xref: /linux/drivers/mfd/menelaus.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Copyright (C) 2004 Texas Instruments, Inc.
3  *
4  * Some parts based tps65010.c:
5  * Copyright (C) 2004 Texas Instruments and
6  * Copyright (C) 2004-2005 David Brownell
7  *
8  * Some parts based on tlv320aic24.c:
9  * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
10  *
11  * Changes for interrupt handling and clean-up by
12  * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
13  * Cleanup and generalized support for voltage setting by
14  * Juha Yrjola
15  * Added support for controlling VCORE and regulator sleep states,
16  * Amit Kucheria <amit.kucheria@nokia.com>
17  * Copyright (C) 2005, 2006 Nokia Corporation
18  *
19  * This program is free software; you can redistribute it and/or modify
20  * it under the terms of the GNU General Public License as published by
21  * the Free Software Foundation; either version 2 of the License, or
22  * (at your option) any later version.
23  *
24  * This program is distributed in the hope that it will be useful,
25  * but WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27  * GNU General Public License for more details.
28  *
29  * You should have received a copy of the GNU General Public License
30  * along with this program; if not, write to the Free Software
31  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
32  */
33 
34 #include <linux/module.h>
35 #include <linux/i2c.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/mutex.h>
39 #include <linux/workqueue.h>
40 #include <linux/delay.h>
41 #include <linux/rtc.h>
42 #include <linux/bcd.h>
43 #include <linux/slab.h>
44 #include <linux/mfd/menelaus.h>
45 #include <linux/gpio.h>
46 
47 #include <asm/mach/irq.h>
48 
49 
50 #define DRIVER_NAME			"menelaus"
51 
52 #define MENELAUS_I2C_ADDRESS		0x72
53 
54 #define MENELAUS_REV			0x01
55 #define MENELAUS_VCORE_CTRL1		0x02
56 #define MENELAUS_VCORE_CTRL2		0x03
57 #define MENELAUS_VCORE_CTRL3		0x04
58 #define MENELAUS_VCORE_CTRL4		0x05
59 #define MENELAUS_VCORE_CTRL5		0x06
60 #define MENELAUS_DCDC_CTRL1		0x07
61 #define MENELAUS_DCDC_CTRL2		0x08
62 #define MENELAUS_DCDC_CTRL3		0x09
63 #define MENELAUS_LDO_CTRL1		0x0A
64 #define MENELAUS_LDO_CTRL2		0x0B
65 #define MENELAUS_LDO_CTRL3		0x0C
66 #define MENELAUS_LDO_CTRL4		0x0D
67 #define MENELAUS_LDO_CTRL5		0x0E
68 #define MENELAUS_LDO_CTRL6		0x0F
69 #define MENELAUS_LDO_CTRL7		0x10
70 #define MENELAUS_LDO_CTRL8		0x11
71 #define MENELAUS_SLEEP_CTRL1		0x12
72 #define MENELAUS_SLEEP_CTRL2		0x13
73 #define MENELAUS_DEVICE_OFF		0x14
74 #define MENELAUS_OSC_CTRL		0x15
75 #define MENELAUS_DETECT_CTRL		0x16
76 #define MENELAUS_INT_MASK1		0x17
77 #define MENELAUS_INT_MASK2		0x18
78 #define MENELAUS_INT_STATUS1		0x19
79 #define MENELAUS_INT_STATUS2		0x1A
80 #define MENELAUS_INT_ACK1		0x1B
81 #define MENELAUS_INT_ACK2		0x1C
82 #define MENELAUS_GPIO_CTRL		0x1D
83 #define MENELAUS_GPIO_IN		0x1E
84 #define MENELAUS_GPIO_OUT		0x1F
85 #define MENELAUS_BBSMS			0x20
86 #define MENELAUS_RTC_CTRL		0x21
87 #define MENELAUS_RTC_UPDATE		0x22
88 #define MENELAUS_RTC_SEC		0x23
89 #define MENELAUS_RTC_MIN		0x24
90 #define MENELAUS_RTC_HR			0x25
91 #define MENELAUS_RTC_DAY		0x26
92 #define MENELAUS_RTC_MON		0x27
93 #define MENELAUS_RTC_YR			0x28
94 #define MENELAUS_RTC_WKDAY		0x29
95 #define MENELAUS_RTC_AL_SEC		0x2A
96 #define MENELAUS_RTC_AL_MIN		0x2B
97 #define MENELAUS_RTC_AL_HR		0x2C
98 #define MENELAUS_RTC_AL_DAY		0x2D
99 #define MENELAUS_RTC_AL_MON		0x2E
100 #define MENELAUS_RTC_AL_YR		0x2F
101 #define MENELAUS_RTC_COMP_MSB		0x30
102 #define MENELAUS_RTC_COMP_LSB		0x31
103 #define MENELAUS_S1_PULL_EN		0x32
104 #define MENELAUS_S1_PULL_DIR		0x33
105 #define MENELAUS_S2_PULL_EN		0x34
106 #define MENELAUS_S2_PULL_DIR		0x35
107 #define MENELAUS_MCT_CTRL1		0x36
108 #define MENELAUS_MCT_CTRL2		0x37
109 #define MENELAUS_MCT_CTRL3		0x38
110 #define MENELAUS_MCT_PIN_ST		0x39
111 #define MENELAUS_DEBOUNCE1		0x3A
112 
113 #define IH_MENELAUS_IRQS		12
114 #define MENELAUS_MMC_S1CD_IRQ		0	/* MMC slot 1 card change */
115 #define MENELAUS_MMC_S2CD_IRQ		1	/* MMC slot 2 card change */
116 #define MENELAUS_MMC_S1D1_IRQ		2	/* MMC DAT1 low in slot 1 */
117 #define MENELAUS_MMC_S2D1_IRQ		3	/* MMC DAT1 low in slot 2 */
118 #define MENELAUS_LOWBAT_IRQ		4	/* Low battery */
119 #define MENELAUS_HOTDIE_IRQ		5	/* Hot die detect */
120 #define MENELAUS_UVLO_IRQ		6	/* UVLO detect */
121 #define MENELAUS_TSHUT_IRQ		7	/* Thermal shutdown */
122 #define MENELAUS_RTCTMR_IRQ		8	/* RTC timer */
