xref: /linux/drivers/misc/cxl/native.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2014 IBM Corp.
4  */
5 
6 #include <linux/spinlock.h>
7 #include <linux/sched.h>
8 #include <linux/sched/clock.h>
9 #include <linux/slab.h>
10 #include <linux/mutex.h>
11 #include <linux/mm.h>
12 #include <linux/uaccess.h>
13 #include <linux/delay.h>
14 #include <linux/irqdomain.h>
15 #include <asm/synch.h>
16 #include <asm/switch_to.h>
17 #include <misc/cxl-base.h>
18 
19 #include "cxl.h"
20 #include "trace.h"
21 
22 static int afu_control(struct cxl_afu *afu, u64 command, u64 clear,
23 		       u64 result, u64 mask, bool enabled)
24 {
25 	u64 AFU_Cntl;
26 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
27 	int rc = 0;
28 
29 	spin_lock(&afu->afu_cntl_lock);
30 	pr_devel("AFU command starting: %llx\n", command);
31 
32 	trace_cxl_afu_ctrl(afu, command);
33 
34 	AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
35 	cxl_p2n_write(afu, CXL_AFU_Cntl_An, (AFU_Cntl & ~clear) | command);
36 
37 	AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
38 	while ((AFU_Cntl & mask) != result) {
39 		if (time_after_eq(jiffies, timeout)) {
40 			dev_warn(&afu->dev, "WARNING: AFU control timed out!\n");
41 			rc = -EBUSY;
42 			goto out;
43 		}
44 
45 		if (!cxl_ops->link_ok(afu->adapter, afu)) {
46 			afu->enabled = enabled;
47 			rc = -EIO;
48 			goto out;
49 		}
50 
51 		pr_devel_ratelimited("AFU control... (0x%016llx)\n",
52 				     AFU_Cntl | command);
53 		cpu_relax();
54 		AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
55 	}
56 
57 	if (AFU_Cntl & CXL_AFU_Cntl_An_RA) {
58 		/*
59 		 * Workaround for a bug in the XSL used in the Mellanox CX4
60 		 * that fails to clear the RA bit after an AFU reset,
61 		 * preventing subsequent AFU resets from working.
62 		 */
63 		cxl_p2n_write(afu, CXL_AFU_Cntl_An, AFU_Cntl & ~CXL_AFU_Cntl_An_RA);
64 	}
65 
66 	pr_devel("AFU command complete: %llx\n", command);
67 	afu->enabled = enabled;
68 out:
69 	trace_cxl_afu_ctrl_done(afu, command, rc);
70 	spin_unlock(&afu->afu_cntl_lock);
71 
72 	return rc;
73 }
74 
75 static int afu_enable(struct cxl_afu *afu)
76 {
77 	pr_devel("AFU enable request\n");
78 
79 	return afu_control(afu, CXL_AFU_Cntl_An_E, 0,
80 			   CXL_AFU_Cntl_An_ES_Enabled,
81 			   CXL_AFU_Cntl_An_ES_MASK, true);
82 }
83 
84 int cxl_afu_disable(struct cxl_afu *afu)
85 {
86 	pr_devel("AFU disable request\n");
87 
88 	return afu_control(afu, 0, CXL_AFU_Cntl_An_E,
89 			   CXL_AFU_Cntl_An_ES_Disabled,
90 			   CXL_AFU_Cntl_An_ES_MASK, false);
91 }
92 
93 /* This will disable as well as reset */
94 static int native_afu_reset(struct cxl_afu *afu)
95 {
96 	int rc;
97 	u64 serr;
98 
99 	pr_devel("AFU reset request\n");
100 
101 	rc = afu_control(afu, CXL_AFU_Cntl_An_RA, 0,
102 			   CXL_AFU_Cntl_An_RS_Complete | CXL_AFU_Cntl_An_ES_Disabled,
103 			   CXL_AFU_Cntl_An_RS_MASK | CXL_AFU_Cntl_An_ES_MASK,
104 			   false);
105 
106 	/*
107 	 * Re-enable any masked interrupts when the AFU is not
108 	 * activated to avoid side effects after attaching a process
109 	 * in dedicated mode.
110 	 */
111 	if (afu->current_mode == 0) {
112 		serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
113 		serr &= ~CXL_PSL_SERR_An_IRQ_MASKS;
114 		cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
115 	}
116 
117 	return rc;
118 }
119 
120 static int native_afu_check_and_enable(struct cxl_afu *afu)
121 {
122 	if (!cxl_ops->link_ok(afu->adapter, afu)) {
123 		WARN(1, "Refusing to enable afu while link down!\n");
124 		return -EIO;
125 	}
126 	if (afu->enabled)
127 		return 0;
128 	return afu_enable(afu);
129 }
130 
131 int cxl_psl_purge(struct cxl_afu *afu)
132 {
133 	u64 PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
134 	u64 AFU_Cntl = cxl_p2n_read(afu, CXL_AFU_Cntl_An);
135 	u64 dsisr, dar;
136 	u64 start, end;
137 	u64 trans_fault = 0x0ULL;
138 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
139 	int rc = 0;
140 
141 	trace_cxl_psl_ctrl(afu, CXL_PSL_SCNTL_An_Pc);
142 
143 	pr_devel("PSL purge request\n");
144 
145 	if (cxl_is_power8())
146 		trans_fault = CXL_PSL_DSISR_TRANS;
147 	if (cxl_is_power9())
148 		trans_fault = CXL_PSL9_DSISR_An_TF;
149 
150 	if (!cxl_ops->link_ok(afu->adapter, afu)) {
151 		dev_warn(&afu->dev, "PSL Purge called with link down, ignoring\n");
152 		rc = -EIO;
153 		goto out;
154 	}
155 
156 	if ((AFU_Cntl & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) {
157 		WARN(1, "psl_purge request while AFU not disabled!\n");
158 		cxl_afu_disable(afu);
159 	}
160 
161 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
162 		       PSL_CNTL | CXL_PSL_SCNTL_An_Pc);
163 	start = local_clock();
164 	PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
165 	while ((PSL_CNTL &  CXL_PSL_SCNTL_An_Ps_MASK)
166 			== CXL_PSL_SCNTL_An_Ps_Pending) {
167 		if (time_after_eq(jiffies, timeout)) {
168 			dev_warn(&afu->dev, "WARNING: PSL Purge timed out!\n");
169 			rc = -EBUSY;
170 			goto out;
171 		}
172 		if (!cxl_ops->link_ok(afu->adapter, afu)) {
173 			rc = -EIO;
174 			goto out;
175 		}
176 
177 		dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
178 		pr_devel_ratelimited("PSL purging... PSL_CNTL: 0x%016llx  PSL_DSISR: 0x%016llx\n",
179 				     PSL_CNTL, dsisr);
180 
181 		if (dsisr & trans_fault) {
182 			dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
183 			dev_notice(&afu->dev, "PSL purge terminating pending translation, DSISR: 0x%016llx, DAR: 0x%016llx\n",
184 				   dsisr, dar);
185 			cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
186 		} else if (dsisr) {
187 			dev_notice(&afu->dev, "PSL purge acknowledging pending non-translation fault, DSISR: 0x%016llx\n",
