xref: /linux/drivers/mfd/menelaus.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  * Copyright (C) 2004 Texas Instruments, Inc.
3  *
4  * Some parts based tps65010.c:
5  * Copyright (C) 2004 Texas Instruments and
6  * Copyright (C) 2004-2005 David Brownell
7  *
8  * Some parts based on tlv320aic24.c:
9  * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
10  *
11  * Changes for interrupt handling and clean-up by
12  * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
13  * Cleanup and generalized support for voltage setting by
14  * Juha Yrjola
15  * Added support for controlling VCORE and regulator sleep states,
16  * Amit Kucheria <amit.kucheria@nokia.com>
17  * Copyright (C) 2005, 2006 Nokia Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32  */
33 
34 #include <linux/module.h>
35 #include <linux/i2c.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/mutex.h>
39 #include <linux/workqueue.h>
40 #include <linux/delay.h>
41 #include <linux/rtc.h>
42 #include <linux/bcd.h>
43 #include <linux/slab.h>
44 
45 #include <asm/mach/irq.h>
46 
47 #include <mach/gpio.h>
48 #include <plat/menelaus.h>
49 
50 #define DRIVER_NAME			"menelaus"
51 
52 #define MENELAUS_I2C_ADDRESS		0x72
53 
54 #define MENELAUS_REV			0x01
55 #define MENELAUS_VCORE_CTRL1		0x02
56 #define MENELAUS_VCORE_CTRL2		0x03
57 #define MENELAUS_VCORE_CTRL3		0x04
58 #define MENELAUS_VCORE_CTRL4		0x05
59 #define MENELAUS_VCORE_CTRL5		0x06
60 #define MENELAUS_DCDC_CTRL1		0x07
61 #define MENELAUS_DCDC_CTRL2		0x08
62 #define MENELAUS_DCDC_CTRL3		0x09
63 #define MENELAUS_LDO_CTRL1		0x0A
64 #define MENELAUS_LDO_CTRL2		0x0B
65 #define MENELAUS_LDO_CTRL3		0x0C
66 #define MENELAUS_LDO_CTRL4		0x0D
67 #define MENELAUS_LDO_CTRL5		0x0E
68 #define MENELAUS_LDO_CTRL6		0x0F
69 #define MENELAUS_LDO_CTRL7		0x10
70 #define MENELAUS_LDO_CTRL8		0x11
71 #define MENELAUS_SLEEP_CTRL1		0x12
72 #define MENELAUS_SLEEP_CTRL2		0x13
73 #define MENELAUS_DEVICE_OFF		0x14
74 #define MENELAUS_OSC_CTRL		0x15
75 #define MENELAUS_DETECT_CTRL		0x16
76 #define MENELAUS_INT_MASK1		0x17
77 #define MENELAUS_INT_MASK2		0x18
78 #define MENELAUS_INT_STATUS1		0x19
79 #define MENELAUS_INT_STATUS2		0x1A
80 #define MENELAUS_INT_ACK1		0x1B
81 #define MENELAUS_INT_ACK2		0x1C
82 #define MENELAUS_GPIO_CTRL		0x1D
83 #define MENELAUS_GPIO_IN		0x1E
84 #define MENELAUS_GPIO_OUT		0x1F
85 #define MENELAUS_BBSMS			0x20
86 #define MENELAUS_RTC_CTRL		0x21
87 #define MENELAUS_RTC_UPDATE		0x22
88 #define MENELAUS_RTC_SEC		0x23
89 #define MENELAUS_RTC_MIN		0x24
90 #define MENELAUS_RTC_HR			0x25
91 #define MENELAUS_RTC_DAY		0x26
92 #define MENELAUS_RTC_MON		0x27
93 #define MENELAUS_RTC_YR			0x28
94 #define MENELAUS_RTC_WKDAY		0x29
95 #define MENELAUS_RTC_AL_SEC		0x2A
96 #define MENELAUS_RTC_AL_MIN		0x2B
97 #define MENELAUS_RTC_AL_HR		0x2C
98 #define MENELAUS_RTC_AL_DAY		0x2D
99 #define MENELAUS_RTC_AL_MON		0x2E
100 #define MENELAUS_RTC_AL_YR		0x2F
101 #define MENELAUS_RTC_COMP_MSB		0x30
102 #define MENELAUS_RTC_COMP_LSB		0x31
103 #define MENELAUS_S1_PULL_EN		0x32
104 #define MENELAUS_S1_PULL_DIR		0x33
105 #define MENELAUS_S2_PULL_EN		0x34
106 #define MENELAUS_S2_PULL_DIR		0x35
107 #define MENELAUS_MCT_CTRL1		0x36
108 #define MENELAUS_MCT_CTRL2		0x37
109 #define MENELAUS_MCT_CTRL3		0x38
110 #define MENELAUS_MCT_PIN_ST		0x39
111 #define MENELAUS_DEBOUNCE1		0x3A
112 
113 #define IH_MENELAUS_IRQS		12
114 #define MENELAUS_MMC_S1CD_IRQ		0	/* MMC slot 1 card change */
115 #define MENELAUS_MMC_S2CD_IRQ		1	/* MMC slot 2 card change */
116 #define MENELAUS_MMC_S1D1_IRQ		2	/* MMC DAT1 low in slot 1 */
117 #define MENELAUS_MMC_S2D1_IRQ		3	/* MMC DAT1 low in slot 2 */
118 #define MENELAUS_LOWBAT_IRQ		4	/* Low battery */
119 #define MENELAUS_HOTDIE_IRQ		5	/* Hot die detect */
120 #define MENELAUS_UVLO_IRQ		6	/* UVLO detect */
121 #define MENELAUS_TSHUT_IRQ		7	/* Thermal shutdown */
122 #define MENELAUS_RTCTMR_IRQ		8	/* RTC timer */
