xref: /linux/drivers/misc/lkdtm/bugs.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is for all the tests related to logic bugs (e.g. bad dereferences,
4  * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5  * lockups) along with other things that don't fit well into existing LKDTM
6  * test source files.
7  */
8 #include "lkdtm.h"
9 #include <linux/cpu.h>
10 #include <linux/list.h>
11 #include <linux/hrtimer.h>
12 #include <linux/sched.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/slab.h>
16 #include <linux/stop_machine.h>
17 #include <linux/uaccess.h>
18 
19 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
20 #include <asm/desc.h>
21 #endif
22 
23 struct lkdtm_list {
24 	struct list_head node;
25 };
26 
27 /*
28  * Make sure our attempts to over run the kernel stack doesn't trigger
29  * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
30  * recurse past the end of THREAD_SIZE by default.
31  */
32 #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
33 #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
34 #else
35 #define REC_STACK_SIZE (THREAD_SIZE / 8UL)
36 #endif
37 #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
38 
39 static int recur_count = REC_NUM_DEFAULT;
40 
41 static DEFINE_SPINLOCK(lock_me_up);
42 
43 /*
44  * Make sure compiler does not optimize this function or stack frame away:
45  * - function marked noinline
46  * - stack variables are marked volatile
47  * - stack variables are written (memset()) and read (buf[..] passed as arg)
48  * - function may have external effects (memzero_explicit())
49  * - no tail recursion possible
50  */
51 static int noinline recursive_loop(int remaining)
52 {
53 	volatile char buf[REC_STACK_SIZE];
54 	volatile int ret;
55 
56 	memset((void *)buf, remaining & 0xFF, sizeof(buf));
57 	if (!remaining)
58 		ret = 0;
59 	else
60 		ret = recursive_loop((int)buf[remaining % sizeof(buf)] - 1);
61 	memzero_explicit((void *)buf, sizeof(buf));
62 	return ret;
63 }
64 
65 /* If the depth is negative, use the default, otherwise keep parameter. */
66 void __init lkdtm_bugs_init(int *recur_param)
67 {
68 	if (*recur_param < 0)
69 		*recur_param = recur_count;
70 	else
71 		recur_count = *recur_param;
72 }
73 
74 static void lkdtm_PANIC(void)
75 {
76 	panic("dumptest");
77 }
78 
79 static int panic_stop_irqoff_fn(void *arg)
80 {
81 	atomic_t *v = arg;
82 
83 	/*
84 	 * As stop_machine() disables interrupts, all CPUs within this function
85 	 * have interrupts disabled and cannot take a regular IPI.
86 	 *
87 	 * The last CPU which enters here will trigger a panic, and as all CPUs
88 	 * cannot take a regular IPI, we'll only be able to stop secondaries if
89 	 * smp_send_stop() or crash_smp_send_stop() uses an NMI.
90 	 */
91 	if (atomic_inc_return(v) == num_online_cpus())
92 		panic("panic stop irqoff test");
93 
94 	for (;;)
95 		cpu_relax();
96 }
97 
98 static void lkdtm_PANIC_STOP_IRQOFF(void)
99 {
100 	atomic_t v = ATOMIC_INIT(0);
101 	stop_machine(panic_stop_irqoff_fn, &v, cpu_online_mask);
102 }
103 
104 static bool wait_for_panic;
105 
106 static enum hrtimer_restart panic_in_hardirq(struct hrtimer *timer)
107 {
108 	panic("from hard IRQ context");
109 
110 	wait_for_panic = false;
111 	return HRTIMER_NORESTART;
112 }
113 
114 static void lkdtm_PANIC_IN_HARDIRQ(void)
115 {
116 	struct hrtimer timer;
117 
118 	wait_for_panic = true;
119 	hrtimer_setup_on_stack(&timer, panic_in_hardirq,
120 			       CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
121 	hrtimer_start(&timer, us_to_ktime(100), HRTIMER_MODE_REL_HARD);
122 