123 #define MENELAUS_RTCALM_IRQ		9	/* RTC alarm */
124 #define MENELAUS_RTCERR_IRQ		10	/* RTC error */
125 #define MENELAUS_PSHBTN_IRQ		11	/* Push button */
126 #define MENELAUS_RESERVED12_IRQ		12	/* Reserved */
127 #define MENELAUS_RESERVED13_IRQ		13	/* Reserved */
128 #define MENELAUS_RESERVED14_IRQ		14	/* Reserved */
129 #define MENELAUS_RESERVED15_IRQ		15	/* Reserved */
130 
131 /* VCORE_CTRL1 register */
132 #define VCORE_CTRL1_BYP_COMP		(1 << 5)
133 #define VCORE_CTRL1_HW_NSW		(1 << 7)
134 
135 /* GPIO_CTRL register */
136 #define GPIO_CTRL_SLOTSELEN		(1 << 5)
137 #define GPIO_CTRL_SLPCTLEN		(1 << 6)
138 #define GPIO1_DIR_INPUT			(1 << 0)
139 #define GPIO2_DIR_INPUT			(1 << 1)
140 #define GPIO3_DIR_INPUT			(1 << 2)
141 
142 /* MCT_CTRL1 register */
143 #define MCT_CTRL1_S1_CMD_OD		(1 << 2)
144 #define MCT_CTRL1_S2_CMD_OD		(1 << 3)
145 
146 /* MCT_CTRL2 register */
147 #define MCT_CTRL2_VS2_SEL_D0		(1 << 0)
148 #define MCT_CTRL2_VS2_SEL_D1		(1 << 1)
149 #define MCT_CTRL2_S1CD_BUFEN		(1 << 4)
150 #define MCT_CTRL2_S2CD_BUFEN		(1 << 5)
151 #define MCT_CTRL2_S1CD_DBEN		(1 << 6)
152 #define MCT_CTRL2_S2CD_BEN		(1 << 7)
153 
154 /* MCT_CTRL3 register */
155 #define MCT_CTRL3_SLOT1_EN		(1 << 0)
156 #define MCT_CTRL3_SLOT2_EN		(1 << 1)
157 #define MCT_CTRL3_S1_AUTO_EN		(1 << 2)
158 #define MCT_CTRL3_S2_AUTO_EN		(1 << 3)
159 
160 /* MCT_PIN_ST register */
161 #define MCT_PIN_ST_S1_CD_ST		(1 << 0)
162 #define MCT_PIN_ST_S2_CD_ST		(1 << 1)
163 
164 static void menelaus_work(struct work_struct *_menelaus);
165 
166 struct menelaus_chip {
167 	struct mutex		lock;
168 	struct i2c_client	*client;
169 	struct work_struct	work;
170 #ifdef CONFIG_RTC_DRV_TWL92330
171 	struct rtc_device	*rtc;
172 	u8			rtc_control;
173 	unsigned		uie:1;
174 #endif
175 	unsigned		vcore_hw_mode:1;
176 	u8			mask1, mask2;
177 	void			(*handlers[16])(struct menelaus_chip *);
178 	void			(*mmc_callback)(void *data, u8 mask);
179 	void			*mmc_callback_data;
180 };
181 
182 static struct menelaus_chip *the_menelaus;
183 
184 static int menelaus_write_reg(int reg, u8 value)
185 {
186 	int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
187 
188 	if (val < 0) {
189 		pr_err(DRIVER_NAME ": write error");
190 		return val;
191 	}
192 
193 	return 0;
194 }
195 
196 static int menelaus_read_reg(int reg)
197 {
198 	int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
199 
200 	if (val < 0)
201 		pr_err(DRIVER_NAME ": read error");
202 
203 	return val;
204 }
205 
206 static int menelaus_enable_irq(int irq)
207 {
208 	if (irq > 7) {
209 		irq -= 8;
210 		the_menelaus->mask2 &= ~(1 << irq);
211 		return menelaus_write_reg(MENELAUS_INT_MASK2,
212 				the_menelaus->mask2);
213 	} else {
214 		the_menelaus->mask1 &= ~(1 << irq);
215 		return menelaus_write_reg(MENELAUS_INT_MASK1,
216 				the_menelaus->mask1);
217 	}
218 }
219 
220 static int menelaus_disable_irq(int irq)
221 {
222 	if (irq > 7) {
223 		irq -= 8;
224 		the_menelaus->mask2 |= (1 << irq);
225 		return menelaus_write_reg(MENELAUS_INT_MASK2,
226 				the_menelaus->mask2);
227 	} else {
228 		the_menelaus->mask1 |= (1 << irq);
229 		return menelaus_write_reg(MENELAUS_INT_MASK1,
230 				the_menelaus->mask1);
231 	}
232 }
233 
234 static int menelaus_ack_irq(int irq)
235 {
236 	if (irq > 7)
237 		return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
238 	else
239 		return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
240 }
241 
242 /* Adds a handler for an interrupt. Does not run in interrupt context */
243 static int menelaus_add_irq_work(int irq,
244 		void (*handler)(struct menelaus_chip *))
245 {
246 	int ret = 0;
247 
248 	mutex_lock(&the_menelaus->lock);
249 	the_menelaus->handlers[irq] = handler;
250 	ret = menelaus_enable_irq(irq);
251 	mutex_unlock(&the_menelaus->lock);
252 
253 	return ret;
254 }
255 
256 /* Removes handler for an interrupt */
257 static int menelaus_remove_irq_work(int irq)
258 {
259 	int ret = 0;
260 
261 	mutex_lock(&the_menelaus->lock);
262 	ret = menelaus_disable_irq(irq);
263 	the_menelaus->handlers[irq] = NULL;
264 	mutex_unlock(&the_menelaus->lock);
265 
266 	return ret;
267 }
268 
269 /*
270  * Gets scheduled when a card detect interrupt happens. Note that in some cases
271  * this line is wired to card cover switch rather than the card detect switch
272  * in each slot. In this case the cards are not seen by menelaus.
273  * FIXME: Add handling for D1 too
274  */
275 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
276 {