123 #define MENELAUS_RTCALM_IRQ		9	/* RTC alarm */
124 #define MENELAUS_RTCERR_IRQ		10	/* RTC error */
125 #define MENELAUS_PSHBTN_IRQ		11	/* Push button */
126 #define MENELAUS_RESERVED12_IRQ		12	/* Reserved */
127 #define MENELAUS_RESERVED13_IRQ		13	/* Reserved */
128 #define MENELAUS_RESERVED14_IRQ		14	/* Reserved */
129 #define MENELAUS_RESERVED15_IRQ		15	/* Reserved */
130 
131 static void menelaus_work(struct work_struct *_menelaus);
132 
133 struct menelaus_chip {
134 	struct mutex		lock;
135 	struct i2c_client	*client;
136 	struct work_struct	work;
137 #ifdef CONFIG_RTC_DRV_TWL92330
138 	struct rtc_device	*rtc;
139 	u8			rtc_control;
140 	unsigned		uie:1;
141 #endif
142 	unsigned		vcore_hw_mode:1;
143 	u8			mask1, mask2;
144 	void			(*handlers[16])(struct menelaus_chip *);
145 	void			(*mmc_callback)(void *data, u8 mask);
146 	void			*mmc_callback_data;
147 };
148 
149 static struct menelaus_chip *the_menelaus;
150 
151 static int menelaus_write_reg(int reg, u8 value)
152 {
153 	int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
154 
155 	if (val < 0) {
156 		pr_err(DRIVER_NAME ": write error");
157 		return val;
158 	}
159 
160 	return 0;
161 }
162 
163 static int menelaus_read_reg(int reg)
164 {
165 	int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
166 
167 	if (val < 0)
168 		pr_err(DRIVER_NAME ": read error");
169 
170 	return val;
171 }
172 
173 static int menelaus_enable_irq(int irq)
174 {
175 	if (irq > 7) {
176 		irq -= 8;
177 		the_menelaus->mask2 &= ~(1 << irq);
178 		return menelaus_write_reg(MENELAUS_INT_MASK2,
179 				the_menelaus->mask2);
180 	} else {
181 		the_menelaus->mask1 &= ~(1 << irq);
182 		return menelaus_write_reg(MENELAUS_INT_MASK1,
183 				the_menelaus->mask1);
184 	}
185 }
186 
187 static int menelaus_disable_irq(int irq)
188 {
189 	if (irq > 7) {
190 		irq -= 8;
191 		the_menelaus->mask2 |= (1 << irq);
192 		return menelaus_write_reg(MENELAUS_INT_MASK2,
193 				the_menelaus->mask2);
194 	} else {
195 		the_menelaus->mask1 |= (1 << irq);
196 		return menelaus_write_reg(MENELAUS_INT_MASK1,
197 				the_menelaus->mask1);
198 	}
199 }
200 
201 static int menelaus_ack_irq(int irq)
202 {
203 	if (irq > 7)
204 		return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
205 	else
206 		return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
207 }
208 
209 /* Adds a handler for an interrupt. Does not run in interrupt context */
210 static int menelaus_add_irq_work(int irq,
211 		void (*handler)(struct menelaus_chip *))
212 {
213 	int ret = 0;
214 
215 	mutex_lock(&the_menelaus->lock);
216 	the_menelaus->handlers[irq] = handler;
217 	ret = menelaus_enable_irq(irq);
218 	mutex_unlock(&the_menelaus->lock);
219 
220 	return ret;
221 }
222 
223 /* Removes handler for an interrupt */
224 static int menelaus_remove_irq_work(int irq)
225 {
226 	int ret = 0;
227 
228 	mutex_lock(&the_menelaus->lock);
229 	ret = menelaus_disable_irq(irq);
230 	the_menelaus->handlers[irq] = NULL;
231 	mutex_unlock(&the_menelaus->lock);
232 
233 	return ret;
234 }
235 
236 /*
237  * Gets scheduled when a card detect interrupt happens. Note that in some cases
238  * this line is wired to card cover switch rather than the card detect switch
239  * in each slot. In this case the cards are not seen by menelaus.
240  * FIXME: Add handling for D1 too
241  */
242 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
243 {
244 	int reg;
245 	unsigned char card_mask = 0;
246 
247 	reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
248 	if (reg < 0)
249 		return;
250 
251 	if (!(reg & 0x1))
252 		card_mask |= (1 << 0);
253 
254 	if (!(reg & 0x2))
255 		card_mask |= (1 << 1);
256 
257 	if (menelaus_hw->mmc_callback)
258 		menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
259 					  card_mask);
260 }
261 
262 /*
263  * Toggles the MMC slots between open-drain and push-pull mode.
