1 /** 2 * IBM Accelerator Family 'GenWQE' 3 * 4 * (C) Copyright IBM Corp. 2013 5 * 6 * Author: Frank Haverkamp <haver@linux.vnet.ibm.com> 7 * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com> 8 * Author: Michael Jung <mijung@gmx.net> 9 * Author: Michael Ruettger <michael@ibmra.de> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License (version 2 only) 13 * as published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 */ 20 21 /* 22 * Miscelanous functionality used in the other GenWQE driver parts. 23 */ 24 25 #include <linux/kernel.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/sched.h> 28 #include <linux/vmalloc.h> 29 #include <linux/page-flags.h> 30 #include <linux/scatterlist.h> 31 #include <linux/hugetlb.h> 32 #include <linux/iommu.h> 33 #include <linux/delay.h> 34 #include <linux/pci.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/ctype.h> 37 #include <linux/module.h> 38 #include <linux/platform_device.h> 39 #include <linux/delay.h> 40 #include <asm/pgtable.h> 41 42 #include "genwqe_driver.h" 43 #include "card_base.h" 44 #include "card_ddcb.h" 45 46 /** 47 * __genwqe_writeq() - Write 64-bit register 48 * @cd: genwqe device descriptor 49 * @byte_offs: byte offset within BAR 50 * @val: 64-bit value 51 * 52 * Return: 0 if success; < 0 if error 53 */ 54 int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val) 55 { 56 struct pci_dev *pci_dev = cd->pci_dev; 57 58 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 59 return -EIO; 60 61 if (cd->mmio == NULL) 62 return -EIO; 63 64 if (pci_channel_offline(pci_dev)) 65 return -EIO; 66 67 __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs); 68 return 0; 69 } 70 71 /** 72 * __genwqe_readq() - Read 64-bit register 73 * @cd: genwqe device descriptor 74 * @byte_offs: offset within BAR 75 * 76 * Return: value from register 77 */ 78 u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs) 79 { 80 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 81 return 0xffffffffffffffffull; 82 83 if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) && 84 (byte_offs == IO_SLC_CFGREG_GFIR)) 85 return 0x000000000000ffffull; 86 87 if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) && 88 (byte_offs == IO_SLC_CFGREG_GFIR)) 89 return 0x00000000ffff0000ull; 90 91 if (cd->mmio == NULL) 92 return 0xffffffffffffffffull; 93 94 return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs)); 95 } 96 97 /** 98 * __genwqe_writel() - Write 32-bit register 99 * @cd: genwqe device descriptor 100 * @byte_offs: byte offset within BAR 101 * @val: 32-bit value 102 * 103 * Return: 0 if success; < 0 if error 104 */ 105 int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val) 106 { 107 struct pci_dev *pci_dev = cd->pci_dev; 108 109 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 110 return -EIO; 111 112 if (cd->mmio == NULL) 113 return -EIO; 114 115 if (pci_channel_offline(pci_dev)) 116 return -EIO; 117 118 __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs); 119 return 0; 120 } 121 122 /** 123 * __genwqe_readl() - Read 32-bit register 124 * @cd: genwqe device descriptor 125 * @byte_offs: offset within BAR 126 * 127 * Return: Value from register 128 */ 129 u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs) 130 { 131 if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE) 132 return 0xffffffff; 133 134 if (cd->mmio == NULL) 135 return 0xffffffff; 136 137 return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs)); 138 } 139 140 /** 141 * genwqe_read_app_id() - Extract app_id 142 * 143 * app_unitcfg need to be filled with valid data first 144 */ 145 int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len) 146 { 147 int