188 				   dsisr);
189 			cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
190 		} else {
191 			cpu_relax();
192 		}
193 		PSL_CNTL = cxl_p1n_read(afu, CXL_PSL_SCNTL_An);
194 	}
195 	end = local_clock();
196 	pr_devel("PSL purged in %lld ns\n", end - start);
197 
198 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An,
199 		       PSL_CNTL & ~CXL_PSL_SCNTL_An_Pc);
200 out:
201 	trace_cxl_psl_ctrl_done(afu, CXL_PSL_SCNTL_An_Pc, rc);
202 	return rc;
203 }
204 
205 static int spa_max_procs(int spa_size)
206 {
207 	/*
208 	 * From the CAIA:
209 	 *    end_of_SPA_area = SPA_Base + ((n+4) * 128) + (( ((n*8) + 127) >> 7) * 128) + 255
210 	 * Most of that junk is really just an overly-complicated way of saying
211 	 * the last 256 bytes are __aligned(128), so it's really:
212 	 *    end_of_SPA_area = end_of_PSL_queue_area + __aligned(128) 255
213 	 * and
214 	 *    end_of_PSL_queue_area = SPA_Base + ((n+4) * 128) + (n*8) - 1
215 	 * so
216 	 *    sizeof(SPA) = ((n+4) * 128) + (n*8) + __aligned(128) 256
217 	 * Ignore the alignment (which is safe in this case as long as we are
218 	 * careful with our rounding) and solve for n:
219 	 */
220 	return ((spa_size / 8) - 96) / 17;
221 }
222 
223 static int cxl_alloc_spa(struct cxl_afu *afu, int mode)
224 {
225 	unsigned spa_size;
226 
227 	/* Work out how many pages to allocate */
228 	afu->native->spa_order = -1;
229 	do {
230 		afu->native->spa_order++;
231 		spa_size = (1 << afu->native->spa_order) * PAGE_SIZE;
232 
233 		if (spa_size > 0x100000) {
234 			dev_warn(&afu->dev, "num_of_processes too large for the SPA, limiting to %i (0x%x)\n",
235 					afu->native->spa_max_procs, afu->native->spa_size);
236 			if (mode != CXL_MODE_DEDICATED)
237 				afu->num_procs = afu->native->spa_max_procs;
238 			break;
239 		}
240 
241 		afu->native->spa_size = spa_size;
242 		afu->native->spa_max_procs = spa_max_procs(afu->native->spa_size);
243 	} while (afu->native->spa_max_procs < afu->num_procs);
244 
245 	if (!(afu->native->spa = (struct cxl_process_element *)
246 	      __get_free_pages(GFP_KERNEL | __GFP_ZERO, afu->native->spa_order))) {
247 		pr_err("cxl_alloc_spa: Unable to allocate scheduled process area\n");
248 		return -ENOMEM;
249 	}
250 	pr_devel("spa pages: %i afu->spa_max_procs: %i   afu->num_procs: %i\n",
251 		 1<<afu->native->spa_order, afu->native->spa_max_procs, afu->num_procs);
252 
253 	return 0;
254 }
255 
256 static void attach_spa(struct cxl_afu *afu)
257 {
258 	u64 spap;
259 
260 	afu->native->sw_command_status = (__be64 *)((char *)afu->native->spa +
261 					    ((afu->native->spa_max_procs + 3) * 128));
262 
263 	spap = virt_to_phys(afu->native->spa) & CXL_PSL_SPAP_Addr;
264 	spap |= ((afu->native->spa_size >> (12 - CXL_PSL_SPAP_Size_Shift)) - 1) & CXL_PSL_SPAP_Size;
265 	spap |= CXL_PSL_SPAP_V;
266 	pr_devel("cxl: SPA allocated at 0x%p. Max processes: %i, sw_command_status: 0x%p CXL_PSL_SPAP_An=0x%016llx\n",
267 		afu->native->spa, afu->native->spa_max_procs,
268 		afu->native->sw_command_status, spap);
269 	cxl_p1n_write(afu, CXL_PSL_SPAP_An, spap);
270 }
271 
272 static inline void detach_spa(struct cxl_afu *afu)
273 {
274 	cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0);
275 }
276 
277 void cxl_release_spa(struct cxl_afu *afu)
278 {
279 	if (afu->native->spa) {
280 		free_pages((unsigned long) afu->native->spa,
281 			afu->native->spa_order);
282 		afu->native->spa = NULL;
283 	}
284 }
285 
286 /*
287  * Invalidation of all ERAT entries is no longer required by CAIA2. Use
288  * only for debug.
289  */
290 int cxl_invalidate_all_psl9(struct cxl *adapter)
291 {
292 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
293 	u64 ierat;
294 
295 	pr_devel("CXL adapter - invalidation of all ERAT entries\n");
296 
297 	/* Invalidates all ERAT entries for Radix or HPT */
298 	ierat = CXL_XSL9_IERAT_IALL;
299 	if (radix_enabled())
300 		ierat |= CXL_XSL9_IERAT_INVR;
301 	cxl_p1_write(adapter, CXL_XSL9_IERAT, ierat);
302 
303 	while (cxl_p1_read(adapter, CXL_XSL9_IERAT) & CXL_XSL9_IERAT_IINPROG) {
304 		if (time_after_eq(jiffies, timeout)) {
305 			dev_warn(&adapter->dev,
306 			"WARNING: CXL adapter invalidation of all ERAT entries timed out!\n");
307 			return -EBUSY;
308 		}
309 		if (!cxl_ops->link_ok(adapter, NULL))
310 			return -EIO;
311 		cpu_relax();
312 	}
313 	return 0;
314 }
315 
316 int cxl_invalidate_all_psl8(struct cxl *adapter)
317 {
318 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
319 
320 	pr_devel("CXL adapter wide TLBIA & SLBIA\n");
321 
322 	cxl_p1_write(adapter, CXL_PSL_AFUSEL, CXL_PSL_AFUSEL_A);
323 
324 	cxl_p1_write(adapter, CXL_PSL_TLBIA, CXL_TLB_SLB_IQ_ALL);
325 	while (cxl_p1_read(adapter, CXL_PSL_TLBIA) & CXL_TLB_SLB_P) {
326 		if (time_after_eq(jiffies, timeout)) {
327 			dev_warn(&adapter->dev, "WARNING: CXL adapter wide TLBIA timed out!\n");
328 			return -EBUSY;
329 		}
330 		if (!cxl_ops->link_ok(adapter, NULL))
331 			return -EIO;
332 		cpu_relax();
333 	}
334 
335 	cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_ALL);
336 	while (cxl_p1_read(adapter, CXL_PSL_SLBIA) & CXL_TLB_SLB_P) {
337 		if (time_after_eq(jiffies, timeout)) {
338 			dev_warn(&adapter->dev, "WARNING: CXL adapter wide SLBIA timed out!\n");
339 			return -EBUSY;
340 		}
341 		if (!cxl_ops->link_ok(adapter, NULL))
342 			return -EIO;
343 		cpu_relax();
344 	}
345 	return 0;
346 }
347 
348 int cxl_data_cache_flush(struct cxl *adapter)
349 {
350 	u64 reg;
351 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
352 
353 	/*
354 	 * Do a datacache flush only if datacache is available.
355 	 * In case of PSL9D datacache absent hence flush operation.
356 	 * would timeout.
