1 /* 2 * Copyright (C) 2004 Texas Instruments, Inc. 3 * 4 * Some parts based tps65010.c: 5 * Copyright (C) 2004 Texas Instruments and 6 * Copyright (C) 2004-2005 David Brownell 7 * 8 * Some parts based on tlv320aic24.c: 9 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com> 10 * 11 * Changes for interrupt handling and clean-up by 12 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com> 13 * Cleanup and generalized support for voltage setting by 14 * Juha Yrjola 15 * Added support for controlling VCORE and regulator sleep states, 16 * Amit Kucheria <amit.kucheria@nokia.com> 17 * Copyright (C) 2005, 2006 Nokia Corporation 18 * 19 * This program is free software; you can redistribute it and/or modify 20 * it under the terms of the GNU General Public License as published by 21 * the Free Software Foundation; either version 2 of the License, or 22 * (at your option) any later version. 23 * 24 * This program is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 27 * GNU General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License 30 * along with this program; if not, write to the Free Software 31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 32 */ 33 34 #include <linux/module.h> 35 #include <linux/i2c.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/mutex.h> 39 #include <linux/workqueue.h> 40 #include <linux/delay.h> 41 #include <linux/rtc.h> 42 #include <linux/bcd.h> 43 #include <linux/slab.h> 44 45 #include <asm/mach/irq.h> 46 47 #include <mach/gpio.h> 48 #include <plat/menelaus.h> 49 50 #define DRIVER_NAME "menelaus" 51 52 #define MENELAUS_I2C_ADDRESS 0x72 53 54 #define MENELAUS_REV 0x01 55 #define MENELAUS_VCORE_CTRL1 0x02 56 #define MENELAUS_VCORE_CTRL2 0x03 57 #define MENELAUS_VCORE_CTRL3 0x04 58 #define MENELAUS_VCORE_CTRL4 0x05 59 #define MENELAUS_VCORE_CTRL5 0x06 60 #define MENELAUS_DCDC_CTRL1 0x07 61 #define MENELAUS_DCDC_CTRL2 0x08 62 #define MENELAUS_DCDC_CTRL3 0x09 63 #define MENELAUS_LDO_CTRL1 0x0A 64 #define MENELAUS_LDO_CTRL2 0x0B 65 #define MENELAUS_LDO_CTRL3 0x0C 66 #define MENELAUS_LDO_CTRL4 0x0D 67 #define MENELAUS_LDO_CTRL5 0x0E 68 #define MENELAUS_LDO_CTRL6 0x0F 69 #define MENELAUS_LDO_CTRL7 0x10 70 #define MENELAUS_LDO_CTRL8 0x11 71 #define MENELAUS_SLEEP_CTRL1 0x12 72 #define MENELAUS_SLEEP_CTRL2 0x13 73 #define MENELAUS_DEVICE_OFF 0x14 74 #define MENELAUS_OSC_CTRL 0x15 75 #define MENELAUS_DETECT_CTRL 0x16 76 #define MENELAUS_INT_MASK1 0x17 77 #define MENELAUS_INT_MASK2 0x18 78 #define MENELAUS_INT_STATUS1 0x19 79 #define MENELAUS_INT_STATUS2 0x1A 80 #define MENELAUS_INT_ACK1 0x1B 81 #define MENELAUS_INT_ACK2 0x1C 82 #define MENELAUS_GPIO_CTRL 0x1D 83 #define MENELAUS_GPIO_IN 0x1E 84 #define MENELAUS_GPIO_OUT 0x1F 85 #define MENELAUS_BBSMS 0x20 86 #define MENELAUS_RTC_CTRL 0x21 87 #define MENELAUS_RTC_UPDATE 0x22 88 #define MENELAUS_RTC_SEC 0x23 89 #define MENELAUS_RTC_MIN 0x24 90 #define MENELAUS_RTC_HR 0x25 91 #define MENELAUS_RTC_DAY 0x26 92 #define MENELAUS_RTC_MON 0x27 93 #define MENELAUS_RTC_YR 0x28 94 #define MENELAUS_RTC_WKDAY 0x29 95 #define MENELAUS_RTC_AL_SEC 0x2A 96 #define MENELAUS_RTC_AL_MIN 0x2B 97 #define MENELAUS_RTC_AL_HR 0x2C 98 #define MENELAUS_RTC_AL_DAY 0x2D 99 #define MENELAUS_RTC_AL_MON 0x2E 100 #define MENELAUS_RTC_AL_YR 0x2F 101 #define MENELAUS_RTC_COMP_MSB 0x30 102 #define MENELAUS_RTC_COMP_LSB 0x31 103 #define MENELAUS_S1_PULL_EN 0x32 104 #define MENELAUS_S1_PULL_DIR 0x33 105 #define MENELAUS_S2_PULL_EN 0x34 106 #define MENELAUS_S2_PULL_DIR 0x35 107 #define MENELAUS_MCT_CTRL1 0x36 108 #define MENELAUS_MCT_CTRL2 0x37 109 #define MENELAUS_MCT_CTRL3 0x38 110 #define MENELAUS_MCT_PIN_ST 0x39 111 #define MENELAUS_DEBOUNCE1 0x3A 112 113 #define IH_MENELAUS_IRQS 12 114 #define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */ 115 #define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */ 116 #define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */ 117 #define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */ 118 #define MENELAUS_LOWBAT_IRQ 4 /* Low battery */ 119 #define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */ 120 #define MENELAUS_UVLO_IRQ 6 /* UVLO detect */ 121 #define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */ 122 #define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */ 123 #define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */ 124 #define MENELAUS_RTCERR_IRQ 10 /* RTC error */ 125 #define MENELAUS_PSHBTN_IRQ 11 /* Push button */ 126 #define MENELAUS_RESERVED12_IRQ 12 /* Reserved */ 127 #define MENELAUS_RESERVED13_IRQ 13 /* Reserved */ 128 #define MENELAUS_RESERVED14_IRQ 14 /* Reserved */ 129 #define MENELAUS_RESERVED15_IRQ 15 /* Reserved */ 130 131 static void menelaus_work(struct work_struct *_menelaus); 132 133 struct menelaus_chip { 134 struct mutex lock; 135 struct i2c_client *client; 136 struct work_struct work; 137 #ifdef CONFIG_RTC_DRV_TWL92330 138 struct rtc_device *rtc; 139 u8 rtc_control; 140 unsigned uie:1; 141 #endif 142 unsigned vcore_hw_mode:1; 143 u8 mask1, mask2; 144 void (*handlers[16])(struct menelaus_chip *); 145 void (*mmc_callback)(void *data, u8 mask); 146 void *mmc_callback_data; 147 }; 148 149 static struct menelaus_chip *the_menelaus; 150 151 static int menelaus_write_reg(int reg, u8 value) 152 { 153 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value); 154 155 if (val < 0) { 156 pr_err(DRIVER_NAME ": write error"); 157 return val; 158 } 159 160 return 0; 161 } 162 163 static int menelaus_read_reg(int reg) 164 { 165 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg); 166 167 if (val < 0) 168 pr_err(DRIVER_NAME ": read error"); 169 170 return val; 171 } 172 173 static int menelaus_enable_irq(int irq) 174 { 175 if (irq > 7) { 176 irq -= 8; 177 the_menelaus->mask2 &= ~(1 << irq); 178 return menelaus_write_reg(MENELAUS_INT_MASK2, 179 the_menelaus->mask2); 180 } else { 181 the_menelaus->mask1 &= ~(1 << irq); 182 return menelaus_write_reg(MENELAUS_INT_MASK1, 183 the_menelaus->mask1); 184 } 185 } 186 187 static int menelaus_disable_irq(int irq) 188 { 189 if (irq > 7) { 190 irq -= 8; 191 the_menelaus->mask2 |= (1 << irq); 192 return menelaus_write_reg(MENELAUS_INT_MASK2, 193 the_menelaus->mask2); 194 } else { 195 the_menelaus->mask1 |= (1 << irq); 196 return menelaus_write_reg(MENELAUS_INT_MASK1, 197 the_menelaus->mask1); 198 } 199 } 200 201 static int menelaus_ack_irq(int irq) 202 { 203 if (irq > 7) 204 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8)); 205 else 206 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq); 207 } 208 209 /* Adds a handler for an interrupt. Does not run in interrupt context */ 210 static int menelaus_add_irq_work(int irq, 211 void (*handler)(struct menelaus_chip *)) 212 { 213 int ret = 0; 214 215 mutex_lock(&the_menelaus->lock); 216 the_menelaus->handlers[irq] = handler; 217 ret = menelaus_enable_irq(irq); 218 mutex_unlock(&the_menelaus->lock); 219 220 return ret; 221 } 222 223 /* Removes handler for an interrupt */ 224 static int menelaus_remove_irq_work(int irq) 225 { 226 int ret = 0; 227 228 mutex_lock(&the_menelaus->lock); 229 ret = menelaus_disable_irq(irq); 230 the_menelaus->handlers[irq] = NULL; 231 mutex_unlock(&the_menelaus->lock); 232 233 return ret; 234 } 235 236 /* 237 * Gets scheduled when a card detect interrupt happens. Note that in some cases 238 * this line is wired to card cover switch rather than the card detect switch 239 * in each slot. In this case the cards are not seen by menelaus. 240 * FIXME: Add handling for D1 too 241 */ 242 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw) 243 { 244 int reg; 245 unsigned char card_mask = 0; 246 247 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST); 248 if (reg < 0) 249 return; 250 251 if (!(reg & 0x1)) 252 card_mask |= (1 << 0); 253 254 if (!(reg & 0x2)) 255 card_mask |= (1 << 1); 256 257 if (menelaus_hw->mmc_callback) 258 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data, 259 card_mask); 260 } 261 262 /* 263 * Toggles the MMC slots between open-drain and push-pull mode. 264 */ 265 int menelaus_set_mmc_opendrain(int slot, int enable) 266 { 267 int ret, val; 268 269 if (slot != 1 && slot != 2) 270 return -EINVAL; 271 mutex_lock(&the_menelaus->lock); 272 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1); 273 if (ret < 0) { 274 mutex_unlock(&the_menelaus->lock); 275 return ret; 276 } 277 val = ret; 278 if (slot == 1) { 279 if (enable) 280 val |= 1 << 2; 281 else 282 val &= ~(1 << 2); 283 } else { 284 if (enable) 285 val |= 1 << 3; 286 else 287 val &= ~(1 << 3); 288 } 289 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val); 