xref: /linux/drivers/misc/lkdtm/bugs.c (revision 9c4f6ebc3665b33f15ee97ba1eb2c9bed341b8e6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/list.h>
10 #include <linux/sched.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/uaccess.h>
14 #include <linux/slab.h>
15 
16 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
17 #include <asm/desc.h>
18 #endif
19 
20 struct lkdtm_list {
21 	struct list_head node;
22 };
23 
24 /*
25  * Make sure our attempts to over run the kernel stack doesn't trigger
26  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
27  * recurse past the end of THREAD_SIZE by default.
28  */
29 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
30 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
31 #else
32 #define REC_STACK_SIZE (THREAD_SIZE / 8)
33 #endif
34 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
35 
36 static int recur_count = REC_NUM_DEFAULT;
37 
38 static DEFINE_SPINLOCK(lock_me_up);
39 
40 /*
41  * Make sure compiler does not optimize this function or stack frame away:
42  * - function marked noinline
43  * - stack variables are marked volatile
44  * - stack variables are written (memset()) and read (pr_info())
45  * - function has external effects (pr_info())
46  * */
47 static int noinline recursive_loop(int remaining)
48 {
49 	volatile char buf[REC_STACK_SIZE];
50 
51 	memset((void *)buf, remaining & 0xFF, sizeof(buf));
52 	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
53 		recur_count);
54 	if (!remaining)
55 		return 0;
56 	else
57 		return recursive_loop(remaining - 1);
58 }
59 
60 /* If the depth is negative, use the default, otherwise keep parameter. */
61 void __init lkdtm_bugs_init(int *recur_param)
62 {
63 	if (*recur_param < 0)
64 		*recur_param = recur_count;
65 	else
66 		recur_count = *recur_param;
67 }
68 
69 void lkdtm_PANIC(void)
70 {
71 	panic("dumptest");
72 }
73 
74 void lkdtm_BUG(void)
75 {
76 	BUG();
77 }
78 
79 static int warn_counter;
80 
81 void lkdtm_WARNING(void)
82 {
83 	WARN_ON(++warn_counter);
84 }
85 
86 void lkdtm_WARNING_MESSAGE(void)
87 {
88 	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
89 }
90 
91 void lkdtm_EXCEPTION(void)
92 {
93 	*((volatile int *) 0) = 0;
94 }
95 
96 void lkdtm_LOOP(void)
97 {
98 	for (;;)
99 		;
100 }
101 
102 void lkdtm_EXHAUST_STACK(void)
103 {
104 	pr_info("Calling function with %lu frame size to depth %d ...\n",
105 		REC_STACK_SIZE, recur_count);
106 	recursive_loop(recur_count);
107 	pr_info("FAIL: survived without exhausting stack?!\n");
108 }
109 
110 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111 {
112 	memset(stack, '\xff', 64);
113 }
114 
115 /* This should trip the stack canary, not corrupt the return address. */
116 noinline void lkdtm_CORRUPT_STACK(void)
117 {
118 	/* Use default char array length that triggers stack protection. */
119 	char data[8] __aligned(sizeof(void *));
120 
121 	pr_info("Corrupting stack containing char array ...\n");
122 	__lkdtm_CORRUPT_STACK((void *)&data);
123 }
124 
125 /* Same as above but will only get a canary with -fstack-protector-strong */
126 noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127 {
128 	union {
129 		unsigned short shorts[4];
130 		unsigned long *ptr;
131 	} data __aligned(sizeof(void *));
132 
133 	pr_info("Corrupting stack containing union ...\n");
134 	__lkdtm_CORRUPT_STACK((void *)&data);
135 }
136 
137 static pid_t stack_pid;
138 static unsigned long stack_addr;
139 
140 void lkdtm_REPORT_STACK(void)
141 {
142 	volatile uintptr_t magic;
143 	pid_t pid = task_pid_nr(current);
144 
145 	if (pid != stack_pid) {
146 		pr_info("Starting stack offset tracking for pid %d\n", pid);
147 		stack_pid = pid;
148 		stack_addr = (uintptr_t)&magic;
149 	}
150 