277 	int reg;
278 	unsigned char card_mask = 0;
279 
280 	reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
281 	if (reg < 0)
282 		return;
283 
284 	if (!(reg & 0x1))
285 		card_mask |= MCT_PIN_ST_S1_CD_ST;
286 
287 	if (!(reg & 0x2))
288 		card_mask |= MCT_PIN_ST_S2_CD_ST;
289 
290 	if (menelaus_hw->mmc_callback)
291 		menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
292 					  card_mask);
293 }
294 
295 /*
296  * Toggles the MMC slots between open-drain and push-pull mode.
297  */
298 int menelaus_set_mmc_opendrain(int slot, int enable)
299 {
300 	int ret, val;
301 
302 	if (slot != 1 && slot != 2)
303 		return -EINVAL;
304 	mutex_lock(&the_menelaus->lock);
305 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
306 	if (ret < 0) {
307 		mutex_unlock(&the_menelaus->lock);
308 		return ret;
309 	}
310 	val = ret;
311 	if (slot == 1) {
312 		if (enable)
313 			val |= MCT_CTRL1_S1_CMD_OD;
314 		else
315 			val &= ~MCT_CTRL1_S1_CMD_OD;
316 	} else {
317 		if (enable)
318 			val |= MCT_CTRL1_S2_CMD_OD;
319 		else
320 			val &= ~MCT_CTRL1_S2_CMD_OD;
321 	}
322 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
323 	mutex_unlock(&the_menelaus->lock);
324 
325 	return ret;
326 }
327 EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
328 
329 int menelaus_set_slot_sel(int enable)
330 {
331 	int ret;
332 
333 	mutex_lock(&the_menelaus->lock);
334 	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
335 	if (ret < 0)
336 		goto out;
337 	ret |= GPIO2_DIR_INPUT;
338 	if (enable)
339 		ret |= GPIO_CTRL_SLOTSELEN;
340 	else
341 		ret &= ~GPIO_CTRL_SLOTSELEN;
342 	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
343 out:
344 	mutex_unlock(&the_menelaus->lock);
345 	return ret;
346 }
347 EXPORT_SYMBOL(menelaus_set_slot_sel);
348 
349 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
350 {
351 	int ret, val;
352 
353 	if (slot != 1 && slot != 2)
354 		return -EINVAL;
355 	if (power >= 3)
356 		return -EINVAL;
357 
358 	mutex_lock(&the_menelaus->lock);
359 
360 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
361 	if (ret < 0)
362 		goto out;
363 	val = ret;
364 	if (slot == 1) {
365 		if (cd_en)
366 			val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
367 		else
368 			val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
369 	} else {
370 		if (cd_en)
371 			val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
372 		else
373 			val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
374 	}
375 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
376 	if (ret < 0)
377 		goto out;
378 
379 	ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
380 	if (ret < 0)
381 		goto out;
382 	val = ret;
383 	if (slot == 1) {
384 		if (enable)
385 			val |= MCT_CTRL3_SLOT1_EN;
386 		else
387 			val &= ~MCT_CTRL3_SLOT1_EN;
388 	} else {
389 		int b;
390 
391 		if (enable)
392 			val |= MCT_CTRL3_SLOT2_EN;
393 		else
394 			val &= ~MCT_CTRL3_SLOT2_EN;
395 		b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
396 		b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
397 		b |= power;
398 		ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
399 		if (ret < 0)
400 			goto out;
401 	}
402 	/* Disable autonomous shutdown */
403 	val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
404 	ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
405 out:
406 	mutex_unlock(&the_menelaus->lock);
407 	return ret;
408 }
409 EXPORT_SYMBOL(menelaus_set_mmc_slot);
410 
411 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
412 				   void *data)
413 {
414 	int ret = 0;
415 
416 	the_menelaus->mmc_callback_data = data;
417 	the_menelaus->mmc_callback = callback;
418 	ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
419 				    menelaus_mmc_cd_work);
420 	if (ret < 0)
421 		return ret;
422 	ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
423 				    menelaus_mmc_cd_work);
424 	if (ret < 0)
425 		return ret;
426 	ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
427 				    menelaus_mmc_cd_work);
428 	if (ret < 0)
429 		return ret;
430 	ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
431 				    menelaus_mmc_cd_work);
432 
433 	return ret;
434 }
435 EXPORT_SYMBOL(menelaus_register_mmc_callback);
436 
437 void menelaus_unregister_mmc_callback(void)
438 {
439 	menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
440 	menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
441 	menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
442 	menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