290 mutex_unlock(&the_menelaus->lock); 291 292 return ret; 293 } 294 EXPORT_SYMBOL(menelaus_set_mmc_opendrain); 295 296 int menelaus_set_slot_sel(int enable) 297 { 298 int ret; 299 300 mutex_lock(&the_menelaus->lock); 301 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); 302 if (ret < 0) 303 goto out; 304 ret |= 0x02; 305 if (enable) 306 ret |= 1 << 5; 307 else 308 ret &= ~(1 << 5); 309 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); 310 out: 311 mutex_unlock(&the_menelaus->lock); 312 return ret; 313 } 314 EXPORT_SYMBOL(menelaus_set_slot_sel); 315 316 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en) 317 { 318 int ret, val; 319 320 if (slot != 1 && slot != 2) 321 return -EINVAL; 322 if (power >= 3) 323 return -EINVAL; 324 325 mutex_lock(&the_menelaus->lock); 326 327 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2); 328 if (ret < 0) 329 goto out; 330 val = ret; 331 if (slot == 1) { 332 if (cd_en) 333 val |= (1 << 4) | (1 << 6); 334 else 335 val &= ~((1 << 4) | (1 << 6)); 336 } else { 337 if (cd_en) 338 val |= (1 << 5) | (1 << 7); 339 else 340 val &= ~((1 << 5) | (1 << 7)); 341 } 342 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val); 343 if (ret < 0) 344 goto out; 345 346 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3); 347 if (ret < 0) 348 goto out; 349 val = ret; 350 if (slot == 1) { 351 if (enable) 352 val |= 1 << 0; 353 else 354 val &= ~(1 << 0); 355 } else { 356 int b; 357 358 if (enable) 359 ret |= 1 << 1; 360 else 361 ret &= ~(1 << 1); 362 b = menelaus_read_reg(MENELAUS_MCT_CTRL2); 363 b &= ~0x03; 364 b |= power; 365 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b); 366 if (ret < 0) 367 goto out; 368 } 369 /* Disable autonomous shutdown */ 370 val &= ~(0x03 << 2); 371 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val); 372 out: 373 mutex_unlock(&the_menelaus->lock); 374 return ret; 375 } 376 EXPORT_SYMBOL(menelaus_set_mmc_slot); 377 378 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask), 379 void *data) 380 { 381 int ret = 0; 382 383 the_menelaus->mmc_callback_data = data; 384 the_menelaus->mmc_callback = callback; 385 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ, 386 menelaus_mmc_cd_work); 387 if (ret < 0) 388 return ret; 389 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ, 390 menelaus_mmc_cd_work); 391 if (ret < 0) 392 return ret; 393 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ, 394 menelaus_mmc_cd_work); 395 if (ret < 0) 396 return ret; 397 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ, 398 menelaus_mmc_cd_work); 399 400 return ret; 401 } 402 EXPORT_SYMBOL(menelaus_register_mmc_callback); 403 404 void menelaus_unregister_mmc_callback(void) 405 { 406 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ); 407 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ); 408 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ); 409 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ); 410 411 the_menelaus->mmc_callback = NULL; 412 the_menelaus->mmc_callback_data = 0; 413 } 414 EXPORT_SYMBOL(menelaus_unregister_mmc_callback); 415 416 struct menelaus_vtg { 417 const char *name; 418 u8 vtg_reg; 419 u8 vtg_shift; 420 u8 vtg_bits; 421 u8 mode_reg; 422 }; 423 424 struct menelaus_vtg_value { 425 u16 vtg; 426 u16 val; 427 }; 428 429 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV, 430 int vtg_val, int mode) 431 { 432 int val, ret; 433 struct i2c_client *c = the_menelaus->client; 434 435 mutex_lock(&the_menelaus->lock); 436 if (vtg == 0) 437 goto set_voltage; 438 439 ret = menelaus_read_reg(vtg->vtg_reg); 440 if (ret < 0) 441 goto out; 442 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift); 443 val |= vtg_val << vtg->vtg_shift; 444 445 dev_dbg(&c->dev, "Setting voltage '%s'" 446 "to %d mV (reg 0x%02x, val 0x%02x)\n", 447 vtg->name, mV, vtg->vtg_reg, val); 448 449 ret = menelaus_write_reg(vtg->vtg_reg, val); 450 if (ret < 0) 451 goto out; 452 set_voltage: 453 ret = menelaus_write_reg(vtg->mode_reg, mode); 454 out: 455 mutex_unlock(&the_menelaus->lock); 456 if (ret == 0) { 457 /* Wait for voltage to stabilize */ 458 msleep(1); 459 } 460 return ret; 461 } 462 463 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl, 464 int n) 465 { 466 int i; 467 468 for (i = 0; i < n; i++, tbl++) 