xref: /linux/drivers/misc/mei/hw-txe.c (revision e21f9e2e862e9eb3dd64eaddb6256b3e5098660f)
1 /*
2  *
3  * Intel Management Engine Interface (Intel MEI) Linux driver
4  * Copyright (c) 2013-2014, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  * more details.
14  *
15  */
16 
17 #include <linux/pci.h>
18 #include <linux/jiffies.h>
19 #include <linux/ktime.h>
20 #include <linux/delay.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/pm_runtime.h>
24 
25 #include <linux/mei.h>
26 
27 #include "mei_dev.h"
28 #include "hw-txe.h"
29 #include "client.h"
30 #include "hbm.h"
31 
32 #include "mei-trace.h"
33 
34 
35 /**
36  * mei_txe_reg_read - Reads 32bit data from the txe device
37  *
38  * @base_addr: registers base address
39  * @offset: register offset
40  *
41  * Return: register value
42  */
43 static inline u32 mei_txe_reg_read(void __iomem *base_addr,
44 					unsigned long offset)
45 {
46 	return ioread32(base_addr + offset);
47 }
48 
49 /**
50  * mei_txe_reg_write - Writes 32bit data to the txe device
51  *
52  * @base_addr: registers base address
53  * @offset: register offset
54  * @value: the value to write
55  */
56 static inline void mei_txe_reg_write(void __iomem *base_addr,
57 				unsigned long offset, u32 value)
58 {
59 	iowrite32(value, base_addr + offset);
60 }
61 
62 /**
63  * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
64  *
65  * @hw: the txe hardware structure
66  * @offset: register offset
67  *
68  * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
69  *
70  * Return: register value
71  */
72 static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
73 				unsigned long offset)
74 {
75 	return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
76 }
77 
78 /**
79  * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
80  *
81  * @hw: the txe hardware structure
82  * @offset: register offset
83  *
84  * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
85  *
86  * Return: register value
87  */
88 static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
89 				unsigned long offset)
90 {
91 	WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
92 	return mei_txe_sec_reg_read_silent(hw, offset);
93 }
94 /**
95  * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
96  *   doesn't check for aliveness
97  *
98  * @hw: the txe hardware structure
99  * @offset: register offset
100  * @value: value to write
101  *
102  * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
103  */
104 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
105 				unsigned long offset, u32 value)
106 {
107 	mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
108 }
109 
110 /**
111  * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
112  *
113  * @hw: the txe hardware structure
114  * @offset: register offset
115  * @value: value to write
116  *
117  * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
118  */
119 static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
120 				unsigned long offset, u32 value)
121 {
122 	WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
123 	mei_txe_sec_reg_write_silent(hw, offset, value);
124 }
125 /**
126  * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
127  *
128  * @hw: the txe hardware structure
129  * @offset: offset from which to read the data
130  *
131  * Return: the byte read.
132  */
133 static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
134 				unsigned long offset)
135 {
136 	return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
137 }
138 
139 /**
140  * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
141  *
142  * @hw: the txe hardware structure
143  * @offset: offset from which to write the data
144  * @value: the byte to write
145  */
146 static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
147 				unsigned long offset, u32 value)
148 {
149 	mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
150 }
151 
152 /**
153  * mei_txe_aliveness_set - request for aliveness change
154  *
155  * @dev: the device structure
156  * @req: requested aliveness value
157  *
158  * Request for aliveness change and returns true if the change is
159  *   really needed and false if aliveness is already
160  *   in the requested state
161  *
162  * Locking: called under "dev->device_lock" lock
163  *
164  * Return: true if request was send
165  */
166 static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
167 {
168 
169 	struct mei_txe_hw *hw = to_txe_hw(dev);
170 	bool do_req = hw->aliveness != req;
171 
172 	dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
173 				hw->aliveness, req);
174 	if (do_req) {
175 		dev->pg_event = MEI_PG_EVENT_WAIT;
176 		mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
177 	}
178 	return do_req;
179 }
180 
181 
182 /**
183  * mei_txe_aliveness_req_get - get aliveness requested register value
