xref: /linux/drivers/misc/mei/hw-me.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  *
3  * Intel Management Engine Interface (Intel MEI) Linux driver
4  * Copyright (c) 2003-2012, Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  */
16 
17 #include <linux/pci.h>
18 
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 
22 #include "mei_dev.h"
23 #include "hw-me.h"
24 
25 #include "hbm.h"
26 
27 
28 /**
29  * mei_me_reg_read - Reads 32bit data from the mei device
30  *
31  * @dev: the device structure
32  * @offset: offset from which to read the data
33  *
34  * returns register value (u32)
35  */
36 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
37 			       unsigned long offset)
38 {
39 	return ioread32(hw->mem_addr + offset);
40 }
41 
42 
43 /**
44  * mei_me_reg_write - Writes 32bit data to the mei device
45  *
46  * @dev: the device structure
47  * @offset: offset from which to write the data
48  * @value: register value to write (u32)
49  */
50 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
51 				 unsigned long offset, u32 value)
52 {
53 	iowrite32(value, hw->mem_addr + offset);
54 }
55 
56 /**
57  * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
58  *  read window register
59  *
60  * @dev: the device structure
61  *
62  * returns ME_CB_RW register value (u32)
63  */
64 static u32 mei_me_mecbrw_read(const struct mei_device *dev)
65 {
66 	return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
67 }
68 /**
69  * mei_me_mecsr_read - Reads 32bit data from the ME CSR
70  *
71  * @dev: the device structure
72  *
73  * returns ME_CSR_HA register value (u32)
74  */
75 static inline u32 mei_me_mecsr_read(const struct mei_me_hw *hw)
76 {
77 	return mei_me_reg_read(hw, ME_CSR_HA);
78 }
79 
80 /**
81  * mei_hcsr_read - Reads 32bit data from the host CSR
82  *
83  * @dev: the device structure
84  *
85  * returns H_CSR register value (u32)
86  */
87 static inline u32 mei_hcsr_read(const struct mei_me_hw *hw)
88 {
89 	return mei_me_reg_read(hw, H_CSR);
90 }
91 
92 /**
93  * mei_hcsr_set - writes H_CSR register to the mei device,
94  * and ignores the H_IS bit for it is write-one-to-zero.
95  *
96  * @dev: the device structure
97  */
98 static inline void mei_hcsr_set(struct mei_me_hw *hw, u32 hcsr)
99 {
100 	hcsr &= ~H_IS;
101 	mei_me_reg_write(hw, H_CSR, hcsr);
102 }
103 
104 
105 /**
106  * mei_me_hw_config - configure hw dependent settings
107  *
108  * @dev: mei device
109  */
110 static void mei_me_hw_config(struct mei_device *dev)
111 {
112 	u32 hcsr = mei_hcsr_read(to_me_hw(dev));
113 	/* Doesn't change in runtime */
114 	dev->hbuf_depth = (hcsr & H_CBD) >> 24;
115 }
116 /**
117  * mei_clear_interrupts - clear and stop interrupts
118  *
119  * @dev: the device structure
120  */
121 static void mei_me_intr_clear(struct mei_device *dev)
122 {
123 	struct mei_me_hw *hw = to_me_hw(dev);
124 	u32 hcsr = mei_hcsr_read(hw);
125 	if ((hcsr & H_IS) == H_IS)
126 		mei_me_reg_write(hw, H_CSR, hcsr);
127 }
128 /**
129  * mei_me_intr_enable - enables mei device interrupts
130  *
131  * @dev: the device structure
132  */
133 static void mei_me_intr_enable(struct mei_device *dev)
134 {
135 	struct mei_me_hw *hw = to_me_hw(dev);
136 	u32 hcsr = mei_hcsr_read(hw);
137 	hcsr |= H_IE;
138 	mei_hcsr_set(hw, hcsr);
139 }
140 
141 /**
142  * mei_disable_interrupts - disables mei device interrupts
143  *
144  * @dev: the device structure
145  */
146 static void mei_me_intr_disable(struct mei_device *dev)
147 {
148 	struct mei_me_hw *hw = to_me_hw(dev);
149 	u32 hcsr = mei_hcsr_read(hw);
150 	hcsr  &= ~H_IE;
151 	mei_hcsr_set(hw, hcsr);
152 }
153 
154 /**
155  * mei_me_hw_reset_release - release device from the reset
156  *
157  * @dev: the device structure
158  */
159 static void mei_me_hw_reset_release(struct mei_device *dev)
160 {
161 	struct mei_me_hw *hw = to_me_hw(dev);
162 	u32 hcsr = mei_hcsr_read(hw);
163 
164 	hcsr |= H_IG;
165 	hcsr &= ~H_RST;
166 	mei_hcsr_set(hw, hcsr);
167 }
168 /**
169  * mei_me_hw_reset - resets fw via mei csr register.