151 	pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
152 }
153 
154 void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
155 {
156 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
157 	u32 *p;
158 	u32 val = 0x12345678;
159 
160 	p = (u32 *)(data + 1);
161 	if (*p == 0)
162 		val = 0x87654321;
163 	*p = val;
164 
165 	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
166 		pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
167 }
168 
169 void lkdtm_SOFTLOCKUP(void)
170 {
171 	preempt_disable();
172 	for (;;)
173 		cpu_relax();
174 }
175 
176 void lkdtm_HARDLOCKUP(void)
177 {
178 	local_irq_disable();
179 	for (;;)
180 		cpu_relax();
181 }
182 
183 void lkdtm_SPINLOCKUP(void)
184 {
185 	/* Must be called twice to trigger. */
186 	spin_lock(&lock_me_up);
187 	/* Let sparse know we intended to exit holding the lock. */
188 	__release(&lock_me_up);
189 }
190 
191 void lkdtm_HUNG_TASK(void)
192 {
193 	set_current_state(TASK_UNINTERRUPTIBLE);
194 	schedule();
195 }
196 
197 volatile unsigned int huge = INT_MAX - 2;
198 volatile unsigned int ignored;
199 
200 void lkdtm_OVERFLOW_SIGNED(void)
201 {
202 	int value;
203 
204 	value = huge;
205 	pr_info("Normal signed addition ...\n");
206 	value += 1;
207 	ignored = value;
208 
209 	pr_info("Overflowing signed addition ...\n");
210 	value += 4;
211 	ignored = value;
212 }
213 
214 
215 void lkdtm_OVERFLOW_UNSIGNED(void)
216 {
217 	unsigned int value;
218 
219 	value = huge;
220 	pr_info("Normal unsigned addition ...\n");
221 	value += 1;
222 	ignored = value;
223 
224 	pr_info("Overflowing unsigned addition ...\n");
225 	value += 4;
226 	ignored = value;
227 }
228 
229 /* Intentionally using old-style flex array definition of 1 byte. */
230 struct array_bounds_flex_array {
231 	int one;
232 	int two;
233 	char data[1];
234 };
235 
236 struct array_bounds {
237 	int one;
238 	int two;
239 	char data[8];
240 	int three;
241 };
242 
243 void lkdtm_ARRAY_BOUNDS(void)
244 {
245 	struct array_bounds_flex_array *not_checked;
246 	struct array_bounds *checked;
247 	volatile int i;
248 
249 	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
250 	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
251 
252 	pr_info("Array access within bounds ...\n");
253 	/* For both, touch all bytes in the actual member size. */
254 	for (i = 0; i < sizeof(checked->data); i++)
255 		checked->data[i] = 'A';
256 	/*
257 	 * For the uninstrumented flex array member, also touch 1 byte
258 	 * beyond to verify it is correctly uninstrumented.
259 	 */
260 	for (i = 0; i < sizeof(not_checked->data) + 1; i++)
261 		not_checked->data[i] = 'A';
262 
263 	pr_info("Array access beyond bounds ...\n");
264 	for (i = 0; i < sizeof(checked->data) + 1; i++)
265 		checked->data[i] = 'B';
266 
267 	kfree(not_checked);
268 	kfree(checked);
269 	pr_err("FAIL: survived array bounds overflow!\n");
270 }
271 
272 void lkdtm_CORRUPT_LIST_ADD(void)
273 {
274 	/*
275 	 * Initially, an empty list via LIST_HEAD:
276 	 *	test_head.next = &test_head
277 	 *	test_head.prev = &test_head
278 	 */
279 	LIST_HEAD(test_head);
280 	struct lkdtm_list good, bad;
281 	void *target[2] = { };
282 	void *redirection = &target;
283 
284 	pr_info("attempting good list addition\n");
285 
286 	/*
287 	 * Adding to the list performs these actions:
288 	 *	test_head.next->prev = &good.node
289 	 *	good.node.next = test_head.next
290 	 *	good.node.prev = test_head
291 	 *	test_head.next = good.node
292 	 */
293 	list_add(&good.node, &test_head);
294 
295 	pr_info("attempting corrupted list addition\n");
296 	/*
297 	 * In simulating this "write what where" primitive, the "what" is
298 	 * the address of &bad.node, and the "where" is the address held
299 	 * by "redirection".