357 	 */
358 	if (adapter->native->no_data_cache) {
359 		pr_devel("No PSL data cache. Ignoring cache flush req.\n");
360 		return 0;
361 	}
362 
363 	pr_devel("Flushing data cache\n");
364 	reg = cxl_p1_read(adapter, CXL_PSL_Control);
365 	reg |= CXL_PSL_Control_Fr;
366 	cxl_p1_write(adapter, CXL_PSL_Control, reg);
367 
368 	reg = cxl_p1_read(adapter, CXL_PSL_Control);
369 	while ((reg & CXL_PSL_Control_Fs_MASK) != CXL_PSL_Control_Fs_Complete) {
370 		if (time_after_eq(jiffies, timeout)) {
371 			dev_warn(&adapter->dev, "WARNING: cache flush timed out!\n");
372 			return -EBUSY;
373 		}
374 
375 		if (!cxl_ops->link_ok(adapter, NULL)) {
376 			dev_warn(&adapter->dev, "WARNING: link down when flushing cache\n");
377 			return -EIO;
378 		}
379 		cpu_relax();
380 		reg = cxl_p1_read(adapter, CXL_PSL_Control);
381 	}
382 
383 	reg &= ~CXL_PSL_Control_Fr;
384 	cxl_p1_write(adapter, CXL_PSL_Control, reg);
385 	return 0;
386 }
387 
388 static int cxl_write_sstp(struct cxl_afu *afu, u64 sstp0, u64 sstp1)
389 {
390 	int rc;
391 
392 	/* 1. Disable SSTP by writing 0 to SSTP1[V] */
393 	cxl_p2n_write(afu, CXL_SSTP1_An, 0);
394 
395 	/* 2. Invalidate all SLB entries */
396 	if ((rc = cxl_afu_slbia(afu)))
397 		return rc;
398 
399 	/* 3. Set SSTP0_An */
400 	cxl_p2n_write(afu, CXL_SSTP0_An, sstp0);
401 
402 	/* 4. Set SSTP1_An */
403 	cxl_p2n_write(afu, CXL_SSTP1_An, sstp1);
404 
405 	return 0;
406 }
407 
408 /* Using per slice version may improve performance here. (ie. SLBIA_An) */
409 static void slb_invalid(struct cxl_context *ctx)
410 {
411 	struct cxl *adapter = ctx->afu->adapter;
412 	u64 slbia;
413 
414 	WARN_ON(!mutex_is_locked(&ctx->afu->native->spa_mutex));
415 
416 	cxl_p1_write(adapter, CXL_PSL_LBISEL,
417 			((u64)be32_to_cpu(ctx->elem->common.pid) << 32) |
418 			be32_to_cpu(ctx->elem->lpid));
419 	cxl_p1_write(adapter, CXL_PSL_SLBIA, CXL_TLB_SLB_IQ_LPIDPID);
420 
421 	while (1) {
422 		if (!cxl_ops->link_ok(adapter, NULL))
423 			break;
424 		slbia = cxl_p1_read(adapter, CXL_PSL_SLBIA);
425 		if (!(slbia & CXL_TLB_SLB_P))
426 			break;
427 		cpu_relax();
428 	}
429 }
430 
431 static int do_process_element_cmd(struct cxl_context *ctx,
432 				  u64 cmd, u64 pe_state)
433 {
434 	u64 state;
435 	unsigned long timeout = jiffies + (HZ * CXL_TIMEOUT);
436 	int rc = 0;
437 
438 	trace_cxl_llcmd(ctx, cmd);
439 
440 	WARN_ON(!ctx->afu->enabled);
441 
442 	ctx->elem->software_state = cpu_to_be32(pe_state);
443 	smp_wmb();
444 	*(ctx->afu->native->sw_command_status) = cpu_to_be64(cmd | 0 | ctx->pe);
445 	smp_mb();
446 	cxl_p1n_write(ctx->afu, CXL_PSL_LLCMD_An, cmd | ctx->pe);
447 	while (1) {
448 		if (time_after_eq(jiffies, timeout)) {
449 			dev_warn(&ctx->afu->dev, "WARNING: Process Element Command timed out!\n");
450 			rc = -EBUSY;
451 			goto out;
452 		}
453 		if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) {
454 			dev_warn(&ctx->afu->dev, "WARNING: Device link down, aborting Process Element Command!\n");
455 			rc = -EIO;
456 			goto out;
457 		}
458 		state = be64_to_cpup(ctx->afu->native->sw_command_status);
459 		if (state == ~0ULL) {
460 			pr_err("cxl: Error adding process element to AFU\n");
461 			rc = -1;
462 			goto out;
463 		}
464 		if ((state & (CXL_SPA_SW_CMD_MASK | CXL_SPA_SW_STATE_MASK  | CXL_SPA_SW_LINK_MASK)) ==
465 		    (cmd | (cmd >> 16) | ctx->pe))
466 			break;
467 		/*
468 		 * The command won't finish in the PSL if there are
469 		 * outstanding DSIs.  Hence we need to yield here in
470 		 * case there are outstanding DSIs that we need to
471 		 * service.  Tuning possiblity: we could wait for a
472 		 * while before sched
473 		 */
474 		schedule();
475 
476 	}
477 out:
478 	trace_cxl_llcmd_done(ctx, cmd, rc);
479 	return rc;
480 }
481 
482 static int add_process_element(struct cxl_context *ctx)
483 {
484 	int rc = 0;
485 
486 	mutex_lock(&ctx->afu->native->spa_mutex);
487 	pr_devel("%s Adding pe: %i started\n", __func__, ctx->pe);
488 	if (!(rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_ADD, CXL_PE_SOFTWARE_STATE_V)))
489 		ctx->pe_inserted = true;
490 	pr_devel("%s Adding pe: %i finished\n", __func__, ctx->pe);
491 	mutex_unlock(&ctx->afu->native->spa_mutex);
492 	return rc;
493 }
494 
495 static int terminate_process_element(struct cxl_context *ctx)
496 {
497 	int rc = 0;
498 
499 	/* fast path terminate if it's already invalid */
500 	if (!(ctx->elem->software_state & cpu_to_be32(CXL_PE_SOFTWARE_STATE_V)))
501 		return rc;
502 
503 	mutex_lock(&ctx->afu->native->spa_mutex);
504 	pr_devel("%s Terminate pe: %i started\n", __func__, ctx->pe);
505 	/* We could be asked to terminate when the hw is down. That
506 	 * should always succeed: it's not running if the hw has gone
507 	 * away and is being reset.
508 	 */
509 	if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu))
510 		rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_TERMINATE,
511 					    CXL_PE_SOFTWARE_STATE_V | CXL_PE_SOFTWARE_STATE_T);
512 	ctx->elem->software_state = 0;	/* Remove Valid bit */
513 	pr_devel("%s Terminate pe: %i finished\n", __func__, ctx->pe);
514 	mutex_unlock(&ctx->afu->native->spa_mutex);
515 	return rc;
516 }
517 
518 static int remove_process_element(struct cxl_context *ctx)
519 {
520 	int rc = 0;
521 
522 	mutex_lock(&ctx->afu->native->spa_mutex);
523 	pr_devel("%s Remove pe: %i started\n", __func__, ctx->pe);
524 
525 	/* We could be asked to remove when the hw is down. Again, if
526 	 * the hw is down, the PE is gone, so we succeed.
527 	 */
528 	if (cxl_ops->link_ok(ctx->afu->adapter, ctx->afu))
529 		rc = do_process_element_cmd(ctx, CXL_SPA_SW_CMD_REMOVE, 0);
530 
531 	if (!rc)
532 		ctx->pe_inserted = false;
533 	if (cxl_is_power8())
534 		slb_invalid(ctx);
535 	pr_devel("%s Remove pe: %i finished\n", __func__, ctx->pe);
536 	mutex_unlock(&ctx->afu->native->spa_mutex);
537 
538 	return rc;
539 }
540 
541 void cxl_assign_psn_space(struct cxl_context *ctx)
542 {
543 	if (!ctx->afu->pp_size || ctx->master) {
544 		ctx->psn_phys = ctx->afu->psn_phys;
545 		ctx->psn_size = ctx->afu->adapter->ps_size;
546 	} else {
547 		ctx->psn_phys = ctx->afu->psn_phys +
548 			(ctx->afu->native->pp_offset + ctx->afu->pp_size * ctx->pe);
549 		ctx->psn_size = ctx->afu->pp_size;
550 	}
551 }
552 
553 static int activate_afu_directed(struct cxl_afu *afu)
554 {
555 	int rc;
556 
557 	dev_info(&afu->dev, "Activating AFU directed mode\n");
558 
559 	afu->num_procs = afu->max_procs_virtualised;
560 	if (afu->native->spa == NULL) {
561 		if (cxl_alloc_spa(afu, CXL_MODE_DIRECTED))
562 			return -ENOMEM;
563 	}
564 	attach_spa(afu);
565 
566 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_AFU);
567 	if (cxl_is_power8())
568 		cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
569 	cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L);
570 
571 	afu->current_mode = CXL_MODE_DIRECTED;
572 
573 	if ((rc = cxl_chardev_m_afu_add(afu)))
574 		return rc;
575 
576 	if ((rc = cxl_sysfs_afu_m_add(afu)))
577 		goto err;
578 
579 	if ((rc = cxl_chardev_s_afu_add(afu)))
580 		goto err1;
581 
582 	return 0;
583 err1:
584 	cxl_sysfs_afu_m_remove(afu);
585 err:
586 	cxl_chardev_afu_remove(afu);
587 	return rc;
588 }
589 
590 #ifdef CONFIG_CPU_LITTLE_ENDIAN
591 #define set_endian(sr) ((sr) |= CXL_PSL_SR_An_LE)
592 #else
593 #define set_endian(sr) ((sr) &= ~(CXL_PSL_SR_An_LE))
594 #endif
595 
596 u64 cxl_calculate_sr(bool master, bool kernel, bool real_mode, bool p9)
597 {
598 	u64 sr = 0;
599 
600 	set_endian(sr);
601 	if (master)
602 		sr |= CXL_PSL_SR_An_MP;
603 	if (mfspr(SPRN_LPCR) & LPCR_TC)
604 		sr |= CXL_PSL_SR_An_TC;
605 
606 	if (kernel) {
607 		if (!real_mode)
608 			sr |= CXL_PSL_SR_An_R;
609 		sr |= (mfmsr() & MSR_SF) | CXL_PSL_SR_An_HV;
610 	} else {
611 		sr |= CXL_PSL_SR_An_PR | CXL_PSL_SR_An_R;
612 		if (radix_enabled())
613 			sr |= CXL_PSL_SR_An_HV;
614 		else
615 			sr &= ~(CXL_PSL_SR_An_HV);
616 		if (!test_tsk_thread_flag(current, TIF_32BIT))
617 			sr |= CXL_PSL_SR_An_SF;
618 	}
619 	if (p9) {
620 		if (radix_enabled())
621 			sr |= CXL_PSL_SR_An_XLAT_ror;
622 		else
623 			sr |= CXL_PSL_SR_An_XLAT_hpt;
624 	}
625 	return sr;
626 }
627 
628 static u64 calculate_sr(struct cxl_context *ctx)
629 {
630 	return cxl_calculate_sr(ctx->master, ctx->kernel, false,
631 				cxl_is_power9());
632 }
633 
634 static void update_ivtes_directed(struct cxl_context *ctx)
635 {
636 	bool need_update = (ctx->status == STARTED);
637 	int r;
638 
639 	if (need_update) {
640 		WARN_ON(terminate_process_element(ctx));
641 		WARN_ON(remove_process_element(ctx));
642 	}
643 
644 	for (r = 0; r < CXL_IRQ_RANGES; r++) {
645 		ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]);
646 		ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]);
647 	}
648 
649 	/*
650 	 * Theoretically we could use the update llcmd, instead of a
651 	 * terminate/remove/add (or if an atomic update was required we could
652 	 * do a suspend/update/resume), however it seems there might be issues
653 	 * with the update llcmd on some cards (including those using an XSL on
654 	 * an ASIC) so for now it's safest to go with the commands that are
655 	 * known to work. In the future if we come across a situation where the
656 	 * card may be performing transactions using the same PE while we are
657 	 * doing this update we might need to revisit this.