443 
444 	the_menelaus->mmc_callback = NULL;
445 	the_menelaus->mmc_callback_data = NULL;
446 }
447 EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
448 
449 struct menelaus_vtg {
450 	const char *name;
451 	u8 vtg_reg;
452 	u8 vtg_shift;
453 	u8 vtg_bits;
454 	u8 mode_reg;
455 };
456 
457 struct menelaus_vtg_value {
458 	u16 vtg;
459 	u16 val;
460 };
461 
462 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
463 				int vtg_val, int mode)
464 {
465 	int val, ret;
466 	struct i2c_client *c = the_menelaus->client;
467 
468 	mutex_lock(&the_menelaus->lock);
469 
470 	ret = menelaus_read_reg(vtg->vtg_reg);
471 	if (ret < 0)
472 		goto out;
473 	val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
474 	val |= vtg_val << vtg->vtg_shift;
475 
476 	dev_dbg(&c->dev, "Setting voltage '%s'"
477 			 "to %d mV (reg 0x%02x, val 0x%02x)\n",
478 			vtg->name, mV, vtg->vtg_reg, val);
479 
480 	ret = menelaus_write_reg(vtg->vtg_reg, val);
481 	if (ret < 0)
482 		goto out;
483 	ret = menelaus_write_reg(vtg->mode_reg, mode);
484 out:
485 	mutex_unlock(&the_menelaus->lock);
486 	if (ret == 0) {
487 		/* Wait for voltage to stabilize */
488 		msleep(1);
489 	}
490 	return ret;
491 }
492 
493 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
494 				  int n)
495 {
496 	int i;
497 
498 	for (i = 0; i < n; i++, tbl++)
499 		if (tbl->vtg == vtg)
500 			return tbl->val;
501 	return -EINVAL;
502 }
503 
504 /*
505  * Vcore can be programmed in two ways:
506  * SW-controlled: Required voltage is programmed into VCORE_CTRL1
507  * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
508  * and VCORE_CTRL4
509  *
510  * Call correct 'set' function accordingly
511  */
512 
513 static const struct menelaus_vtg_value vcore_values[] = {
514 	{ 1000, 0 },
515 	{ 1025, 1 },
516 	{ 1050, 2 },
517 	{ 1075, 3 },
518 	{ 1100, 4 },
519 	{ 1125, 5 },
520 	{ 1150, 6 },
521 	{ 1175, 7 },
522 	{ 1200, 8 },
523 	{ 1225, 9 },
524 	{ 1250, 10 },
525 	{ 1275, 11 },
526 	{ 1300, 12 },
527 	{ 1325, 13 },
528 	{ 1350, 14 },
529 	{ 1375, 15 },
530 	{ 1400, 16 },
531 	{ 1425, 17 },
532 	{ 1450, 18 },
533 };
534 
535 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
536 {
537 	int fval, rval, val, ret;
538 	struct i2c_client *c = the_menelaus->client;
539 
540 	rval = menelaus_get_vtg_value(roof_mV, vcore_values,
541 				      ARRAY_SIZE(vcore_values));
542 	if (rval < 0)
543 		return -EINVAL;
544 	fval = menelaus_get_vtg_value(floor_mV, vcore_values,
545 				      ARRAY_SIZE(vcore_values));
546 	if (fval < 0)
547 		return -EINVAL;
548 
549 	dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
550 	       floor_mV, roof_mV);
551 
552 	mutex_lock(&the_menelaus->lock);
553 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
554 	if (ret < 0)
555 		goto out;
556 	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
557 	if (ret < 0)
558 		goto out;
559 	if (!the_menelaus->vcore_hw_mode) {
560 		val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
561 		/* HW mode, turn OFF byte comparator */
562 		val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
563 		ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
564 		the_menelaus->vcore_hw_mode = 1;
565 	}
566 	msleep(1);
567 out:
568 	mutex_unlock(&the_menelaus->lock);
569 	return ret;
570 }
571 
572 static const struct menelaus_vtg vmem_vtg = {
573 	.name = "VMEM",
574 	.vtg_reg = MENELAUS_LDO_CTRL1,
575 	.vtg_shift = 0,
576 	.vtg_bits = 2,
577 	.mode_reg = MENELAUS_LDO_CTRL3,
578 };
579 
580 static const struct menelaus_vtg_value vmem_values[] = {
581 	{ 1500, 0 },
582 	{ 1800, 1 },
583 	{ 1900, 2 },
584 	{ 2500, 3 },
585 };
586 
587 int menelaus_set_vmem(unsigned int mV)
588 {
589 	int val;
590 
591 	if (mV == 0)
592 		return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
593 
594 	val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
595 	if (val < 0)
596 		return -EINVAL;
597 	return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
598 }
599 EXPORT_SYMBOL(menelaus_set_vmem);
600 
601 static const struct menelaus_vtg vio_vtg = {
602 	.name = "VIO",
603 	.vtg_reg = MENELAUS_LDO_CTRL1,
604 	.vtg_shift = 2,
605 	.vtg_bits = 2,
606 	.mode_reg = MENELAUS_LDO_CTRL4,
607 };
608 
609 static const struct menelaus_vtg_value vio_values[] = {
610 	{ 1500, 0 },
611 	{ 1800, 1 },
612 	{ 2500, 2 },
613 	{ 2800, 3 },
614 };
615 
616 int menelaus_set_vio(unsigned int mV)
617 {
618 	int val;
619 
620 	if (mV == 0)
621 		return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
