1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2004 Texas Instruments, Inc.
4 *
5 * Some parts based tps65010.c:
6 * Copyright (C) 2004 Texas Instruments and
7 * Copyright (C) 2004-2005 David Brownell
8 *
9 * Some parts based on tlv320aic24.c:
10 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
11 *
12 * Changes for interrupt handling and clean-up by
13 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
14 * Cleanup and generalized support for voltage setting by
15 * Juha Yrjola
16 * Added support for controlling VCORE and regulator sleep states,
17 * Amit Kucheria <amit.kucheria@nokia.com>
18 * Copyright (C) 2005, 2006 Nokia Corporation
19 */
20
21 #include <linux/module.h>
22 #include <linux/i2c.h>
23 #include <linux/interrupt.h>
24 #include <linux/sched.h>
25 #include <linux/mutex.h>
26 #include <linux/workqueue.h>
27 #include <linux/delay.h>
28 #include <linux/rtc.h>
29 #include <linux/bcd.h>
30 #include <linux/slab.h>
31 #include <linux/mfd/menelaus.h>
32
33 #include <asm/mach/irq.h>
34
35
36 #define DRIVER_NAME "menelaus"
37
38 #define MENELAUS_I2C_ADDRESS 0x72
39
40 #define MENELAUS_REV 0x01
41 #define MENELAUS_VCORE_CTRL1 0x02
42 #define MENELAUS_VCORE_CTRL2 0x03
43 #define MENELAUS_VCORE_CTRL3 0x04
44 #define MENELAUS_VCORE_CTRL4 0x05
45 #define MENELAUS_VCORE_CTRL5 0x06
46 #define MENELAUS_DCDC_CTRL1 0x07
47 #define MENELAUS_DCDC_CTRL2 0x08
48 #define MENELAUS_DCDC_CTRL3 0x09
49 #define MENELAUS_LDO_CTRL1 0x0A
50 #define MENELAUS_LDO_CTRL2 0x0B
51 #define MENELAUS_LDO_CTRL3 0x0C
52 #define MENELAUS_LDO_CTRL4 0x0D
53 #define MENELAUS_LDO_CTRL5 0x0E
54 #define MENELAUS_LDO_CTRL6 0x0F
55 #define MENELAUS_LDO_CTRL7 0x10
56 #define MENELAUS_LDO_CTRL8 0x11
57 #define MENELAUS_SLEEP_CTRL1 0x12
58 #define MENELAUS_SLEEP_CTRL2 0x13
59 #define MENELAUS_DEVICE_OFF 0x14
60 #define MENELAUS_OSC_CTRL 0x15
61 #define MENELAUS_DETECT_CTRL 0x16
62 #define MENELAUS_INT_MASK1 0x17
63 #define MENELAUS_INT_MASK2 0x18
64 #define MENELAUS_INT_STATUS1 0x19
65 #define MENELAUS_INT_STATUS2 0x1A
66 #define MENELAUS_INT_ACK1 0x1B
67 #define MENELAUS_INT_ACK2 0x1C
68 #define MENELAUS_GPIO_CTRL 0x1D
69 #define MENELAUS_GPIO_IN 0x1E
70 #define MENELAUS_GPIO_OUT 0x1F
71 #define MENELAUS_BBSMS 0x20
72 #define MENELAUS_RTC_CTRL 0x21
73 #define MENELAUS_RTC_UPDATE 0x22
74 #define MENELAUS_RTC_SEC 0x23
75 #define MENELAUS_RTC_MIN 0x24
76 #define MENELAUS_RTC_HR 0x25
77 #define MENELAUS_RTC_DAY 0x26
78 #define MENELAUS_RTC_MON 0x27
79 #define MENELAUS_RTC_YR 0x28
80 #define MENELAUS_RTC_WKDAY 0x29
81 #define MENELAUS_RTC_AL_SEC 0x2A
82 #define MENELAUS_RTC_AL_MIN 0x2B
83 #define MENELAUS_RTC_AL_HR 0x2C
84 #define MENELAUS_RTC_AL_DAY 0x2D
85 #define MENELAUS_RTC_AL_MON 0x2E
86 #define MENELAUS_RTC_AL_YR 0x2F
87 #define MENELAUS_RTC_COMP_MSB 0x30
88 #define MENELAUS_RTC_COMP_LSB 0x31
89 #define MENELAUS_S1_PULL_EN 0x32
90 #define MENELAUS_S1_PULL_DIR 0x33
91 #define MENELAUS_S2_PULL_EN 0x34
92 #define MENELAUS_S2_PULL_DIR 0x35
93 #define MENELAUS_MCT_CTRL1 0x36
94 #define MENELAUS_MCT_CTRL2 0x37
95 #define MENELAUS_MCT_CTRL3 0x38
96 #define MENELAUS_MCT_PIN_ST 0x39
97 #define MENELAUS_DEBOUNCE1 0x3A
98
99 #define IH_MENELAUS_IRQS 12
100 #define MENELAUS_MMC_S1CD_IRQ 0 /* MMC slot 1 card change */
101 #define MENELAUS_MMC_S2CD_IRQ 1 /* MMC slot 2 card change */
102 #define MENELAUS_MMC_S1D1_IRQ 2 /* MMC DAT1 low in slot 1 */