123 	while (READ_ONCE(wait_for_panic))
124 		cpu_relax();
125 
126 	hrtimer_cancel(&timer);
127 }
128 
129 static void lkdtm_BUG(void)
130 {
131 	BUG();
132 }
133 
134 static bool wait_for_bug;
135 
136 static enum hrtimer_restart bug_in_hardirq(struct hrtimer *timer)
137 {
138 	BUG();
139 
140 	wait_for_bug = false;
141 	return HRTIMER_NORESTART;
142 }
143 
144 static void lkdtm_BUG_IN_HARDIRQ(void)
145 {
146 	struct hrtimer timer;
147 
148 	wait_for_bug = true;
149 	hrtimer_setup_on_stack(&timer, bug_in_hardirq,
150 			       CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
151 	hrtimer_start(&timer, us_to_ktime(100), HRTIMER_MODE_REL_HARD);
152 
153 	while (READ_ONCE(wait_for_bug))
154 		cpu_relax();
155 
156 	hrtimer_cancel(&timer);
157 }
158 
159 static int warn_counter;
160 
161 static void lkdtm_WARNING(void)
162 {
163 	WARN_ON(++warn_counter);
164 }
165 
166 static void lkdtm_WARNING_MESSAGE(void)
167 {
168 	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
169 }
170 
171 static void lkdtm_EXCEPTION(void)
172 {
173 	*((volatile int *) 0) = 0;
174 }
175 
176 static void lkdtm_LOOP(void)
177 {
178 	for (;;)
179 		;
180 }
181 
182 static void lkdtm_EXHAUST_STACK(void)
183 {
184 	pr_info("Calling function with %lu frame size to depth %d ...\n",
185 		REC_STACK_SIZE, recur_count);
186 	recursive_loop(recur_count);
187 	pr_info("FAIL: survived without exhausting stack?!\n");
188 }
189 
190 static noinline void __lkdtm_CORRUPT_STACK(void *stack)
191 {
192 	memset(stack, '\xff', 64);
193 }
194 
195 /* This should trip the stack canary, not corrupt the return address. */
196 static noinline void lkdtm_CORRUPT_STACK(void)
197 {
198 	/* Use default char array length that triggers stack protection. */
199 	char data[8] __aligned(sizeof(void *));
200 
201 	pr_info("Corrupting stack containing char array ...\n");
202 	__lkdtm_CORRUPT_STACK((void *)&data);
203 }
204 
205 /* Same as above but will only get a canary with -fstack-protector-strong */
206 static noinline void lkdtm_CORRUPT_STACK_STRONG(void)
207 {
208 	union {
209 		unsigned short shorts[4];
210 		unsigned long *ptr;
211 	} data __aligned(sizeof(void *));
212 
213 	pr_info("Corrupting stack containing union ...\n");
214 	__lkdtm_CORRUPT_STACK((void *)&data);
215 }
216 
217 static pid_t stack_pid;
218 static unsigned long stack_addr;
219 
220 static void lkdtm_REPORT_STACK(void)
221 {
222 	volatile uintptr_t magic;
223 	pid_t pid = task_pid_nr(current);
224 
225 	if (pid != stack_pid) {
226 		pr_info("Starting stack offset tracking for pid %d\n", pid);
227 		stack_pid = pid;
228 		stack_addr = (uintptr_t)&magic;
229 	}
230 
231 	pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
232 }
233 
234 static pid_t stack_canary_pid;
235 static unsigned long stack_canary;
236 static unsigned long stack_canary_offset;
237 
238 static noinline void __lkdtm_REPORT_STACK_CANARY(void *stack)
239 {
240 	int i = 0;
241 	pid_t pid = task_pid_nr(current);
242 	unsigned long *canary = (unsigned long *)stack;
243 	unsigned long current_offset = 0, init_offset = 0;
244 
245 	/* Do our best to find the canary in a 16 word window ... */
246 	for (i = 1; i < 16; i++) {
247 		canary = (unsigned long *)stack + i;
248 #ifdef CONFIG_STACKPROTECTOR
249 		if (*canary == current->stack_canary)
250 			current_offset = i;
251 		if (*canary == init_task.stack_canary)
252 			init_offset = i;
253 #endif
254 	}
255 
256 	if (current_offset == 0) {
257 		/*
258 		 * If the canary doesn't match what's in the task_struct,
259 		 * we're either using a global canary or the stack frame
260 		 * layout changed.