184  *
185  * @dev: the device structure
186  *
187  * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
188  * from HICR_HOST_ALIVENESS_REQ register value
189  *
190  * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
191  */
192 static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
193 {
194 	struct mei_txe_hw *hw = to_txe_hw(dev);
195 	u32 reg;
196 
197 	reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
198 	return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
199 }
200 
201 /**
202  * mei_txe_aliveness_get - get aliveness response register value
203  *
204  * @dev: the device structure
205  *
206  * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
207  *         register
208  */
209 static u32 mei_txe_aliveness_get(struct mei_device *dev)
210 {
211 	struct mei_txe_hw *hw = to_txe_hw(dev);
212 	u32 reg;
213 
214 	reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
215 	return reg & HICR_HOST_ALIVENESS_RESP_ACK;
216 }
217 
218 /**
219  * mei_txe_aliveness_poll - waits for aliveness to settle
220  *
221  * @dev: the device structure
222  * @expected: expected aliveness value
223  *
224  * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
225  *
226  * Return: 0 if the expected value was received, -ETIME otherwise
227  */
228 static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
229 {
230 	struct mei_txe_hw *hw = to_txe_hw(dev);
231 	ktime_t stop, start;
232 
233 	start = ktime_get();
234 	stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
235 	do {
236 		hw->aliveness = mei_txe_aliveness_get(dev);
237 		if (hw->aliveness == expected) {
238 			dev->pg_event = MEI_PG_EVENT_IDLE;
239 			dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
240 				ktime_to_us(ktime_sub(ktime_get(), start)));
241 			return 0;
242 		}
243 		usleep_range(20, 50);
244 	} while (ktime_before(ktime_get(), stop));
245 
246 	dev->pg_event = MEI_PG_EVENT_IDLE;
247 	dev_err(dev->dev, "aliveness timed out\n");
248 	return -ETIME;
249 }
250 
251 /**
252  * mei_txe_aliveness_wait - waits for aliveness to settle
253  *
254  * @dev: the device structure
255  * @expected: expected aliveness value
256  *
257  * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
258  *
259  * Return: 0 on success and < 0 otherwise
260  */
261 static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
262 {
263 	struct mei_txe_hw *hw = to_txe_hw(dev);
264 	const unsigned long timeout =
265 			msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
266 	long err;
267 	int ret;
268 
269 	hw->aliveness = mei_txe_aliveness_get(dev);
270 	if (hw->aliveness == expected)
271 		return 0;
272 
273 	mutex_unlock(&dev->device_lock);
274 	err = wait_event_timeout(hw->wait_aliveness_resp,
275 			dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
276 	mutex_lock(&dev->device_lock);
277 
278 	hw->aliveness = mei_txe_aliveness_get(dev);
279 	ret = hw->aliveness == expected ? 0 : -ETIME;
280 
281 	if (ret)
282 		dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
283 			err, hw->aliveness, dev->pg_event);
284 	else
285 		dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
286 			jiffies_to_msecs(timeout - err),
287 			hw->aliveness, dev->pg_event);
288 
289 	dev->pg_event = MEI_PG_EVENT_IDLE;
290 	return ret;
291 }
292 
293 /**
294  * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
295  *
296  * @dev: the device structure
297  * @req: requested aliveness value
298  *
299  * Return: 0 on success and < 0 otherwise
300  */
301 int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
302 {
303 	if (mei_txe_aliveness_set(dev, req))
304 		return mei_txe_aliveness_wait(dev, req);
305 	return 0;
306 }
307 
308 /**
309  * mei_txe_pg_in_transition - is device now in pg transition
310  *
311  * @dev: the device structure
312  *
313  * Return: true if in pg transition, false otherwise
314  */
315 static bool mei_txe_pg_in_transition(struct mei_device *dev)
316 {
317 	return dev->pg_event == MEI_PG_EVENT_WAIT;
318 }
319 
320 /**
321  * mei_txe_pg_is_enabled - detect if PG is supported by HW
322  *
323  * @dev: the device structure
324  *
325  * Return: true is pg supported, false otherwise
326  */
327 static bool mei_txe_pg_is_enabled(struct mei_device *dev)
328 {
329 	return true;
330 }
331 
332 /**
333  * mei_txe_pg_state  - translate aliveness register value
334  *   to the mei power gating state
335  *
336  * @dev: the device structure
337  *
338  * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
339  */
340 static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
341 {
342 	struct mei_txe_hw *hw = to_txe_hw(dev);
343 
344 	return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
345 }
346 
347 /**
348  * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
349  *
350  * @dev: the device structure
351  */
352 static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
