513 	tp->wakeupfw = devm_gpiod_get(dev, "wakeupfw", GPIOD_OUT_HIGH);
514 	if (IS_ERR(tp->wakeupfw))
515 		return PTR_ERR(tp->wakeupfw);
516 
517 	atomic_set(&tp->assert_cnt, 0);
518 	init_waitqueue_head(&tp->xfer_wait);
519 	tp->spi = spi;
520 
521 	irq_set_status_flags(spi->irq, IRQ_DISABLE_UNLAZY);
522 	ret = request_threaded_irq(spi->irq, vsc_tp_isr, vsc_tp_thread_isr,
523 				   IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
524 				   dev_name(dev), tp);
525 	if (ret)
526 		return ret;
527 
528 	mutex_init(&tp->mutex);
529 
530 	/* only one child acpi device */
531 	ret = acpi_dev_for_each_child(ACPI_COMPANION(dev),
532 				      vsc_tp_match_any, &adev);
533 	if (!ret) {
534 		ret = -ENODEV;
535 		goto err_destroy_lock;
536 	}
537 
538 	pinfo.fwnode = acpi_fwnode_handle(adev);
539 	pdev = platform_device_register_full(&pinfo);
540 	if (IS_ERR(pdev)) {
541 		ret = PTR_ERR(pdev);
542 		goto err_destroy_lock;
543 	}
544 
545 	tp->pdev = pdev;
546 	spi_set_drvdata(spi, tp);
547 
548 	return 0;
549 
550 err_destroy_lock:
551 	mutex_destroy(&tp->mutex);
552 
553 	free_irq(spi->irq, tp);
554 
555 	return ret;
556 }
557 
558 static void vsc_tp_remove(struct spi_device *spi)
559 {
560 	struct vsc_tp *tp = spi_get_drvdata(spi);
561 
562 	platform_device_unregister(tp->pdev);
563 
564 	mutex_destroy(&tp->mutex);
565 
566 	free_irq(spi->irq, tp);
567 }
568 
569 static void vsc_tp_shutdown(struct spi_device *spi)
570 {
571 	struct vsc_tp *tp = spi_get_drvdata(spi);
572 
573 	platform_device_unregister(tp->pdev);
574 
575 	mutex_destroy(&tp->mutex);
576 
577 	vsc_tp_reset(tp);
578 
579 	free_irq(spi->irq, tp);
580 }
581 
582 static const struct acpi_device_id vsc_tp_acpi_ids[] = {
583 	{ "INTC1009" }, /* Raptor Lake */
584 	{ "INTC1058" }, /* Tiger Lake */
585 	{ "INTC1094" }, /* Alder Lake */
586 	{ "INTC10D0" }, /* Meteor Lake */
587 	{}
588 };
589 MODULE_DEVICE_TABLE(acpi, vsc_tp_acpi_ids);
590 
591 static struct spi_driver vsc_tp_driver = {
592 	.probe = vsc_tp_probe,
593 	.remove = vsc_tp_remove,
594 	.shutdown = vsc_tp_shutdown,
595 	.driver = {
596 		.name = "vsc-tp",
597 		.acpi_match_table = vsc_tp_acpi_ids,
598 	},
599 };
600 module_spi_driver(vsc_tp_driver);
601 
602 MODULE_AUTHOR("Wentong Wu <wentong.wu@intel.com>");
603 MODULE_AUTHOR("Zhifeng Wang <zhifeng.wang@intel.com>");
604 MODULE_DESCRIPTION("Intel Visual Sensing Controller Transport Layer");
605 MODULE_LICENSE("GPL");
606