xref: /linux/drivers/mfd/rave-sp.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * Multifunction core driver for Zodiac Inflight Innovations RAVE
5  * Supervisory Processor(SP) MCU that is connected via dedicated UART
6  * port
7  *
8  * Copyright (C) 2017 Zodiac Inflight Innovations
9  */
10 
11 #include <linux/atomic.h>
12 #include <linux/crc-ccitt.h>
13 #include <linux/delay.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/mfd/rave-sp.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/sched.h>
23 #include <linux/serdev.h>
24 #include <asm/unaligned.h>
25 
26 /*
27  * UART protocol using following entities:
28  *  - message to MCU => ACK response
29  *  - event from MCU => event ACK
30  *
31  * Frame structure:
32  * <STX> <DATA> <CHECKSUM> <ETX>
33  * Where:
34  * - STX - is start of transmission character
35  * - ETX - end of transmission
36  * - DATA - payload
37  * - CHECKSUM - checksum calculated on <DATA>
38  *
39  * If <DATA> or <CHECKSUM> contain one of control characters, then it is
40  * escaped using <DLE> control code. Added <DLE> does not participate in
41  * checksum calculation.
42  */
43 #define RAVE_SP_STX			0x02
44 #define RAVE_SP_ETX			0x03
45 #define RAVE_SP_DLE			0x10
46 
47 #define RAVE_SP_MAX_DATA_SIZE		64
48 #define RAVE_SP_CHECKSUM_SIZE		2  /* Worst case scenario on RDU2 */
49 /*
50  * We don't store STX, ETX and unescaped bytes, so Rx is only
51  * DATA + CSUM
52  */
53 #define RAVE_SP_RX_BUFFER_SIZE				\
54 	(RAVE_SP_MAX_DATA_SIZE + RAVE_SP_CHECKSUM_SIZE)
55 
56 #define RAVE_SP_STX_ETX_SIZE		2
57 /*
58  * For Tx we have to have space for everything, STX, EXT and
59  * potentially stuffed DATA + CSUM data + csum
60  */
61 #define RAVE_SP_TX_BUFFER_SIZE				\
62 	(RAVE_SP_STX_ETX_SIZE + 2 * RAVE_SP_RX_BUFFER_SIZE)
63 
64 #define RAVE_SP_BOOT_SOURCE_GET		0
65 #define RAVE_SP_BOOT_SOURCE_SET		1
66 
67 #define RAVE_SP_RDU2_BOARD_TYPE_RMB	0
68 #define RAVE_SP_RDU2_BOARD_TYPE_DEB	1
69 
70 #define RAVE_SP_BOOT_SOURCE_SD		0
71 #define RAVE_SP_BOOT_SOURCE_EMMC	1
72 #define RAVE_SP_BOOT_SOURCE_NOR		2
73 
74 /**
75  * enum rave_sp_deframer_state - Possible state for de-framer
76  *
77  * @RAVE_SP_EXPECT_SOF:		 Scanning input for start-of-frame marker
78  * @RAVE_SP_EXPECT_DATA:	 Got start of frame marker, collecting frame
79  * @RAVE_SP_EXPECT_ESCAPED_DATA: Got escape character, collecting escaped byte
80  */
81 enum rave_sp_deframer_state {
82 	RAVE_SP_EXPECT_SOF,
83 	RAVE_SP_EXPECT_DATA,
84 	RAVE_SP_EXPECT_ESCAPED_DATA,
85 };
86 
87 /**
88  * struct rave_sp_deframer - Device protocol deframer
89  *
90  * @state:  Current state of the deframer
91  * @data:   Buffer used to collect deframed data
92  * @length: Number of bytes de-framed so far
93  */
94 struct rave_sp_deframer {
95 	enum rave_sp_deframer_state state;
96 	unsigned char data[RAVE_SP_RX_BUFFER_SIZE];
97 	size_t length;
98 };
99 
100 /**
101  * struct rave_sp_reply - Reply as per RAVE device protocol
102  *
103  * @length:	Expected reply length
104  * @data:	Buffer to store reply payload in
105  * @code:	Expected reply code
106  * @ackid:	Expected reply ACK ID
107  * @completion: Successful reply reception completion
108  */
109 struct rave_sp_reply {
110 	size_t length;
111 	void  *data;
112 	u8     code;
113 	u8     ackid;
114 	struct completion received;
115 };
116 
117 /**