353 {
354 	struct mei_txe_hw *hw = to_txe_hw(dev);
355 	u32 hintmsk;
356 	/* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
357 	hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
358 	hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
359 	mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
360 }
361 
362 /**
363  * mei_txe_input_doorbell_set - sets bit 0 in
364  *    SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
365  *
366  * @hw: the txe hardware structure
367  */
368 static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
369 {
370 	/* Clear the interrupt cause */
371 	clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
372 	mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
373 }
374 
375 /**
376  * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
377  *
378  * @hw: the txe hardware structure
379  */
380 static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
381 {
382 	mei_txe_br_reg_write(hw,
383 			SICR_SEC_IPC_OUTPUT_STATUS_REG,
384 			SEC_IPC_OUTPUT_STATUS_RDY);
385 }
386 
387 /**
388  * mei_txe_is_input_ready - check if TXE is ready for receiving data
389  *
390  * @dev: the device structure
391  *
392  * Return: true if INPUT STATUS READY bit is set
393  */
394 static bool mei_txe_is_input_ready(struct mei_device *dev)
395 {
396 	struct mei_txe_hw *hw = to_txe_hw(dev);
397 	u32 status;
398 
399 	status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
400 	return !!(SEC_IPC_INPUT_STATUS_RDY & status);
401 }
402 
403 /**
404  * mei_txe_intr_clear - clear all interrupts
405  *
406  * @dev: the device structure
407  */
408 static inline void mei_txe_intr_clear(struct mei_device *dev)
409 {
410 	struct mei_txe_hw *hw = to_txe_hw(dev);
411 
412 	mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
413 		SEC_IPC_HOST_INT_STATUS_PENDING);
414 	mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
415 	mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
416 }
417 
418 /**
419  * mei_txe_intr_disable - disable all interrupts
420  *
421  * @dev: the device structure
422  */
423 static void mei_txe_intr_disable(struct mei_device *dev)
424 {
425 	struct mei_txe_hw *hw = to_txe_hw(dev);
426 
427 	mei_txe_br_reg_write(hw, HHIER_REG, 0);
428 	mei_txe_br_reg_write(hw, HIER_REG, 0);
429 }
430 /**
431  * mei_txe_intr_enable - enable all interrupts
432  *
433  * @dev: the device structure
434  */
435 static void mei_txe_intr_enable(struct mei_device *dev)
436 {
437 	struct mei_txe_hw *hw = to_txe_hw(dev);
438 
439 	mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
440 	mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
441 }
442 
443 /**
444  * mei_txe_synchronize_irq - wait for pending IRQ handlers
445  *
446  * @dev: the device structure
447  */
448 static void mei_txe_synchronize_irq(struct mei_device *dev)
449 {
450 	struct pci_dev *pdev = to_pci_dev(dev->dev);
451 
452 	synchronize_irq(pdev->irq);
453 }
454 
455 /**
456  * mei_txe_pending_interrupts - check if there are pending interrupts
457  *	only Aliveness, Input ready, and output doorbell are of relevance
458  *
459  * @dev: the device structure
460  *
461  * Checks if there are pending interrupts
462  * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
463  *
464  * Return: true if there are pending interrupts
465  */
466 static bool mei_txe_pending_interrupts(struct mei_device *dev)
467 {
468 
469 	struct mei_txe_hw *hw = to_txe_hw(dev);
470 	bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
471 				      TXE_INTR_ALIVENESS |
472 				      TXE_INTR_IN_READY  |
473 				      TXE_INTR_OUT_DB));
474 
475 	if (ret) {
476 		dev_dbg(dev->dev,
477 			"Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
478 			!!(hw->intr_cause & TXE_INTR_IN_READY),
479 			!!(hw->intr_cause & TXE_INTR_READINESS),
480 			!!(hw->intr_cause & TXE_INTR_ALIVENESS),
481 			!!(hw->intr_cause & TXE_INTR_OUT_DB));
482 	}
483 	return ret;
484 }
485 
486 /**
487  * mei_txe_input_payload_write - write a dword to the host buffer
488  *	at offset idx
489  *
490  * @dev: the device structure
491  * @idx: index in the host buffer
492  * @value: value
493  */
494 static void mei_txe_input_payload_write(struct mei_device *dev,
495 			unsigned long idx, u32 value)
496 {
497 	struct mei_txe_hw *hw = to_txe_hw(dev);
498 
499 	mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
500 			(idx * sizeof(u32)), value);
501 }
502 
503 /**
504  * mei_txe_out_data_read - read dword from the device buffer
505  *	at offset idx
506  *
507  * @dev: the device structure
508  * @idx: index in the device buffer
509  *
510  * Return: register value at index
511  */
512 static u32 mei_txe_out_data_read(const struct mei_device *dev,
513 					unsigned long idx)
514 {
515 	struct mei_txe_hw *hw = to_txe_hw(dev);
516 
517 	return mei_txe_br_reg_read(hw,