264  */
265 int menelaus_set_mmc_opendrain(int slot, int enable)
266 {
267 	int ret, val;
268 
269 	if (slot != 1 && slot != 2)
270 		return -EINVAL;
271 	mutex_lock(&the_menelaus->lock);
272 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
273 	if (ret < 0) {
274 		mutex_unlock(&the_menelaus->lock);
275 		return ret;
276 	}
277 	val = ret;
278 	if (slot == 1) {
279 		if (enable)
280 			val |= 1 << 2;
281 		else
282 			val &= ~(1 << 2);
283 	} else {
284 		if (enable)
285 			val |= 1 << 3;
286 		else
287 			val &= ~(1 << 3);
288 	}
289 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
290 	mutex_unlock(&the_menelaus->lock);
291 
292 	return ret;
293 }
294 EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
295 
296 int menelaus_set_slot_sel(int enable)
297 {
298 	int ret;
299 
300 	mutex_lock(&the_menelaus->lock);
301 	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
302 	if (ret < 0)
303 		goto out;
304 	ret |= 0x02;
305 	if (enable)
306 		ret |= 1 << 5;
307 	else
308 		ret &= ~(1 << 5);
309 	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
310 out:
311 	mutex_unlock(&the_menelaus->lock);
312 	return ret;
313 }
314 EXPORT_SYMBOL(menelaus_set_slot_sel);
315 
316 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
317 {
318 	int ret, val;
319 
320 	if (slot != 1 && slot != 2)
321 		return -EINVAL;
322 	if (power >= 3)
323 		return -EINVAL;
324 
325 	mutex_lock(&the_menelaus->lock);
326 
327 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
328 	if (ret < 0)
329 		goto out;
330 	val = ret;
331 	if (slot == 1) {
332 		if (cd_en)
333 			val |= (1 << 4) | (1 << 6);
334 		else
335 			val &= ~((1 << 4) | (1 << 6));
336 	} else {
337 		if (cd_en)
338 			val |= (1 << 5) | (1 << 7);
339 		else
340 			val &= ~((1 << 5) | (1 << 7));
341 	}
342 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
343 	if (ret < 0)
344 		goto out;
345 
346 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
347 	if (ret < 0)
348 		goto out;
349 	val = ret;
350 	if (slot == 1) {
351 		if (enable)
352 			val |= 1 << 0;
353 		else
354 			val &= ~(1 << 0);
355 	} else {
356 		int b;
357 
358 		if (enable)
359 			ret |= 1 << 1;
360 		else
361 			ret &= ~(1 << 1);
362 		b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
363 		b &= ~0x03;
364 		b |= power;
365 		ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
366 		if (ret < 0)
367 			goto out;
368 	}
369 	/* Disable autonomous shutdown */
370 	val &= ~(0x03 << 2);
371 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
372 out:
373 	mutex_unlock(&the_menelaus->lock);
374 	return ret;
375 }
376 EXPORT_SYMBOL(menelaus_set_mmc_slot);
377 
378 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
379 				   void *data)
380 {
381 	int ret = 0;
382 
383 	the_menelaus->mmc_callback_data = data;
384 	the_menelaus->mmc_callback = callback;
385 	ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
386 				    menelaus_mmc_cd_work);
387 	if (ret < 0)
388 		return ret;
389 	ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
390 				    menelaus_mmc_cd_work);
391 	if (ret < 0)
392 		return ret;
393 	ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
394 				    menelaus_mmc_cd_work);
395 	if (ret < 0)
396 		return ret;
397 	ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
398 				    menelaus_mmc_cd_work);
399 
400 	return ret;
401 }
402 EXPORT_SYMBOL(menelaus_register_mmc_callback);
403 
404 void menelaus_unregister_mmc_callback(void)
405 {
406 	menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
407 	menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
408 	menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
409 	menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
410 
411 	the_menelaus->mmc_callback = NULL;
412 	the_menelaus->mmc_callback_data = 0;
413 }
414 EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
415 
416 struct menelaus_vtg {
417 	const char *name;
418 	u8 vtg_reg;
419 	u8 vtg_shift;
420 	u8 vtg_bits;
421 	u8 mode_reg;
422 };
423 
424 struct menelaus_vtg_value {
425 	u16 vtg;
426 	u16 val;
427 };
428 
429 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
430 				int vtg_val, int mode)
431 {
432 	int val, ret;
433 	struct i2c_client *c = the_menelaus->client;
434 
435 	mutex_lock(&the_menelaus->lock);
436 	if (vtg == 0)
437 		goto set_voltage;
438 
439 	ret = menelaus_read_reg(vtg->vtg_reg);
440 	if (ret < 0)
441 		goto out;
442 	val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
443 	val |= vtg_val << vtg->vtg_shift;
444 
445 	dev_dbg(&c->dev, "Setting voltage '%s'"