118  * struct rave_sp_checksum - Variant specific checksum implementation details
119  *
120  * @length:	Caculated checksum length
121  * @subroutine:	Utilized checksum algorithm implementation
122  */
123 struct rave_sp_checksum {
124 	size_t length;
125 	void (*subroutine)(const u8 *, size_t, u8 *);
126 };
127 
128 /**
129  * struct rave_sp_variant_cmds - Variant specific command routines
130  *
131  * @translate:	Generic to variant specific command mapping routine
132  *
133  */
134 struct rave_sp_variant_cmds {
135 	int (*translate)(enum rave_sp_command);
136 };
137 
138 /**
139  * struct rave_sp_variant - RAVE supervisory processor core variant
140  *
141  * @checksum:	Variant specific checksum implementation
142  * @cmd:	Variant specific command pointer table
143  *
144  */
145 struct rave_sp_variant {
146 	const struct rave_sp_checksum *checksum;
147 	struct rave_sp_variant_cmds cmd;
148 };
149 
150 /**
151  * struct rave_sp - RAVE supervisory processor core
152  *
153  * @serdev:			Pointer to underlying serdev
154  * @deframer:			Stored state of the protocol deframer
155  * @ackid:			ACK ID used in last reply sent to the device
156  * @bus_lock:			Lock to serialize access to the device
157  * @reply_lock:			Lock protecting @reply
158  * @reply:			Pointer to memory to store reply payload
159  *
160  * @variant:			Device variant specific information
161  * @event_notifier_list:	Input event notification chain
162  *
163  */
164 struct rave_sp {
165 	struct serdev_device *serdev;
166 	struct rave_sp_deframer deframer;
167 	atomic_t ackid;
168 	struct mutex bus_lock;
169 	struct mutex reply_lock;
170 	struct rave_sp_reply *reply;
171 
172 	const struct rave_sp_variant *variant;
173 	struct blocking_notifier_head event_notifier_list;
174 };
175 
176 static bool rave_sp_id_is_event(u8 code)
177 {
178 	return (code & 0xF0) == RAVE_SP_EVNT_BASE;
179 }
180 
181 static void rave_sp_unregister_event_notifier(struct device *dev, void *res)
182 {
183 	struct rave_sp *sp = dev_get_drvdata(dev->parent);
184 	struct notifier_block *nb = *(struct notifier_block **)res;
185 	struct blocking_notifier_head *bnh = &sp->event_notifier_list;
186 
187 	WARN_ON(blocking_notifier_chain_unregister(bnh, nb));
188 }
189 
190 int devm_rave_sp_register_event_notifier(struct device *dev,
191 					 struct notifier_block *nb)
192 {
193 	struct rave_sp *sp = dev_get_drvdata(dev->parent);
194 	struct notifier_block **rcnb;
195 	int ret;
196 
197 	rcnb = devres_alloc(rave_sp_unregister_event_notifier,
198 			    sizeof(*rcnb), GFP_KERNEL);
199 	if (!rcnb)
200 		return -ENOMEM;
201 
202 	ret = blocking_notifier_chain_register(&sp->event_notifier_list, nb);
203 	if (!ret) {
204 		*rcnb = nb;
205 		devres_add(dev, rcnb);
206 	} else {
207 		devres_free(rcnb);
208 	}
209 
210 	return ret;
211 }
212 EXPORT_SYMBOL_GPL(devm_rave_sp_register_event_notifier);
213 
214 static void csum_8b2c(const u8 *buf, size_t size, u8 *crc)
215 {
216 	*crc = *buf++;
217 	size--;
218 
219 	while (size--)
220 		*crc += *buf++;
221 
222 	*crc = 1 + ~(*crc);
223 }
224 
225 static void csum_ccitt(const u8 *buf, size_t size, u8 *crc)
226 {
227 	const u16 calculated = crc_ccitt_false(0xffff, buf, size);
228 
229 	/*
230 	 * While the rest of the wire protocol is little-endian,
231 	 * CCITT-16 CRC in RDU2 device is sent out in big-endian order.