261 		 */
262 		if (init_offset != 0) {
263 			pr_err("FAIL: global stack canary found at offset %ld (canary for pid %d matches init_task's)!\n",
264 			       init_offset, pid);
265 		} else {
266 			pr_warn("FAIL: did not correctly locate stack canary :(\n");
267 			pr_expected_config(CONFIG_STACKPROTECTOR);
268 		}
269 
270 		return;
271 	} else if (init_offset != 0) {
272 		pr_warn("WARNING: found both current and init_task canaries nearby?!\n");
273 	}
274 
275 	canary = (unsigned long *)stack + current_offset;
276 	if (stack_canary_pid == 0) {
277 		stack_canary = *canary;
278 		stack_canary_pid = pid;
279 		stack_canary_offset = current_offset;
280 		pr_info("Recorded stack canary for pid %d at offset %ld\n",
281 			stack_canary_pid, stack_canary_offset);
282 	} else if (pid == stack_canary_pid) {
283 		pr_warn("ERROR: saw pid %d again -- please use a new pid\n", pid);
284 	} else {
285 		if (current_offset != stack_canary_offset) {
286 			pr_warn("ERROR: canary offset changed from %ld to %ld!?\n",
287 				stack_canary_offset, current_offset);
288 			return;
289 		}
290 
291 		if (*canary == stack_canary) {
292 			pr_warn("FAIL: canary identical for pid %d and pid %d at offset %ld!\n",
293 				stack_canary_pid, pid, current_offset);
294 		} else {
295 			pr_info("ok: stack canaries differ between pid %d and pid %d at offset %ld.\n",
296 				stack_canary_pid, pid, current_offset);
297 			/* Reset the test. */
298 			stack_canary_pid = 0;
299 		}
300 	}
301 }
302 
303 static void lkdtm_REPORT_STACK_CANARY(void)
304 {
305 	/* Use default char array length that triggers stack protection. */
306 	char data[8] __aligned(sizeof(void *)) = { };
307 
308 	__lkdtm_REPORT_STACK_CANARY((void *)&data);
309 }
310 
311 static void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
312 {
313 	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
314 	u32 *p;
315 	u32 val = 0x12345678;
316 
317 	p = (u32 *)(data + 1);
318 	if (*p == 0)
319 		val = 0x87654321;
320 	*p = val;
321 
322 	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
323 		pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
324 }
325 
326 static void lkdtm_SOFTLOCKUP(void)
327 {
328 	preempt_disable();
329 	for (;;)
330 		cpu_relax();
331 }
332 
333 static void lkdtm_HARDLOCKUP(void)
334 {
335 	local_irq_disable();
336 	for (;;)
337 		cpu_relax();
338 }
339 
340 static void __lkdtm_SMP_CALL_LOCKUP(void *unused)
341 {
342 	for (;;)
343 		cpu_relax();
344 }
345 
346 static void lkdtm_SMP_CALL_LOCKUP(void)
347 {
348 	unsigned int cpu, target;
349 
350 	cpus_read_lock();
351 
352 	cpu = get_cpu();
353 	target = cpumask_any_but(cpu_online_mask, cpu);
354 
355 	if (target >= nr_cpu_ids) {
356 		pr_err("FAIL: no other online CPUs\n");
357 		goto out_put_cpus;
358 	}
359 
360 	smp_call_function_single(target, __lkdtm_SMP_CALL_LOCKUP, NULL, 1);
361 
362 	pr_err("FAIL: did not hang\n");
363 
364 out_put_cpus:
365 	put_cpu();
366 	cpus_read_unlock();
367 }
368 
369 static void lkdtm_SPINLOCKUP(void)
370 {
371 	/* Must be called twice to trigger. */
372 	spin_lock(&lock_me_up);
373 	/* Let sparse know we intended to exit holding the lock. */
374 	__release(&lock_me_up);
375 }
376 