446 			 "to %d mV (reg 0x%02x, val 0x%02x)\n",
447 			vtg->name, mV, vtg->vtg_reg, val);
448 
449 	ret = menelaus_write_reg(vtg->vtg_reg, val);
450 	if (ret < 0)
451 		goto out;
452 set_voltage:
453 	ret = menelaus_write_reg(vtg->mode_reg, mode);
454 out:
455 	mutex_unlock(&the_menelaus->lock);
456 	if (ret == 0) {
457 		/* Wait for voltage to stabilize */
458 		msleep(1);
459 	}
460 	return ret;
461 }
462 
463 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
464 				  int n)
465 {
466 	int i;
467 
468 	for (i = 0; i < n; i++, tbl++)
469 		if (tbl->vtg == vtg)
470 			return tbl->val;
471 	return -EINVAL;
472 }
473 
474 /*
475  * Vcore can be programmed in two ways:
476  * SW-controlled: Required voltage is programmed into VCORE_CTRL1
477  * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
478  * and VCORE_CTRL4
479  *
480  * Call correct 'set' function accordingly
481  */
482 
483 static const struct menelaus_vtg_value vcore_values[] = {
484 	{ 1000, 0 },
485 	{ 1025, 1 },
486 	{ 1050, 2 },
487 	{ 1075, 3 },
488 	{ 1100, 4 },
489 	{ 1125, 5 },
490 	{ 1150, 6 },
491 	{ 1175, 7 },
492 	{ 1200, 8 },
493 	{ 1225, 9 },
494 	{ 1250, 10 },
495 	{ 1275, 11 },
496 	{ 1300, 12 },
497 	{ 1325, 13 },
498 	{ 1350, 14 },
499 	{ 1375, 15 },
500 	{ 1400, 16 },
501 	{ 1425, 17 },
502 	{ 1450, 18 },
503 };
504 
505 int menelaus_set_vcore_sw(unsigned int mV)
506 {
507 	int val, ret;
508 	struct i2c_client *c = the_menelaus->client;
509 
510 	val = menelaus_get_vtg_value(mV, vcore_values,
511 				     ARRAY_SIZE(vcore_values));
512 	if (val < 0)
513 		return -EINVAL;
514 
515 	dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val);
516 
517 	/* Set SW mode and the voltage in one go. */
518 	mutex_lock(&the_menelaus->lock);
519 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
520 	if (ret == 0)
521 		the_menelaus->vcore_hw_mode = 0;
522 	mutex_unlock(&the_menelaus->lock);
523 	msleep(1);
524 
525 	return ret;
526 }
527 
528 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
529 {
530 	int fval, rval, val, ret;
531 	struct i2c_client *c = the_menelaus->client;
532 
533 	rval = menelaus_get_vtg_value(roof_mV, vcore_values,
534 				      ARRAY_SIZE(vcore_values));
535 	if (rval < 0)
536 		return -EINVAL;
537 	fval = menelaus_get_vtg_value(floor_mV, vcore_values,
538 				      ARRAY_SIZE(vcore_values));
539 	if (fval < 0)
540 		return -EINVAL;
541 
542 	dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
543 	       floor_mV, roof_mV);
544 
545 	mutex_lock(&the_menelaus->lock);
546 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
547 	if (ret < 0)
548 		goto out;
549 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
550 	if (ret < 0)
551 		goto out;
552 	if (!the_menelaus->vcore_hw_mode) {
553 		val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
554 		/* HW mode, turn OFF byte comparator */
555 		val |= ((1 << 7) | (1 << 5));
556 		ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
557 		the_menelaus->vcore_hw_mode = 1;
558 	}
559 	msleep(1);
560 out:
561 	mutex_unlock(&the_menelaus->lock);
562 	return ret;
563 }
564 
565 static const struct menelaus_vtg vmem_vtg = {
566 	.name = "VMEM",
567 	.vtg_reg = MENELAUS_LDO_CTRL1,
568 	.vtg_shift = 0,
569 	.vtg_bits = 2,
570 	.mode_reg = MENELAUS_LDO_CTRL3,
571 };
572 
573 static const struct menelaus_vtg_value vmem_values[] = {
574 	{ 1500, 0 },
575 	{ 1800, 1 },
576 	{ 1900, 2 },
577 	{ 2500, 3 },
578 };
579 
580 int menelaus_set_vmem(unsigned int mV)
581 {
582 	int val;
583 
584 	if (mV == 0)
585 		return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
586 
587 	val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
588 	if (val < 0)
589 		return -EINVAL;
590 	return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
591 }
592 EXPORT_SYMBOL(menelaus_set_vmem);
593 
594 static const struct menelaus_vtg vio_vtg = {
595 	.name = "VIO",
596 	.vtg_reg = MENELAUS_LDO_CTRL1,
597 	.vtg_shift = 2,
598 	.vtg_bits = 2,
599 	.mode_reg = MENELAUS_LDO_CTRL4,
600 };
601 
602 static const struct menelaus_vtg_value vio_values[] = {
603 	{ 1500, 0 },
604 	{ 1800, 1 },
605 	{ 2500, 2 },
606 	{ 2800, 3 },
607 };
608 
609 int menelaus_set_vio(unsigned int mV)
610 {
611 	int val;
612 
613 	if (mV == 0)
614 		return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
615 
616 	val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
617 	if (val < 0)
618 		return -EINVAL;
619 	return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
620 }
621 EXPORT_SYMBOL(menelaus_set_vio);
622 