658 	 */
659 	if (need_update)
660 		WARN_ON(add_process_element(ctx));
661 }
662 
663 static int process_element_entry_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
664 {
665 	u32 pid;
666 	int rc;
667 
668 	cxl_assign_psn_space(ctx);
669 
670 	ctx->elem->ctxtime = 0; /* disable */
671 	ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID));
672 	ctx->elem->haurp = 0; /* disable */
673 
674 	if (ctx->kernel)
675 		pid = 0;
676 	else {
677 		if (ctx->mm == NULL) {
678 			pr_devel("%s: unable to get mm for pe=%d pid=%i\n",
679 				__func__, ctx->pe, pid_nr(ctx->pid));
680 			return -EINVAL;
681 		}
682 		pid = ctx->mm->context.id;
683 	}
684 
685 	/* Assign a unique TIDR (thread id) for the current thread */
686 	if (!(ctx->tidr) && (ctx->assign_tidr)) {
687 		rc = set_thread_tidr(current);
688 		if (rc)
689 			return -ENODEV;
690 		ctx->tidr = current->thread.tidr;
691 		pr_devel("%s: current tidr: %d\n", __func__, ctx->tidr);
692 	}
693 
694 	ctx->elem->common.tid = cpu_to_be32(ctx->tidr);
695 	ctx->elem->common.pid = cpu_to_be32(pid);
696 
697 	ctx->elem->sr = cpu_to_be64(calculate_sr(ctx));
698 
699 	ctx->elem->common.csrp = 0; /* disable */
700 
701 	cxl_prefault(ctx, wed);
702 
703 	/*
704 	 * Ensure we have the multiplexed PSL interrupt set up to take faults
705 	 * for kernel contexts that may not have allocated any AFU IRQs at all:
706 	 */
707 	if (ctx->irqs.range[0] == 0) {
708 		ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq;
709 		ctx->irqs.range[0] = 1;
710 	}
711 
712 	ctx->elem->common.amr = cpu_to_be64(amr);
713 	ctx->elem->common.wed = cpu_to_be64(wed);
714 
715 	return 0;
716 }
717 
718 int cxl_attach_afu_directed_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
719 {
720 	int result;
721 
722 	/* fill the process element entry */
723 	result = process_element_entry_psl9(ctx, wed, amr);
724 	if (result)
725 		return result;
726 
727 	update_ivtes_directed(ctx);
728 
729 	/* first guy needs to enable */
730 	result = cxl_ops->afu_check_and_enable(ctx->afu);
731 	if (result)
732 		return result;
733 
734 	return add_process_element(ctx);
735 }
736 
737 int cxl_attach_afu_directed_psl8(struct cxl_context *ctx, u64 wed, u64 amr)
738 {
739 	u32 pid;
740 	int result;
741 
742 	cxl_assign_psn_space(ctx);
743 
744 	ctx->elem->ctxtime = 0; /* disable */
745 	ctx->elem->lpid = cpu_to_be32(mfspr(SPRN_LPID));
746 	ctx->elem->haurp = 0; /* disable */
747 	ctx->elem->u.sdr = cpu_to_be64(mfspr(SPRN_SDR1));
748 
749 	pid = current->pid;
750 	if (ctx->kernel)
751 		pid = 0;
752 	ctx->elem->common.tid = 0;
753 	ctx->elem->common.pid = cpu_to_be32(pid);
754 
755 	ctx->elem->sr = cpu_to_be64(calculate_sr(ctx));
756 
757 	ctx->elem->common.csrp = 0; /* disable */
758 	ctx->elem->common.u.psl8.aurp0 = 0; /* disable */
759 	ctx->elem->common.u.psl8.aurp1 = 0; /* disable */
760 
761 	cxl_prefault(ctx, wed);
762 
763 	ctx->elem->common.u.psl8.sstp0 = cpu_to_be64(ctx->sstp0);
764 	ctx->elem->common.u.psl8.sstp1 = cpu_to_be64(ctx->sstp1);
765 
766 	/*
767 	 * Ensure we have the multiplexed PSL interrupt set up to take faults
768 	 * for kernel contexts that may not have allocated any AFU IRQs at all:
769 	 */
770 	if (ctx->irqs.range[0] == 0) {
771 		ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq;
772 		ctx->irqs.range[0] = 1;
773 	}
774 
775 	update_ivtes_directed(ctx);
776 
777 	ctx->elem->common.amr = cpu_to_be64(amr);
778 	ctx->elem->common.wed = cpu_to_be64(wed);
779 
780 	/* first guy needs to enable */
781 	if ((result = cxl_ops->afu_check_and_enable(ctx->afu)))
782 		return result;
783 
784 	return add_process_element(ctx);
785 }
786 
787 static int deactivate_afu_directed(struct cxl_afu *afu)
788 {
789 	dev_info(&afu->dev, "Deactivating AFU directed mode\n");
790 
791 	afu->current_mode = 0;
792 	afu->num_procs = 0;
793 
794 	cxl_sysfs_afu_m_remove(afu);
795 	cxl_chardev_afu_remove(afu);
796 
797 	/*
798 	 * The CAIA section 2.2.1 indicates that the procedure for starting and
799 	 * stopping an AFU in AFU directed mode is AFU specific, which is not
800 	 * ideal since this code is generic and with one exception has no
801 	 * knowledge of the AFU. This is in contrast to the procedure for
802 	 * disabling a dedicated process AFU, which is documented to just
803 	 * require a reset. The architecture does indicate that both an AFU
804 	 * reset and an AFU disable should result in the AFU being disabled and
805 	 * we do both followed by a PSL purge for safety.
806 	 *
807 	 * Notably we used to have some issues with the disable sequence on PSL
808 	 * cards, which is why we ended up using this heavy weight procedure in
809 	 * the first place, however a bug was discovered that had rendered the
810 	 * disable operation ineffective, so it is conceivable that was the
811 	 * sole explanation for those difficulties. Careful regression testing
812 	 * is recommended if anyone attempts to remove or reorder these
813 	 * operations.
814 	 *
815 	 * The XSL on the Mellanox CX4 behaves a little differently from the
816 	 * PSL based cards and will time out an AFU reset if the AFU is still
817 	 * enabled. That card is special in that we do have a means to identify
818 	 * it from this code, so in that case we skip the reset and just use a
819 	 * disable/purge to avoid the timeout and corresponding noise in the
820 	 * kernel log.
821 	 */
822 	if (afu->adapter->native->sl_ops->needs_reset_before_disable)
823 		cxl_ops->afu_reset(afu);
824 	cxl_afu_disable(afu);
825 	cxl_psl_purge(afu);
826 
827 	return 0;
828 }
829 
830 int cxl_activate_dedicated_process_psl9(struct cxl_afu *afu)
831 {
832 	dev_info(&afu->dev, "Activating dedicated process mode\n");
833 
834 	/*
835 	 * If XSL is set to dedicated mode (Set in PSL_SCNTL reg), the
836 	 * XSL and AFU are programmed to work with a single context.
837 	 * The context information should be configured in the SPA area
838 	 * index 0 (so PSL_SPAP must be configured before enabling the
839 	 * AFU).