i, j; 148 u32 app_id = (u32)cd->app_unitcfg; 149 150 memset(app_name, 0, len); 151 for (i = 0, j = 0; j < min(len, 4); j++) { 152 char ch = (char)((app_id >> (24 - j*8)) & 0xff); 153 154 if (ch == ' ') 155 continue; 156 app_name[i++] = isprint(ch) ? ch : 'X'; 157 } 158 return i; 159 } 160 161 /** 162 * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations 163 * 164 * Existing kernel functions seem to use a different polynom, 165 * therefore we could not use them here. 166 * 167 * Genwqe's Polynomial = 0x20044009 168 */ 169 #define CRC32_POLYNOMIAL 0x20044009 170 static u32 crc32_tab[256]; /* crc32 lookup table */ 171 172 void genwqe_init_crc32(void) 173 { 174 int i, j; 175 u32 crc; 176 177 for (i = 0; i < 256; i++) { 178 crc = i << 24; 179 for (j = 0; j < 8; j++) { 180 if (crc & 0x80000000) 181 crc = (crc << 1) ^ CRC32_POLYNOMIAL; 182 else 183 crc = (crc << 1); 184 } 185 crc32_tab[i] = crc; 186 } 187 } 188 189 /** 190 * genwqe_crc32() - Generate 32-bit crc as required for DDCBs 191 * @buff: pointer to data buffer 192 * @len: length of data for calculation 193 * @init: initial crc (0xffffffff at start) 194 * 195 * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009) 196 197 * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should 198 * result in a crc32 of 0xf33cb7d3. 199 * 200 * The existing kernel crc functions did not cover this polynom yet. 201 * 202 * Return: crc32 checksum. 203 */ 204 u32 genwqe_crc32(u8 *buff, size_t len, u32 init) 205 { 206 int i; 207 u32 crc; 208 209 crc = init; 210 while (len--) { 211 i = ((crc >> 24) ^ *buff++) & 0xFF; 212 crc = (crc << 8) ^ crc32_tab[i]; 213 } 214 return crc; 215 } 216 217 void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size, 218 dma_addr_t *dma_handle) 219 { 220 if (get_order(size) > MAX_ORDER) 221 return NULL; 222 223 return pci_alloc_consistent(cd->pci_dev, size, dma_handle); 224 } 225 226 void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size, 227 void *vaddr, dma_addr_t dma_handle) 228 { 229 if (vaddr == NULL) 230 return; 231 232 pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle); 233 } 234 235 static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list, 236 int num_pages) 237 { 238 int i; 239 struct pci_dev *pci_dev = cd->pci_dev; 240 241 for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) { 242 pci_unmap_page(pci_dev, dma_list[i], 243 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); 244 dma_list[i] = 0x0; 245 } 246 } 247 248 static int genwqe_map_pages(struct genwqe_dev *cd, 249 struct page **page_list, int num_pages, 250 dma_addr_t *dma_list) 251 { 252 int i; 253 struct pci_dev *pci_dev = cd->pci_dev; 254 255 /* establish DMA mapping for requested pages */ 256 for (i = 0; i < num_pages; i++) { 257 dma_addr_t daddr; 258 259 dma_list[i] = 0x0; 260 daddr = pci_map_page(pci_dev, page_list[i], 261 0, /* map_offs */ 262 PAGE_SIZE, 263 PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */ 264 265 if (pci_dma_mapping_error(pci_dev, daddr)) { 266 dev_err(&pci_dev->dev, 267 "[%s] err: no dma addr daddr=%016llx!\n", 268 __func__, (long long)daddr); 269 goto err; 270 } 271 272 dma_list[i] = daddr; 273 } 274 return 0; 275 276 err: 277 genwqe_unmap_pages(cd, dma_list, num_pages); 278 return -EIO; 279 } 280 281 static int genwqe_sgl_size(int num_pages) 282 { 283 int len, num_tlb = num_pages / 7; 284 285 len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1); 286 return roundup(len, PAGE_SIZE); 287 } 288 289 /** 290 * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages 291 * 292 * Allocates memory for sgl and overlapping pages. Pages which might 293 * overlap other user-space memory blocks are being cached for DMAs, 294 * such that we do not run into syncronization issues. Data is copied 295 * from user-space into the cached pages. 