623 static const struct menelaus_vtg_value vdcdc_values[] = {
624 	{ 1500, 0 },
625 	{ 1800, 1 },
626 	{ 2000, 2 },
627 	{ 2200, 3 },
628 	{ 2400, 4 },
629 	{ 2800, 5 },
630 	{ 3000, 6 },
631 	{ 3300, 7 },
632 };
633 
634 static const struct menelaus_vtg vdcdc2_vtg = {
635 	.name = "VDCDC2",
636 	.vtg_reg = MENELAUS_DCDC_CTRL1,
637 	.vtg_shift = 0,
638 	.vtg_bits = 3,
639 	.mode_reg = MENELAUS_DCDC_CTRL2,
640 };
641 
642 static const struct menelaus_vtg vdcdc3_vtg = {
643 	.name = "VDCDC3",
644 	.vtg_reg = MENELAUS_DCDC_CTRL1,
645 	.vtg_shift = 3,
646 	.vtg_bits = 3,
647 	.mode_reg = MENELAUS_DCDC_CTRL3,
648 };
649 
650 int menelaus_set_vdcdc(int dcdc, unsigned int mV)
651 {
652 	const struct menelaus_vtg *vtg;
653 	int val;
654 
655 	if (dcdc != 2 && dcdc != 3)
656 		return -EINVAL;
657 	if (dcdc == 2)
658 		vtg = &vdcdc2_vtg;
659 	else
660 		vtg = &vdcdc3_vtg;
661 
662 	if (mV == 0)
663 		return menelaus_set_voltage(vtg, 0, 0, 0);
664 
665 	val = menelaus_get_vtg_value(mV, vdcdc_values,
666 				     ARRAY_SIZE(vdcdc_values));
667 	if (val < 0)
668 		return -EINVAL;
669 	return menelaus_set_voltage(vtg, mV, val, 0x03);
670 }
671 
672 static const struct menelaus_vtg_value vmmc_values[] = {
673 	{ 1850, 0 },
674 	{ 2800, 1 },
675 	{ 3000, 2 },
676 	{ 3100, 3 },
677 };
678 
679 static const struct menelaus_vtg vmmc_vtg = {
680 	.name = "VMMC",
681 	.vtg_reg = MENELAUS_LDO_CTRL1,
682 	.vtg_shift = 6,
683 	.vtg_bits = 2,
684 	.mode_reg = MENELAUS_LDO_CTRL7,
685 };
686 
687 int menelaus_set_vmmc(unsigned int mV)
688 {
689 	int val;
690 
691 	if (mV == 0)
692 		return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
693 
694 	val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
695 	if (val < 0)
696 		return -EINVAL;
697 	return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
698 }
699 EXPORT_SYMBOL(menelaus_set_vmmc);
700 
701 
702 static const struct menelaus_vtg_value vaux_values[] = {
703 	{ 1500, 0 },
704 	{ 1800, 1 },
705 	{ 2500, 2 },
706 	{ 2800, 3 },
707 };
708 
709 static const struct menelaus_vtg vaux_vtg = {
710 	.name = "VAUX",
711 	.vtg_reg = MENELAUS_LDO_CTRL1,
712 	.vtg_shift = 4,
713 	.vtg_bits = 2,
714 	.mode_reg = MENELAUS_LDO_CTRL6,
715 };
716 
717 int menelaus_set_vaux(unsigned int mV)
718 {
719 	int val;
720 
721 	if (mV == 0)
722 		return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
723 
724 	val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
725 	if (val < 0)
726 		return -EINVAL;
727 	return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
728 }
729 EXPORT_SYMBOL(menelaus_set_vaux);
730 
731 int menelaus_get_slot_pin_states(void)
732 {
733 	return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
734 }
735 EXPORT_SYMBOL(menelaus_get_slot_pin_states);
736 
737 int menelaus_set_regulator_sleep(int enable, u32 val)
738 {
739 	int t, ret;
740 	struct i2c_client *c = the_menelaus->client;
741 
742 	mutex_lock(&the_menelaus->lock);
743 	ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
744 	if (ret < 0)
745 		goto out;
746 
747 	dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
748 
749 	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
750 	if (ret < 0)
751 		goto out;
752 	t = ((1 << 6) | 0x04);
753 	if (enable)
754 		ret |= t;
755 	else
756 		ret &= ~t;
757 	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
758 out:
759 	mutex_unlock(&the_menelaus->lock);
760 	return ret;
761 }
762 
763 /*-----------------------------------------------------------------------*/
764 
765 /* Handles Menelaus interrupts. Does not run in interrupt context */
766 static void menelaus_work(struct work_struct *_menelaus)
767 {
768 	struct menelaus_chip *menelaus =
769 			container_of(_menelaus, struct menelaus_chip, work);
770 	void (*handler)(struct menelaus_chip *menelaus);
771 
772 	while (1) {
773 		unsigned isr;
774 
775 		isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
776 				& ~menelaus->mask2) << 8;
777 		isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
778 				& ~menelaus->mask1;
779 		if (!isr)
780 			break;
781 
782 		while (isr) {
783 			int irq = fls(isr) - 1;
784 			isr &= ~(1 << irq);
785 
786 			mutex_lock(&menelaus->lock);
787 			menelaus_disable_irq(irq);
788 			menelaus_ack_irq(irq);
789 			handler = menelaus->handlers[irq];
790 			if (handler)
791 				handler(menelaus);
792 			menelaus_enable_irq(irq);
793 			mutex_unlock(&menelaus->lock);
794 		}
795 	}
796 	enable_irq(menelaus->client->irq);
797 }
798 
799 /*
800  * We cannot use I2C in interrupt context, so we just schedule work.