518 		BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
519 }
520 
521 /* Readiness */
522 
523 /**
524  * mei_txe_readiness_set_host_rdy - set host readiness bit
525  *
526  * @dev: the device structure
527  */
528 static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
529 {
530 	struct mei_txe_hw *hw = to_txe_hw(dev);
531 
532 	mei_txe_br_reg_write(hw,
533 		SICR_HOST_IPC_READINESS_REQ_REG,
534 		SICR_HOST_IPC_READINESS_HOST_RDY);
535 }
536 
537 /**
538  * mei_txe_readiness_clear - clear host readiness bit
539  *
540  * @dev: the device structure
541  */
542 static void mei_txe_readiness_clear(struct mei_device *dev)
543 {
544 	struct mei_txe_hw *hw = to_txe_hw(dev);
545 
546 	mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
547 				SICR_HOST_IPC_READINESS_RDY_CLR);
548 }
549 /**
550  * mei_txe_readiness_get - Reads and returns
551  *	the HICR_SEC_IPC_READINESS register value
552  *
553  * @dev: the device structure
554  *
555  * Return: the HICR_SEC_IPC_READINESS register value
556  */
557 static u32 mei_txe_readiness_get(struct mei_device *dev)
558 {
559 	struct mei_txe_hw *hw = to_txe_hw(dev);
560 
561 	return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
562 }
563 
564 
565 /**
566  * mei_txe_readiness_is_sec_rdy - check readiness
567  *  for HICR_SEC_IPC_READINESS_SEC_RDY
568  *
569  * @readiness: cached readiness state
570  *
571  * Return: true if readiness bit is set
572  */
573 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
574 {
575 	return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
576 }
577 
578 /**
579  * mei_txe_hw_is_ready - check if the hw is ready
580  *
581  * @dev: the device structure
582  *
583  * Return: true if sec is ready
584  */
585 static bool mei_txe_hw_is_ready(struct mei_device *dev)
586 {
587 	u32 readiness =  mei_txe_readiness_get(dev);
588 
589 	return mei_txe_readiness_is_sec_rdy(readiness);
590 }
591 
592 /**
593  * mei_txe_host_is_ready - check if the host is ready
594  *
595  * @dev: the device structure
596  *
597  * Return: true if host is ready
598  */
599 static inline bool mei_txe_host_is_ready(struct mei_device *dev)
600 {
601 	struct mei_txe_hw *hw = to_txe_hw(dev);
602 	u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
603 
604 	return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
605 }
606 
607 /**
608  * mei_txe_readiness_wait - wait till readiness settles
609  *
610  * @dev: the device structure
611  *
612  * Return: 0 on success and -ETIME on timeout
613  */
614 static int mei_txe_readiness_wait(struct mei_device *dev)
615 {
616 	if (mei_txe_hw_is_ready(dev))
617 		return 0;
618 
619 	mutex_unlock(&dev->device_lock);
620 	wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
621 			msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
622 	mutex_lock(&dev->device_lock);
623 	if (!dev->recvd_hw_ready) {
624 		dev_err(dev->dev, "wait for readiness failed\n");
625 		return -ETIME;
626 	}
627 
628 	dev->recvd_hw_ready = false;
629 	return 0;
630 }
631 
632 static const struct mei_fw_status mei_txe_fw_sts = {
633 	.count = 2,
634 	.status[0] = PCI_CFG_TXE_FW_STS0,
635 	.status[1] = PCI_CFG_TXE_FW_STS1
636 };
637 
638 /**
639  * mei_txe_fw_status - read fw status register from pci config space
640  *
641  * @dev: mei device
642  * @fw_status: fw status register values
643  *
644  * Return: 0 on success, error otherwise
645  */
646 static int mei_txe_fw_status(struct mei_device *dev,
647 			     struct mei_fw_status *fw_status)
648 {
649 	const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
650 	struct pci_dev *pdev = to_pci_dev(dev->dev);
651 	int ret;
652 	int i;
653 
654 	if (!fw_status)
655 		return -EINVAL;
656 
657 	fw_status->count = fw_src->count;
658 	for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
659 		ret = pci_read_config_dword(pdev, fw_src->status[i],
660 					    &fw_status->status[i]);
661 		trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
662 				       fw_src->status[i],
663 				       fw_status->status[i]);
664 		if (ret)
665 			return ret;
666 	}
667 
668 	return 0;
669 }
670 
671 /**
672  *  mei_txe_hw_config - configure hardware at the start of the devices
673  *
674  * @dev: the device structure
675  *
676  * Configure hardware at the start of the device should be done only
677  *   once at the device probe time
678  */
679 static void mei_txe_hw_config(struct mei_device *dev)
680 {
681 
682 	struct mei_txe_hw *hw = to_txe_hw(dev);
683 
684 	/* Doesn't change in runtime */
685 	dev->hbuf_depth = PAYLOAD_SIZE / 4;
686 
687 	hw->aliveness = mei_txe_aliveness_get(dev);
688 	hw->readiness = mei_txe_readiness_get(dev);
689 
690 	dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
691 		hw->aliveness, hw->readiness);
692 }
693 
694 
695 /**
696  * mei_txe_write - writes a message to device.