296 */ 297 int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, 298 void __user *user_addr, size_t user_size) 299 { 300 int rc; 301 struct pci_dev *pci_dev = cd->pci_dev; 302 303 sgl->fpage_offs = offset_in_page((unsigned long)user_addr); 304 sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size); 305 sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE); 306 sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE; 307 308 dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n", 309 __func__, user_addr, user_size, sgl->nr_pages, 310 sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size); 311 312 sgl->user_addr = user_addr; 313 sgl->user_size = user_size; 314 sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages); 315 316 if (get_order(sgl->sgl_size) > MAX_ORDER) { 317 dev_err(&pci_dev->dev, 318 "[%s] err: too much memory requested!\n", __func__); 319 return -ENOMEM; 320 } 321 322 sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size, 323 &sgl->sgl_dma_addr); 324 if (sgl->sgl == NULL) { 325 dev_err(&pci_dev->dev, 326 "[%s] err: no memory available!\n", __func__); 327 return -ENOMEM; 328 } 329 330 /* Only use buffering on incomplete pages */ 331 if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) { 332 sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, 333 &sgl->fpage_dma_addr); 334 if (sgl->fpage == NULL) 335 goto err_out; 336 337 /* Sync with user memory */ 338 if (copy_from_user(sgl->fpage + sgl->fpage_offs, 339 user_addr, sgl->fpage_size)) { 340 rc = -EFAULT; 341 goto err_out; 342 } 343 } 344 if (sgl->lpage_size != 0) { 345 sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE, 346 &sgl->lpage_dma_addr); 347 if (sgl->lpage == NULL) 348 goto err_out1; 349 350 /* Sync with user memory */ 351 if (copy_from_user(sgl->lpage, user_addr + user_size - 352 sgl->lpage_size, sgl->lpage_size)) { 353 rc = -EFAULT; 354 goto err_out1; 355 } 356 } 357 return 0; 358 359 err_out1: 360 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, 361 sgl->fpage_dma_addr); 362 err_out: 363 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, 364 sgl->sgl_dma_addr); 365 return -ENOMEM; 366 } 367 368 int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl, 369 dma_addr_t *dma_list) 370 { 371 int i = 0, j = 0, p; 372 unsigned long dma_offs, map_offs; 373 dma_addr_t prev_daddr = 0; 374 struct sg_entry *s, *last_s = NULL; 375 size_t size = sgl->user_size; 376 377 dma_offs = 128; /* next block if needed/dma_offset */ 378 map_offs = sgl->fpage_offs; /* offset in first page */ 379 380 s = &sgl->sgl[0]; /* first set of 8 entries */ 381 p = 0; /* page */ 382 while (p < sgl->nr_pages) { 383 dma_addr_t daddr; 384 unsigned int size_to_map; 385 386 /* always write the chaining entry, cleanup is done later */ 387 j = 0; 388 s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs); 389 s[j].len = cpu_to_be32(128); 390 s[j].flags = cpu_to_be32(SG_CHAINED); 391 j++; 392 393 while (j < 8) { 394 /* DMA mapping for requested page, offs, size */ 395 size_to_map = min(size, PAGE_SIZE - map_offs); 396 397 if ((p == 0) && (sgl->fpage != NULL)) { 398 daddr = sgl->fpage_dma_addr + map_offs; 399 400 } else if ((p == sgl->nr_pages - 1) && 401 (sgl->lpage != NULL)) { 402 daddr = sgl->lpage_dma_addr; 403 } else { 404 daddr = dma_list[p] + map_offs; 405 } 406 407 size -= size_to_map; 408 map_offs = 0; 409 410 if (prev_daddr == daddr) { 411 u32 prev_len = be32_to_cpu(last_s->len); 412 413 /* pr_info("daddr combining: " 414 "%016llx/%08x -> %016llx\n", 415 prev_daddr, prev_len, daddr); */ 