232 	 */
233 	put_unaligned_be16(calculated, crc);
234 }
235 
236 static void *stuff(unsigned char *dest, const unsigned char *src, size_t n)
237 {
238 	while (n--) {
239 		const unsigned char byte = *src++;
240 
241 		switch (byte) {
242 		case RAVE_SP_STX:
243 		case RAVE_SP_ETX:
244 		case RAVE_SP_DLE:
245 			*dest++ = RAVE_SP_DLE;
246 			/* FALLTHROUGH */
247 		default:
248 			*dest++ = byte;
249 		}
250 	}
251 
252 	return dest;
253 }
254 
255 static int rave_sp_write(struct rave_sp *sp, const u8 *data, u8 data_size)
256 {
257 	const size_t checksum_length = sp->variant->checksum->length;
258 	unsigned char frame[RAVE_SP_TX_BUFFER_SIZE];
259 	unsigned char crc[RAVE_SP_CHECKSUM_SIZE];
260 	unsigned char *dest = frame;
261 	size_t length;
262 
263 	if (WARN_ON(checksum_length > sizeof(crc)))
264 		return -ENOMEM;
265 
266 	if (WARN_ON(data_size > sizeof(frame)))
267 		return -ENOMEM;
268 
269 	sp->variant->checksum->subroutine(data, data_size, crc);
270 
271 	*dest++ = RAVE_SP_STX;
272 	dest = stuff(dest, data, data_size);
273 	dest = stuff(dest, crc, checksum_length);
274 	*dest++ = RAVE_SP_ETX;
275 
276 	length = dest - frame;
277 
278 	print_hex_dump(KERN_DEBUG, "rave-sp tx: ", DUMP_PREFIX_NONE,
279 		       16, 1, frame, length, false);
280 
281 	return serdev_device_write(sp->serdev, frame, length, HZ);
282 }
283 
284 static u8 rave_sp_reply_code(u8 command)
285 {
286 	/*
287 	 * There isn't a single rule that describes command code ->
288 	 * ACK code transformation, but, going through various
289 	 * versions of ICDs, there appear to be three distinct groups
290 	 * that can be described by simple transformation.
291 	 */
292 	switch (command) {
293 	case 0xA0 ... 0xBE:
294 		/*
295 		 * Commands implemented by firmware found in RDU1 and
296 		 * older devices all seem to obey the following rule
297 		 */
298 		return command + 0x20;
299 	case 0xE0 ... 0xEF:
300 		/*
301 		 * Events emitted by all versions of the firmare use
302 		 * least significant bit to get an ACK code
303 		 */
304 		return command | 0x01;
305 	default:
306 		/*
307 		 * Commands implemented by firmware found in RDU2 are
308 		 * similar to "old" commands, but they use slightly
309 		 * different offset
310 		 */
311 		return command + 0x40;
312 	}
313 }
314 
315 int rave_sp_exec(struct rave_sp *sp,
316 		 void *__data,  size_t data_size,
317 		 void *reply_data, size_t reply_data_size)
318 {
319 	struct rave_sp_reply reply = {
320 		.data     = reply_data,
321 		.length   = reply_data_size,
322 		.received = COMPLETION_INITIALIZER_ONSTACK(reply.received),
323 	};
324 	unsigned char *data = __data;
325 	int command, ret = 0;
326 	u8 ackid;
327 
328 	command = sp->variant->cmd.translate(data[0]);
329 	if (command < 0)
330 		return command;
331 
332 	ackid       = atomic_inc_return(&sp->ackid);
333 	reply.ackid = ackid;
334 	reply.code  = rave_sp_reply_code((u8)command),
335 
336 	mutex_lock(&sp->bus_lock);
337 
338 	mutex_lock(&sp->reply_lock);
339 	sp->reply = &reply;
340 	mutex_unlock(&sp->reply_lock);
341 
342 	data[0] = command;
343 	data[1] = ackid;
344 
345 	rave_sp_write(sp, data, data_size);
346 
347 	if (!wait_for_completion_timeout(&reply.received, HZ)) {
348 		dev_err(&sp->serdev->dev, "Command timeout\n");
349 		ret = -ETIMEDOUT;
350 
351 		mutex_lock(&sp->reply_lock);
352 		sp->reply = NULL;
353 		mutex_unlock(&sp->reply_lock);
354 	}
355 
356 	mutex_unlock(&sp->bus_lock);
357 	return ret;
358 }
359 EXPORT_SYMBOL_GPL(rave_sp_exec);
360 
361 static void rave_sp_receive_event(struct rave_sp *sp,
362 				  const unsigned char *data, size_t length)
363 {
364 	u8 cmd[] = {
365 		[0] = rave_sp_reply_code(data[0]),
366 		[1] = data[1],
367 	};
368 
369 	rave_sp_write(sp, cmd, sizeof(cmd));
370 