697  *
698  * @dev: the device structure
699  * @header: header of message
700  * @buf: message buffer will be written
701  *
702  * Return: 0 if success, <0 - otherwise.
703  */
704 
705 static int mei_txe_write(struct mei_device *dev,
706 			 struct mei_msg_hdr *header,
707 			 const unsigned char *buf)
708 {
709 	struct mei_txe_hw *hw = to_txe_hw(dev);
710 	unsigned long rem;
711 	unsigned long length;
712 	int slots = dev->hbuf_depth;
713 	u32 *reg_buf = (u32 *)buf;
714 	u32 dw_cnt;
715 	int i;
716 
717 	if (WARN_ON(!header || !buf))
718 		return -EINVAL;
719 
720 	length = header->length;
721 
722 	dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
723 
724 	dw_cnt = mei_data2slots(length);
725 	if (dw_cnt > slots)
726 		return -EMSGSIZE;
727 
728 	if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
729 		return -EAGAIN;
730 
731 	/* Enable Input Ready Interrupt. */
732 	mei_txe_input_ready_interrupt_enable(dev);
733 
734 	if (!mei_txe_is_input_ready(dev)) {
735 		char fw_sts_str[MEI_FW_STATUS_STR_SZ];
736 
737 		mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
738 		dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
739 		return -EAGAIN;
740 	}
741 
742 	mei_txe_input_payload_write(dev, 0, *((u32 *)header));
743 
744 	for (i = 0; i < length / 4; i++)
745 		mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
746 
747 	rem = length & 0x3;
748 	if (rem > 0) {
749 		u32 reg = 0;
750 
751 		memcpy(&reg, &buf[length - rem], rem);
752 		mei_txe_input_payload_write(dev, i + 1, reg);
753 	}
754 
755 	/* after each write the whole buffer is consumed */
756 	hw->slots = 0;
757 
758 	/* Set Input-Doorbell */
759 	mei_txe_input_doorbell_set(hw);
760 
761 	return 0;
762 }
763 
764 /**
765  * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
766  *
767  * @dev: the device structure
768  *
769  * Return: the PAYLOAD_SIZE - 4
770  */
771 static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
772 {
773 	return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
774 }
775 
776 /**
777  * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
778  *
779  * @dev: the device structure
780  *
781  * Return: always hbuf_depth
782  */
783 static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
784 {
785 	struct mei_txe_hw *hw = to_txe_hw(dev);
786 
787 	return hw->slots;
788 }
789 
790 /**
791  * mei_txe_count_full_read_slots - mimics the me device circular buffer
792  *
793  * @dev: the device structure
794  *
795  * Return: always buffer size in dwords count
796  */
797 static int mei_txe_count_full_read_slots(struct mei_device *dev)
798 {
799 	/* read buffers has static size */
800 	return  PAYLOAD_SIZE / 4;
801 }
802 
803 /**
804  * mei_txe_read_hdr - read message header which is always in 4 first bytes
805  *
806  * @dev: the device structure
807  *
808  * Return: mei message header
809  */
810 
811 static u32 mei_txe_read_hdr(const struct mei_device *dev)
812 {
813 	return mei_txe_out_data_read(dev, 0);
814 }
815 /**
816  * mei_txe_read - reads a message from the txe device.
817  *
818  * @dev: the device structure
819  * @buf: message buffer will be written
820  * @len: message size will be read
821  *
822  * Return: -EINVAL on error wrong argument and 0 on success
823  */
824 static int mei_txe_read(struct mei_device *dev,
825 		unsigned char *buf, unsigned long len)
826 {
827 
828 	struct mei_txe_hw *hw = to_txe_hw(dev);
829 	u32 *reg_buf, reg;
830 	u32 rem;
831 	u32 i;
832 
833 	if (WARN_ON(!buf || !len))
834 		return -EINVAL;
835 
836 	reg_buf = (u32 *)buf;
837 	rem = len & 0x3;
838 
839 	dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
840 		len, mei_txe_out_data_read(dev, 0));
841 
842 	for (i = 0; i < len / 4; i++) {
843 		/* skip header: index starts from 1 */
844 		reg = mei_txe_out_data_read(dev, i + 1);
845 		dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
846 		*reg_buf++ = reg;
847 	}
848 
849 	if (rem) {
850 		reg = mei_txe_out_data_read(dev, i + 1);
851 		memcpy(reg_buf, &reg, rem);
852 	}
853 
854 	mei_txe_output_ready_set(hw);
855 	return 0;
856 }
857 
858 /**
859  * mei_txe_hw_reset - resets host and fw.