801  */
802 static irqreturn_t menelaus_irq(int irq, void *_menelaus)
803 {
804 	struct menelaus_chip *menelaus = _menelaus;
805 
806 	disable_irq_nosync(irq);
807 	(void)schedule_work(&menelaus->work);
808 
809 	return IRQ_HANDLED;
810 }
811 
812 /*-----------------------------------------------------------------------*/
813 
814 /*
815  * The RTC needs to be set once, then it runs on backup battery power.
816  * It supports alarms, including system wake alarms (from some modes);
817  * and 1/second IRQs if requested.
818  */
819 #ifdef CONFIG_RTC_DRV_TWL92330
820 
821 #define RTC_CTRL_RTC_EN		(1 << 0)
822 #define RTC_CTRL_AL_EN		(1 << 1)
823 #define RTC_CTRL_MODE12		(1 << 2)
824 #define RTC_CTRL_EVERY_MASK	(3 << 3)
825 #define RTC_CTRL_EVERY_SEC	(0 << 3)
826 #define RTC_CTRL_EVERY_MIN	(1 << 3)
827 #define RTC_CTRL_EVERY_HR	(2 << 3)
828 #define RTC_CTRL_EVERY_DAY	(3 << 3)
829 
830 #define RTC_UPDATE_EVERY	0x08
831 
832 #define RTC_HR_PM		(1 << 7)
833 
834 static void menelaus_to_time(char *regs, struct rtc_time *t)
835 {
836 	t->tm_sec = bcd2bin(regs[0]);
837 	t->tm_min = bcd2bin(regs[1]);
838 	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
839 		t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
840 		if (regs[2] & RTC_HR_PM)
841 			t->tm_hour += 12;
842 	} else
843 		t->tm_hour = bcd2bin(regs[2] & 0x3f);
844 	t->tm_mday = bcd2bin(regs[3]);
845 	t->tm_mon = bcd2bin(regs[4]) - 1;
846 	t->tm_year = bcd2bin(regs[5]) + 100;
847 }
848 
849 static int time_to_menelaus(struct rtc_time *t, int regnum)
850 {
851 	int	hour, status;
852 
853 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
854 	if (status < 0)
855 		goto fail;
856 
857 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
858 	if (status < 0)
859 		goto fail;
860 
861 	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
862 		hour = t->tm_hour + 1;
863 		if (hour > 12)
864 			hour = RTC_HR_PM | bin2bcd(hour - 12);
865 		else
866 			hour = bin2bcd(hour);
867 	} else
868 		hour = bin2bcd(t->tm_hour);
869 	status = menelaus_write_reg(regnum++, hour);
870 	if (status < 0)
871 		goto fail;
872 
873 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
874 	if (status < 0)
875 		goto fail;
876 
877 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
878 	if (status < 0)
879 		goto fail;
880 
881 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
882 	if (status < 0)
883 		goto fail;
884 
885 	return 0;
886 fail:
887 	dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
888 			--regnum, status);
889 	return status;
890 }
891 
892 static int menelaus_read_time(struct device *dev, struct rtc_time *t)
893 {
894 	struct i2c_msg	msg[2];
895 	char		regs[7];
896 	int		status;
897 
898 	/* block read date and time registers */
899 	regs[0] = MENELAUS_RTC_SEC;
900 
901 	msg[0].addr = MENELAUS_I2C_ADDRESS;
902 	msg[0].flags = 0;
903 	msg[0].len = 1;
904 	msg[0].buf = regs;
905 
906 	msg[1].addr = MENELAUS_I2C_ADDRESS;
907 	msg[1].flags = I2C_M_RD;
908 	msg[1].len = sizeof(regs);
909 	msg[1].buf = regs;
910 
911 	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
912 	if (status != 2) {
913 		dev_err(dev, "%s error %d\n", "read", status);
914 		return -EIO;
915 	}
916 
917 	menelaus_to_time(regs, t);
918 	t->tm_wday = bcd2bin(regs[6]);
919 
920 	return 0;
921 }
922 
923 static int menelaus_set_time(struct device *dev, struct rtc_time *t)
924 {
925 	int		status;
926 
927 	/* write date and time registers */
928 	status = time_to_menelaus(t, MENELAUS_RTC_SEC);
929 	if (status < 0)
930 		return status;
931 	status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
932 	if (status < 0) {
933 		dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
934 				"err %d\n", MENELAUS_RTC_WKDAY, status);
935 		return status;
936 	}
937 
938 	/* now commit the write */
939 	status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
940 	if (status < 0)
941 		dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
942 				status);
943 
944 	return 0;
945 }
946 
947 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
948 {
949 	struct i2c_msg	msg[2];
950 	char		regs[6];
951 	int		status;
952 
953 	/* block read alarm registers */
954 	regs[0] = MENELAUS_RTC_AL_SEC;
955 
956 	msg[0].addr = MENELAUS_I2C_ADDRESS;
957 	msg[0].flags = 0;
958 	msg[0].len = 1;
959 	msg[0].buf = regs;
960 
961 	msg[1].addr = MENELAUS_I2C_ADDRESS;
962 	msg[1].flags = I2C_M_RD;
963 	msg[1].len = sizeof(regs);
964 	msg[1].buf = regs;
965 
966 	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
967 	if (status != 2) {
968 		dev_err(dev, "%s error %d\n", "alarm read", status);