416 417 last_s->len = cpu_to_be32(prev_len + 418 size_to_map); 419 420 p++; /* process next page */ 421 if (p == sgl->nr_pages) 422 goto fixup; /* nothing to do */ 423 424 prev_daddr = daddr + size_to_map; 425 continue; 426 } 427 428 /* start new entry */ 429 s[j].target_addr = cpu_to_be64(daddr); 430 s[j].len = cpu_to_be32(size_to_map); 431 s[j].flags = cpu_to_be32(SG_DATA); 432 prev_daddr = daddr + size_to_map; 433 last_s = &s[j]; 434 j++; 435 436 p++; /* process next page */ 437 if (p == sgl->nr_pages) 438 goto fixup; /* nothing to do */ 439 } 440 dma_offs += 128; 441 s += 8; /* continue 8 elements further */ 442 } 443 fixup: 444 if (j == 1) { /* combining happend on last entry! */ 445 s -= 8; /* full shift needed on previous sgl block */ 446 j = 7; /* shift all elements */ 447 } 448 449 for (i = 0; i < j; i++) /* move elements 1 up */ 450 s[i] = s[i + 1]; 451 452 s[i].target_addr = cpu_to_be64(0); 453 s[i].len = cpu_to_be32(0); 454 s[i].flags = cpu_to_be32(SG_END_LIST); 455 return 0; 456 } 457 458 /** 459 * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages 460 * 461 * After the DMA transfer has been completed we free the memory for 462 * the sgl and the cached pages. Data is being transfered from cached 463 * pages into user-space buffers. 464 */ 465 int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl) 466 { 467 int rc = 0; 468 struct pci_dev *pci_dev = cd->pci_dev; 469 470 if (sgl->fpage) { 471 if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs, 472 sgl->fpage_size)) { 473 dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n", 474 __func__); 475 rc = -EFAULT; 476 } 477 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage, 478 sgl->fpage_dma_addr); 479 sgl->fpage = NULL; 480 sgl->fpage_dma_addr = 0; 481 } 482 if (sgl->lpage) { 483 if (copy_to_user(sgl->user_addr + sgl->user_size - 484 sgl->lpage_size, sgl->lpage, 485 sgl->lpage_size)) { 486 dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n", 487 __func__); 488 rc = -EFAULT; 489 } 490 __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage, 491 sgl->lpage_dma_addr); 492 sgl->lpage = NULL; 493 sgl->lpage_dma_addr = 0; 494 } 495 __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl, 496 sgl->sgl_dma_addr); 497 498 sgl->sgl = NULL; 499 sgl->sgl_dma_addr = 0x0; 500 sgl->sgl_size = 0; 501 return rc; 502 } 503 504 /** 505 * free_user_pages() - Give pinned pages back 506 * 507 * Documentation of get_user_pages is in mm/memory.c: 508 * 509 * If the page is written to, set_page_dirty (or set_page_dirty_lock, 510 * as appropriate) must be called after the page is finished with, and 511 * before put_page is called. 512 * 513 * FIXME Could be of use to others and might belong in the generic 514 * code, if others agree. E.g. 515 * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c 516 * ceph_put_page_vector in net/ceph/pagevec.c 517 * maybe more? 518 */ 519 static int free_user_pages(struct page **page_list, unsigned int nr_pages, 520 int dirty) 521 { 522 unsigned int i; 523 524 for (i = 0; i < nr_pages; i++) { 525 if (page_list[i] != NULL) { 526 if (dirty) 527 set_page_dirty_lock(page_list[i]); 528 put_page(page_list[i]); 529 } 530 } 531 return 0; 532 } 533 534 /** 535 * genwqe_user_vmap() - Map user-space memory to virtual kernel memory 536 * @cd: pointer to genwqe device 537 * @m: mapping params 538 * @uaddr: user virtual address 539 * @size: size of memory to be mapped 540 * 541 * We need to think about how we could speed this up. Of course it is 542 * not a good idea to do this over and over again, like we are 543 * currently doing it. Nevertheless, I am curious where on the path 544 * the performance is spend. Most probably within the memory 545 * allocation functions, but maybe also in the DMA mapping code. 546 * 547 * Restrictions: The maximum size of the possible mapping currently depends 548 * on the amount of memory we can get using kzalloc() for the 549 * page_list and pci_alloc_consistent for the sg_list. 550 * The sg_list is currently itself not scattered, which could 551 * be fixed with some effort. The page_list must be split into 552 * PAGE_SIZE chunks too. All that will make the complicated 553 * code more complicated. 