371 	blocking_notifier_call_chain(&sp->event_notifier_list,
372 				     rave_sp_action_pack(data[0], data[2]),
373 				     NULL);
374 }
375 
376 static void rave_sp_receive_reply(struct rave_sp *sp,
377 				  const unsigned char *data, size_t length)
378 {
379 	struct device *dev = &sp->serdev->dev;
380 	struct rave_sp_reply *reply;
381 	const  size_t payload_length = length - 2;
382 
383 	mutex_lock(&sp->reply_lock);
384 	reply = sp->reply;
385 
386 	if (reply) {
387 		if (reply->code == data[0] && reply->ackid == data[1] &&
388 		    payload_length >= reply->length) {
389 			/*
390 			 * We are relying on memcpy(dst, src, 0) to be a no-op
391 			 * when handling commands that have a no-payload reply
392 			 */
393 			memcpy(reply->data, &data[2], reply->length);
394 			complete(&reply->received);
395 			sp->reply = NULL;
396 		} else {
397 			dev_err(dev, "Ignoring incorrect reply\n");
398 			dev_dbg(dev, "Code:   expected = 0x%08x received = 0x%08x\n",
399 				reply->code, data[0]);
400 			dev_dbg(dev, "ACK ID: expected = 0x%08x received = 0x%08x\n",
401 				reply->ackid, data[1]);
402 			dev_dbg(dev, "Length: expected = %zu received = %zu\n",
403 				reply->length, payload_length);
404 		}
405 	}
406 
407 	mutex_unlock(&sp->reply_lock);
408 }
409 
410 static void rave_sp_receive_frame(struct rave_sp *sp,
411 				  const unsigned char *data,
412 				  size_t length)
413 {
414 	const size_t checksum_length = sp->variant->checksum->length;
415 	const size_t payload_length  = length - checksum_length;
416 	const u8 *crc_reported       = &data[payload_length];
417 	struct device *dev           = &sp->serdev->dev;
418 	u8 crc_calculated[checksum_length];
419 
420 	print_hex_dump(KERN_DEBUG, "rave-sp rx: ", DUMP_PREFIX_NONE,
421 		       16, 1, data, length, false);
422 
423 	if (unlikely(length <= checksum_length)) {
424 		dev_warn(dev, "Dropping short frame\n");
425 		return;
426 	}
427 
428 	sp->variant->checksum->subroutine(data, payload_length,
429 					  crc_calculated);
430 
431 	if (memcmp(crc_calculated, crc_reported, checksum_length)) {
432 		dev_warn(dev, "Dropping bad frame\n");
433 		return;
434 	}
435 
436 	if (rave_sp_id_is_event(data[0]))
437 		rave_sp_receive_event(sp, data, length);
438 	else
439 		rave_sp_receive_reply(sp, data, length);
440 }
441 
442 static int rave_sp_receive_buf(struct serdev_device *serdev,
443 			       const unsigned char *buf, size_t size)
444 {
445 	struct device *dev = &serdev->dev;
446 	struct rave_sp *sp = dev_get_drvdata(dev);
447 	struct rave_sp_deframer *deframer = &sp->deframer;
448 	const unsigned char *src = buf;
449 	const unsigned char *end = buf + size;
450 
451 	while (src < end) {
452 		const unsigned char byte = *src++;
453 
454 		switch (deframer->state) {
455 		case RAVE_SP_EXPECT_SOF:
456 			if (byte == RAVE_SP_STX)
457 				deframer->state = RAVE_SP_EXPECT_DATA;
458 			break;
459 
460 		case RAVE_SP_EXPECT_DATA:
461 			/*
462 			 * Treat special byte values first
463 			 */
464 			switch (byte) {
465 			case RAVE_SP_ETX:
466 				rave_sp_receive_frame(sp,
467 						      deframer->data,
468 						      deframer->length);
469 				/*
470 				 * Once we extracted a complete frame
471 				 * out of a stream, we call it done
472 				 * and proceed to bailing out while
473 				 * resetting the framer to initial
474 				 * state, regardless if we've consumed
475 				 * all of the stream or not.
476 				 */
477 				goto reset_framer;
478 			case RAVE_SP_STX:
479 				dev_warn(dev, "Bad frame: STX before ETX\n");
480 				/*
481 				 * If we encounter second "start of
482 				 * the frame" marker before seeing
483 				 * corresponding "end of frame", we
484 				 * reset the framer and ignore both:
485 				 * frame started by first SOF and
486 				 * frame started by current SOF.
