xref: /linux/drivers/misc/echo/echo.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * SpanDSP - a series of DSP components for telephony
3  *
4  * echo.c - A line echo canceller.  This code is being developed
5  *          against and partially complies with G168.
6  *
7  * Written by Steve Underwood <steveu@coppice.org>
8  *         and David Rowe <david_at_rowetel_dot_com>
9  *
10  * Copyright (C) 2001, 2003 Steve Underwood, 2007 David Rowe
11  *
12  * Based on a bit from here, a bit from there, eye of toad, ear of
13  * bat, 15 years of failed attempts by David and a few fried brain
14  * cells.
15  *
16  * All rights reserved.
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License version 2, as
20  * published by the Free Software Foundation.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  *
27  * You should have received a copy of the GNU General Public License
28  * along with this program; if not, write to the Free Software
29  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
30  */
31 
32 /*! \file */
33 
34 /* Implementation Notes
35    David Rowe
36    April 2007
37 
38    This code started life as Steve's NLMS algorithm with a tap
39    rotation algorithm to handle divergence during double talk.  I
40    added a Geigel Double Talk Detector (DTD) [2] and performed some
41    G168 tests.  However I had trouble meeting the G168 requirements,
42    especially for double talk - there were always cases where my DTD
43    failed, for example where near end speech was under the 6dB
44    threshold required for declaring double talk.
45 
46    So I tried a two path algorithm [1], which has so far given better
47    results.  The original tap rotation/Geigel algorithm is available
48    in SVN http://svn.rowetel.com/software/oslec/tags/before_16bit.
49    It's probably possible to make it work if some one wants to put some
50    serious work into it.
51 
52    At present no special treatment is provided for tones, which
53    generally cause NLMS algorithms to diverge.  Initial runs of a
54    subset of the G168 tests for tones (e.g ./echo_test 6) show the
55    current algorithm is passing OK, which is kind of surprising.  The
56    full set of tests needs to be performed to confirm this result.
57 
58    One other interesting change is that I have managed to get the NLMS
59    code to work with 16 bit coefficients, rather than the original 32
60    bit coefficents.  This reduces the MIPs and storage required.
61    I evaulated the 16 bit port using g168_tests.sh and listening tests
62    on 4 real-world samples.
63 
64    I also attempted the implementation of a block based NLMS update
65    [2] but although this passes g168_tests.sh it didn't converge well
66    on the real-world samples.  I have no idea why, perhaps a scaling
67    problem.  The block based code is also available in SVN
68    http://svn.rowetel.com/software/oslec/tags/before_16bit.  If this
69    code can be debugged, it will lead to further reduction in MIPS, as
70    the block update code maps nicely onto DSP instruction sets (it's a
71    dot product) compared to the current sample-by-sample update.
72 
73    Steve also has some nice notes on echo cancellers in echo.h
74 
75    References:
76 
77    [1] Ochiai, Areseki, and Ogihara, "Echo Canceller with Two Echo
78        Path Models", IEEE Transactions on communications, COM-25,
79        No. 6, June
80        1977.
81        http://www.rowetel.com/images/echo/dual_path_paper.pdf
82 
83    [2] The classic, very useful paper that tells you how to
84        actually build a real world echo canceller:
85 	 Messerschmitt, Hedberg, Cole, Haoui, Winship, "Digital Voice
86 	 Echo Canceller with a TMS320020,
87 	 http://www.rowetel.com/images/echo/spra129.pdf
88 
89    [3] I have written a series of blog posts on this work, here is
90        Part 1: http://www.rowetel.com/blog/?p=18
91 
92    [4] The source code http://svn.rowetel.com/software/oslec/
93 
94    [5] A nice reference on LMS filters:
95 	 http://en.wikipedia.org/wiki/Least_mean_squares_filter
96 
97    Credits:
98 
99    Thanks to Steve Underwood, Jean-Marc Valin, and Ramakrishnan
100    Muthukrishnan for their suggestions and email discussions.  Thanks
101    also to those people who collected echo samples for me such as
102    Mark, Pawel, and Pavel.
103 */
104 
105 #include <linux/kernel.h>
106 #include <linux/module.h>
107 #include <linux/slab.h>
108 
109 #include "echo.h"
110 
111 #define MIN_TX_POWER_FOR_ADAPTION	64
112 #define MIN_RX_POWER_FOR_ADAPTION	64
113 #define DTD_HANGOVER			600	/* 600 samples, or 75ms     */
114 #define DC_LOG2BETA			3	/* log2() of DC filter Beta */
115 
116 /* adapting coeffs using the traditional stochastic descent (N)LMS algorithm */
117 
118 #ifdef __bfin__
119 static inline void lms_adapt_bg(struct oslec_state *ec, int clean, int shift)
120 {
121 	int i;
122 	int offset1;
123 	int offset2;
124 	int factor;
125 	int exp;
126 	int16_t *phist;
127 	int n;
128 
129 	if (shift > 0)
130 		factor = clean << shift;
131 	else
132 		factor = clean >> -shift;
133 
134 	/* Update the FIR taps */
135 
136 	offset2 = ec->curr_pos;
137 	offset1 = ec->taps - offset2;
138 	phist = &ec->fir_state_bg.history[offset2];
139 
140 	/* st: and en: help us locate the assembler in echo.s */
141 
142 	/* asm("st:"); */
143 	n = ec->taps;
144 	for (i = 0; i < n; i++) {
145 		exp = *phist++ * factor;
146 		ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
147 	}
148 	/* asm("en:"); */
149 
150 	/* Note the asm for the inner loop above generated by Blackfin gcc
151 	   4.1.1 is pretty good (note even parallel instructions used):
152 
153 	   R0 = W [P0++] (X);
154 	   R0 *= R2;
155 	   R0 = R0 + R3 (NS) ||
156 	   R1 = W [P1] (X) ||
157 	   nop;
158 	   R0 >>>= 15;
159 	   R0 = R0 + R1;
160 	   W [P1++] = R0;
161 
162 	   A block based update algorithm would be much faster but the
163 	   above can't be improved on much.  Every instruction saved in
164 	   the loop above is 2 MIPs/ch!  The for loop above is where the
165 	   Blackfin spends most of it's time - about 17 MIPs/ch measured
166 	   with speedtest.c with 256 taps (32ms).  Write-back and
167 	   Write-through cache gave about the same performance.
168 	 */
169 }
170 
171 /*
172    IDEAS for further optimisation of lms_adapt_bg():
173 
174    1/ The rounding is quite costly.  Could we keep as 32 bit coeffs
175    then make filter pluck the MS 16-bits of the coeffs when filtering?
176    However this would lower potential optimisation of filter, as I
177    think the dual-MAC architecture requires packed 16 bit coeffs.
178 
179    2/ Block based update would be more efficient, as per comments above,
180    could use dual MAC architecture.
181 
182    3/ Look for same sample Blackfin LMS code, see if we can get dual-MAC
183    packing.
184 
185    4/ Execute the whole e/c in a block of say 20ms rather than sample
186    by sample.  Processing a few samples every ms is inefficient.
187 */
188 
189 #else
190 static inline void lms_adapt_bg(struct oslec_state *ec, int clean, int shift)
191 {
192 	int i;
193 
194 	int offset1;
195 	int offset2;
196 	int factor;
197 	int exp;
198 
199 	if (shift > 0)
200 		factor = clean << shift;
201 	else
202 		factor = clean >> -shift;
203 
204 	/* Update the FIR taps */
205 
206 	offset2 = ec->curr_pos;
207 	offset1 = ec->taps - offset2;
208 
209 	for (i = ec->taps - 1; i >= offset1; i--) {
210 		exp = (ec->fir_state_bg.history[i - offset1] * factor);
211 		ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
212 	}
213 	for (; i >= 0; i--) {
214 		exp = (ec->fir_state_bg.history[i + offset2] * factor);
215 		ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
216 	}
217 }
218 #endif
219 