554 * 555 * Return: 0 if success 556 */ 557 int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr, 558 unsigned long size, struct ddcb_requ *req) 559 { 560 int rc = -EINVAL; 561 unsigned long data, offs; 562 struct pci_dev *pci_dev = cd->pci_dev; 563 564 if ((uaddr == NULL) || (size == 0)) { 565 m->size = 0; /* mark unused and not added */ 566 return -EINVAL; 567 } 568 m->u_vaddr = uaddr; 569 m->size = size; 570 571 /* determine space needed for page_list. */ 572 data = (unsigned long)uaddr; 573 offs = offset_in_page(data); 574 m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE); 575 576 m->page_list = kcalloc(m->nr_pages, 577 sizeof(struct page *) + sizeof(dma_addr_t), 578 GFP_KERNEL); 579 if (!m->page_list) { 580 dev_err(&pci_dev->dev, "err: alloc page_list failed\n"); 581 m->nr_pages = 0; 582 m->u_vaddr = NULL; 583 m->size = 0; /* mark unused and not added */ 584 return -ENOMEM; 585 } 586 m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages); 587 588 /* pin user pages in memory */ 589 rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */ 590 m->nr_pages, 591 1, /* write by caller */ 592 m->page_list); /* ptrs to pages */ 593 if (rc < 0) 594 goto fail_get_user_pages; 595 596 /* assumption: get_user_pages can be killed by signals. */ 597 if (rc < m->nr_pages) { 598 free_user_pages(m->page_list, rc, 0); 599 rc = -EFAULT; 600 goto fail_get_user_pages; 601 } 602 603 rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list); 604 if (rc != 0) 605 goto fail_free_user_pages; 606 607 return 0; 608 609 fail_free_user_pages: 610 free_user_pages(m->page_list, m->nr_pages, 0); 611 612 fail_get_user_pages: 613 kfree(m->page_list); 614 m->page_list = NULL; 615 m->dma_list = NULL; 616 m->nr_pages = 0; 617 m->u_vaddr = NULL; 618 m->size = 0; /* mark unused and not added */ 619 return rc; 620 } 621 622 /** 623 * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel 624 * memory 625 * @cd: pointer to genwqe device 626 * @m: mapping params 627 */ 628 int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m, 629 struct ddcb_requ *req) 630 { 631 struct pci_dev *pci_dev = cd->pci_dev; 632 633 if (!dma_mapping_used(m)) { 634 dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n", 635 __func__, m); 636 return -EINVAL; 637 } 638 639 if (m->dma_list) 640 genwqe_unmap_pages(cd, m->dma_list, m->nr_pages); 641 642 if (m->page_list) { 643 free_user_pages(m->page_list, m->nr_pages, 1); 644 645 kfree(m->page_list); 646 m->page_list = NULL; 647 m->dma_list = NULL; 648 m->nr_pages = 0; 649 } 650 651 m->u_vaddr = NULL; 652 m->size = 0; /* mark as unused and not added */ 653 return 0; 654 } 655 656 /** 657 * genwqe_card_type() - Get chip type SLU Configuration Register 658 * @cd: pointer to the genwqe device descriptor 659 * Return: 0: Altera Stratix-IV 230 660 * 1: Altera Stratix-IV 530 661 * 2: Altera Stratix-V A4 662 * 3: Altera Stratix-V A7 663 */ 664 u8 genwqe_card_type(struct genwqe_dev *cd) 665 { 666 u64 card_type = cd->slu_unitcfg; 667 668 return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20); 669 } 670 671 /** 672 * genwqe_card_reset() - Reset the card 673 * @cd: pointer to the genwqe