487 				 *
488 				 * NOTE: The above means that only the
489 				 * frame started by third SOF, sent
490 				 * after this one will have a chance
491 				 * to get throught.
492 				 */
493 				goto reset_framer;
494 			case RAVE_SP_DLE:
495 				deframer->state = RAVE_SP_EXPECT_ESCAPED_DATA;
496 				/*
497 				 * If we encounter escape sequence we
498 				 * need to skip it and collect the
499 				 * byte that follows. We do it by
500 				 * forcing the next iteration of the
501 				 * encompassing while loop.
502 				 */
503 				continue;
504 			}
505 			/*
506 			 * For the rest of the bytes, that are not
507 			 * speical snoflakes, we do the same thing
508 			 * that we do to escaped data - collect it in
509 			 * deframer buffer
510 			 */
511 
512 			/* FALLTHROUGH */
513 
514 		case RAVE_SP_EXPECT_ESCAPED_DATA:
515 			deframer->data[deframer->length++] = byte;
516 
517 			if (deframer->length == sizeof(deframer->data)) {
518 				dev_warn(dev, "Bad frame: Too long\n");
519 				/*
520 				 * If the amount of data we've
521 				 * accumulated for current frame so
522 				 * far starts to exceed the capacity
523 				 * of deframer's buffer, there's
524 				 * nothing else we can do but to
525 				 * discard that data and start
526 				 * assemblying a new frame again
527 				 */
528 				goto reset_framer;
529 			}
530 
531 			/*
532 			 * We've extracted out special byte, now we
533 			 * can go back to regular data collecting
534 			 */
535 			deframer->state = RAVE_SP_EXPECT_DATA;
536 			break;
537 		}
538 	}
539 
540 	/*
541 	 * The only way to get out of the above loop and end up here
542 	 * is throught consuming all of the supplied data, so here we
543 	 * report that we processed it all.
544 	 */
545 	return size;
546 
547 reset_framer:
548 	/*
549 	 * NOTE: A number of codepaths that will drop us here will do
550 	 * so before consuming all 'size' bytes of the data passed by
551 	 * serdev layer. We rely on the fact that serdev layer will
552 	 * re-execute this handler with the remainder of the Rx bytes
553 	 * once we report actual number of bytes that we processed.
554 	 */
555 	deframer->state  = RAVE_SP_EXPECT_SOF;
556 	deframer->length = 0;
557 
558 	return src - buf;
559 }
560 
561 static int rave_sp_rdu1_cmd_translate(enum rave_sp_command command)
562 {
563 	if (command >= RAVE_SP_CMD_STATUS &&
564 	    command <= RAVE_SP_CMD_CONTROL_EVENTS)
565 		return command;
566 
567 	return -EINVAL;
568 }
569 
570 static int rave_sp_rdu2_cmd_translate(enum rave_sp_command command)
571 {
572 	if (command >= RAVE_SP_CMD_GET_FIRMWARE_VERSION &&
573 	    command <= RAVE_SP_CMD_GET_GPIO_STATE)
574 		return command;
575 
576 	if (command == RAVE_SP_CMD_REQ_COPPER_REV) {
577 		/*
578 		 * As per RDU2 ICD 3.4.47 CMD_GET_COPPER_REV code is
579 		 * different from that for RDU1 and it is set to 0x28.
580 		 */
581 		return 0x28;
582 	}
583 
584 	return rave_sp_rdu1_cmd_translate(command);
585 }
586 
587 static int rave_sp_default_cmd_translate(enum rave_sp_command command)
588 {
589 	/*
590 	 * All of the following command codes were taken from "Table :
591 	 * Communications Protocol Message Types" in section 3.3
592 	 * "MESSAGE TYPES" of Rave PIC24 ICD.