377 static void __noreturn lkdtm_HUNG_TASK(void)
378 {
379 	set_current_state(TASK_UNINTERRUPTIBLE);
380 	schedule();
381 	BUG();
382 }
383 
384 static volatile unsigned int huge = INT_MAX - 2;
385 static volatile unsigned int ignored;
386 
387 static void lkdtm_OVERFLOW_SIGNED(void)
388 {
389 	int value;
390 
391 	value = huge;
392 	pr_info("Normal signed addition ...\n");
393 	value += 1;
394 	ignored = value;
395 
396 	pr_info("Overflowing signed addition ...\n");
397 	value += 4;
398 	ignored = value;
399 }
400 
401 
402 static void lkdtm_OVERFLOW_UNSIGNED(void)
403 {
404 	unsigned int value;
405 
406 	value = huge;
407 	pr_info("Normal unsigned addition ...\n");
408 	value += 1;
409 	ignored = value;
410 
411 	pr_info("Overflowing unsigned addition ...\n");
412 	value += 4;
413 	ignored = value;
414 }
415 
416 /* Intentionally using unannotated flex array definition. */
417 struct array_bounds_flex_array {
418 	int one;
419 	int two;
420 	char data[];
421 };
422 
423 struct array_bounds {
424 	int one;
425 	int two;
426 	char data[8];
427 	int three;
428 };
429 
430 static void lkdtm_ARRAY_BOUNDS(void)
431 {
432 	struct array_bounds_flex_array *not_checked;
433 	struct array_bounds *checked;
434 	volatile int i;
435 
436 	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
437 	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
438 	if (!not_checked || !checked) {
439 		kfree(not_checked);
440 		kfree(checked);
441 		return;
442 	}
443 
444 	pr_info("Array access within bounds ...\n");
445 	/* For both, touch all bytes in the actual member size. */
446 	for (i = 0; i < sizeof(checked->data); i++)
447 		checked->data[i] = 'A';
448 	/*
449 	 * For the uninstrumented flex array member, also touch 1 byte
450 	 * beyond to verify it is correctly uninstrumented.
451 	 */
452 	for (i = 0; i < 2; i++)
453 		not_checked->data[i] = 'A';
454 
455 	pr_info("Array access beyond bounds ...\n");
456 	for (i = 0; i < sizeof(checked->data) + 1; i++)
457 		checked->data[i] = 'B';
458 
459 	kfree(not_checked);
460 	kfree(checked);
461 	pr_err("FAIL: survived array bounds overflow!\n");
462 	if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
463 		pr_expected_config(CONFIG_UBSAN_TRAP);
464 	else
465 		pr_expected_config(CONFIG_UBSAN_BOUNDS);
466 }
467 
468 struct lkdtm_cb_fam {
469 	unsigned long flags;
470 	int count;
471 	int array[] __counted_by(count);
472 };
473 
474 static volatile int element_count = 4;
475 
476 static void lkdtm_FAM_BOUNDS(void)
477 {
478 	struct lkdtm_cb_fam *inst;
479 
480 	inst = kzalloc_flex(*inst, array, element_count + 1, GFP_KERNEL);
481 	if (!inst) {
482 		pr_err("FAIL: could not allocate test struct!\n");
483 		return;
484 	}
485 
486 	inst->count = element_count;
487 	pr_info("Array access within bounds ...\n");
488 	inst->array[1] = element_count;
489 	ignored = inst->array[1];
490 
491 	pr_info("Array access beyond bounds ...\n");
492 	inst->array[element_count] = element_count;
493 	ignored = inst->array[element_count];
494 
495 	kfree(inst);
496 
497 	pr_err("FAIL: survived access of invalid flexible array member index!\n");
498 
499 	if (!IS_ENABLED(CONFIG_CC_HAS_COUNTED_BY))
500 		pr_warn("This is expected since this %s was built with a compiler that does not support __counted_by\n",