device descriptor 674 */ 675 int genwqe_card_reset(struct genwqe_dev *cd) 676 { 677 u64 softrst; 678 struct pci_dev *pci_dev = cd->pci_dev; 679 680 if (!genwqe_is_privileged(cd)) 681 return -ENODEV; 682 683 /* new SL */ 684 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull); 685 msleep(1000); 686 __genwqe_readq(cd, IO_HSU_FIR_CLR); 687 __genwqe_readq(cd, IO_APP_FIR_CLR); 688 __genwqe_readq(cd, IO_SLU_FIR_CLR); 689 690 /* 691 * Read-modify-write to preserve the stealth bits 692 * 693 * For SL >= 039, Stealth WE bit allows removing 694 * the read-modify-wrote. 695 * r-m-w may require a mask 0x3C to avoid hitting hard 696 * reset again for error reset (should be 0, chicken). 697 */ 698 softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull; 699 __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull); 700 701 /* give ERRORRESET some time to finish */ 702 msleep(50); 703 704 if (genwqe_need_err_masking(cd)) { 705 dev_info(&pci_dev->dev, 706 "[%s] masking errors for old bitstreams\n", __func__); 707 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); 708 } 709 return 0; 710 } 711 712 int genwqe_read_softreset(struct genwqe_dev *cd) 713 { 714 u64 bitstream; 715 716 if (!genwqe_is_privileged(cd)) 717 return -ENODEV; 718 719 bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1; 720 cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull; 721 return 0; 722 } 723 724 /** 725 * genwqe_set_interrupt_capability() - Configure MSI capability structure 726 * @cd: pointer to the device 727 * Return: 0 if no error 728 */ 729 int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count) 730 { 731 int rc; 732 struct pci_dev *pci_dev = cd->pci_dev; 733 734 rc = pci_enable_msi_range(pci_dev, 1, count); 735 if (rc < 0) 736 return rc; 737 738 cd->flags |= GENWQE_FLAG_MSI_ENABLED; 739 return 0; 740 } 741 742 /** 743 * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability() 744 * @cd: pointer to the device 745 */ 746 void genwqe_reset_interrupt_capability(struct genwqe_dev *cd) 747 { 748 struct pci_dev *pci_dev = cd->pci_dev; 749 750 if (cd->flags & GENWQE_FLAG_MSI_ENABLED) { 751 pci_disable_msi(pci_dev); 752 cd->flags &= ~GENWQE_FLAG_MSI_ENABLED; 753 } 754 } 755 756 /** 757 * set_reg_idx() - Fill array with data. Ignore illegal offsets. 758 * @cd: card device 759 * @r: debug register array 760 * @i: index to desired entry 761 * @m: maximum possible entries 762 * @addr: addr which is read 763 * @index: index in debug array 764 * @val: read value 765 */ 766 static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r, 767 unsigned int *i, unsigned int m, u32 addr, u32 idx, 768 u64 val) 769 { 770 if (WARN_ON_ONCE(*i >= m)) 771 return -EFAULT; 772 773 r[*i].addr = addr; 774 r[*i].idx = idx; 775 r[*i].val = val; 776 ++*i; 777 return 0; 778 } 779 780 static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r, 781 unsigned int *i, unsigned int m, u32 addr, u64 val) 782 { 783 return set_reg_idx(cd, r, i, m, addr, 0, val); 784 } 785 786 int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs, 787 unsigned int max_regs, int all) 788 { 789 unsigned int i, j, idx = 0; 790 u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr; 791 u64 gfir, sluid, appid, ufir, ufec, sfir, sfec; 792 793 /* Global FIR */ 794 gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR); 795 set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir); 796 797 /* UnitCfg for SLU */ 798 sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */ 799 set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid); 800 801 /* UnitCfg for APP */ 802 appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */ 803 