170  *
171  * @dev: the device structure
172  * @intr_enable: if interrupt should be enabled after reset.
173  */
174 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
175 {
176 	struct mei_me_hw *hw = to_me_hw(dev);
177 	u32 hcsr = mei_hcsr_read(hw);
178 
179 	dev_dbg(&dev->pdev->dev, "before reset HCSR = 0x%08x.\n", hcsr);
180 
181 	hcsr |= (H_RST | H_IG);
182 
183 	if (intr_enable)
184 		hcsr |= H_IE;
185 	else
186 		hcsr |= ~H_IE;
187 
188 	mei_hcsr_set(hw, hcsr);
189 
190 	if (dev->dev_state == MEI_DEV_POWER_DOWN)
191 		mei_me_hw_reset_release(dev);
192 
193 	dev_dbg(&dev->pdev->dev, "current HCSR = 0x%08x.\n", mei_hcsr_read(hw));
194 	return 0;
195 }
196 
197 /**
198  * mei_me_host_set_ready - enable device
199  *
200  * @dev - mei device
201  * returns bool
202  */
203 
204 static void mei_me_host_set_ready(struct mei_device *dev)
205 {
206 	struct mei_me_hw *hw = to_me_hw(dev);
207 	hw->host_hw_state |= H_IE | H_IG | H_RDY;
208 	mei_hcsr_set(hw, hw->host_hw_state);
209 }
210 /**
211  * mei_me_host_is_ready - check whether the host has turned ready
212  *
213  * @dev - mei device
214  * returns bool
215  */
216 static bool mei_me_host_is_ready(struct mei_device *dev)
217 {
218 	struct mei_me_hw *hw = to_me_hw(dev);
219 	hw->host_hw_state = mei_hcsr_read(hw);
220 	return (hw->host_hw_state & H_RDY) == H_RDY;
221 }
222 
223 /**
224  * mei_me_hw_is_ready - check whether the me(hw) has turned ready
225  *
226  * @dev - mei device
227  * returns bool
228  */
229 static bool mei_me_hw_is_ready(struct mei_device *dev)
230 {
231 	struct mei_me_hw *hw = to_me_hw(dev);
232 	hw->me_hw_state = mei_me_mecsr_read(hw);
233 	return (hw->me_hw_state & ME_RDY_HRA) == ME_RDY_HRA;
234 }
235 
236 static int mei_me_hw_ready_wait(struct mei_device *dev)
237 {
238 	int err;
239 	if (mei_me_hw_is_ready(dev))
240 		return 0;
241 
242 	mutex_unlock(&dev->device_lock);
243 	err = wait_event_interruptible_timeout(dev->wait_hw_ready,
244 			dev->recvd_hw_ready, MEI_INTEROP_TIMEOUT);
245 	mutex_lock(&dev->device_lock);
246 	if (!err && !dev->recvd_hw_ready) {
247 		dev_err(&dev->pdev->dev,
248 			"wait hw ready failed. status = 0x%x\n", err);
249 		return -ETIMEDOUT;
250 	}
251 
252 	dev->recvd_hw_ready = false;
253 	return 0;
254 }
255 
256 static int mei_me_hw_start(struct mei_device *dev)
257 {
258 	int ret = mei_me_hw_ready_wait(dev);
259 	if (ret)
260 		return ret;
261 	dev_dbg(&dev->pdev->dev, "hw is ready\n");
262 
263 	mei_me_host_set_ready(dev);
264 	return ret;
265 }
266 
267 
268 /**
269  * mei_hbuf_filled_slots - gets number of device filled buffer slots
270  *
271  * @dev: the device structure
272  *
273  * returns number of filled slots
274  */
275 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
276 {
277 	struct mei_me_hw *hw = to_me_hw(dev);
278 	char read_ptr, write_ptr;
279 
280 	hw->host_hw_state = mei_hcsr_read(hw);
281 
282 	read_ptr = (char) ((hw->host_hw_state & H_CBRP) >> 8);
283 	write_ptr = (char) ((hw->host_hw_state & H_CBWP) >> 16);
284 
285 	return (unsigned char) (write_ptr - read_ptr);
286 }
287 
288 /**
289  * mei_me_hbuf_is_empty - checks if host buffer is empty.
290  *
291  * @dev: the device structure
292  *
293  * returns true if empty, false - otherwise.
294  */
295 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
296 {
297 	return mei_hbuf_filled_slots(dev) == 0;
298 }
299 
300 /**
301  * mei_me_hbuf_empty_slots - counts write empty slots.