840 	 */
841 	afu->num_procs = 1;
842 	if (afu->native->spa == NULL) {
843 		if (cxl_alloc_spa(afu, CXL_MODE_DEDICATED))
844 			return -ENOMEM;
845 	}
846 	attach_spa(afu);
847 
848 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process);
849 	cxl_p1n_write(afu, CXL_PSL_ID_An, CXL_PSL_ID_An_F | CXL_PSL_ID_An_L);
850 
851 	afu->current_mode = CXL_MODE_DEDICATED;
852 
853 	return cxl_chardev_d_afu_add(afu);
854 }
855 
856 int cxl_activate_dedicated_process_psl8(struct cxl_afu *afu)
857 {
858 	dev_info(&afu->dev, "Activating dedicated process mode\n");
859 
860 	cxl_p1n_write(afu, CXL_PSL_SCNTL_An, CXL_PSL_SCNTL_An_PM_Process);
861 
862 	cxl_p1n_write(afu, CXL_PSL_CtxTime_An, 0); /* disable */
863 	cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0);    /* disable */
864 	cxl_p1n_write(afu, CXL_PSL_AMOR_An, 0xFFFFFFFFFFFFFFFFULL);
865 	cxl_p1n_write(afu, CXL_PSL_LPID_An, mfspr(SPRN_LPID));
866 	cxl_p1n_write(afu, CXL_HAURP_An, 0);       /* disable */
867 	cxl_p1n_write(afu, CXL_PSL_SDR_An, mfspr(SPRN_SDR1));
868 
869 	cxl_p2n_write(afu, CXL_CSRP_An, 0);        /* disable */
870 	cxl_p2n_write(afu, CXL_AURP0_An, 0);       /* disable */
871 	cxl_p2n_write(afu, CXL_AURP1_An, 0);       /* disable */
872 
873 	afu->current_mode = CXL_MODE_DEDICATED;
874 	afu->num_procs = 1;
875 
876 	return cxl_chardev_d_afu_add(afu);
877 }
878 
879 void cxl_update_dedicated_ivtes_psl9(struct cxl_context *ctx)
880 {
881 	int r;
882 
883 	for (r = 0; r < CXL_IRQ_RANGES; r++) {
884 		ctx->elem->ivte_offsets[r] = cpu_to_be16(ctx->irqs.offset[r]);
885 		ctx->elem->ivte_ranges[r] = cpu_to_be16(ctx->irqs.range[r]);
886 	}
887 }
888 
889 void cxl_update_dedicated_ivtes_psl8(struct cxl_context *ctx)
890 {
891 	struct cxl_afu *afu = ctx->afu;
892 
893 	cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An,
894 		       (((u64)ctx->irqs.offset[0] & 0xffff) << 48) |
895 		       (((u64)ctx->irqs.offset[1] & 0xffff) << 32) |
896 		       (((u64)ctx->irqs.offset[2] & 0xffff) << 16) |
897 			((u64)ctx->irqs.offset[3] & 0xffff));
898 	cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, (u64)
899 		       (((u64)ctx->irqs.range[0] & 0xffff) << 48) |
900 		       (((u64)ctx->irqs.range[1] & 0xffff) << 32) |
901 		       (((u64)ctx->irqs.range[2] & 0xffff) << 16) |
902 			((u64)ctx->irqs.range[3] & 0xffff));
903 }
904 
905 int cxl_attach_dedicated_process_psl9(struct cxl_context *ctx, u64 wed, u64 amr)
906 {
907 	struct cxl_afu *afu = ctx->afu;
908 	int result;
909 
910 	/* fill the process element entry */
911 	result = process_element_entry_psl9(ctx, wed, amr);
912 	if (result)
913 		return result;
914 
915 	if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)
916 		afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
917 
918 	ctx->elem->software_state = cpu_to_be32(CXL_PE_SOFTWARE_STATE_V);
919 	/*
920 	 * Ideally we should do a wmb() here to make sure the changes to the
921 	 * PE are visible to the card before we call afu_enable.
922 	 * On ppc64 though all mmios are preceded by a 'sync' instruction hence
923 	 * we dont dont need one here.
924 	 */
925 
926 	result = cxl_ops->afu_reset(afu);
927 	if (result)
928 		return result;
929 
930 	return afu_enable(afu);
931 }
932 
933 int cxl_attach_dedicated_process_psl8(struct cxl_context *ctx, u64 wed, u64 amr)
934 {
935 	struct cxl_afu *afu = ctx->afu;
936 	u64 pid;
937 	int rc;
938 
939 	pid = (u64)current->pid << 32;
940 	if (ctx->kernel)
941 		pid = 0;
942 	cxl_p2n_write(afu, CXL_PSL_PID_TID_An, pid);
943 
944 	cxl_p1n_write(afu, CXL_PSL_SR_An, calculate_sr(ctx));
945 
946 	if ((rc = cxl_write_sstp(afu, ctx->sstp0, ctx->sstp1)))
947 		return rc;
948 
949 	cxl_prefault(ctx, wed);
950 
951 	if (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes)
952 		afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
953 
954 	cxl_p2n_write(afu, CXL_PSL_AMR_An, amr);
955 
956 	/* master only context for dedicated */
957 	cxl_assign_psn_space(ctx);
958 
959 	if ((rc = cxl_ops->afu_reset(afu)))
960 		return rc;
961 
962 	cxl_p2n_write(afu, CXL_PSL_WED_An, wed);
963 
964 	return afu_enable(afu);
965 }
966 
967 static int deactivate_dedicated_process(struct cxl_afu *afu)
968 {
969 	dev_info(&afu->dev, "Deactivating dedicated process mode\n");
970 
971 	afu->current_mode = 0;
972 	afu->num_procs = 0;
973 
974 	cxl_chardev_afu_remove(afu);
975 
976 	return 0;
977 }
978 
979 static int native_afu_deactivate_mode(struct cxl_afu *afu, int mode)
980 {
981 	if (mode == CXL_MODE_DIRECTED)
982 		return deactivate_afu_directed(afu);
983 	if (mode == CXL_MODE_DEDICATED)
984 		return deactivate_dedicated_process(afu);
985 	return 0;
986 }
987 
988 static int native_afu_activate_mode(struct cxl_afu *afu, int mode)
989 {
990 	if (!mode)
991 		return 0;
992 	if (!(mode & afu->modes_supported))
993 		return -EINVAL;
994 
995 	if (!cxl_ops->link_ok(afu->adapter, afu)) {
996 		WARN(1, "Device link is down, refusing to activate!\n");
997 		return -EIO;
998 	}
999 
1000 	if (mode == CXL_MODE_DIRECTED)
1001 		return activate_afu_directed(afu);
1002 	if ((mode == CXL_MODE_DEDICATED) &&
1003 	    (afu->adapter->native->sl_ops->activate_dedicated_process))
1004 		return afu->adapter->native->sl_ops->activate_dedicated_process(afu);
1005 
1006 	return -EINVAL;
1007 }
1008 
1009 static int native_attach_process(struct cxl_context *ctx, bool kernel,
1010 				u64 wed, u64 amr)
1011 {
1012 	if (!cxl_ops->link_ok(ctx->afu->adapter, ctx->afu)) {
1013 		WARN(1, "Device link is down, refusing to attach process!\n");
1014 		return -EIO;
1015 	}
1016 
1017 	ctx->kernel = kernel;
1018 	if ((ctx->afu->current_mode == CXL_MODE_DIRECTED) &&
1019 	    (ctx->afu->adapter->native->sl_ops->attach_afu_directed))
1020 		return ctx->afu->adapter->native->sl_ops->attach_afu_directed(ctx, wed, amr);
1021 
1022 	if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) &&
1023 	    (ctx->afu->adapter->native->sl_ops->attach_dedicated_process))
1024 		return ctx->afu->adapter->native->sl_ops->attach_dedicated_process(ctx, wed, amr);
1025 
1026 	return -EINVAL;
1027 }
1028 
1029 static inline int detach_process_native_dedicated(struct cxl_context *ctx)
1030 {
1031 	/*
1032 	 * The CAIA section 2.1.1 indicates that we need to do an AFU reset to
1033 	 * stop the AFU in dedicated mode (we therefore do not make that
1034 	 * optional like we do in the afu directed path). It does not indicate
1035 	 * that we need to do an explicit disable (which should occur
1036 	 * implicitly as part of the reset) or purge, but we do these as well
1037 	 * to be on the safe side.