set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid); 804 805 /* Check all chip Units */ 806 for (i = 0; i < GENWQE_MAX_UNITS; i++) { 807 808 /* Unit FIR */ 809 ufir_addr = (i << 24) | 0x008; 810 ufir = __genwqe_readq(cd, ufir_addr); 811 set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir); 812 813 /* Unit FEC */ 814 ufec_addr = (i << 24) | 0x018; 815 ufec = __genwqe_readq(cd, ufec_addr); 816 set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec); 817 818 for (j = 0; j < 64; j++) { 819 /* wherever there is a primary 1, read the 2ndary */ 820 if (!all && (!(ufir & (1ull << j)))) 821 continue; 822 823 sfir_addr = (i << 24) | (0x100 + 8 * j); 824 sfir = __genwqe_readq(cd, sfir_addr); 825 set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir); 826 827 sfec_addr = (i << 24) | (0x300 + 8 * j); 828 sfec = __genwqe_readq(cd, sfec_addr); 829 set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec); 830 } 831 } 832 833 /* fill with invalid data until end */ 834 for (i = idx; i < max_regs; i++) { 835 regs[i].addr = 0xffffffff; 836 regs[i].val = 0xffffffffffffffffull; 837 } 838 return idx; 839 } 840 841 /** 842 * genwqe_ffdc_buff_size() - Calculates the number of dump registers 843 */ 844 int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid) 845 { 846 int entries = 0, ring, traps, traces, trace_entries; 847 u32 eevptr_addr, l_addr, d_len, d_type; 848 u64 eevptr, val, addr; 849 850 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; 851 eevptr = __genwqe_readq(cd, eevptr_addr); 852 853 if ((eevptr != 0x0) && (eevptr != -1ull)) { 854 l_addr = GENWQE_UID_OFFS(uid) | eevptr; 855 856 while (1) { 857 val = __genwqe_readq(cd, l_addr); 858 859 if ((val == 0x0) || (val == -1ull)) 860 break; 861 862 /* 38:24 */ 863 d_len = (val & 0x0000007fff000000ull) >> 24; 864 865 /* 39 */ 866 d_type = (val & 0x0000008000000000ull) >> 36; 867 868 if (d_type) { /* repeat */ 869 entries += d_len; 870 } else { /* size in bytes! */ 871 entries += d_len >> 3; 872 } 873 874 l_addr += 8; 875 } 876 } 877 878 for (ring = 0; ring < 8; ring++) { 879 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); 880 val = __genwqe_readq(cd, addr); 881 882 if ((val == 0x0ull) || (val == -1ull)) 883 continue; 884 885 traps = (val >> 24) & 0xff; 886 traces = (val >> 16) & 0xff; 887 trace_entries = val & 0xffff; 888 889 entries += traps + (traces * trace_entries); 890 } 891 return entries; 892 } 893 894 /** 895 * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure 896 */ 897 int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid, 898 struct genwqe_reg *regs, unsigned int max_regs) 899 { 900 int i, traps, traces, trace, trace_entries, trace_entry, ring; 901 unsigned int idx = 0; 902 u32 eevptr_addr, l_addr, d_addr, d_len, d_type; 903 u64 eevptr, e, val, addr; 904 905 eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER; 906 eevptr = __genwqe_readq(cd, eevptr_addr); 907 908 if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) { 909 l_addr = GENWQE_UID_OFFS(uid) | eevptr; 910 while (1) { 911 e = __genwqe_readq(cd, l_addr); 912 if ((e == 0x0) || (e == 0xffffffffffffffffull)) 913 break; 914 915 d_addr = (e & 0x0000000000ffffffull); /* 23:0 */ 916 d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */ 917 d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */ 918 d_addr |= GENWQE_UID_OFFS(uid); 919 920 if (d_type) { 921 for (i = 0; i < (int)d_len; i++) { 922 val = __genwqe_readq(cd, d_addr); 923 set_reg_idx(cd, regs, &idx, max_regs, 924 d_addr, i, val); 925 } 926 } else { 927 d_len >>= 3; /* Size in bytes! */ 928 for (i = 0; i < (int)d_len; i++, d_addr += 8) { 929 val = __genwqe_readq(cd, d_addr); 930 set_reg_idx(cd, regs, &idx, max_regs, 931 d_addr, 0, val); 932 } 933 } 934 l_addr += 8; 935 } 936 } 937 938 /* 939 * To save time, there are only 6 traces poplulated on Uid=2, 940 * Ring=1. each with iters=512. 