969 		return -EIO;
970 	}
971 
972 	menelaus_to_time(regs, &w->time);
973 
974 	w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
975 
976 	/* NOTE we *could* check if actually pending... */
977 	w->pending = 0;
978 
979 	return 0;
980 }
981 
982 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
983 {
984 	int		status;
985 
986 	if (the_menelaus->client->irq <= 0 && w->enabled)
987 		return -ENODEV;
988 
989 	/* clear previous alarm enable */
990 	if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
991 		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
992 		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
993 				the_menelaus->rtc_control);
994 		if (status < 0)
995 			return status;
996 	}
997 
998 	/* write alarm registers */
999 	status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
1000 	if (status < 0)
1001 		return status;
1002 
1003 	/* enable alarm if requested */
1004 	if (w->enabled) {
1005 		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1006 		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1007 				the_menelaus->rtc_control);
1008 	}
1009 
1010 	return status;
1011 }
1012 
1013 #ifdef CONFIG_RTC_INTF_DEV
1014 
1015 static void menelaus_rtc_update_work(struct menelaus_chip *m)
1016 {
1017 	/* report 1/sec update */
1018 	local_irq_disable();
1019 	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1020 	local_irq_enable();
1021 }
1022 
1023 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1024 {
1025 	int	status;
1026 
1027 	if (the_menelaus->client->irq <= 0)
1028 		return -ENOIOCTLCMD;
1029 
1030 	switch (cmd) {
1031 	/* alarm IRQ */
1032 	case RTC_AIE_ON:
1033 		if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1034 			return 0;
1035 		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1036 		break;
1037 	case RTC_AIE_OFF:
1038 		if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1039 			return 0;
1040 		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1041 		break;
1042 	/* 1/second "update" IRQ */
1043 	case RTC_UIE_ON:
1044 		if (the_menelaus->uie)
1045 			return 0;
1046 		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1047 		status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1048 				menelaus_rtc_update_work);
1049 		if (status == 0)
1050 			the_menelaus->uie = 1;
1051 		return status;
1052 	case RTC_UIE_OFF:
1053 		if (!the_menelaus->uie)
1054 			return 0;
1055 		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1056 		if (status == 0)
1057 			the_menelaus->uie = 0;
1058 		return status;
1059 	default:
1060 		return -ENOIOCTLCMD;
1061 	}
1062 	return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1063 }
1064 
1065 #else
1066 #define menelaus_ioctl	NULL
1067 #endif
1068 
1069 /* REVISIT no compensation register support ... */
1070 
1071 static const struct rtc_class_ops menelaus_rtc_ops = {
1072 	.ioctl			= menelaus_ioctl,
1073 	.read_time		= menelaus_read_time,
1074 	.set_time		= menelaus_set_time,
1075 	.read_alarm		= menelaus_read_alarm,
1076 	.set_alarm		= menelaus_set_alarm,
1077 };
1078 
1079 static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1080 {
1081 	/* report alarm */
1082 	local_irq_disable();
1083 	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1084 	local_irq_enable();
1085 
1086 	/* then disable it; alarms are oneshot */
1087 	the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1088 	menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1089 }
1090 
1091 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1092 {
1093 	int	alarm = (m->client->irq > 0);
1094 
1095 	/* assume 32KDETEN pin is pulled high */
1096 	if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1097 		dev_dbg(&m->client->dev, "no 32k oscillator\n");
1098 		return;
1099 	}
1100 
1101 	/* support RTC alarm; it can issue wakeups */
1102 	if (alarm) {
1103 		if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1104 				menelaus_rtc_alarm_work) < 0) {
1105 			dev_err(&m->client->dev, "can't handle RTC alarm\n");
1106 			return;
1107 		}
1108 		device_init_wakeup(&m->client->dev, 1);
1109 	}
1110 
1111 	/* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1112 	m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1113 	if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1114 			|| (m->rtc_control & RTC_CTRL_AL_EN)
1115 			|| (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1116 		if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1117 			dev_warn(&m->client->dev, "rtc clock needs setting\n");
1118 			m->rtc_control |= RTC_CTRL_RTC_EN;
1119 		}