220 static inline int top_bit(unsigned int bits)
221 {
222 	if (bits == 0)
223 		return -1;
224 	else
225 		return (int)fls((int32_t) bits) - 1;
226 }
227 
228 struct oslec_state *oslec_create(int len, int adaption_mode)
229 {
230 	struct oslec_state *ec;
231 	int i;
232 	const int16_t *history;
233 
234 	ec = kzalloc(sizeof(*ec), GFP_KERNEL);
235 	if (!ec)
236 		return NULL;
237 
238 	ec->taps = len;
239 	ec->log2taps = top_bit(len);
240 	ec->curr_pos = ec->taps - 1;
241 
242 	ec->fir_taps16[0] =
243 	    kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
244 	if (!ec->fir_taps16[0])
245 		goto error_oom_0;
246 
247 	ec->fir_taps16[1] =
248 	    kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
249 	if (!ec->fir_taps16[1])
250 		goto error_oom_1;
251 
252 	history = fir16_create(&ec->fir_state, ec->fir_taps16[0], ec->taps);
253 	if (!history)
254 		goto error_state;
255 	history = fir16_create(&ec->fir_state_bg, ec->fir_taps16[1], ec->taps);
256 	if (!history)
257 		goto error_state_bg;
258 
259 	for (i = 0; i < 5; i++)
260 		ec->xvtx[i] = ec->yvtx[i] = ec->xvrx[i] = ec->yvrx[i] = 0;
261 
262 	ec->cng_level = 1000;
263 	oslec_adaption_mode(ec, adaption_mode);
264 
265 	ec->snapshot = kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
266 	if (!ec->snapshot)
267 		goto error_snap;
268 
269 	ec->cond_met = 0;
270 	ec->pstates = 0;
271 	ec->ltxacc = ec->lrxacc = ec->lcleanacc = ec->lclean_bgacc = 0;
272 	ec->ltx = ec->lrx = ec->lclean = ec->lclean_bg = 0;
273 	ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
274 	ec->lbgn = ec->lbgn_acc = 0;
275 	ec->lbgn_upper = 200;
276 	ec->lbgn_upper_acc = ec->lbgn_upper << 13;
277 
278 	return ec;
279 
280 error_snap:
281 	fir16_free(&ec->fir_state_bg);
282 error_state_bg:
283 	fir16_free(&ec->fir_state);
284 error_state:
285 	kfree(ec->fir_taps16[1]);
286 error_oom_1:
287 	kfree(ec->fir_taps16[0]);
288 error_oom_0:
289 	kfree(ec);
290 	return NULL;
291 }
292 EXPORT_SYMBOL_GPL(oslec_create);
293 
294 void oslec_free(struct oslec_state *ec)
295 {
296 	int i;
297 
298 	fir16_free(&ec->fir_state);
299 	fir16_free(&ec->fir_state_bg);
300 	for (i = 0; i < 2; i++)
301 		kfree(ec->fir_taps16[i]);
302 	kfree(ec->snapshot);
303 	kfree(ec);
304 }
305 EXPORT_SYMBOL_GPL(oslec_free);
306 
307 void oslec_adaption_mode(struct oslec_state *ec, int adaption_mode)
308 {
309 	ec->adaption_mode = adaption_mode;
310 }
311 EXPORT_SYMBOL_GPL(oslec_adaption_mode);
312 
313 void oslec_flush(struct oslec_state *ec)
314 {
315 	int i;
316 
317 	ec->ltxacc = ec->lrxacc = ec->lcleanacc = ec->lclean_bgacc = 0;
318 	ec->ltx = ec->lrx = ec->lclean = ec->lclean_bg = 0;
319 	ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
320 
321 	ec->lbgn = ec->lbgn_acc = 0;
322 	ec->lbgn_upper = 200;
323 	ec->lbgn_upper_acc = ec->lbgn_upper << 13;
324 
325 	ec->nonupdate_dwell = 0;
326 
327 	fir16_flush(&ec->fir_state);
328 	fir16_flush(&ec->fir_state_bg);
329 	ec->fir_state.curr_pos = ec->taps - 1;
330 	ec->fir_state_bg.curr_pos = ec->taps - 1;
331 	for (i = 0; i < 2; i++)
332 		memset(ec->fir_taps16[i], 0, ec->taps * sizeof(int16_t));
333 
334 	ec->curr_pos = ec->taps - 1;
335 	ec->pstates = 0;
336 }
337 EXPORT_SYMBOL_GPL(oslec_flush);
338 
339 void oslec_snapshot(struct oslec_state *ec)
340 {
341 	memcpy(ec->snapshot, ec->fir_taps16[0], ec->taps * sizeof(int16_t));
342 }
343 EXPORT_SYMBOL_GPL(oslec_snapshot);
344 
345 /* Dual Path Echo Canceller */
346 
347 int16_t oslec_update(struct oslec_state *ec, int16_t tx, int16_t rx)
348 {
349 	int32_t echo_value;
350 	int clean_bg;
351 	int tmp;
352 	int tmp1;
353 
354 	/*
355 	 * Input scaling was found be required to prevent problems when tx
356 	 * starts clipping.  Another possible way to handle this would be the
357 	 * filter coefficent scaling.