622 
623 	val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
624 	if (val < 0)
625 		return -EINVAL;
626 	return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
627 }
628 EXPORT_SYMBOL(menelaus_set_vio);
629 
630 static const struct menelaus_vtg_value vdcdc_values[] = {
631 	{ 1500, 0 },
632 	{ 1800, 1 },
633 	{ 2000, 2 },
634 	{ 2200, 3 },
635 	{ 2400, 4 },
636 	{ 2800, 5 },
637 	{ 3000, 6 },
638 	{ 3300, 7 },
639 };
640 
641 static const struct menelaus_vtg vdcdc2_vtg = {
642 	.name = "VDCDC2",
643 	.vtg_reg = MENELAUS_DCDC_CTRL1,
644 	.vtg_shift = 0,
645 	.vtg_bits = 3,
646 	.mode_reg = MENELAUS_DCDC_CTRL2,
647 };
648 
649 static const struct menelaus_vtg vdcdc3_vtg = {
650 	.name = "VDCDC3",
651 	.vtg_reg = MENELAUS_DCDC_CTRL1,
652 	.vtg_shift = 3,
653 	.vtg_bits = 3,
654 	.mode_reg = MENELAUS_DCDC_CTRL3,
655 };
656 
657 int menelaus_set_vdcdc(int dcdc, unsigned int mV)
658 {
659 	const struct menelaus_vtg *vtg;
660 	int val;
661 
662 	if (dcdc != 2 && dcdc != 3)
663 		return -EINVAL;
664 	if (dcdc == 2)
665 		vtg = &vdcdc2_vtg;
666 	else
667 		vtg = &vdcdc3_vtg;
668 
669 	if (mV == 0)
670 		return menelaus_set_voltage(vtg, 0, 0, 0);
671 
672 	val = menelaus_get_vtg_value(mV, vdcdc_values,
673 				     ARRAY_SIZE(vdcdc_values));
674 	if (val < 0)
675 		return -EINVAL;
676 	return menelaus_set_voltage(vtg, mV, val, 0x03);
677 }
678 
679 static const struct menelaus_vtg_value vmmc_values[] = {
680 	{ 1850, 0 },
681 	{ 2800, 1 },
682 	{ 3000, 2 },
683 	{ 3100, 3 },
684 };
685 
686 static const struct menelaus_vtg vmmc_vtg = {
687 	.name = "VMMC",
688 	.vtg_reg = MENELAUS_LDO_CTRL1,
689 	.vtg_shift = 6,
690 	.vtg_bits = 2,
691 	.mode_reg = MENELAUS_LDO_CTRL7,
692 };
693 
694 int menelaus_set_vmmc(unsigned int mV)
695 {
696 	int val;
697 
698 	if (mV == 0)
699 		return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
700 
701 	val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
702 	if (val < 0)
703 		return -EINVAL;
704 	return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
705 }
706 EXPORT_SYMBOL(menelaus_set_vmmc);
707 
708 
709 static const struct menelaus_vtg_value vaux_values[] = {
710 	{ 1500, 0 },
711 	{ 1800, 1 },
712 	{ 2500, 2 },
713 	{ 2800, 3 },
714 };
715 
716 static const struct menelaus_vtg vaux_vtg = {
717 	.name = "VAUX",
718 	.vtg_reg = MENELAUS_LDO_CTRL1,
719 	.vtg_shift = 4,
720 	.vtg_bits = 2,
721 	.mode_reg = MENELAUS_LDO_CTRL6,
722 };
723 
724 int menelaus_set_vaux(unsigned int mV)
725 {
726 	int val;
727 
728 	if (mV == 0)
729 		return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
730 
731 	val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
732 	if (val < 0)
733 		return -EINVAL;
734 	return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
735 }
736 EXPORT_SYMBOL(menelaus_set_vaux);
737 
738 int menelaus_get_slot_pin_states(void)
739 {
740 	return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
741 }
742 EXPORT_SYMBOL(menelaus_get_slot_pin_states);
743 
744 int menelaus_set_regulator_sleep(int enable, u32 val)
745 {
746 	int t, ret;
747 	struct i2c_client *c = the_menelaus->client;
748 
749 	mutex_lock(&the_menelaus->lock);
750 	ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
751 	if (ret < 0)
752 		goto out;
753 
754 	dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
755 
756 	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
757 	if (ret < 0)
758 		goto out;
759 	t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
760 	if (enable)
761 		ret |= t;
762 	else
763 		ret &= ~t;
764 	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
765 out:
766 	mutex_unlock(&the_menelaus->lock);
767 	return ret;
768 }
769 
770 /*-----------------------------------------------------------------------*/
771 
772 /* Handles Menelaus interrupts. Does not run in interrupt context */
773 static void menelaus_work(struct work_struct *_menelaus)
774 {
775 	struct menelaus_chip *menelaus =
776 			container_of(_menelaus, struct menelaus_chip, work);
777 	void (*handler)(struct menelaus_chip *menelaus);
778 
779 	while (1) {
780 		unsigned isr;
781 
782 		isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
783 				& ~menelaus->mask2) << 8;
784 		isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
785 				& ~menelaus->mask1;
786 		if (!isr)
787 			break;
788 
789 		while (isr) {
790 			int irq = fls(isr) - 1;
791 			isr &= ~(1 << irq);
792 
793 			mutex_lock(&menelaus->lock);
794 			menelaus_disable_irq(irq);
795 			menelaus_ack_irq(irq);