1038 	 *
1039 	 * Notably we used to have some issues with the disable sequence
1040 	 * (before the sequence was spelled out in the architecture) which is
1041 	 * why we were so heavy weight in the first place, however a bug was
1042 	 * discovered that had rendered the disable operation ineffective, so
1043 	 * it is conceivable that was the sole explanation for those
1044 	 * difficulties. Point is, we should be careful and do some regression
1045 	 * testing if we ever attempt to remove any part of this procedure.
1046 	 */
1047 	cxl_ops->afu_reset(ctx->afu);
1048 	cxl_afu_disable(ctx->afu);
1049 	cxl_psl_purge(ctx->afu);
1050 	return 0;
1051 }
1052 
1053 static void native_update_ivtes(struct cxl_context *ctx)
1054 {
1055 	if (ctx->afu->current_mode == CXL_MODE_DIRECTED)
1056 		return update_ivtes_directed(ctx);
1057 	if ((ctx->afu->current_mode == CXL_MODE_DEDICATED) &&
1058 	    (ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes))
1059 		return ctx->afu->adapter->native->sl_ops->update_dedicated_ivtes(ctx);
1060 	WARN(1, "native_update_ivtes: Bad mode\n");
1061 }
1062 
1063 static inline int detach_process_native_afu_directed(struct cxl_context *ctx)
1064 {
1065 	if (!ctx->pe_inserted)
1066 		return 0;
1067 	if (terminate_process_element(ctx))
1068 		return -1;
1069 	if (remove_process_element(ctx))
1070 		return -1;
1071 
1072 	return 0;
1073 }
1074 
1075 static int native_detach_process(struct cxl_context *ctx)
1076 {
1077 	trace_cxl_detach(ctx);
1078 
1079 	if (ctx->afu->current_mode == CXL_MODE_DEDICATED)
1080 		return detach_process_native_dedicated(ctx);
1081 
1082 	return detach_process_native_afu_directed(ctx);
1083 }
1084 
1085 static int native_get_irq_info(struct cxl_afu *afu, struct cxl_irq_info *info)
1086 {
1087 	/* If the adapter has gone away, we can't get any meaningful
1088 	 * information.
1089 	 */
1090 	if (!cxl_ops->link_ok(afu->adapter, afu))
1091 		return -EIO;
1092 
1093 	info->dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
1094 	info->dar = cxl_p2n_read(afu, CXL_PSL_DAR_An);
1095 	if (cxl_is_power8())
1096 		info->dsr = cxl_p2n_read(afu, CXL_PSL_DSR_An);
1097 	info->afu_err = cxl_p2n_read(afu, CXL_AFU_ERR_An);
1098 	info->errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
1099 	info->proc_handle = 0;
1100 
1101 	return 0;
1102 }
1103 
1104 void cxl_native_irq_dump_regs_psl9(struct cxl_context *ctx)
1105 {
1106 	u64 fir1, serr;
1107 
1108 	fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL9_FIR1);
1109 
1110 	dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1);
1111 	if (ctx->afu->adapter->native->sl_ops->register_serr_irq) {
1112 		serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An);
1113 		cxl_afu_decode_psl_serr(ctx->afu, serr);
1114 	}
1115 }
1116 
1117 void cxl_native_irq_dump_regs_psl8(struct cxl_context *ctx)
1118 {
1119 	u64 fir1, fir2, fir_slice, serr, afu_debug;
1120 
1121 	fir1 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR1);
1122 	fir2 = cxl_p1_read(ctx->afu->adapter, CXL_PSL_FIR2);
1123 	fir_slice = cxl_p1n_read(ctx->afu, CXL_PSL_FIR_SLICE_An);
1124 	afu_debug = cxl_p1n_read(ctx->afu, CXL_AFU_DEBUG_An);
1125 
1126 	dev_crit(&ctx->afu->dev, "PSL_FIR1: 0x%016llx\n", fir1);
1127 	dev_crit(&ctx->afu->dev, "PSL_FIR2: 0x%016llx\n", fir2);
1128 	if (ctx->afu->adapter->native->sl_ops->register_serr_irq) {
1129 		serr = cxl_p1n_read(ctx->afu, CXL_PSL_SERR_An);
1130 		cxl_afu_decode_psl_serr(ctx->afu, serr);
1131 	}
1132 	dev_crit(&ctx->afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice);
1133 	dev_crit(&ctx->afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug);
1134 }
1135 
1136 static irqreturn_t native_handle_psl_slice_error(struct cxl_context *ctx,
1137 						u64 dsisr, u64 errstat)
1138 {
1139 
1140 	dev_crit(&ctx->afu->dev, "PSL ERROR STATUS: 0x%016llx\n", errstat);
1141 
1142 	if (ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers)
1143 		ctx->afu->adapter->native->sl_ops->psl_irq_dump_registers(ctx);
1144 
1145 	if (ctx->afu->adapter->native->sl_ops->debugfs_stop_trace) {
1146 		dev_crit(&ctx->afu->dev, "STOPPING CXL TRACE\n");
1147 		ctx->afu->adapter->native->sl_ops->debugfs_stop_trace(ctx->afu->adapter);
1148 	}
1149 
1150 	return cxl_ops->ack_irq(ctx, 0, errstat);
1151 }
1152 
1153 static bool cxl_is_translation_fault(struct cxl_afu *afu, u64 dsisr)
1154 {
1155 	if ((cxl_is_power8()) && (dsisr & CXL_PSL_DSISR_TRANS))
1156 		return true;
1157 
1158 	if ((cxl_is_power9()) && (dsisr & CXL_PSL9_DSISR_An_TF))
1159 		return true;
1160 
1161 	return false;
1162 }
1163 
1164 irqreturn_t cxl_fail_irq_psl(struct cxl_afu *afu, struct cxl_irq_info *irq_info)
1165 {
1166 	if (cxl_is_translation_fault(afu, irq_info->dsisr))
1167 		cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE);
1168 	else
1169 		cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A);
1170 
1171 	return IRQ_HANDLED;
1172 }
1173 
1174 static irqreturn_t native_irq_multiplexed(int irq, void *data)
1175 {
1176 	struct cxl_afu *afu = data;
1177 	struct cxl_context *ctx;
1178 	struct cxl_irq_info irq_info;
1179 	u64 phreg = cxl_p2n_read(afu, CXL_PSL_PEHandle_An);
1180 	int ph, ret = IRQ_HANDLED, res;
1181 
1182 	/* check if eeh kicked in while the interrupt was in flight */
1183 	if (unlikely(phreg == ~0ULL)) {
1184 		dev_warn(&afu->dev,
1185 			 "Ignoring slice interrupt(%d) due to fenced card",
1186 			 irq);
1187 		return IRQ_HANDLED;
1188 	}
1189 	/* Mask the pe-handle from register value */
1190 	ph = phreg & 0xffff;
1191 	if ((res = native_get_irq_info(afu, &irq_info))) {
1192 		WARN(1, "Unable to get CXL IRQ Info: %i\n", res);
1193 		if (afu->adapter->native->sl_ops->fail_irq)
1194 			return afu->adapter->native->sl_ops->fail_irq(afu, &irq_info);
1195 		return ret;
1196 	}
1197 
1198 	rcu_read_lock();
1199 	ctx = idr_find(&afu->contexts_idr, ph);
1200 	if (ctx) {
1201 		if (afu->adapter->native->sl_ops->handle_interrupt)
1202 			ret = afu->adapter->native->sl_ops->handle_interrupt(irq, ctx, &irq_info);
1203 		rcu_read_unlock();
1204 		return ret;
1205 	}
1206 	rcu_read_unlock();
1207 
1208 	WARN(1, "Unable to demultiplex CXL PSL IRQ for PE %i DSISR %016llx DAR"
1209 		" %016llx\n(Possible AFU HW issue - was a term/remove acked"
1210 		" with outstanding transactions?)\n", ph, irq_info.dsisr,
1211 		irq_info.dar);
1212 	if (afu->adapter->native->sl_ops->fail_irq)
1213 		ret = afu->adapter->native->sl_ops->fail_irq(afu, &irq_info);
1214 	return ret;
1215 }
1216 
1217 static void native_irq_wait(struct cxl_context *ctx)
1218 {
1219 	u64 dsisr;
1220 	int timeout = 1000;
1221 	int ph;
1222 
1223 	/*
1224 	 * Wait until no further interrupts are presented by the PSL
1225 	 * for this context.