358 	 */
359 
360 	ec->tx = tx;
361 	ec->rx = rx;
362 	tx >>= 1;
363 	rx >>= 1;
364 
365 	/*
366 	 * Filter DC, 3dB point is 160Hz (I think), note 32 bit precision
367 	 * required otherwise values do not track down to 0. Zero at DC, Pole
368 	 * at (1-Beta) on real axis.  Some chip sets (like Si labs) don't
369 	 * need this, but something like a $10 X100P card does.  Any DC really
370 	 * slows down convergence.
371 	 *
372 	 * Note: removes some low frequency from the signal, this reduces the
373 	 * speech quality when listening to samples through headphones but may
374 	 * not be obvious through a telephone handset.
375 	 *
376 	 * Note that the 3dB frequency in radians is approx Beta, e.g. for Beta
377 	 * = 2^(-3) = 0.125, 3dB freq is 0.125 rads = 159Hz.
378 	 */
379 
380 	if (ec->adaption_mode & ECHO_CAN_USE_RX_HPF) {
381 		tmp = rx << 15;
382 
383 		/*
384 		 * Make sure the gain of the HPF is 1.0. This can still
385 		 * saturate a little under impulse conditions, and it might
386 		 * roll to 32768 and need clipping on sustained peak level
387 		 * signals. However, the scale of such clipping is small, and
388 		 * the error due to any saturation should not markedly affect
389 		 * the downstream processing.
390 		 */
391 		tmp -= (tmp >> 4);
392 
393 		ec->rx_1 += -(ec->rx_1 >> DC_LOG2BETA) + tmp - ec->rx_2;
394 
395 		/*
396 		 * hard limit filter to prevent clipping.  Note that at this
397 		 * stage rx should be limited to +/- 16383 due to right shift
398 		 * above
399 		 */
400 		tmp1 = ec->rx_1 >> 15;
401 		if (tmp1 > 16383)
402 			tmp1 = 16383;
403 		if (tmp1 < -16383)
404 			tmp1 = -16383;
405 		rx = tmp1;
406 		ec->rx_2 = tmp;
407 	}
408 
409 	/* Block average of power in the filter states.  Used for
410 	   adaption power calculation. */
411 
412 	{
413 		int new, old;
414 
415 		/* efficient "out with the old and in with the new" algorithm so
416 		   we don't have to recalculate over the whole block of
417 		   samples. */
418 		new = (int)tx * (int)tx;
419 		old = (int)ec->fir_state.history[ec->fir_state.curr_pos] *
420 		    (int)ec->fir_state.history[ec->fir_state.curr_pos];
421 		ec->pstates +=
422 		    ((new - old) + (1 << (ec->log2taps - 1))) >> ec->log2taps;
423 		if (ec->pstates < 0)
424 			ec->pstates = 0;
425 	}
426 
427 	/* Calculate short term average levels using simple single pole IIRs */
428 
429 	ec->ltxacc += abs(tx) - ec->ltx;
430 	ec->ltx = (ec->ltxacc + (1 << 4)) >> 5;
431 	ec->lrxacc += abs(rx) - ec->lrx;
432 	ec->lrx = (ec->lrxacc + (1 << 4)) >> 5;
433 
434 	/* Foreground filter */
435 
436 	ec->fir_state.coeffs = ec->fir_taps16[0];
437 	echo_value = fir16(&ec->fir_state, tx);
438 	ec->clean = rx - echo_value;
439 	ec->lcleanacc += abs(ec->clean) - ec->lclean;
440 	ec->lclean = (ec->lcleanacc + (1 << 4)) >> 5;
441 
442 	/* Background filter */
443 
444 	echo_value = fir16(&ec->fir_state_bg, tx);
445 	clean_bg = rx - echo_value;
446 	ec->lclean_bgacc += abs(clean_bg) - ec->lclean_bg;
447 	ec->lclean_bg = (ec->lclean_bgacc + (1 << 4)) >> 5;
448 
449 	/* Background Filter adaption */
450 
451 	/* Almost always adap bg filter, just simple DT and energy
452 	   detection to minimise adaption in cases of strong double talk.
453 	   However this is not critical for the dual path algorithm.
454 	 */
455 	ec->factor = 0;
456 	ec->shift = 0;
457 	if ((ec->nonupdate_dwell == 0)) {
458 		int p, logp, shift;
459 
460 		/* Determine:
461 
462 		   f = Beta * clean_bg_rx/P ------ (1)
463 
464 		   where P is the total power in the filter states.