860  *
861  * @dev: the device structure
862  * @intr_enable: if interrupt should be enabled after reset.
863  *
864  * Return: 0 on success and < 0 in case of error
865  */
866 static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
867 {
868 	struct mei_txe_hw *hw = to_txe_hw(dev);
869 
870 	u32 aliveness_req;
871 	/*
872 	 * read input doorbell to ensure consistency between  Bridge and SeC
873 	 * return value might be garbage return
874 	 */
875 	(void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
876 
877 	aliveness_req = mei_txe_aliveness_req_get(dev);
878 	hw->aliveness = mei_txe_aliveness_get(dev);
879 
880 	/* Disable interrupts in this stage we will poll */
881 	mei_txe_intr_disable(dev);
882 
883 	/*
884 	 * If Aliveness Request and Aliveness Response are not equal then
885 	 * wait for them to be equal
886 	 * Since we might have interrupts disabled - poll for it
887 	 */
888 	if (aliveness_req != hw->aliveness)
889 		if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
890 			dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
891 			return -EIO;
892 		}
893 
894 	/*
895 	 * If Aliveness Request and Aliveness Response are set then clear them
896 	 */
897 	if (aliveness_req) {
898 		mei_txe_aliveness_set(dev, 0);
899 		if (mei_txe_aliveness_poll(dev, 0) < 0) {
900 			dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
901 			return -EIO;
902 		}
903 	}
904 
905 	/*
906 	 * Set readiness RDY_CLR bit
907 	 */
908 	mei_txe_readiness_clear(dev);
909 
910 	return 0;
911 }
912 
913 /**
914  * mei_txe_hw_start - start the hardware after reset
915  *
916  * @dev: the device structure
917  *
918  * Return: 0 on success an error code otherwise
919  */
920 static int mei_txe_hw_start(struct mei_device *dev)
921 {
922 	struct mei_txe_hw *hw = to_txe_hw(dev);
923 	int ret;
924 
925 	u32 hisr;
926 
927 	/* bring back interrupts */
928 	mei_txe_intr_enable(dev);
929 
930 	ret = mei_txe_readiness_wait(dev);
931 	if (ret < 0) {
932 		dev_err(dev->dev, "waiting for readiness failed\n");
933 		return ret;
934 	}
935 
936 	/*
937 	 * If HISR.INT2_STS interrupt status bit is set then clear it.
938 	 */
939 	hisr = mei_txe_br_reg_read(hw, HISR_REG);
940 	if (hisr & HISR_INT_2_STS)
941 		mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
942 
943 	/* Clear the interrupt cause of OutputDoorbell */
944 	clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
945 
946 	ret = mei_txe_aliveness_set_sync(dev, 1);
947 	if (ret < 0) {
948 		dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
949 		return ret;
950 	}
951 
952 	pm_runtime_set_active(dev->dev);
953 
954 	/* enable input ready interrupts:
955 	 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
956 	 */
957 	mei_txe_input_ready_interrupt_enable(dev);
958 
959 
960 	/*  Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
961 	mei_txe_output_ready_set(hw);
962 
963 	/* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
964 	 */
965 	mei_txe_readiness_set_host_rdy(dev);
966 
967 	return 0;
968 }
969 
970 /**
971  * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
972  *  single bit mask and acknowledge the interrupts
973  *
974  * @dev: the device structure
975  * @do_ack: acknowledge interrupts
976  *
977  * Return: true if found interrupts to process.