1226 	 */
1227 	while (timeout--) {
1228 		ph = cxl_p2n_read(ctx->afu, CXL_PSL_PEHandle_An) & 0xffff;
1229 		if (ph != ctx->pe)
1230 			return;
1231 		dsisr = cxl_p2n_read(ctx->afu, CXL_PSL_DSISR_An);
1232 		if (cxl_is_power8() &&
1233 		   ((dsisr & CXL_PSL_DSISR_PENDING) == 0))
1234 			return;
1235 		if (cxl_is_power9() &&
1236 		   ((dsisr & CXL_PSL9_DSISR_PENDING) == 0))
1237 			return;
1238 		/*
1239 		 * We are waiting for the workqueue to process our
1240 		 * irq, so need to let that run here.
1241 		 */
1242 		msleep(1);
1243 	}
1244 
1245 	dev_warn(&ctx->afu->dev, "WARNING: waiting on DSI for PE %i"
1246 		 " DSISR %016llx!\n", ph, dsisr);
1247 	return;
1248 }
1249 
1250 static irqreturn_t native_slice_irq_err(int irq, void *data)
1251 {
1252 	struct cxl_afu *afu = data;
1253 	u64 errstat, serr, afu_error, dsisr;
1254 	u64 fir_slice, afu_debug, irq_mask;
1255 
1256 	/*
1257 	 * slice err interrupt is only used with full PSL (no XSL)
1258 	 */
1259 	serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
1260 	errstat = cxl_p2n_read(afu, CXL_PSL_ErrStat_An);
1261 	afu_error = cxl_p2n_read(afu, CXL_AFU_ERR_An);
1262 	dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
1263 	cxl_afu_decode_psl_serr(afu, serr);
1264 
1265 	if (cxl_is_power8()) {
1266 		fir_slice = cxl_p1n_read(afu, CXL_PSL_FIR_SLICE_An);
1267 		afu_debug = cxl_p1n_read(afu, CXL_AFU_DEBUG_An);
1268 		dev_crit(&afu->dev, "PSL_FIR_SLICE_An: 0x%016llx\n", fir_slice);
1269 		dev_crit(&afu->dev, "CXL_PSL_AFU_DEBUG_An: 0x%016llx\n", afu_debug);
1270 	}
1271 	dev_crit(&afu->dev, "CXL_PSL_ErrStat_An: 0x%016llx\n", errstat);
1272 	dev_crit(&afu->dev, "AFU_ERR_An: 0x%.16llx\n", afu_error);
1273 	dev_crit(&afu->dev, "PSL_DSISR_An: 0x%.16llx\n", dsisr);
1274 
1275 	/* mask off the IRQ so it won't retrigger until the AFU is reset */
1276 	irq_mask = (serr & CXL_PSL_SERR_An_IRQS) >> 32;
1277 	serr |= irq_mask;
1278 	cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
1279 	dev_info(&afu->dev, "Further such interrupts will be masked until the AFU is reset\n");
1280 
1281 	return IRQ_HANDLED;
1282 }
1283 
1284 void cxl_native_err_irq_dump_regs_psl9(struct cxl *adapter)
1285 {
1286 	u64 fir1;
1287 
1288 	fir1 = cxl_p1_read(adapter, CXL_PSL9_FIR1);
1289 	dev_crit(&adapter->dev, "PSL_FIR: 0x%016llx\n", fir1);
1290 }
1291 
1292 void cxl_native_err_irq_dump_regs_psl8(struct cxl *adapter)
1293 {
1294 	u64 fir1, fir2;
1295 
1296 	fir1 = cxl_p1_read(adapter, CXL_PSL_FIR1);
1297 	fir2 = cxl_p1_read(adapter, CXL_PSL_FIR2);
1298 	dev_crit(&adapter->dev,
1299 		 "PSL_FIR1: 0x%016llx\nPSL_FIR2: 0x%016llx\n",
1300 		 fir1, fir2);
1301 }
1302 
1303 static irqreturn_t native_irq_err(int irq, void *data)
1304 {
1305 	struct cxl *adapter = data;
1306 	u64 err_ivte;
1307 
1308 	WARN(1, "CXL ERROR interrupt %i\n", irq);
1309 
1310 	err_ivte = cxl_p1_read(adapter, CXL_PSL_ErrIVTE);
1311 	dev_crit(&adapter->dev, "PSL_ErrIVTE: 0x%016llx\n", err_ivte);
1312 
1313 	if (adapter->native->sl_ops->debugfs_stop_trace) {
1314 		dev_crit(&adapter->dev, "STOPPING CXL TRACE\n");
1315 		adapter->native->sl_ops->debugfs_stop_trace(adapter);
1316 	}
1317 
1318 	if (adapter->native->sl_ops->err_irq_dump_registers)
1319 		adapter->native->sl_ops->err_irq_dump_registers(adapter);
1320 
1321 	return IRQ_HANDLED;
1322 }
1323 
1324 int cxl_native_register_psl_err_irq(struct cxl *adapter)
1325 {
1326 	int rc;
1327 
1328 	adapter->irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
1329 				      dev_name(&adapter->dev));
1330 	if (!adapter->irq_name)
1331 		return -ENOMEM;
1332 
1333 	if ((rc = cxl_register_one_irq(adapter, native_irq_err, adapter,
1334 				       &adapter->native->err_hwirq,
1335 				       &adapter->native->err_virq,
1336 				       adapter->irq_name))) {
1337 		kfree(adapter->irq_name);
1338 		adapter->irq_name = NULL;
1339 		return rc;
1340 	}
1341 
1342 	cxl_p1_write(adapter, CXL_PSL_ErrIVTE, adapter->native->err_hwirq & 0xffff);
1343 
1344 	return 0;
1345 }
1346 
1347 void cxl_native_release_psl_err_irq(struct cxl *adapter)
1348 {
1349 	if (adapter->native->err_virq == 0 ||
1350 	    adapter->native->err_virq !=
1351 	    irq_find_mapping(NULL, adapter->native->err_hwirq))
1352 		return;
1353 
1354 	cxl_p1_write(adapter, CXL_PSL_ErrIVTE, 0x0000000000000000);
1355 	cxl_unmap_irq(adapter->native->err_virq, adapter);
1356 	cxl_ops->release_one_irq(adapter, adapter->native->err_hwirq);
1357 	kfree(adapter->irq_name);
1358 	adapter->native->err_virq = 0;
1359 }
1360 
1361 int cxl_native_register_serr_irq(struct cxl_afu *afu)
1362 {
1363 	u64 serr;
1364 	int rc;
1365 
1366 	afu->err_irq_name = kasprintf(GFP_KERNEL, "cxl-%s-err",
1367 				      dev_name(&afu->dev));
1368 	if (!afu->err_irq_name)
1369 		return -ENOMEM;
1370 
1371 	if ((rc = cxl_register_one_irq(afu->adapter, native_slice_irq_err, afu,
1372 				       &afu->serr_hwirq,
1373 				       &afu->serr_virq, afu->err_irq_name))) {
1374 		kfree(afu->err_irq_name);
1375 		afu->err_irq_name = NULL;
1376 		return rc;
1377 	}
1378 
1379 	serr = cxl_p1n_read(afu, CXL_PSL_SERR_An);
1380 	if (cxl_is_power8())
1381 		serr = (serr & 0x00ffffffffff0000ULL) | (afu->serr_hwirq & 0xffff);
1382 	if (cxl_is_power9()) {
1383 		/*
1384 		 * By default, all errors are masked. So don't set all masks.
1385 		 * Slice errors will be transfered.