501 			lkdtm_kernel_info);
502 	else if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
503 		pr_expected_config(CONFIG_UBSAN_TRAP);
504 	else
505 		pr_expected_config(CONFIG_UBSAN_BOUNDS);
506 }
507 
508 struct lkdtm_extra {
509 	short a, b;
510 	u16 sixteen;
511 	u32 bigger;
512 	u64 biggest;
513 };
514 
515 struct lkdtm_cb_ptr {
516 	int a, b, c;
517 	int nr_extra;
518 	char *buf __counted_by_ptr(len);
519 	size_t len;
520 	struct lkdtm_extra *extra __counted_by_ptr(nr_extra);
521 };
522 
523 static noinline void check_ptr_len(struct lkdtm_cb_ptr *p, size_t len)
524 {
525 	if (__member_size(p->buf) != len)
526 		pr_err("FAIL: could not determine size of inst->buf: %zu\n",
527 			__member_size(p->buf));
528 	else
529 		pr_info("good: inst->buf length is %zu\n", len);
530 }
531 
532 static void lkdtm_PTR_BOUNDS(void)
533 {
534 	struct lkdtm_cb_ptr *inst;
535 
536 	inst = kzalloc_obj(*inst, GFP_KERNEL);
537 	if (!inst) {
538 		pr_err("FAIL: could not allocate struct lkdtm_cb_ptr!\n");
539 		return;
540 	}
541 
542 	inst->buf = kzalloc(element_count, GFP_KERNEL);
543 	if (!inst->buf) {
544 		pr_err("FAIL: could not allocate inst->buf!\n");
545 		return;
546 	}
547 	inst->len = element_count;
548 
549 	/* Double element_count */
550 	inst->extra = kzalloc_objs(*inst->extra, element_count * 2, GFP_KERNEL);
551 	inst->nr_extra = element_count * 2;
552 
553 	pr_info("Pointer access within bounds ...\n");
554 	check_ptr_len(inst, 4);
555 	/* All 4 bytes */
556 	inst->buf[0] = 'A';
557 	inst->buf[1] = 'B';
558 	inst->buf[2] = 'C';
559 	inst->buf[3] = 'D';
560 	/* Halfway into the array */
561 	inst->extra[element_count].biggest = 0x1000;
562 
563 	pr_info("Pointer access beyond bounds ...\n");
564 	ignored = inst->extra[inst->nr_extra].b;
565 
566 	kfree(inst->extra);
567 	kfree(inst->buf);
568 	kfree(inst);
569 
570 	pr_err("FAIL: survived access of invalid pointer member offset!\n");
571 
572 	if (!IS_ENABLED(CONFIG_CC_HAS_COUNTED_BY_PTR))
573 		pr_warn("This is expected since this %s was built with a compiler that does not support __counted_by_ptr\n",
574 			lkdtm_kernel_info);
575 	else if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
576 		pr_expected_config(CONFIG_UBSAN_TRAP);
577 	else
578 		pr_expected_config(CONFIG_UBSAN_BOUNDS);
579 }
580 
581 static void lkdtm_CORRUPT_LIST_ADD(void)
582 {
583 	/*
584 	 * Initially, an empty list via LIST_HEAD:
585 	 *	test_head.next = &test_head
586 	 *	test_head.prev = &test_head
587 	 */
588 	LIST_HEAD(test_head);
589 	struct lkdtm_list good, bad;
590 	void *target[2] = { };
591 	void *redirection = &target;
592 
593 	pr_info("attempting good list addition\n");
594 
595 	/*
596 	 * Adding to the list performs these actions:
597 	 *	test_head.next->prev = &good.node
598 	 *	good.node.next = test_head.next
599 	 *	good.node.prev = test_head
600 	 *	test_head.next = good.node
601 	 */
602 	list_add(&good.node, &test_head);
603 
604 	pr_info("attempting corrupted list addition\n");
605 	/*
606 	 * In simulating this "write what where" primitive, the "what" is
607 	 * the address of &bad.node, and the "where" is the address held
608 	 * by "redirection".