593 	 */
594 	switch (command) {
595 	case RAVE_SP_CMD_GET_FIRMWARE_VERSION:
596 		return 0x11;
597 	case RAVE_SP_CMD_GET_BOOTLOADER_VERSION:
598 		return 0x12;
599 	case RAVE_SP_CMD_BOOT_SOURCE:
600 		return 0x14;
601 	case RAVE_SP_CMD_SW_WDT:
602 		return 0x1C;
603 	case RAVE_SP_CMD_RESET:
604 		return 0x1E;
605 	case RAVE_SP_CMD_RESET_REASON:
606 		return 0x1F;
607 	default:
608 		return -EINVAL;
609 	}
610 }
611 
612 static const struct rave_sp_checksum rave_sp_checksum_8b2c = {
613 	.length     = 1,
614 	.subroutine = csum_8b2c,
615 };
616 
617 static const struct rave_sp_checksum rave_sp_checksum_ccitt = {
618 	.length     = 2,
619 	.subroutine = csum_ccitt,
620 };
621 
622 static const struct rave_sp_variant rave_sp_legacy = {
623 	.checksum = &rave_sp_checksum_8b2c,
624 	.cmd = {
625 		.translate = rave_sp_default_cmd_translate,
626 	},
627 };
628 
629 static const struct rave_sp_variant rave_sp_rdu1 = {
630 	.checksum = &rave_sp_checksum_8b2c,
631 	.cmd = {
632 		.translate = rave_sp_rdu1_cmd_translate,
633 	},
634 };
635 
636 static const struct rave_sp_variant rave_sp_rdu2 = {
637 	.checksum = &rave_sp_checksum_ccitt,
638 	.cmd = {
639 		.translate = rave_sp_rdu2_cmd_translate,
640 	},
641 };
642 
643 static const struct of_device_id rave_sp_dt_ids[] = {
644 	{ .compatible = "zii,rave-sp-niu",  .data = &rave_sp_legacy },
645 	{ .compatible = "zii,rave-sp-mezz", .data = &rave_sp_legacy },
646 	{ .compatible = "zii,rave-sp-esb",  .data = &rave_sp_legacy },
647 	{ .compatible = "zii,rave-sp-rdu1", .data = &rave_sp_rdu1   },
648 	{ .compatible = "zii,rave-sp-rdu2", .data = &rave_sp_rdu2   },
649 	{ /* sentinel */ }
650 };
651 
652 static const struct serdev_device_ops rave_sp_serdev_device_ops = {
653 	.receive_buf  = rave_sp_receive_buf,
654 	.write_wakeup = serdev_device_write_wakeup,
655 };
656 
657 static int rave_sp_probe(struct serdev_device *serdev)
658 {
659 	struct device *dev = &serdev->dev;
660 	struct rave_sp *sp;
661 	u32 baud;
662 	int ret;
663 
664 	if (of_property_read_u32(dev->of_node, "current-speed", &baud)) {
665 		dev_err(dev,
666 			"'current-speed' is not specified in device node\n");
667 		return -EINVAL;
668 	}
669 
670 	sp = devm_kzalloc(dev, sizeof(*sp), GFP_KERNEL);
671 	if (!sp)
672 		return -ENOMEM;
673 
674 	sp->serdev = serdev;
675 	dev_set_drvdata(dev, sp);
676 
677 	sp->variant = of_device_get_match_data(dev);
678 	if (!sp->variant)
679 		return -ENODEV;
680 
681 	mutex_init(&sp->bus_lock);
682 	mutex_init(&sp->reply_lock);
683 	BLOCKING_INIT_NOTIFIER_HEAD(&sp->event_notifier_list);
684 
685 	serdev_device_set_client_ops(serdev, &rave_sp_serdev_device_ops);
686 	ret = devm_serdev_device_open(dev, serdev);
687 	if (ret)
688 		return ret;
689 
690 	serdev_device_set_baudrate(serdev, baud);
691 
692 	return devm_of_platform_populate(dev);
693 }
694 
695 MODULE_DEVICE_TABLE(of, rave_sp_dt_ids);
696 
697 static struct serdev_device_driver rave_sp_drv = {
698 	.probe			= rave_sp_probe,
699 	.driver = {
700 		.name		= "rave-sp",
701 		.of_match_table	= rave_sp_dt_ids,
702 	},
703 };
704 module_serdev_device_driver(rave_sp_drv);
705 
706 MODULE_LICENSE("GPL");
707 MODULE_AUTHOR("Andrey Vostrikov <andrey.vostrikov@cogentembedded.com>");
708 MODULE_AUTHOR("Nikita Yushchenko <nikita.yoush@cogentembedded.com>");
709 MODULE_AUTHOR("Andrey Smirnov <andrew.smirnov@gmail.com>");
710 MODULE_DESCRIPTION("RAVE SP core driver");
711