302  *
303  * @dev: the device structure
304  *
305  * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise empty slots count
306  */
307 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
308 {
309 	unsigned char filled_slots, empty_slots;
310 
311 	filled_slots = mei_hbuf_filled_slots(dev);
312 	empty_slots = dev->hbuf_depth - filled_slots;
313 
314 	/* check for overflow */
315 	if (filled_slots > dev->hbuf_depth)
316 		return -EOVERFLOW;
317 
318 	return empty_slots;
319 }
320 
321 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
322 {
323 	return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
324 }
325 
326 
327 /**
328  * mei_write_message - writes a message to mei device.
329  *
330  * @dev: the device structure
331  * @header: mei HECI header of message
332  * @buf: message payload will be written
333  *
334  * This function returns -EIO if write has failed
335  */
336 static int mei_me_write_message(struct mei_device *dev,
337 			struct mei_msg_hdr *header,
338 			unsigned char *buf)
339 {
340 	struct mei_me_hw *hw = to_me_hw(dev);
341 	unsigned long rem;
342 	unsigned long length = header->length;
343 	u32 *reg_buf = (u32 *)buf;
344 	u32 hcsr;
345 	u32 dw_cnt;
346 	int i;
347 	int empty_slots;
348 
349 	dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
350 
351 	empty_slots = mei_hbuf_empty_slots(dev);
352 	dev_dbg(&dev->pdev->dev, "empty slots = %hu.\n", empty_slots);
353 
354 	dw_cnt = mei_data2slots(length);
355 	if (empty_slots < 0 || dw_cnt > empty_slots)
356 		return -EIO;
357 
358 	mei_me_reg_write(hw, H_CB_WW, *((u32 *) header));
359 
360 	for (i = 0; i < length / 4; i++)
361 		mei_me_reg_write(hw, H_CB_WW, reg_buf[i]);
362 
363 	rem = length & 0x3;
364 	if (rem > 0) {
365 		u32 reg = 0;
366 		memcpy(&reg, &buf[length - rem], rem);
367 		mei_me_reg_write(hw, H_CB_WW, reg);
368 	}
369 
370 	hcsr = mei_hcsr_read(hw) | H_IG;
371 	mei_hcsr_set(hw, hcsr);
372 	if (!mei_me_hw_is_ready(dev))
373 		return -EIO;
374 
375 	return 0;
376 }
377 
378 /**
379  * mei_me_count_full_read_slots - counts read full slots.
380  *
381  * @dev: the device structure
382  *
383  * returns -1(ESLOTS_OVERFLOW) if overflow, otherwise filled slots count
384  */
385 static int mei_me_count_full_read_slots(struct mei_device *dev)
386 {
387 	struct mei_me_hw *hw = to_me_hw(dev);
388 	char read_ptr, write_ptr;
389 	unsigned char buffer_depth, filled_slots;
390 
391 	hw->me_hw_state = mei_me_mecsr_read(hw);
392 	buffer_depth = (unsigned char)((hw->me_hw_state & ME_CBD_HRA) >> 24);
393 	read_ptr = (char) ((hw->me_hw_state & ME_CBRP_HRA) >> 8);
394 	write_ptr = (char) ((hw->me_hw_state & ME_CBWP_HRA) >> 16);
395 	filled_slots = (unsigned char) (write_ptr - read_ptr);
396 
397 	/* check for overflow */
398 	if (filled_slots > buffer_depth)
399 		return -EOVERFLOW;
400 
401 	dev_dbg(&dev->pdev->dev, "filled_slots =%08x\n", filled_slots);
402 	return (int)filled_slots;
403 }
404 
405 /**
406  * mei_me_read_slots - reads a message from mei device.
407  *
408  * @dev: the device structure
409  * @buffer: message buffer will be written
410  * @buffer_length: message size will be read
411  */
412 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
413 		    unsigned long buffer_length)
414 {
415 	struct mei_me_hw *hw = to_me_hw(dev);
416 	u32 *reg_buf = (u32 *)buffer;
417 	u32 hcsr;
418 
419 	for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
420 		*reg_buf++ = mei_me_mecbrw_read(dev);
421 
422 	if (buffer_length > 0) {
423 		u32 reg = mei_me_mecbrw_read(dev);
424 		memcpy(reg_buf, &reg, buffer_length);
425 	}
426 
427 	hcsr = mei_hcsr_read(hw) | H_IG;
428 	mei_hcsr_set(hw, hcsr);
429 	return 0;
430 }
431 
432 /**
433  * mei_me_irq_quick_handler - The ISR of the MEI device
434  *
435  * @irq: The irq number
436  * @dev_id: pointer to the device structure
437  *
438  * returns irqreturn_t
439  */
440 
441 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
442 {
443 	struct mei_device *dev = (struct mei_device *) dev_id;
444 	struct mei_me_hw *hw = to_me_hw(dev);
445 	u32 csr_reg = mei_hcsr_read(hw);
446 
447 	if ((csr_reg & H_IS) != H_IS)
448 		return IRQ_NONE;
449 
450 	/* clear H_IS bit in H_CSR */
451 	mei_me_reg_write(hw, H_CSR, csr_reg);
452 
453 	return IRQ_WAKE_THREAD;
454 }
455 
456 /**
457  * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
458  * processing.