469 if (tbl->vtg == vtg) 470 return tbl->val; 471 return -EINVAL; 472 } 473 474 /* 475 * Vcore can be programmed in two ways: 476 * SW-controlled: Required voltage is programmed into VCORE_CTRL1 477 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3 478 * and VCORE_CTRL4 479 * 480 * Call correct 'set' function accordingly 481 */ 482 483 static const struct menelaus_vtg_value vcore_values[] = { 484 { 1000, 0 }, 485 { 1025, 1 }, 486 { 1050, 2 }, 487 { 1075, 3 }, 488 { 1100, 4 }, 489 { 1125, 5 }, 490 { 1150, 6 }, 491 { 1175, 7 }, 492 { 1200, 8 }, 493 { 1225, 9 }, 494 { 1250, 10 }, 495 { 1275, 11 }, 496 { 1300, 12 }, 497 { 1325, 13 }, 498 { 1350, 14 }, 499 { 1375, 15 }, 500 { 1400, 16 }, 501 { 1425, 17 }, 502 { 1450, 18 }, 503 }; 504 505 int menelaus_set_vcore_sw(unsigned int mV) 506 { 507 int val, ret; 508 struct i2c_client *c = the_menelaus->client; 509 510 val = menelaus_get_vtg_value(mV, vcore_values, 511 ARRAY_SIZE(vcore_values)); 512 if (val < 0) 513 return -EINVAL; 514 515 dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val); 516 517 /* Set SW mode and the voltage in one go. */ 518 mutex_lock(&the_menelaus->lock); 519 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val); 520 if (ret == 0) 521 the_menelaus->vcore_hw_mode = 0; 522 mutex_unlock(&the_menelaus->lock); 523 msleep(1); 524 525 return ret; 526 } 527 528 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV) 529 { 530 int fval, rval, val, ret; 531 struct i2c_client *c = the_menelaus->client; 532 533 rval = menelaus_get_vtg_value(roof_mV, vcore_values, 534 ARRAY_SIZE(vcore_values)); 535 if (rval < 0) 536 return -EINVAL; 537 fval = menelaus_get_vtg_value(floor_mV, vcore_values, 538 ARRAY_SIZE(vcore_values)); 539 if (fval < 0) 540 return -EINVAL; 541 542 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n", 543 floor_mV, roof_mV); 544 545 mutex_lock(&the_menelaus->lock); 546 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval); 547 if (ret < 0) 548 goto out; 549 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval); 550 if (ret < 0) 551 goto out; 552 if (!the_menelaus->vcore_hw_mode) { 553 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1); 554 /* HW mode, turn OFF byte comparator */ 555 val |= ((1 << 7) | (1 << 5)); 556 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val); 557 the_menelaus->vcore_hw_mode = 1; 558 } 559 msleep(1); 560 out: 561 mutex_unlock(&the_menelaus->lock); 562 return ret; 563 } 564 565 static const struct menelaus_vtg vmem_vtg = { 566 .name = "VMEM", 567 .vtg_reg = MENELAUS_LDO_CTRL1, 568 .vtg_shift = 0, 569 .vtg_bits = 2, 570 .mode_reg = MENELAUS_LDO_CTRL3, 571 }; 572 573 static const struct menelaus_vtg_value vmem_values[] = { 574 { 1500, 0 }, 575 { 1800, 1 }, 576 { 1900, 2 }, 577 { 2500, 3 }, 578 }; 579 580 int menelaus_set_vmem(unsigned int mV) 581 { 582 int val; 583 584 if (mV == 0) 585 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0); 586 587 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values)); 588 if (val < 0) 589 return -EINVAL; 590 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02); 591 } 592 EXPORT_SYMBOL(menelaus_set_vmem); 593 594 static const struct menelaus_vtg vio_vtg = { 595 .name = "VIO", 596 .vtg_reg = MENELAUS_LDO_CTRL1, 597 .vtg_shift = 2, 598 .vtg_bits = 2, 599 .mode_reg = MENELAUS_LDO_CTRL4, 600 }; 601 602 static const struct menelaus_vtg_value vio_values[] = { 603 { 1500, 0 }, 604 { 1800, 1 }, 605 { 2500, 2 }, 606 { 2800, 3 }, 607 }; 608 609 int menelaus_set_vio(unsigned int mV) 610 { 611 int val; 612 613 if (mV == 0) 614 return menelaus_set_voltage(&vio_vtg, 0, 0, 0); 615 616 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values)); 617 if (val < 0) 618 return -EINVAL; 619 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02); 620 } 621 EXPORT_SYMBOL(menelaus_set_vio); 622 623 static const struct menelaus_vtg_value vdcdc_values[] = { 624 { 1500, 0 }, 625 { 1800, 1 }, 626 { 2000, 2 }, 627 { 2200, 3 }, 628 { 2400, 4 }, 629 { 2800, 5 }, 630 { 3000, 6 }, 631 { 3300, 7 }, 632 }; 633 634 static const struct menelaus_vtg vdcdc2_vtg = { 635 .name = "VDCDC2", 636 .vtg_reg = MENELAUS_DCDC_CTRL1, 637 .vtg_shift = 0, 638 .vtg_bits = 3, 639 .mode_reg = MENELAUS_DCDC_CTRL2, 640 }; 641 642 static const struct menelaus_vtg vdcdc3_vtg = { 643 .name = "VDCDC3", 644 .vtg_reg = MENELAUS_DCDC_CTRL1, 645 .vtg_shift = 3, 646 .vtg_bits = 3, 647 .mode_reg = MENELAUS_DCDC_CTRL3, 648 }; 649 650 int menelaus_set_vdcdc(int dcdc, unsigned int mV) 651 { 652 const struct menelaus_vtg *vtg; 653 int val; 654 655 if (dcdc != 2 && dcdc != 3) 656 return -EINVAL; 657 if (dcdc == 2) 658 vtg = &vdcdc2_vtg; 659 else 660 vtg = &vdcdc3_vtg; 661 662 if (mV == 0) 663 return menelaus_set_voltage(vtg, 0, 0, 0); 664 665 val = menelaus_get_vtg_value(mV, vdcdc_values, 666 ARRAY_SIZE(vdcdc_values)); 667 if (val < 0) 668 return -EINVAL; 669 return menelaus_set_voltage(vtg, mV, val, 0x03); 670 } 671 672 static const struct menelaus_vtg_value vmmc_values[] = { 673 { 1850, 0 }, 674 { 2800, 1 }, 675 { 3000, 2 }, 676 { 3100, 3 }, 677 }; 678 679 static const struct menelaus_vtg vmmc_vtg = { 680 .name = "VMMC", 681 .vtg_reg = MENELAUS_LDO_CTRL1, 682 .vtg_shift = 6, 683 .vtg_bits = 2, 684 .mode_reg = MENELAUS_LDO_CTRL7, 685 }; 686 687 int menelaus_set_vmmc(unsigned int mV) 688 { 689 int val; 690 691 if (mV == 0) 692 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0); 693 694 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values)); 695 if (val < 0) 696 return -EINVAL; 697 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02); 698 } 699 EXPORT_SYMBOL(menelaus_set_vmmc); 700 701 702 static const struct menelaus_vtg_value vaux_values[] = { 703 { 1500, 0 }, 704 { 1800, 1 }, 705 { 2500, 2 }, 706 { 2800, 3 }, 707 }; 708 709 static const struct menelaus_vtg vaux_vtg = { 710 .name = "VAUX", 711 .vtg_reg = MENELAUS_LDO_CTRL1, 712 .vtg_shift = 4, 713 .vtg_bits = 2, 714 .mode_reg = MENELAUS_LDO_CTRL6, 715 }; 716 717 int menelaus_set_vaux(unsigned int mV) 718 { 719 int val; 720 721 if (mV == 0) 722 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0); 723 724 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values)); 725 if (val < 0) 726 return -EINVAL; 727 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02); 728 } 729 EXPORT_SYMBOL(menelaus_set_vaux); 730 731 int menelaus_get_slot_pin_states(void) 732 { 733 return menelaus_read_reg(MENELAUS_MCT_PIN_ST); 734 } 735 EXPORT_SYMBOL(menelaus_get_slot_pin_states); 736 737 int menelaus_set_regulator_sleep(int enable, u32 val) 738 { 739 int t, ret; 740 struct i2c_client *c = the_menelaus->client; 741 742 mutex_lock(&the_menelaus->lock); 743 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val); 744 if (ret < 0) 745 goto out; 746 747 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val); 748 749 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL); 750 if (ret < 0) 751 goto out; 752 t = ((1 << 6) | 0x04); 753 if (enable) 754 ret |= t; 755 else 756 ret &= ~t; 757 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret); 758 out: 759 mutex_unlock(&the_menelaus->lock); 760 return ret; 761 } 762 763 /*-----------------------------------------------------------------------*/ 764 765 /* Handles Menelaus interrupts. Does not run in interrupt context */ 766 static void menelaus_work(struct work_struct *_menelaus) 767 { 768 struct menelaus_chip *menelaus = 769 container_of(_menelaus, struct menelaus_chip, work); 770 void (*handler)(struct menelaus_chip *menelaus); 771 772 while (1) { 773 unsigned isr; 774 775 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2) 776 & ~menelaus->mask2) << 8; 777 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1) 778 & ~menelaus->mask1; 779 if (!isr) 780 break; 781 782 while (isr) { 783 int irq = fls(isr) - 1; 784 isr &= ~(1 << irq); 785 786 mutex_lock(&menelaus->lock); 787 menelaus_disable_irq(irq); 788 menelaus_ack_irq(irq); 789 handler = menelaus->handlers[irq]; 790 if (handler) 791 handler(menelaus); 792 menelaus_enable_irq(irq); 793 mutex_unlock(&menelaus->lock); 794 } 795 } 796 enable_irq(menelaus->client->irq); 797 } 798 799 /* 800 * We cannot use I2C in interrupt context, so we just schedule work. 801 */ 802 static irqreturn_t menelaus_irq(int irq, void *_menelaus) 803 { 804 struct menelaus_chip *menelaus = _menelaus; 805 806 disable_irq_nosync(irq); 807 (void)schedule_work(&menelaus->work); 808 809 return IRQ_HANDLED; 810 } 811 812 /*-----------------------------------------------------------------------*/ 813 814 /* 815 * The RTC needs to be set once, then it runs on backup battery power. 