1386 		 */
1387 		serr = (serr & ~0xff0000007fffffffULL) | (afu->serr_hwirq & 0xffff);
1388 	}
1389 	cxl_p1n_write(afu, CXL_PSL_SERR_An, serr);
1390 
1391 	return 0;
1392 }
1393 
1394 void cxl_native_release_serr_irq(struct cxl_afu *afu)
1395 {
1396 	if (afu->serr_virq == 0 ||
1397 	    afu->serr_virq != irq_find_mapping(NULL, afu->serr_hwirq))
1398 		return;
1399 
1400 	cxl_p1n_write(afu, CXL_PSL_SERR_An, 0x0000000000000000);
1401 	cxl_unmap_irq(afu->serr_virq, afu);
1402 	cxl_ops->release_one_irq(afu->adapter, afu->serr_hwirq);
1403 	kfree(afu->err_irq_name);
1404 	afu->serr_virq = 0;
1405 }
1406 
1407 int cxl_native_register_psl_irq(struct cxl_afu *afu)
1408 {
1409 	int rc;
1410 
1411 	afu->psl_irq_name = kasprintf(GFP_KERNEL, "cxl-%s",
1412 				      dev_name(&afu->dev));
1413 	if (!afu->psl_irq_name)
1414 		return -ENOMEM;
1415 
1416 	if ((rc = cxl_register_one_irq(afu->adapter, native_irq_multiplexed,
1417 				    afu, &afu->native->psl_hwirq, &afu->native->psl_virq,
1418 				    afu->psl_irq_name))) {
1419 		kfree(afu->psl_irq_name);
1420 		afu->psl_irq_name = NULL;
1421 	}
1422 	return rc;
1423 }
1424 
1425 void cxl_native_release_psl_irq(struct cxl_afu *afu)
1426 {
1427 	if (afu->native->psl_virq == 0 ||
1428 	    afu->native->psl_virq !=
1429 	    irq_find_mapping(NULL, afu->native->psl_hwirq))
1430 		return;
1431 
1432 	cxl_unmap_irq(afu->native->psl_virq, afu);
1433 	cxl_ops->release_one_irq(afu->adapter, afu->native->psl_hwirq);
1434 	kfree(afu->psl_irq_name);
1435 	afu->native->psl_virq = 0;
1436 }
1437 
1438 static void recover_psl_err(struct cxl_afu *afu, u64 errstat)
1439 {
1440 	u64 dsisr;
1441 
1442 	pr_devel("RECOVERING FROM PSL ERROR... (0x%016llx)\n", errstat);
1443 
1444 	/* Clear PSL_DSISR[PE] */
1445 	dsisr = cxl_p2n_read(afu, CXL_PSL_DSISR_An);
1446 	cxl_p2n_write(afu, CXL_PSL_DSISR_An, dsisr & ~CXL_PSL_DSISR_An_PE);
1447 
1448 	/* Write 1s to clear error status bits */
1449 	cxl_p2n_write(afu, CXL_PSL_ErrStat_An, errstat);
1450 }
1451 
1452 static int native_ack_irq(struct cxl_context *ctx, u64 tfc, u64 psl_reset_mask)
1453 {
1454 	trace_cxl_psl_irq_ack(ctx, tfc);
1455 	if (tfc)
1456 		cxl_p2n_write(ctx->afu, CXL_PSL_TFC_An, tfc);
1457 	if (psl_reset_mask)
1458 		recover_psl_err(ctx->afu, psl_reset_mask);
1459 
1460 	return 0;
1461 }
1462 
1463 int cxl_check_error(struct cxl_afu *afu)
1464 {
1465 	return (cxl_p1n_read(afu, CXL_PSL_SCNTL_An) == ~0ULL);
1466 }
1467 
1468 static bool native_support_attributes(const char *attr_name,
1469 				      enum cxl_attrs type)
1470 {
1471 	return true;
1472 }
1473 
1474 static int native_afu_cr_read64(struct cxl_afu *afu, int cr, u64 off, u64 *out)
1475 {
1476 	if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
1477 		return -EIO;
1478 	if (unlikely(off >= afu->crs_len))
1479 		return -ERANGE;
1480 	*out = in_le64(afu->native->afu_desc_mmio + afu->crs_offset +
1481 		(cr * afu->crs_len) + off);
1482 	return 0;
1483 }
1484 
1485 static int native_afu_cr_read32(struct cxl_afu *afu, int cr, u64 off, u32 *out)
1486 {
1487 	if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
1488 		return -EIO;
1489 	if (unlikely(off >= afu->crs_len))
1490 		return -ERANGE;
1491 	*out = in_le32(afu->native->afu_desc_mmio + afu->crs_offset +
1492 		(cr * afu->crs_len) + off);
1493 	return 0;
1494 }
1495 
1496 static int native_afu_cr_read16(struct cxl_afu *afu, int cr, u64 off, u16 *out)
1497 {
1498 	u64 aligned_off = off & ~0x3L;
1499 	u32 val;
1500 	int rc;
1501 
1502 	rc = native_afu_cr_read32(afu, cr, aligned_off, &val);
1503 	if (!rc)
1504 		*out = (val >> ((off & 0x3) * 8)) & 0xffff;
1505 	return rc;
1506 }
1507 
1508 static int native_afu_cr_read8(struct cxl_afu *afu, int cr, u64 off, u8 *out)
1509 {
1510 	u64 aligned_off = off & ~0x3L;
1511 	u32 val;
1512 	int rc;
1513 
1514 	rc = native_afu_cr_read32(afu, cr, aligned_off, &val);
1515 	if (!rc)
1516 		*out = (val >> ((off & 0x3) * 8)) & 0xff;
1517 	return rc;
1518 }
1519 
1520 static int native_afu_cr_write32(struct cxl_afu *afu, int cr, u64 off, u32 in)
1521 {
1522 	if (unlikely(!cxl_ops->link_ok(afu->adapter, afu)))
1523 		return -EIO;
1524 	if (unlikely(off >= afu->crs_len))
1525 		return -ERANGE;
1526 	out_le32(afu->native->afu_desc_mmio + afu->crs_offset +
1527 		(cr * afu->crs_len) + off, in);
1528 	return 0;
1529 }
1530 
1531 static int native_afu_cr_write16(struct cxl_afu *afu, int cr, u64 off, u16 in)
1532 {
1533 	u64 aligned_off = off & ~0x3L;
1534 	u32 val32, mask, shift;
1535 	int rc;
1536 
1537 	rc = native_afu_cr_read32(afu, cr, aligned_off, &val32);
1538 	if (rc)
1539 		return rc;
1540 	shift = (off & 0x3) * 8;
1541 	WARN_ON(shift == 24);
1542 	mask = 0xffff << shift;
1543 	val32 = (val32 & ~mask) | (in << shift);
1544 
1545 	rc = native_afu_cr_write32(afu, cr, aligned_off, val32);
1546 	return rc;
1547 }
1548 
1549 static int native_afu_cr_write8(struct cxl_afu *afu, int cr, u64 off, u8 in)
1550 {
1551 	u64 aligned_off = off & ~0x3L;
1552 	u32 val32, mask, shift;
1553 	int rc;
1554 
1555 	rc = native_afu_cr_read32(afu, cr, aligned_off, &val32);
1556 	if (rc)
1557 		return rc;
1558 	shift = (off & 0x3) * 8;
1559 	mask = 0xff << shift;
1560 	val32 = (val32 & ~mask) | (in << shift);
1561 
1562 	rc = native_afu_cr_write32(afu, cr, aligned_off, val32);
1563 	return rc;
1564 }
1565 
1566 const struct cxl_backend_ops cxl_native_ops = {
1567 	.module = THIS_MODULE,
1568 	.adapter_reset = cxl_pci_reset,
1569 	.alloc_one_irq = cxl_pci_alloc_one_irq,
1570 	.release_one_irq = cxl_pci_release_one_irq,
1571 	.alloc_irq_ranges = cxl_pci_alloc_irq_ranges,
1572 	.release_irq_ranges = cxl_pci_release_irq_ranges,
1573 	.setup_irq = cxl_pci_setup_irq,
1574 	.handle_psl_slice_error = native_handle_psl_slice_error,
1575 	.psl_interrupt = NULL,
1576 	.ack_irq = native_ack_irq,
1577 	.irq_wait = native_irq_wait,
1578 	.attach_process = native_attach_process,
1579 	.detach_process = native_detach_process,
1580 	.update_ivtes = native_update_ivtes,
1581 	.support_attributes = native_support_attributes,
1582 	.link_ok = cxl_adapter_link_ok,
1583 	.release_afu = cxl_pci_release_afu,
1584 	.afu_read_err_buffer = cxl_pci_afu_read_err_buffer,
1585 	.afu_check_and_enable = native_afu_check_and_enable,
1586 	.afu_activate_mode = native_afu_activate_mode,
1587 	.afu_deactivate_mode = native_afu_deactivate_mode,
1588 	.afu_reset = native_afu_reset,
1589 	.afu_cr_read8 = native_afu_cr_read8,
1590 	.afu_cr_read16 = native_afu_cr_read16,
1591 	.afu_cr_read32 = native_afu_cr_read32,
1592 	.afu_cr_read64 = native_afu_cr_read64,
1593 	.afu_cr_write8 = native_afu_cr_write8,
1594 	.afu_cr_write16 = native_afu_cr_write16,
1595 	.afu_cr_write32 = native_afu_cr_write32,
1596 	.read_adapter_vpd = cxl_pci_read_adapter_vpd,
1597 };
1598