978  */
979 static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
980 {
981 	struct mei_txe_hw *hw = to_txe_hw(dev);
982 	u32 hisr;
983 	u32 hhisr;
984 	u32 ipc_isr;
985 	u32 aliveness;
986 	bool generated;
987 
988 	/* read interrupt registers */
989 	hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
990 	generated = (hhisr & IPC_HHIER_MSK);
991 	if (!generated)
992 		goto out;
993 
994 	hisr = mei_txe_br_reg_read(hw, HISR_REG);
995 
996 	aliveness = mei_txe_aliveness_get(dev);
997 	if (hhisr & IPC_HHIER_SEC && aliveness) {
998 		ipc_isr = mei_txe_sec_reg_read_silent(hw,
999 				SEC_IPC_HOST_INT_STATUS_REG);
1000 	} else {
1001 		ipc_isr = 0;
1002 		hhisr &= ~IPC_HHIER_SEC;
1003 	}
1004 
1005 	generated = generated ||
1006 		(hisr & HISR_INT_STS_MSK) ||
1007 		(ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
1008 
1009 	if (generated && do_ack) {
1010 		/* Save the interrupt causes */
1011 		hw->intr_cause |= hisr & HISR_INT_STS_MSK;
1012 		if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
1013 			hw->intr_cause |= TXE_INTR_IN_READY;
1014 
1015 
1016 		mei_txe_intr_disable(dev);
1017 		/* Clear the interrupts in hierarchy:
1018 		 * IPC and Bridge, than the High Level */
1019 		mei_txe_sec_reg_write_silent(hw,
1020 			SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1021 		mei_txe_br_reg_write(hw, HISR_REG, hisr);
1022 		mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1023 	}
1024 
1025 out:
1026 	return generated;
1027 }
1028 
1029 /**
1030  * mei_txe_irq_quick_handler - The ISR of the MEI device
1031  *
1032  * @irq: The irq number
1033  * @dev_id: pointer to the device structure
1034  *
1035  * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1036  *         IRQ_NONE otherwise
1037  */
1038 irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1039 {
1040 	struct mei_device *dev = dev_id;
1041 
1042 	if (mei_txe_check_and_ack_intrs(dev, true))
1043 		return IRQ_WAKE_THREAD;
1044 	return IRQ_NONE;
1045 }
1046 
1047 
1048 /**
1049  * mei_txe_irq_thread_handler - txe interrupt thread
1050  *
1051  * @irq: The irq number
1052  * @dev_id: pointer to the device structure
1053  *
1054  * Return: IRQ_HANDLED
1055  */
1056 irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1057 {
1058 	struct mei_device *dev = (struct mei_device *) dev_id;
1059 	struct mei_txe_hw *hw = to_txe_hw(dev);
1060 	struct list_head cmpl_list;
1061 	s32 slots;
1062 	int rets = 0;
1063 
1064 	dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1065 		mei_txe_br_reg_read(hw, HHISR_REG),
1066 		mei_txe_br_reg_read(hw, HISR_REG),
1067 		mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1068 
1069 
1070 	/* initialize our complete list */
1071 	mutex_lock(&dev->device_lock);
1072 	INIT_LIST_HEAD(&cmpl_list);
1073 
1074 	if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1075 		mei_txe_check_and_ack_intrs(dev, true);
1076 
1077 	/* show irq events */
1078 	mei_txe_pending_interrupts(dev);
1079 
1080 	hw->aliveness = mei_txe_aliveness_get(dev);
1081 	hw->readiness = mei_txe_readiness_get(dev);
1082 
1083 	/* Readiness:
1084 	 * Detection of TXE driver going through reset
1085 	 * or TXE driver resetting the HECI interface.
1086 	 */
1087 	if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1088 		dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1089 
1090 		/* Check if SeC is going through reset */
1091 		if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1092 			dev_dbg(dev->dev, "we need to start the dev.\n");
1093 			dev->recvd_hw_ready = true;
1094 		} else {
1095 			dev->recvd_hw_ready = false;
1096 			if (dev->dev_state != MEI_DEV_RESETTING) {
1097 
1098 				dev_warn(dev->dev, "FW not ready: resetting.\n");
1099 				schedule_work(&dev->reset_work);
1100 				goto end;
1101 
1102 			}
1103 		}
1104 		wake_up(&dev->wait_hw_ready);
1105 	}
1106 
1107 	/************************************************************/
1108 	/* Check interrupt cause:
1109 	 * Aliveness: Detection of SeC acknowledge of host request that
1110 	 * it remain alive or host cancellation of that request.