609 	 */
610 	test_head.next = redirection;
611 	list_add(&bad.node, &test_head);
612 
613 	if (target[0] == NULL && target[1] == NULL)
614 		pr_err("Overwrite did not happen, but no BUG?!\n");
615 	else {
616 		pr_err("list_add() corruption not detected!\n");
617 		pr_expected_config(CONFIG_LIST_HARDENED);
618 	}
619 }
620 
621 static void lkdtm_CORRUPT_LIST_DEL(void)
622 {
623 	LIST_HEAD(test_head);
624 	struct lkdtm_list item;
625 	void *target[2] = { };
626 	void *redirection = &target;
627 
628 	list_add(&item.node, &test_head);
629 
630 	pr_info("attempting good list removal\n");
631 	list_del(&item.node);
632 
633 	pr_info("attempting corrupted list removal\n");
634 	list_add(&item.node, &test_head);
635 
636 	/* As with the list_add() test above, this corrupts "next". */
637 	item.node.next = redirection;
638 	list_del(&item.node);
639 
640 	if (target[0] == NULL && target[1] == NULL)
641 		pr_err("Overwrite did not happen, but no BUG?!\n");
642 	else {
643 		pr_err("list_del() corruption not detected!\n");
644 		pr_expected_config(CONFIG_LIST_HARDENED);
645 	}
646 }
647 
648 /* Test that VMAP_STACK is actually allocating with a leading guard page */
649 static void lkdtm_STACK_GUARD_PAGE_LEADING(void)
650 {
651 	const unsigned char *stack = task_stack_page(current);
652 	const unsigned char *ptr = stack - 1;
653 	volatile unsigned char byte;
654 
655 	pr_info("attempting bad read from page below current stack\n");
656 
657 	byte = *ptr;
658 
659 	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
660 }
661 
662 /* Test that VMAP_STACK is actually allocating with a trailing guard page */
663 static void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
664 {
665 	const unsigned char *stack = task_stack_page(current);
666 	const unsigned char *ptr = stack + THREAD_SIZE;
667 	volatile unsigned char byte;
668 
669 	pr_info("attempting bad read from page above current stack\n");
670 
671 	byte = *ptr;
672 
673 	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
674 }
675 
676 static void lkdtm_UNSET_SMEP(void)
677 {
678 #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
679 #define MOV_CR4_DEPTH	64
680 	void (*direct_write_cr4)(unsigned long val);
681 	unsigned char *insn;
682 	unsigned long cr4;
683 	int i;
684 
685 	cr4 = native_read_cr4();
686 
687 	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
688 		pr_err("FAIL: SMEP not in use\n");
689 		return;
690 	}
691 	cr4 &= ~(X86_CR4_SMEP);
692 
693 	pr_info("trying to clear SMEP normally\n");
694 	native_write_cr4(cr4);
695 	if (cr4 == native_read_cr4()) {
696 		pr_err("FAIL: pinning SMEP failed!\n");
697 		cr4 |= X86_CR4_SMEP;
698 		pr_info("restoring SMEP\n");
699 		native_write_cr4(cr4);
700 		return;
701 	}
702 	pr_info("ok: SMEP did not get cleared\n");
703 
704 	/*
705 	 * To test the post-write pinning verification we need to call
706 	 * directly into the middle of native_write_cr4() where the
707 	 * cr4 write happens, skipping any pinning. This searches for
708 	 * the cr4 writing instruction.
709 	 */
710 	insn = (unsigned char *)native_write_cr4;
711 	OPTIMIZER_HIDE_VAR(insn);
712 	for (i = 0; i < MOV_CR4_DEPTH; i++) {
713 		/* mov %rdi, %cr4 */
714 		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
715 			break;
716 		/* mov %rdi,%rax; mov %rax, %cr4 */
717 		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
718 		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
719 		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
720 			break;
721 	}
722 	if (i >= MOV_CR4_DEPTH) {
723 		pr_info("ok: cannot locate cr4 writing call gadget\n");
724 		return;
725 	}
726 	direct_write_cr4 = (void *)(insn + i);
727 
728 	pr_info("trying to clear SMEP with call gadget\n");
729 	direct_write_cr4(cr4);
730 	if (native_read_cr4() & X86_CR4_SMEP) {
731 		pr_info("ok: SMEP removal was reverted\n");
732 	} else {
733 		pr_err("FAIL: cleared SMEP not detected!\n");
734 		cr4 |= X86_CR4_SMEP;
735 		pr_info("restoring SMEP\n");
736 		native_write_cr4(cr4);
737 	}
738 #else
739 	pr_err("XFAIL: this test is x86_64-only\n");
740 #endif
741 }
742 
743 static void lkdtm_DOUBLE_FAULT(void)
744 {
745 #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
746 	/*
747 	 * Trigger #DF by setting the stack limit to zero.  This clobbers
748 	 * a GDT TLS slot, which is okay because the current task will die
749 	 * anyway due to the double fault.