796 			handler = menelaus->handlers[irq];
797 			if (handler)
798 				handler(menelaus);
799 			menelaus_enable_irq(irq);
800 			mutex_unlock(&menelaus->lock);
801 		}
802 	}
803 	enable_irq(menelaus->client->irq);
804 }
805 
806 /*
807  * We cannot use I2C in interrupt context, so we just schedule work.
808  */
809 static irqreturn_t menelaus_irq(int irq, void *_menelaus)
810 {
811 	struct menelaus_chip *menelaus = _menelaus;
812 
813 	disable_irq_nosync(irq);
814 	(void)schedule_work(&menelaus->work);
815 
816 	return IRQ_HANDLED;
817 }
818 
819 /*-----------------------------------------------------------------------*/
820 
821 /*
822  * The RTC needs to be set once, then it runs on backup battery power.
823  * It supports alarms, including system wake alarms (from some modes);
824  * and 1/second IRQs if requested.
825  */
826 #ifdef CONFIG_RTC_DRV_TWL92330
827 
828 #define RTC_CTRL_RTC_EN		(1 << 0)
829 #define RTC_CTRL_AL_EN		(1 << 1)
830 #define RTC_CTRL_MODE12		(1 << 2)
831 #define RTC_CTRL_EVERY_MASK	(3 << 3)
832 #define RTC_CTRL_EVERY_SEC	(0 << 3)
833 #define RTC_CTRL_EVERY_MIN	(1 << 3)
834 #define RTC_CTRL_EVERY_HR	(2 << 3)
835 #define RTC_CTRL_EVERY_DAY	(3 << 3)
836 
837 #define RTC_UPDATE_EVERY	0x08
838 
839 #define RTC_HR_PM		(1 << 7)
840 
841 static void menelaus_to_time(char *regs, struct rtc_time *t)
842 {
843 	t->tm_sec = bcd2bin(regs[0]);
844 	t->tm_min = bcd2bin(regs[1]);
845 	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
846 		t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
847 		if (regs[2] & RTC_HR_PM)
848 			t->tm_hour += 12;
849 	} else
850 		t->tm_hour = bcd2bin(regs[2] & 0x3f);
851 	t->tm_mday = bcd2bin(regs[3]);
852 	t->tm_mon = bcd2bin(regs[4]) - 1;
853 	t->tm_year = bcd2bin(regs[5]) + 100;
854 }
855 
856 static int time_to_menelaus(struct rtc_time *t, int regnum)
857 {
858 	int	hour, status;
859 
860 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
861 	if (status < 0)
862 		goto fail;
863 
864 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
865 	if (status < 0)
866 		goto fail;
867 
868 	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
869 		hour = t->tm_hour + 1;
870 		if (hour > 12)
871 			hour = RTC_HR_PM | bin2bcd(hour - 12);
872 		else
873 			hour = bin2bcd(hour);
874 	} else
875 		hour = bin2bcd(t->tm_hour);
876 	status = menelaus_write_reg(regnum++, hour);
877 	if (status < 0)
878 		goto fail;
879 
880 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
881 	if (status < 0)
882 		goto fail;
883 
884 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
885 	if (status < 0)
886 		goto fail;
887 
888 	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
889 	if (status < 0)
890 		goto fail;
891 
892 	return 0;
893 fail:
894 	dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
895 			--regnum, status);
896 	return status;
897 }
898 
899 static int menelaus_read_time(struct device *dev, struct rtc_time *t)
900 {
901 	struct i2c_msg	msg[2];
902 	char		regs[7];
903 	int		status;
904 
905 	/* block read date and time registers */
906 	regs[0] = MENELAUS_RTC_SEC;
907 
908 	msg[0].addr = MENELAUS_I2C_ADDRESS;
909 	msg[0].flags = 0;
910 	msg[0].len = 1;
911 	msg[0].buf = regs;
912 
913 	msg[1].addr = MENELAUS_I2C_ADDRESS;
914 	msg[1].flags = I2C_M_RD;
915 	msg[1].len = sizeof(regs);
916 	msg[1].buf = regs;
917 
918 	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
919 	if (status != 2) {
920 		dev_err(dev, "%s error %d\n", "read", status);
921 		return -EIO;
922 	}
923 
924 	menelaus_to_time(regs, t);
925 	t->tm_wday = bcd2bin(regs[6]);
926 
927 	return 0;
928 }
929 
930 static int menelaus_set_time(struct device *dev, struct rtc_time *t)
931 {
932 	int		status;
933 
934 	/* write date and time registers */
935 	status = time_to_menelaus(t, MENELAUS_RTC_SEC);
936 	if (status < 0)
937 		return status;
938 	status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
939 	if (status < 0) {
940 		dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
941 				"err %d\n", MENELAUS_RTC_WKDAY, status);
942 		return status;
943 	}
944 
945 	/* now commit the write */
946 	status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
947 	if (status < 0)
948 		dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
949 				status);
950 
951 	return 0;
952 }
953 
954 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
955 {
956 	struct i2c_msg	msg[2];
957 	char		regs[6];
958 	int		status;
959 
960 	/* block read alarm registers */
961 	regs[0] = MENELAUS_RTC_AL_SEC;