300 	 */
301 	test_head.next = redirection;
302 	list_add(&bad.node, &test_head);
303 
304 	if (target[0] == NULL && target[1] == NULL)
305 		pr_err("Overwrite did not happen, but no BUG?!\n");
306 	else
307 		pr_err("list_add() corruption not detected!\n");
308 }
309 
310 void lkdtm_CORRUPT_LIST_DEL(void)
311 {
312 	LIST_HEAD(test_head);
313 	struct lkdtm_list item;
314 	void *target[2] = { };
315 	void *redirection = &target;
316 
317 	list_add(&item.node, &test_head);
318 
319 	pr_info("attempting good list removal\n");
320 	list_del(&item.node);
321 
322 	pr_info("attempting corrupted list removal\n");
323 	list_add(&item.node, &test_head);
324 
325 	/* As with the list_add() test above, this corrupts "next". */
326 	item.node.next = redirection;
327 	list_del(&item.node);
328 
329 	if (target[0] == NULL && target[1] == NULL)
330 		pr_err("Overwrite did not happen, but no BUG?!\n");
331 	else
332 		pr_err("list_del() corruption not detected!\n");
333 }
334 
335 /* Test that VMAP_STACK is actually allocating with a leading guard page */
336 void lkdtm_STACK_GUARD_PAGE_LEADING(void)
337 {
338 	const unsigned char *stack = task_stack_page(current);
339 	const unsigned char *ptr = stack - 1;
340 	volatile unsigned char byte;
341 
342 	pr_info("attempting bad read from page below current stack\n");
343 
344 	byte = *ptr;
345 
346 	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
347 }
348 
349 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
350 void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
351 {
352 	const unsigned char *stack = task_stack_page(current);
353 	const unsigned char *ptr = stack + THREAD_SIZE;
354 	volatile unsigned char byte;
355 
356 	pr_info("attempting bad read from page above current stack\n");
357 
358 	byte = *ptr;
359 
360 	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
361 }
362 
363 void lkdtm_UNSET_SMEP(void)
364 {
365 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
366 #define MOV_CR4_DEPTH	64
367 	void (*direct_write_cr4)(unsigned long val);
368 	unsigned char *insn;
369 	unsigned long cr4;
370 	int i;
371 
372 	cr4 = native_read_cr4();
373 
374 	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
375 		pr_err("FAIL: SMEP not in use\n");
376 		return;
377 	}
378 	cr4 &= ~(X86_CR4_SMEP);
379 
380 	pr_info("trying to clear SMEP normally\n");
381 	native_write_cr4(cr4);
382 	if (cr4 == native_read_cr4()) {
383 		pr_err("FAIL: pinning SMEP failed!\n");
384 		cr4 |= X86_CR4_SMEP;
385 		pr_info("restoring SMEP\n");
386 		native_write_cr4(cr4);
387 		return;
388 	}
389 	pr_info("ok: SMEP did not get cleared\n");
390 
391 	/*
392 	 * To test the post-write pinning verification we need to call
393 	 * directly into the middle of native_write_cr4() where the
394 	 * cr4 write happens, skipping any pinning. This searches for
395 	 * the cr4 writing instruction.
396 	 */
397 	insn = (unsigned char *)native_write_cr4;
398 	for (i = 0; i < MOV_CR4_DEPTH; i++) {
399 		/* mov %rdi, %cr4 */
400 		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
401 			break;
402 		/* mov %rdi,%rax; mov %rax, %cr4 */
403 		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
404 		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
405 		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
406 			break;
407 	}
408 	if (i >= MOV_CR4_DEPTH) {
409 		pr_info("ok: cannot locate cr4 writing call gadget\n");
410 		return;
411 	}
412 	direct_write_cr4 = (void *)(insn + i);
413 
414 	pr_info("trying to clear SMEP with call gadget\n");
415 	direct_write_cr4(cr4);
416 	if (native_read_cr4() & X86_CR4_SMEP) {
417 		pr_info("ok: SMEP removal was reverted\n");
418 	} else {
419 		pr_err("FAIL: cleared SMEP not detected!\n");
420 		cr4 |= X86_CR4_SMEP;
421 		pr_info("restoring SMEP\n");
422 		native_write_cr4(cr4);
423 	}
424 #else
425 	pr_err("XFAIL: this test is x86_64-only\n");
426 #endif
427 }
428 
429 void lkdtm_DOUBLE_FAULT(void)
430 {
431 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
432 	/*
433 	 * Trigger #DF by setting the stack limit to zero.  This clobbers
434 	 * a GDT TLS slot, which is okay because the current task will die
435 	 * anyway due to the double fault.