816 * It supports alarms, including system wake alarms (from some modes); 817 * and 1/second IRQs if requested. 818 */ 819 #ifdef CONFIG_RTC_DRV_TWL92330 820 821 #define RTC_CTRL_RTC_EN (1 << 0) 822 #define RTC_CTRL_AL_EN (1 << 1) 823 #define RTC_CTRL_MODE12 (1 << 2) 824 #define RTC_CTRL_EVERY_MASK (3 << 3) 825 #define RTC_CTRL_EVERY_SEC (0 << 3) 826 #define RTC_CTRL_EVERY_MIN (1 << 3) 827 #define RTC_CTRL_EVERY_HR (2 << 3) 828 #define RTC_CTRL_EVERY_DAY (3 << 3) 829 830 #define RTC_UPDATE_EVERY 0x08 831 832 #define RTC_HR_PM (1 << 7) 833 834 static void menelaus_to_time(char *regs, struct rtc_time *t) 835 { 836 t->tm_sec = bcd2bin(regs[0]); 837 t->tm_min = bcd2bin(regs[1]); 838 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { 839 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1; 840 if (regs[2] & RTC_HR_PM) 841 t->tm_hour += 12; 842 } else 843 t->tm_hour = bcd2bin(regs[2] & 0x3f); 844 t->tm_mday = bcd2bin(regs[3]); 845 t->tm_mon = bcd2bin(regs[4]) - 1; 846 t->tm_year = bcd2bin(regs[5]) + 100; 847 } 848 849 static int time_to_menelaus(struct rtc_time *t, int regnum) 850 { 851 int hour, status; 852 853 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec)); 854 if (status < 0) 855 goto fail; 856 857 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min)); 858 if (status < 0) 859 goto fail; 860 861 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) { 862 hour = t->tm_hour + 1; 863 if (hour > 12) 864 hour = RTC_HR_PM | bin2bcd(hour - 12); 865 else 866 hour = bin2bcd(hour); 867 } else 868 hour = bin2bcd(t->tm_hour); 869 status = menelaus_write_reg(regnum++, hour); 870 if (status < 0) 871 goto fail; 872 873 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday)); 874 if (status < 0) 875 goto fail; 876 877 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1)); 878 if (status < 0) 879 goto fail; 880 881 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100)); 882 if (status < 0) 883 goto fail; 884 885 return 0; 886 fail: 887 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n", 888 --regnum, status); 889 return status; 890 } 891 892 static int menelaus_read_time(struct device *dev, struct rtc_time *t) 893 { 894 struct i2c_msg msg[2]; 895 char regs[7]; 896 int status; 897 898 /* block read date and time registers */ 899 regs[0] = MENELAUS_RTC_SEC; 900 901 msg[0].addr = MENELAUS_I2C_ADDRESS; 902 msg[0].flags = 0; 903 msg[0].len = 1; 904 msg[0].buf = regs; 905 906 msg[1].addr = MENELAUS_I2C_ADDRESS; 907 msg[1].flags = I2C_M_RD; 908 msg[1].len = sizeof(regs); 909 msg[1].buf = regs; 910 911 status = i2c_transfer(the_menelaus->client->adapter, msg, 2); 912 if (status != 2) { 913 dev_err(dev, "%s error %d\n", "read", status); 914 return -EIO; 915 } 916 917 menelaus_to_time(regs, t); 918 t->tm_wday = bcd2bin(regs[6]); 919 920 return 0; 921 } 922 923 static int menelaus_set_time(struct device *dev, struct rtc_time *t) 924 { 925 int status; 926 927 /* write date and time registers */ 928 status = time_to_menelaus(t, MENELAUS_RTC_SEC); 929 if (status < 0) 930 return status; 931 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday)); 932 if (status < 0) { 933 dev_err(&the_menelaus->client->dev, "rtc write reg %02x " 934 "err %d\n", MENELAUS_RTC_WKDAY, status); 935 return status; 936 } 937 938 /* now commit the write */ 939 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY); 940 if (status < 0) 941 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n", 942 status); 943 944 return 0; 945 } 946 947 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w) 948 { 949 struct i2c_msg msg[2]; 950 char regs[6]; 951 int status; 952 953 /* block read alarm registers */ 954 regs[0] = MENELAUS_RTC_AL_SEC; 955 956 msg[0].addr = MENELAUS_I2C_ADDRESS; 957 msg[0].flags = 0; 958 msg[0].len = 1; 959 msg[0].buf = regs; 960 961 msg[1].addr = MENELAUS_I2C_ADDRESS; 962 msg[1].flags = I2C_M_RD; 963 msg[1].len = sizeof(regs); 964 msg[1].buf = regs; 965 966 status = i2c_transfer(the_menelaus->client->adapter, msg, 2); 967 if (status != 2) { 968 dev_err(dev, "%s error %d\n", "alarm read", status); 969 return -EIO; 970 } 971 972 menelaus_to_time(regs, &w->time); 973 974 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN); 975 976 /* NOTE we *could* check if actually pending... */ 977 w->pending = 0; 978 979 return 0; 980 } 981 982 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w) 983 { 984 int status; 985 986 if (the_menelaus->client->irq <= 0 && w->enabled) 987 return -ENODEV; 988 989 /* clear previous alarm enable */ 990 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) { 991 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 992 status = menelaus_write_reg(MENELAUS_RTC_CTRL, 993 the_menelaus->rtc_control); 994 if (status < 0) 995 return status; 996 } 997 998 /* write alarm registers */ 999 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC); 1000 if (status < 0) 1001 return status; 1002 1003 /* enable alarm if requested */ 1004 if (w->enabled) { 1005 the_menelaus->rtc_control |= RTC_CTRL_AL_EN; 1006 status = menelaus_write_reg(MENELAUS_RTC_CTRL, 1007 the_menelaus->rtc_control); 1008 } 1009 1010 return status; 1011 } 1012 1013 #ifdef CONFIG_RTC_INTF_DEV 1014 1015 static void menelaus_rtc_update_work(struct menelaus_chip *m) 1016 { 1017 /* report 1/sec update */ 1018 local_irq_disable(); 1019 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF); 1020 local_irq_enable(); 1021 } 1022 1023 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg) 1024 { 1025 int status; 1026 1027 if (the_menelaus->client->irq <= 0) 1028 return -ENOIOCTLCMD; 1029 1030 switch (cmd) { 1031 /* alarm IRQ */ 1032 case RTC_AIE_ON: 1033 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) 1034 return 0; 1035 the_menelaus->rtc_control |= RTC_CTRL_AL_EN; 1036 break; 1037 case RTC_AIE_OFF: 1038 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN)) 1039 return 0; 1040 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 1041 break; 1042 /* 1/second "update" IRQ */ 1043 case RTC_UIE_ON: 1044 if (the_menelaus->uie) 1045 return 0; 1046 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); 1047 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ, 1048 menelaus_rtc_update_work); 1049 if (status == 0) 1050 the_menelaus->uie = 1; 1051 return status; 1052 case RTC_UIE_OFF: 1053 if (!the_menelaus->uie) 1054 return 0; 1055 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ); 1056 if (status == 0) 1057 the_menelaus->uie = 0; 1058 return status; 1059 default: 1060 return -ENOIOCTLCMD; 1061 } 1062 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); 1063 } 1064 1065 #else 1066 #define menelaus_ioctl NULL 1067 #endif 1068 1069 /* REVISIT no compensation register support ... */ 1070 1071 static const struct rtc_class_ops menelaus_rtc_ops = { 1072 .ioctl = menelaus_ioctl, 1073 .read_time = menelaus_read_time, 1074 .set_time = menelaus_set_time, 1075 .read_alarm = menelaus_read_alarm, 1076 .set_alarm = menelaus_set_alarm, 1077 }; 1078 1079 static void menelaus_rtc_alarm_work(struct menelaus_chip *m) 1080 { 1081 /* report alarm */ 1082 local_irq_disable(); 1083 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF); 1084 local_irq_enable(); 1085 1086 /* then disable it; alarms are oneshot */ 1087 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN; 1088 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control); 1089 } 1090 1091 static inline void menelaus_rtc_init(struct menelaus_chip *m) 1092 { 1093 int alarm = (m->client->irq > 0); 1094 1095 /* assume 32KDETEN pin is pulled high */ 1096 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) { 1097 dev_dbg(&m->client->dev, "no 32k oscillator\n"); 1098 return; 1099 } 1100 1101 /* support RTC alarm; it can issue wakeups */ 1102 if (alarm) { 1103 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ, 1104 menelaus_rtc_alarm_work) < 0) { 1105 dev_err(&m->client->dev, "can't handle RTC alarm\n"); 1106 return; 1107 } 1108 device_init_wakeup(&m->client->dev, 1); 1109 } 1110 1111 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */ 1112 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL); 1113 if (!