1111 	 */
1112 
1113 	if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1114 		/* Clear the interrupt cause */
1115 		dev_dbg(dev->dev,
1116 			"Aliveness Interrupt: Status: %d\n", hw->aliveness);
1117 		dev->pg_event = MEI_PG_EVENT_RECEIVED;
1118 		if (waitqueue_active(&hw->wait_aliveness_resp))
1119 			wake_up(&hw->wait_aliveness_resp);
1120 	}
1121 
1122 
1123 	/* Output Doorbell:
1124 	 * Detection of SeC having sent output to host
1125 	 */
1126 	slots = mei_count_full_read_slots(dev);
1127 	if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1128 		/* Read from TXE */
1129 		rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
1130 		if (rets &&
1131 		    (dev->dev_state != MEI_DEV_RESETTING &&
1132 		     dev->dev_state != MEI_DEV_POWER_DOWN)) {
1133 			dev_err(dev->dev,
1134 				"mei_irq_read_handler ret = %d.\n", rets);
1135 
1136 			schedule_work(&dev->reset_work);
1137 			goto end;
1138 		}
1139 	}
1140 	/* Input Ready: Detection if host can write to SeC */
1141 	if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1142 		dev->hbuf_is_ready = true;
1143 		hw->slots = dev->hbuf_depth;
1144 	}
1145 
1146 	if (hw->aliveness && dev->hbuf_is_ready) {
1147 		/* get the real register value */
1148 		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1149 		rets = mei_irq_write_handler(dev, &cmpl_list);
1150 		if (rets && rets != -EMSGSIZE)
1151 			dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1152 				rets);
1153 		dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1154 	}
1155 
1156 	mei_irq_compl_handler(dev, &cmpl_list);
1157 
1158 end:
1159 	dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1160 
1161 	mutex_unlock(&dev->device_lock);
1162 
1163 	mei_enable_interrupts(dev);
1164 	return IRQ_HANDLED;
1165 }
1166 
1167 static const struct mei_hw_ops mei_txe_hw_ops = {
1168 
1169 	.host_is_ready = mei_txe_host_is_ready,
1170 
1171 	.fw_status = mei_txe_fw_status,
1172 	.pg_state = mei_txe_pg_state,
1173 
1174 	.hw_is_ready = mei_txe_hw_is_ready,
1175 	.hw_reset = mei_txe_hw_reset,
1176 	.hw_config = mei_txe_hw_config,
1177 	.hw_start = mei_txe_hw_start,
1178 
1179 	.pg_in_transition = mei_txe_pg_in_transition,
1180 	.pg_is_enabled = mei_txe_pg_is_enabled,
1181 
1182 	.intr_clear = mei_txe_intr_clear,
1183 	.intr_enable = mei_txe_intr_enable,
1184 	.intr_disable = mei_txe_intr_disable,
1185 	.synchronize_irq = mei_txe_synchronize_irq,
1186 
1187 	.hbuf_free_slots = mei_txe_hbuf_empty_slots,
1188 	.hbuf_is_ready = mei_txe_is_input_ready,
1189 	.hbuf_max_len = mei_txe_hbuf_max_len,
1190 
1191 	.write = mei_txe_write,
1192 
1193 	.rdbuf_full_slots = mei_txe_count_full_read_slots,
1194 	.read_hdr = mei_txe_read_hdr,
1195 
1196 	.read = mei_txe_read,
1197 
1198 };
1199 
1200 /**
1201  * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1202  *
1203  * @pdev: pci device
1204  *
1205  * Return: struct mei_device * on success or NULL
1206  */
1207 struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1208 {
1209 	struct mei_device *dev;
1210 	struct mei_txe_hw *hw;
1211 
1212 	dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
1213 			   sizeof(struct mei_txe_hw), GFP_KERNEL);
1214 	if (!dev)
1215 		return NULL;
1216 
1217 	mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1218 
1219 	hw = to_txe_hw(dev);
1220 
1221 	init_waitqueue_head(&hw->wait_aliveness_resp);
1222 
1223 	return dev;
1224 }
1225 
1226 /**
1227  * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1228  *
1229  * @dev:   the device structure
1230  * @addr:  physical address start of the range
1231  * @range: physical range size
1232  *
1233  * Return: 0 on success an error code otherwise
1234  */
1235 int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1236 {
1237 	struct mei_txe_hw *hw = to_txe_hw(dev);
1238 
1239 	u32 lo32 = lower_32_bits(addr);
1240 	u32 hi32 = upper_32_bits(addr);
1241 	u32 ctrl;
1242 
1243 	/* SATT is limited to 36 Bits */
1244 	if (hi32 & ~0xF)
1245 		return -EINVAL;
1246 
1247 	/* SATT has to be 16Byte aligned */
1248 	if (lo32 & 0xF)
1249 		return -EINVAL;
1250 
1251 	/* SATT range has to be 4Bytes aligned */
1252 	if (range & 0x4)
1253 		return -EINVAL;
1254 
1255 	/* SATT is limited to 32 MB range*/
1256 	if (range > SATT_RANGE_MAX)
1257 		return -EINVAL;
1258 
1259 	ctrl = SATT2_CTRL_VALID_MSK;
1260 	ctrl |= hi32  << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1261 
1262 	mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1263 	mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1264 	mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1265 	dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1266 		range, lo32, ctrl);
1267 
1268 	return 0;
1269 }
1270