1120 		m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1121 		m->rtc_control &= ~RTC_CTRL_AL_EN;
1122 		menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1123 	}
1124 
1125 	m->rtc = rtc_device_register(DRIVER_NAME,
1126 			&m->client->dev,
1127 			&menelaus_rtc_ops, THIS_MODULE);
1128 	if (IS_ERR(m->rtc)) {
1129 		if (alarm) {
1130 			menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1131 			device_init_wakeup(&m->client->dev, 0);
1132 		}
1133 		dev_err(&m->client->dev, "can't register RTC: %d\n",
1134 				(int) PTR_ERR(m->rtc));
1135 		the_menelaus->rtc = NULL;
1136 	}
1137 }
1138 
1139 #else
1140 
1141 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1142 {
1143 	/* nothing */
1144 }
1145 
1146 #endif
1147 
1148 /*-----------------------------------------------------------------------*/
1149 
1150 static struct i2c_driver menelaus_i2c_driver;
1151 
1152 static int menelaus_probe(struct i2c_client *client,
1153 			  const struct i2c_device_id *id)
1154 {
1155 	struct menelaus_chip	*menelaus;
1156 	int			rev = 0, val;
1157 	int			err = 0;
1158 	struct menelaus_platform_data *menelaus_pdata =
1159 					client->dev.platform_data;
1160 
1161 	if (the_menelaus) {
1162 		dev_dbg(&client->dev, "only one %s for now\n",
1163 				DRIVER_NAME);
1164 		return -ENODEV;
1165 	}
1166 
1167 	menelaus = kzalloc(sizeof *menelaus, GFP_KERNEL);
1168 	if (!menelaus)
1169 		return -ENOMEM;
1170 
1171 	i2c_set_clientdata(client, menelaus);
1172 
1173 	the_menelaus = menelaus;
1174 	menelaus->client = client;
1175 
1176 	/* If a true probe check the device */
1177 	rev = menelaus_read_reg(MENELAUS_REV);
1178 	if (rev < 0) {
1179 		pr_err(DRIVER_NAME ": device not found");
1180 		err = -ENODEV;
1181 		goto fail1;
1182 	}
1183 
1184 	/* Ack and disable all Menelaus interrupts */
1185 	menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1186 	menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1187 	menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1188 	menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1189 	menelaus->mask1 = 0xff;
1190 	menelaus->mask2 = 0xff;
1191 
1192 	/* Set output buffer strengths */
1193 	menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1194 
1195 	if (client->irq > 0) {
1196 		err = request_irq(client->irq, menelaus_irq, IRQF_DISABLED,
1197 				  DRIVER_NAME, menelaus);
1198 		if (err) {
1199 			dev_dbg(&client->dev,  "can't get IRQ %d, err %d\n",
1200 					client->irq, err);
1201 			goto fail1;
1202 		}
1203 	}
1204 
1205 	mutex_init(&menelaus->lock);
1206 	INIT_WORK(&menelaus->work, menelaus_work);
1207 
1208 	pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1209 
1210 	val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1211 	if (val < 0)
1212 		goto fail2;
1213 	if (val & (1 << 7))
1214 		menelaus->vcore_hw_mode = 1;
1215 	else
1216 		menelaus->vcore_hw_mode = 0;
1217 
1218 	if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1219 		err = menelaus_pdata->late_init(&client->dev);
1220 		if (err < 0)
1221 			goto fail2;
1222 	}
1223 
1224 	menelaus_rtc_init(menelaus);
1225 
1226 	return 0;
1227 fail2:
1228 	free_irq(client->irq, menelaus);
1229 	flush_scheduled_work();
1230 fail1:
1231 	kfree(menelaus);
1232 	return err;
1233 }
1234 
1235 static int __exit menelaus_remove(struct i2c_client *client)
1236 {
1237 	struct menelaus_chip	*menelaus = i2c_get_clientdata(client);
1238 
1239 	free_irq(client->irq, menelaus);
1240 	kfree(menelaus);
1241 	i2c_set_clientdata(client, NULL);
1242 	the_menelaus = NULL;
1243 	return 0;
1244 }
1245 
1246 static const struct i2c_device_id menelaus_id[] = {
1247 	{ "menelaus", 0 },
1248 	{ }
1249 };
1250 MODULE_DEVICE_TABLE(i2c, menelaus_id);
1251 
1252 static struct i2c_driver menelaus_i2c_driver = {
1253 	.driver = {
1254 		.name		= DRIVER_NAME,
1255 	},
1256 	.probe		= menelaus_probe,
1257 	.remove		= __exit_p(menelaus_remove),
1258 	.id_table	= menelaus_id,
1259 };
1260 
1261 static int __init menelaus_init(void)
1262 {
1263 	int res;
1264 
1265 	res = i2c_add_driver(&menelaus_i2c_driver);
1266 	if (res < 0) {
1267 		pr_err(DRIVER_NAME ": driver registration failed\n");
1268 		return res;
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static void __exit menelaus_exit(void)
1275 {
1276 	i2c_del_driver(&menelaus_i2c_driver);
1277 
1278 	/* FIXME: Shutdown menelaus parts that can be shut down */
1279 }
1280 
1281 MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1282 MODULE_DESCRIPTION("I2C interface for Menelaus.");
1283 MODULE_LICENSE("GPL");
1284 
1285 module_init(menelaus_init);
1286 module_exit(menelaus_exit);
1287