465 
466 		   The Boffins have shown that if we obey (1) we converge
467 		   quickly and avoid instability.
468 
469 		   The correct factor f must be in Q30, as this is the fixed
470 		   point format required by the lms_adapt_bg() function,
471 		   therefore the scaled version of (1) is:
472 
473 		   (2^30) * f  = (2^30) * Beta * clean_bg_rx/P
474 		   factor      = (2^30) * Beta * clean_bg_rx/P     ----- (2)
475 
476 		   We have chosen Beta = 0.25 by experiment, so:
477 
478 		   factor      = (2^30) * (2^-2) * clean_bg_rx/P
479 
480 		   (30 - 2 - log2(P))
481 		   factor      = clean_bg_rx 2                     ----- (3)
482 
483 		   To avoid a divide we approximate log2(P) as top_bit(P),
484 		   which returns the position of the highest non-zero bit in
485 		   P.  This approximation introduces an error as large as a
486 		   factor of 2, but the algorithm seems to handle it OK.
487 
488 		   Come to think of it a divide may not be a big deal on a
489 		   modern DSP, so its probably worth checking out the cycles
490 		   for a divide versus a top_bit() implementation.
491 		 */
492 
493 		p = MIN_TX_POWER_FOR_ADAPTION + ec->pstates;
494 		logp = top_bit(p) + ec->log2taps;
495 		shift = 30 - 2 - logp;
496 		ec->shift = shift;
497 
498 		lms_adapt_bg(ec, clean_bg, shift);
499 	}
500 
501 	/* very simple DTD to make sure we dont try and adapt with strong
502 	   near end speech */
503 
504 	ec->adapt = 0;
505 	if ((ec->lrx > MIN_RX_POWER_FOR_ADAPTION) && (ec->lrx > ec->ltx))
506 		ec->nonupdate_dwell = DTD_HANGOVER;
507 	if (ec->nonupdate_dwell)
508 		ec->nonupdate_dwell--;
509 
510 	/* Transfer logic */
511 
512 	/* These conditions are from the dual path paper [1], I messed with
513 	   them a bit to improve performance. */
514 
515 	if ((ec->adaption_mode & ECHO_CAN_USE_ADAPTION) &&
516 	    (ec->nonupdate_dwell == 0) &&
517 	    /* (ec->Lclean_bg < 0.875*ec->Lclean) */
518 	    (8 * ec->lclean_bg < 7 * ec->lclean) &&
519 	    /* (ec->Lclean_bg < 0.125*ec->Ltx) */
520 	    (8 * ec->lclean_bg < ec->ltx)) {
521 		if (ec->cond_met == 6) {
522 			/*
523 			 * BG filter has had better results for 6 consecutive
524 			 * samples
525 			 */
526 			ec->adapt = 1;
527 			memcpy(ec->fir_taps16[0], ec->fir_taps16[1],
528 			       ec->taps * sizeof(int16_t));
529 		} else
530 			ec->cond_met++;
531 	} else
532 		ec->cond_met = 0;
533 
534 	/* Non-Linear Processing */
535 
536 	ec->clean_nlp = ec->clean;
537 	if (ec->adaption_mode & ECHO_CAN_USE_NLP) {
538 		/*
539 		 * Non-linear processor - a fancy way to say "zap small
540 		 * signals, to avoid residual echo due to (uLaw/ALaw)
541 		 * non-linearity in the channel.".
542 		 */
543 
544 		if ((16 * ec->lclean < ec->ltx)) {
545 			/*
546 			 * Our e/c has improved echo by at least 24 dB (each
547 			 * factor of 2 is 6dB, so 2*2*2*2=16 is the same as
548 			 * 6+6+6+6=24dB)
549 			 */
550 			if (ec->adaption_mode & ECHO_CAN_USE_CNG) {
551 				ec->cng_level = ec->lbgn;
552 
553 				/*
554 				 * Very elementary comfort noise generation.
555 				 * Just random numbers rolled off very vaguely
556 				 * Hoth-like.  DR: This noise doesn't sound
557 				 * quite right to me - I suspect there are some
558 				 * overflow issues in the filtering as it's too
559 				 * "crackly".
560 				 * TODO: debug this, maybe just play noise at
561 				 * high level or look at spectrum.