962 
963 	msg[0].addr = MENELAUS_I2C_ADDRESS;
964 	msg[0].flags = 0;
965 	msg[0].len = 1;
966 	msg[0].buf = regs;
967 
968 	msg[1].addr = MENELAUS_I2C_ADDRESS;
969 	msg[1].flags = I2C_M_RD;
970 	msg[1].len = sizeof(regs);
971 	msg[1].buf = regs;
972 
973 	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
974 	if (status != 2) {
975 		dev_err(dev, "%s error %d\n", "alarm read", status);
976 		return -EIO;
977 	}
978 
979 	menelaus_to_time(regs, &w->time);
980 
981 	w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
982 
983 	/* NOTE we *could* check if actually pending... */
984 	w->pending = 0;
985 
986 	return 0;
987 }
988 
989 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
990 {
991 	int		status;
992 
993 	if (the_menelaus->client->irq <= 0 && w->enabled)
994 		return -ENODEV;
995 
996 	/* clear previous alarm enable */
997 	if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
998 		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
999 		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1000 				the_menelaus->rtc_control);
1001 		if (status < 0)
1002 			return status;
1003 	}
1004 
1005 	/* write alarm registers */
1006 	status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
1007 	if (status < 0)
1008 		return status;
1009 
1010 	/* enable alarm if requested */
1011 	if (w->enabled) {
1012 		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1013 		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1014 				the_menelaus->rtc_control);
1015 	}
1016 
1017 	return status;
1018 }
1019 
1020 #ifdef CONFIG_RTC_INTF_DEV
1021 
1022 static void menelaus_rtc_update_work(struct menelaus_chip *m)
1023 {
1024 	/* report 1/sec update */
1025 	local_irq_disable();
1026 	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1027 	local_irq_enable();
1028 }
1029 
1030 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1031 {
1032 	int	status;
1033 
1034 	if (the_menelaus->client->irq <= 0)
1035 		return -ENOIOCTLCMD;
1036 
1037 	switch (cmd) {
1038 	/* alarm IRQ */
1039 	case RTC_AIE_ON:
1040 		if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1041 			return 0;
1042 		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1043 		break;
1044 	case RTC_AIE_OFF:
1045 		if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1046 			return 0;
1047 		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1048 		break;
1049 	/* 1/second "update" IRQ */
1050 	case RTC_UIE_ON:
1051 		if (the_menelaus->uie)
1052 			return 0;
1053 		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1054 		status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1055 				menelaus_rtc_update_work);
1056 		if (status == 0)
1057 			the_menelaus->uie = 1;
1058 		return status;
1059 	case RTC_UIE_OFF:
1060 		if (!the_menelaus->uie)
1061 			return 0;
1062 		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1063 		if (status == 0)
1064 			the_menelaus->uie = 0;
1065 		return status;
1066 	default:
1067 		return -ENOIOCTLCMD;
1068 	}
1069 	return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1070 }
1071 
1072 #else
1073 #define menelaus_ioctl	NULL
1074 #endif
1075 
1076 /* REVISIT no compensation register support ... */
1077 
1078 static const struct rtc_class_ops menelaus_rtc_ops = {
1079 	.ioctl			= menelaus_ioctl,
1080 	.read_time		= menelaus_read_time,
1081 	.set_time		= menelaus_set_time,
1082 	.read_alarm		= menelaus_read_alarm,
1083 	.set_alarm		= menelaus_set_alarm,
1084 };
1085 
1086 static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1087 {
1088 	/* report alarm */
1089 	local_irq_disable();
1090 	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1091 	local_irq_enable();
1092 
1093 	/* then disable it; alarms are oneshot */
1094 	the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1095 	menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1096 }
1097 
1098 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1099 {
1100 	int	alarm = (m->client->irq > 0);
1101 
1102 	/* assume 32KDETEN pin is pulled high */
1103 	if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1104 		dev_dbg(&m->client->dev, "no 32k oscillator\n");
1105 		return;
1106 	}
1107 
1108 	/* support RTC alarm; it can issue wakeups */
1109 	if (alarm) {
1110 		if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1111 				menelaus_rtc_alarm_work) < 0) {
1112 			dev_err(&m->client->dev, "can't handle RTC alarm\n");
1113 			return;
1114 		}
1115 		device_init_wakeup(&m->client->dev, 1);
1116 	}
1117 