(m->rtc_control & RTC_CTRL_RTC_EN) 1114 || (m->rtc_control & RTC_CTRL_AL_EN) 1115 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) { 1116 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) { 1117 dev_warn(&m->client->dev, "rtc clock needs setting\n"); 1118 m->rtc_control |= RTC_CTRL_RTC_EN; 1119 } 1120 m->rtc_control &= ~RTC_CTRL_EVERY_MASK; 1121 m->rtc_control &= ~RTC_CTRL_AL_EN; 1122 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control); 1123 } 1124 1125 m->rtc = rtc_device_register(DRIVER_NAME, 1126 &m->client->dev, 1127 &menelaus_rtc_ops, THIS_MODULE); 1128 if (IS_ERR(m->rtc)) { 1129 if (alarm) { 1130 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ); 1131 device_init_wakeup(&m->client->dev, 0); 1132 } 1133 dev_err(&m->client->dev, "can't register RTC: %d\n", 1134 (int) PTR_ERR(m->rtc)); 1135 the_menelaus->rtc = NULL; 1136 } 1137 } 1138 1139 #else 1140 1141 static inline void menelaus_rtc_init(struct menelaus_chip *m) 1142 { 1143 /* nothing */ 1144 } 1145 1146 #endif 1147 1148 /*-----------------------------------------------------------------------*/ 1149 1150 static struct i2c_driver menelaus_i2c_driver; 1151 1152 static int menelaus_probe(struct i2c_client *client, 1153 const struct i2c_device_id *id) 1154 { 1155 struct menelaus_chip *menelaus; 1156 int rev = 0, val; 1157 int err = 0; 1158 struct menelaus_platform_data *menelaus_pdata = 1159 client->dev.platform_data; 1160 1161 if (the_menelaus) { 1162 dev_dbg(&client->dev, "only one %s for now\n", 1163 DRIVER_NAME); 1164 return -ENODEV; 1165 } 1166 1167 menelaus = kzalloc(sizeof *menelaus, GFP_KERNEL); 1168 if (!menelaus) 1169 return -ENOMEM; 1170 1171 i2c_set_clientdata(client, menelaus); 1172 1173 the_menelaus = menelaus; 1174 menelaus->client = client; 1175 1176 /* If a true probe check the device */ 1177 rev = menelaus_read_reg(MENELAUS_REV); 1178 if (rev < 0) { 1179 pr_err(DRIVER_NAME ": device not found"); 1180 err = -ENODEV; 1181 goto fail1; 1182 } 1183 1184 /* Ack and disable all Menelaus interrupts */ 1185 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff); 1186 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff); 1187 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff); 1188 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff); 1189 menelaus->mask1 = 0xff; 1190 menelaus->mask2 = 0xff; 1191 1192 /* Set output buffer strengths */ 1193 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73); 1194 1195 if (client->irq > 0) { 1196 err = request_irq(client->irq, menelaus_irq, IRQF_DISABLED, 1197 DRIVER_NAME, menelaus); 1198 if (err) { 1199 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n", 1200 client->irq, err); 1201 goto fail1; 1202 } 1203 } 1204 1205 mutex_init(&menelaus->lock); 1206 INIT_WORK(&menelaus->work, menelaus_work); 1207 1208 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f); 1209 1210 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1); 1211 if (val < 0) 1212 goto fail2; 1213 if (val & (1 << 7)) 1214 menelaus->vcore_hw_mode = 1; 1215 else 1216 menelaus->vcore_hw_mode = 0; 1217 1218 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) { 1219 err = menelaus_pdata->late_init(&client->dev); 1220 if (err < 0) 1221 goto fail2; 1222 } 1223 1224 menelaus_rtc_init(menelaus); 1225 1226 return 0; 1227 fail2: 1228 free_irq(client->irq, menelaus); 1229 flush_scheduled_work(); 1230 fail1: 1231 kfree(menelaus); 1232 return err; 1233 } 1234 1235 static int __exit menelaus_remove(struct i2c_client *client) 1236 { 1237 struct menelaus_chip *menelaus = i2c_get_clientdata(client); 1238 1239 free_irq(client->irq, menelaus); 1240 kfree(menelaus); 1241 i2c_set_clientdata(client, NULL); 1242 the_menelaus = NULL; 1243 return 0; 1244 } 1245 1246 static const struct i2c_device_id menelaus_id[] = { 1247 { "menelaus", 0 }, 1248 { } 1249 }; 1250 MODULE_DEVICE_TABLE(i2c, menelaus_id); 1251 1252 static struct i2c_driver menelaus_i2c_driver = { 1253 .driver = { 1254 .name = DRIVER_NAME, 1255 }, 1256 .probe = menelaus_probe, 1257 .remove = __exit_p(menelaus_remove), 1258 .id_table = menelaus_id, 1259 }; 1260 1261 static int __init menelaus_init(void) 1262 { 1263 int res; 1264 1265 res = i2c_add_driver(&menelaus_i2c_driver); 1266 if (res < 0) { 1267 pr_err(DRIVER_NAME ": driver registration failed\n"); 1268 return res; 1269 } 1270 1271 return 0; 1272 } 1273 1274 static void __exit menelaus_exit(void) 1275 { 1276 i2c_del_driver(&menelaus_i2c_driver); 1277 1278 /* FIXME: Shutdown menelaus parts that can be shut down */ 1279 } 1280 1281 MODULE_AUTHOR("Texas Instruments, Inc. (and others)"); 1282 MODULE_DESCRIPTION("I2C interface for Menelaus."); 1283 MODULE_LICENSE("GPL"); 1284 1285 module_init(menelaus_init); 1286 module_exit(menelaus_exit); 1287