436 	 */
437 	struct desc_struct d = {
438 		.type = 3,	/* expand-up, writable, accessed data */
439 		.p = 1,		/* present */
440 		.d = 1,		/* 32-bit */
441 		.g = 0,		/* limit in bytes */
442 		.s = 1,		/* not system */
443 	};
444 
445 	local_irq_disable();
446 	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
447 			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
448 
449 	/*
450 	 * Put our zero-limit segment in SS and then trigger a fault.  The
451 	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
452 	 * deliver the fault will recursively cause #SS and result in #DF.
453 	 * This whole process happens while NMIs and MCEs are blocked by the
454 	 * MOV SS window.  This is nice because an NMI with an invalid SS
455 	 * would also double-fault, resulting in the NMI or MCE being lost.
456 	 */
457 	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
458 		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
459 
460 	pr_err("FAIL: tried to double fault but didn't die\n");
461 #else
462 	pr_err("XFAIL: this test is ia32-only\n");
463 #endif
464 }
465 
466 #ifdef CONFIG_ARM64
467 static noinline void change_pac_parameters(void)
468 {
469 	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH)) {
470 		/* Reset the keys of current task */
471 		ptrauth_thread_init_kernel(current);
472 		ptrauth_thread_switch_kernel(current);
473 	}
474 }
475 #endif
476 
477 noinline void lkdtm_CORRUPT_PAC(void)
478 {
479 #ifdef CONFIG_ARM64
480 #define CORRUPT_PAC_ITERATE	10
481 	int i;
482 
483 	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
484 		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH\n");
485 
486 	if (!system_supports_address_auth()) {
487 		pr_err("FAIL: CPU lacks pointer authentication feature\n");
488 		return;
489 	}
490 
491 	pr_info("changing PAC parameters to force function return failure...\n");
492 	/*
493 	 * PAC is a hash value computed from input keys, return address and
494 	 * stack pointer. As pac has fewer bits so there is a chance of
495 	 * collision, so iterate few times to reduce the collision probability.
496 	 */
497 	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
498 		change_pac_parameters();
499 
500 	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
501 #else
502 	pr_err("XFAIL: this test is arm64-only\n");
503 #endif
504 }
505 
506 void lkdtm_FORTIFY_OBJECT(void)
507 {
508 	struct target {
509 		char a[10];
510 	} target[2] = {};
511 	int result;
512 
513 	/*
514 	 * Using volatile prevents the compiler from determining the value of
515 	 * 'size' at compile time. Without that, we would get a compile error
516 	 * rather than a runtime error.
517 	 */
518 	volatile int size = 11;
519 
520 	pr_info("trying to read past the end of a struct\n");
521 
522 	result = memcmp(&target[0], &target[1], size);
523 
524 	/* Print result to prevent the code from being eliminated */
525 	pr_err("FAIL: fortify did not catch an object overread!\n"
526 	       "\"%d\" was the memcmp result.\n", result);
527 }
528 
529 void lkdtm_FORTIFY_SUBOBJECT(void)
530 {
531 	struct target {
532 		char a[10];
533 		char b[10];
534 	} target;
535 	char *src;
536 
537 	src = kmalloc(20, GFP_KERNEL);
538 	strscpy(src, "over ten bytes", 20);
539 
540 	pr_info("trying to strcpy past the end of a member of a struct\n");
541 
542 	/*
543 	 * strncpy(target.a, src, 20); will hit a compile error because the
544 	 * compiler knows at build time that target.a < 20 bytes. Use strcpy()
545 	 * to force a runtime error.
546 	 */
547 	strcpy(target.a, src);
548 
549 	/* Use target.a to prevent the code from being eliminated */
550 	pr_err("FAIL: fortify did not catch an sub-object overrun!\n"
551 	       "\"%s\" was copied.\n", target.a);
552 
553 	kfree(src);
554 }
555