1118 	/* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1119 	m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1120 	if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1121 			|| (m->rtc_control & RTC_CTRL_AL_EN)
1122 			|| (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1123 		if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1124 			dev_warn(&m->client->dev, "rtc clock needs setting\n");
1125 			m->rtc_control |= RTC_CTRL_RTC_EN;
1126 		}
1127 		m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1128 		m->rtc_control &= ~RTC_CTRL_AL_EN;
1129 		menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1130 	}
1131 
1132 	m->rtc = rtc_device_register(DRIVER_NAME,
1133 			&m->client->dev,
1134 			&menelaus_rtc_ops, THIS_MODULE);
1135 	if (IS_ERR(m->rtc)) {
1136 		if (alarm) {
1137 			menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1138 			device_init_wakeup(&m->client->dev, 0);
1139 		}
1140 		dev_err(&m->client->dev, "can't register RTC: %d\n",
1141 				(int) PTR_ERR(m->rtc));
1142 		the_menelaus->rtc = NULL;
1143 	}
1144 }
1145 
1146 #else
1147 
1148 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1149 {
1150 	/* nothing */
1151 }
1152 
1153 #endif
1154 
1155 /*-----------------------------------------------------------------------*/
1156 
1157 static struct i2c_driver menelaus_i2c_driver;
1158 
1159 static int menelaus_probe(struct i2c_client *client,
1160 			  const struct i2c_device_id *id)
1161 {
1162 	struct menelaus_chip	*menelaus;
1163 	int			rev = 0;
1164 	int			err = 0;
1165 	struct menelaus_platform_data *menelaus_pdata =
1166 					dev_get_platdata(&client->dev);
1167 
1168 	if (the_menelaus) {
1169 		dev_dbg(&client->dev, "only one %s for now\n",
1170 				DRIVER_NAME);
1171 		return -ENODEV;
1172 	}
1173 
1174 	menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL);
1175 	if (!menelaus)
1176 		return -ENOMEM;
1177 
1178 	i2c_set_clientdata(client, menelaus);
1179 
1180 	the_menelaus = menelaus;
1181 	menelaus->client = client;
1182 
1183 	/* If a true probe check the device */
1184 	rev = menelaus_read_reg(MENELAUS_REV);
1185 	if (rev < 0) {
1186 		pr_err(DRIVER_NAME ": device not found");
1187 		return -ENODEV;
1188 	}
1189 
1190 	/* Ack and disable all Menelaus interrupts */
1191 	menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1192 	menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1193 	menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1194 	menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1195 	menelaus->mask1 = 0xff;
1196 	menelaus->mask2 = 0xff;
1197 
1198 	/* Set output buffer strengths */
1199 	menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1200 
1201 	if (client->irq > 0) {
1202 		err = request_irq(client->irq, menelaus_irq, 0,
1203 				  DRIVER_NAME, menelaus);
1204 		if (err) {
1205 			dev_dbg(&client->dev,  "can't get IRQ %d, err %d\n",
1206 					client->irq, err);
1207 			return err;
1208 		}
1209 	}
1210 
1211 	mutex_init(&menelaus->lock);
1212 	INIT_WORK(&menelaus->work, menelaus_work);
1213 
1214 	pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1215 
1216 	err = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1217 	if (err < 0)
1218 		goto fail;
1219 	if (err & VCORE_CTRL1_HW_NSW)
1220 		menelaus->vcore_hw_mode = 1;
1221 	else
1222 		menelaus->vcore_hw_mode = 0;
1223 
1224 	if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1225 		err = menelaus_pdata->late_init(&client->dev);
1226 		if (err < 0)
1227 			goto fail;
1228 	}
1229 
1230 	menelaus_rtc_init(menelaus);
1231 
1232 	return 0;
1233 fail:
1234 	free_irq(client->irq, menelaus);
1235 	flush_work(&menelaus->work);
1236 	return err;
1237 }
1238 
1239 static int menelaus_remove(struct i2c_client *client)
1240 {
1241 	struct menelaus_chip	*menelaus = i2c_get_clientdata(client);
1242 
1243 	free_irq(client->irq, menelaus);
1244 	flush_work(&menelaus->work);
1245 	the_menelaus = NULL;
1246 	return 0;
1247 }
1248 
1249 static const struct i2c_device_id menelaus_id[] = {
1250 	{ "menelaus", 0 },
1251 	{ }
1252 };
1253 MODULE_DEVICE_TABLE(i2c, menelaus_id);
1254 
1255 static struct i2c_driver menelaus_i2c_driver = {
1256 	.driver = {
1257 		.name		= DRIVER_NAME,
1258 	},
1259 	.probe		= menelaus_probe,
1260 	.remove		= menelaus_remove,
1261 	.id_table	= menelaus_id,
1262 };
1263 
1264 module_i2c_driver(menelaus_i2c_driver);
1265 
1266 MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1267 MODULE_DESCRIPTION("I2C interface for Menelaus.");
1268 MODULE_LICENSE("GPL");
1269