562 				 */
563 
564 				ec->cng_rndnum =
565 				    1664525U * ec->cng_rndnum + 1013904223U;
566 				ec->cng_filter =
567 				    ((ec->cng_rndnum & 0xFFFF) - 32768 +
568 				     5 * ec->cng_filter) >> 3;
569 				ec->clean_nlp =
570 				    (ec->cng_filter * ec->cng_level * 8) >> 14;
571 
572 			} else if (ec->adaption_mode & ECHO_CAN_USE_CLIP) {
573 				/* This sounds much better than CNG */
574 				if (ec->clean_nlp > ec->lbgn)
575 					ec->clean_nlp = ec->lbgn;
576 				if (ec->clean_nlp < -ec->lbgn)
577 					ec->clean_nlp = -ec->lbgn;
578 			} else {
579 				/*
580 				 * just mute the residual, doesn't sound very
581 				 * good, used mainly in G168 tests
582 				 */
583 				ec->clean_nlp = 0;
584 			}
585 		} else {
586 			/*
587 			 * Background noise estimator.  I tried a few
588 			 * algorithms here without much luck.  This very simple
589 			 * one seems to work best, we just average the level
590 			 * using a slow (1 sec time const) filter if the
591 			 * current level is less than a (experimentally
592 			 * derived) constant.  This means we dont include high
593 			 * level signals like near end speech.  When combined
594 			 * with CNG or especially CLIP seems to work OK.
595 			 */
596 			if (ec->lclean < 40) {
597 				ec->lbgn_acc += abs(ec->clean) - ec->lbgn;
598 				ec->lbgn = (ec->lbgn_acc + (1 << 11)) >> 12;
599 			}
600 		}
601 	}
602 
603 	/* Roll around the taps buffer */
604 	if (ec->curr_pos <= 0)
605 		ec->curr_pos = ec->taps;
606 	ec->curr_pos--;
607 
608 	if (ec->adaption_mode & ECHO_CAN_DISABLE)
609 		ec->clean_nlp = rx;
610 
611 	/* Output scaled back up again to match input scaling */
612 
613 	return (int16_t) ec->clean_nlp << 1;
614 }
615 EXPORT_SYMBOL_GPL(oslec_update);
616 
617 /* This function is separated from the echo canceller is it is usually called
618    as part of the tx process.  See rx HP (DC blocking) filter above, it's
619    the same design.
620 
621    Some soft phones send speech signals with a lot of low frequency
622    energy, e.g. down to 20Hz.  This can make the hybrid non-linear
623    which causes the echo canceller to fall over.  This filter can help
624    by removing any low frequency before it gets to the tx port of the
625    hybrid.
626 
627    It can also help by removing and DC in the tx signal.  DC is bad
628    for LMS algorithms.
629 
630    This is one of the classic DC removal filters, adjusted to provide
631    sufficient bass rolloff to meet the above requirement to protect hybrids
632    from things that upset them. The difference between successive samples
633    produces a lousy HPF, and then a suitably placed pole flattens things out.
634    The final result is a nicely rolled off bass end. The filtering is
635    implemented with extended fractional precision, which noise shapes things,
636    giving very clean DC removal.
637 */
638 
639 int16_t oslec_hpf_tx(struct oslec_state *ec, int16_t tx)
640 {
641 	int tmp;
642 	int tmp1;
643 
644 	if (ec->adaption_mode & ECHO_CAN_USE_TX_HPF) {
645 		tmp = tx << 15;
646 
647 		/*
648 		 * Make sure the gain of the HPF is 1.0. The first can still
649 		 * saturate a little under impulse conditions, and it might
650 		 * roll to 32768 and need clipping on sustained peak level
651 		 * signals. However, the scale of such clipping is small, and
652 		 * the error due to any saturation should not markedly affect
653 		 * the downstream processing.
654 		 */
655 		tmp -= (tmp >> 4);
656 
657 		ec->tx_1 += -(ec->tx_1 >> DC_LOG2BETA) + tmp - ec->tx_2;
658 		tmp1 = ec->tx_1 >> 15;
659 		if (tmp1 > 32767)
660 			tmp1 = 32767;
661 		if (tmp1 < -32767)
662 			tmp1 = -32767;
663 		tx = tmp1;
664 		ec->tx_2 = tmp;
665 	}
666 
667 	return tx;
668 }
669 EXPORT_SYMBOL_GPL(oslec_hpf_tx);
670 
671 MODULE_LICENSE("GPL");
672 MODULE_AUTHOR("David Rowe");
673 MODULE_DESCRIPTION("Open Source Line Echo Canceller");
674 MODULE_VERSION("0.3.0");
675