750 	 */
751 	struct desc_struct d = {
752 		.type = 3,	/* expand-up, writable, accessed data */
753 		.p = 1,		/* present */
754 		.d = 1,		/* 32-bit */
755 		.g = 0,		/* limit in bytes */
756 		.s = 1,		/* not system */
757 	};
758 
759 	local_irq_disable();
760 	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
761 			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
762 
763 	/*
764 	 * Put our zero-limit segment in SS and then trigger a fault.  The
765 	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
766 	 * deliver the fault will recursively cause #SS and result in #DF.
767 	 * This whole process happens while NMIs and MCEs are blocked by the
768 	 * MOV SS window.  This is nice because an NMI with an invalid SS
769 	 * would also double-fault, resulting in the NMI or MCE being lost.
770 	 */
771 	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
772 		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
773 
774 	pr_err("FAIL: tried to double fault but didn't die\n");
775 #else
776 	pr_err("XFAIL: this test is ia32-only\n");
777 #endif
778 }
779 
780 #ifdef CONFIG_ARM64
781 static noinline void change_pac_parameters(void)
782 {
783 	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
784 		/* Reset the keys of current task */
785 		ptrauth_thread_init_kernel(current);
786 		ptrauth_thread_switch_kernel(current);
787 	}
788 }
789 #endif
790 
791 static noinline void lkdtm_CORRUPT_PAC(void)
792 {
793 #ifdef CONFIG_ARM64
794 #define CORRUPT_PAC_ITERATE	10
795 	int i;
796 
797 	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
798 		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
799 
800 	if (!system_supports_address_auth()) {
801 		pr_err("FAIL: CPU lacks pointer authentication feature\n");
802 		return;
803 	}
804 
805 	pr_info("changing PAC parameters to force function return failure...\n");
806 	/*
807 	 * PAC is a hash value computed from input keys, return address and
808 	 * stack pointer. As pac has fewer bits so there is a chance of
809 	 * collision, so iterate few times to reduce the collision probability.
810 	 */
811 	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
812 		change_pac_parameters();
813 
814 	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
815 #else
816 	pr_err("XFAIL: this test is arm64-only\n");
817 #endif
818 }
819 
820 static struct crashtype crashtypes[] = {
821 	CRASHTYPE(PANIC),
822 	CRASHTYPE(PANIC_STOP_IRQOFF),
823 	CRASHTYPE(PANIC_IN_HARDIRQ),
824 	CRASHTYPE(BUG),
825 	CRASHTYPE(BUG_IN_HARDIRQ),
826 	CRASHTYPE(WARNING),
827 	CRASHTYPE(WARNING_MESSAGE),
828 	CRASHTYPE(EXCEPTION),
829 	CRASHTYPE(LOOP),
830 	CRASHTYPE(EXHAUST_STACK),
831 	CRASHTYPE(CORRUPT_STACK),
832 	CRASHTYPE(CORRUPT_STACK_STRONG),
833 	CRASHTYPE(REPORT_STACK),
834 	CRASHTYPE(REPORT_STACK_CANARY),
835 	CRASHTYPE(UNALIGNED_LOAD_STORE_WRITE),
836 	CRASHTYPE(SOFTLOCKUP),
837 	CRASHTYPE(HARDLOCKUP),
838 	CRASHTYPE(SMP_CALL_LOCKUP),
839 	CRASHTYPE(SPINLOCKUP),
840 	CRASHTYPE(HUNG_TASK),
841 	CRASHTYPE(OVERFLOW_SIGNED),
842 	CRASHTYPE(OVERFLOW_UNSIGNED),
843 	CRASHTYPE(ARRAY_BOUNDS),
844 	CRASHTYPE(FAM_BOUNDS),
845 	CRASHTYPE(PTR_BOUNDS),
846 	CRASHTYPE(CORRUPT_LIST_ADD),
847 	CRASHTYPE(CORRUPT_LIST_DEL),
848 	CRASHTYPE(STACK_GUARD_PAGE_LEADING),
849 	CRASHTYPE(STACK_GUARD_PAGE_TRAILING),
850 	CRASHTYPE(UNSET_SMEP),
851 	CRASHTYPE(DOUBLE_FAULT),
852 	CRASHTYPE(CORRUPT_PAC),
853 };
854 
855 struct crashtype_category bugs_crashtypes = {
856 	.crashtypes = crashtypes,
857 	.len	    = ARRAY_SIZE(crashtypes),
858 };
859