459  *
460  * @irq: The irq number
461  * @dev_id: pointer to the device structure
462  *
463  * returns irqreturn_t
464  *
465  */
466 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
467 {
468 	struct mei_device *dev = (struct mei_device *) dev_id;
469 	struct mei_cl_cb complete_list;
470 	s32 slots;
471 	int rets;
472 
473 	dev_dbg(&dev->pdev->dev, "function called after ISR to handle the interrupt processing.\n");
474 	/* initialize our complete list */
475 	mutex_lock(&dev->device_lock);
476 	mei_io_list_init(&complete_list);
477 
478 	/* Ack the interrupt here
479 	 * In case of MSI we don't go through the quick handler */
480 	if (pci_dev_msi_enabled(dev->pdev))
481 		mei_clear_interrupts(dev);
482 
483 	/* check if ME wants a reset */
484 	if (!mei_hw_is_ready(dev) &&
485 	    dev->dev_state != MEI_DEV_RESETTING &&
486 	    dev->dev_state != MEI_DEV_INITIALIZING) {
487 		dev_dbg(&dev->pdev->dev, "FW not ready.\n");
488 		mei_reset(dev, 1);
489 		mutex_unlock(&dev->device_lock);
490 		return IRQ_HANDLED;
491 	}
492 
493 	/*  check if we need to start the dev */
494 	if (!mei_host_is_ready(dev)) {
495 		if (mei_hw_is_ready(dev)) {
496 			dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
497 
498 			dev->recvd_hw_ready = true;
499 			wake_up_interruptible(&dev->wait_hw_ready);
500 
501 			mutex_unlock(&dev->device_lock);
502 			return IRQ_HANDLED;
503 		} else {
504 			dev_dbg(&dev->pdev->dev, "Reset Completed.\n");
505 			mei_me_hw_reset_release(dev);
506 			mutex_unlock(&dev->device_lock);
507 			return IRQ_HANDLED;
508 		}
509 	}
510 	/* check slots available for reading */
511 	slots = mei_count_full_read_slots(dev);
512 	while (slots > 0) {
513 		/* we have urgent data to send so break the read */
514 		if (dev->wr_ext_msg.hdr.length)
515 			break;
516 		dev_dbg(&dev->pdev->dev, "slots =%08x\n", slots);
517 		dev_dbg(&dev->pdev->dev, "call mei_irq_read_handler.\n");
518 		rets = mei_irq_read_handler(dev, &complete_list, &slots);
519 		if (rets)
520 			goto end;
521 	}
522 	rets = mei_irq_write_handler(dev, &complete_list);
523 end:
524 	dev_dbg(&dev->pdev->dev, "end of bottom half function.\n");
525 	dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
526 
527 	mutex_unlock(&dev->device_lock);
528 
529 	mei_irq_compl_handler(dev, &complete_list);
530 
531 	return IRQ_HANDLED;
532 }
533 static const struct mei_hw_ops mei_me_hw_ops = {
534 
535 	.host_is_ready = mei_me_host_is_ready,
536 
537 	.hw_is_ready = mei_me_hw_is_ready,
538 	.hw_reset = mei_me_hw_reset,
539 	.hw_config = mei_me_hw_config,
540 	.hw_start = mei_me_hw_start,
541 
542 	.intr_clear = mei_me_intr_clear,
543 	.intr_enable = mei_me_intr_enable,
544 	.intr_disable = mei_me_intr_disable,
545 
546 	.hbuf_free_slots = mei_me_hbuf_empty_slots,
547 	.hbuf_is_ready = mei_me_hbuf_is_empty,
548 	.hbuf_max_len = mei_me_hbuf_max_len,
549 
550 	.write = mei_me_write_message,
551 
552 	.rdbuf_full_slots = mei_me_count_full_read_slots,
553 	.read_hdr = mei_me_mecbrw_read,
554 	.read = mei_me_read_slots
555 };
556 
557 /**
558  * mei_me_dev_init - allocates and initializes the mei device structure
559  *
560  * @pdev: The pci device structure
561  *
562  * returns The mei_device_device pointer on success, NULL on failure.
563  */
564 struct mei_device *mei_me_dev_init(struct pci_dev *pdev)
565 {
566 	struct mei_device *dev;
567 
568 	dev = kzalloc(sizeof(struct mei_device) +
569 			 sizeof(struct mei_me_hw), GFP_KERNEL);
570 	if (!dev)
571 		return NULL;
572 
573 	mei_device_init(dev);
574 
575 	dev->ops = &mei_me_hw_ops;
576 
577 	dev->pdev = pdev;
578 	return dev;
579 }
580 
581