941 */ 942 for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds, 943 2...7 are ASI rings */ 944 addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring); 945 val = __genwqe_readq(cd, addr); 946 947 if ((val == 0x0ull) || (val == -1ull)) 948 continue; 949 950 traps = (val >> 24) & 0xff; /* Number of Traps */ 951 traces = (val >> 16) & 0xff; /* Number of Traces */ 952 trace_entries = val & 0xffff; /* Entries per trace */ 953 954 /* Note: This is a combined loop that dumps both the traps */ 955 /* (for the trace == 0 case) as well as the traces 1 to */ 956 /* 'traces'. */ 957 for (trace = 0; trace <= traces; trace++) { 958 u32 diag_sel = 959 GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace); 960 961 addr = (GENWQE_UID_OFFS(uid) | 962 IO_EXTENDED_DIAG_SELECTOR); 963 __genwqe_writeq(cd, addr, diag_sel); 964 965 for (trace_entry = 0; 966 trace_entry < (trace ? trace_entries : traps); 967 trace_entry++) { 968 addr = (GENWQE_UID_OFFS(uid) | 969 IO_EXTENDED_DIAG_READ_MBX); 970 val = __genwqe_readq(cd, addr); 971 set_reg_idx(cd, regs, &idx, max_regs, addr, 972 (diag_sel<<16) | trace_entry, val); 973 } 974 } 975 } 976 return 0; 977 } 978 979 /** 980 * genwqe_write_vreg() - Write register in virtual window 981 * 982 * Note, these registers are only accessible to the PF through the 983 * VF-window. It is not intended for the VF to access. 984 */ 985 int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func) 986 { 987 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); 988 __genwqe_writeq(cd, reg, val); 989 return 0; 990 } 991 992 /** 993 * genwqe_read_vreg() - Read register in virtual window 994 * 995 * Note, these registers are only accessible to the PF through the 996 * VF-window. It is not intended for the VF to access. 997 */ 998 u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func) 999 { 1000 __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf); 1001 return __genwqe_readq(cd, reg); 1002 } 1003 1004 /** 1005 * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card 1006 * 1007 * Note: From a design perspective it turned out to be a bad idea to 1008 * use codes here to specifiy the frequency/speed values. An old 1009 * driver cannot understand new codes and is therefore always a 1010 * problem. Better is to measure out the value or put the 1011 * speed/frequency directly into a register which is always a valid 1012 * value for old as well as for new software. 1013 * 1014 * Return: Card clock in MHz 1015 */ 1016 int genwqe_base_clock_frequency(struct genwqe_dev *cd) 1017 { 1018 u16 speed; /* MHz MHz MHz MHz */ 1019 static const int speed_grade[] = { 250, 200, 166, 175 }; 1020 1021 speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full); 1022 if (speed >= ARRAY_SIZE(speed_grade)) 1023 return 0; /* illegal value */ 1024 1025 return speed_grade[speed]; 1026 } 1027 1028 /** 1029 * genwqe_stop_traps() - Stop traps 1030 * 1031 * Before reading out the analysis data, we need to stop the traps. 1032 */ 1033 void genwqe_stop_traps(struct genwqe_dev *cd) 1034 { 1035 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull); 1036 } 1037 1038 /** 1039 * genwqe_start_traps() - Start traps 1040 * 1041 * After having read the data, we can/must enable the traps again. 1042 */ 1043 void genwqe_start_traps(struct genwqe_dev *cd) 1044 { 1045 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull); 1046 1047 if (genwqe_need_err_masking(cd)) 1048 __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull); 1049 } 1050