103 #define MENELAUS_MMC_S2D1_IRQ 3 /* MMC DAT1 low in slot 2 */
104 #define MENELAUS_LOWBAT_IRQ 4 /* Low battery */
105 #define MENELAUS_HOTDIE_IRQ 5 /* Hot die detect */
106 #define MENELAUS_UVLO_IRQ 6 /* UVLO detect */
107 #define MENELAUS_TSHUT_IRQ 7 /* Thermal shutdown */
108 #define MENELAUS_RTCTMR_IRQ 8 /* RTC timer */
109 #define MENELAUS_RTCALM_IRQ 9 /* RTC alarm */
110 #define MENELAUS_RTCERR_IRQ 10 /* RTC error */
111 #define MENELAUS_PSHBTN_IRQ 11 /* Push button */
112 #define MENELAUS_RESERVED12_IRQ 12 /* Reserved */
113 #define MENELAUS_RESERVED13_IRQ 13 /* Reserved */
114 #define MENELAUS_RESERVED14_IRQ 14 /* Reserved */
115 #define MENELAUS_RESERVED15_IRQ 15 /* Reserved */
116
117 /* VCORE_CTRL1 register */
118 #define VCORE_CTRL1_BYP_COMP (1 << 5)
119 #define VCORE_CTRL1_HW_NSW (1 << 7)
120
121 /* GPIO_CTRL register */
122 #define GPIO_CTRL_SLOTSELEN (1 << 5)
123 #define GPIO_CTRL_SLPCTLEN (1 << 6)
124 #define GPIO1_DIR_INPUT (1 << 0)
125 #define GPIO2_DIR_INPUT (1 << 1)
126 #define GPIO3_DIR_INPUT (1 << 2)
127
128 /* MCT_CTRL1 register */
129 #define MCT_CTRL1_S1_CMD_OD (1 << 2)
130 #define MCT_CTRL1_S2_CMD_OD (1 << 3)
131
132 /* MCT_CTRL2 register */
133 #define MCT_CTRL2_VS2_SEL_D0 (1 << 0)
134 #define MCT_CTRL2_VS2_SEL_D1 (1 << 1)
135 #define MCT_CTRL2_S1CD_BUFEN (1 << 4)
136 #define MCT_CTRL2_S2CD_BUFEN (1 << 5)
137 #define MCT_CTRL2_S1CD_DBEN (1 << 6)
138 #define MCT_CTRL2_S2CD_BEN (1 << 7)
139
140 /* MCT_CTRL3 register */
141 #define MCT_CTRL3_SLOT1_EN (1 << 0)
142 #define MCT_CTRL3_SLOT2_EN (1 << 1)
143 #define MCT_CTRL3_S1_AUTO_EN (1 << 2)
144 #define MCT_CTRL3_S2_AUTO_EN (1 << 3)
145
146 /* MCT_PIN_ST register */
147 #define MCT_PIN_ST_S1_CD_ST (1 << 0)
148 #define MCT_PIN_ST_S2_CD_ST (1 << 1)
149
150 static void menelaus_work(struct work_struct *_menelaus);
151
152 struct menelaus_chip {
153 struct mutex lock;
154 struct i2c_client *client;
155 struct work_struct work;
156 #ifdef CONFIG_RTC_DRV_TWL92330
157 struct rtc_device *rtc;
158 u8 rtc_control;
159 unsigned uie:1;
160 #endif
161 unsigned vcore_hw_mode:1;
162 u8 mask1, mask2;
163 void (*handlers[16])(struct menelaus_chip *);
164 void (*mmc_callback)(void *data, u8 mask);
165 void *mmc_callback_data;
166 };
167
168 static struct menelaus_chip *the_menelaus;
169
menelaus_write_reg(int reg,u8 value)170 static int menelaus_write_reg(int reg, u8 value)
171 {
172 int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
173
174 if (val < 0) {
175 pr_err(DRIVER_NAME ": write error");
176 return val;
177 }
178
179 return 0;
180 }
181
menelaus_read_reg(int reg)182 static int menelaus_read_reg(int reg)
183 {
184 int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
185
186 if (val < 0)
187 pr_err(DRIVER_NAME ": read error");
188
189 return val;
190 }
191
menelaus_enable_irq(int irq)192 static int menelaus_enable_irq(int irq)
193 {
194 if (irq > 7) {
195 irq -= 8;
196 the_menelaus->mask2 &= ~(1 << irq);
197 return menelaus_write_reg(MENELAUS_INT_MASK2,
198 the_menelaus->mask2);
199 } else {
200 the_menelaus->mask1 &= ~(1 << irq);
201 return menelaus_write_reg(MENELAUS_INT_MASK1,
202 the_menelaus->mask1);
203 }
204 }
205
menelaus_disable_irq(int irq)206 static int menelaus_disable_irq(int irq)
207 {
208 if (irq > 7) {
209 irq -= 8;
210 the_menelaus->mask2 |= (1 << irq);
211 return menelaus_write_reg(MENELAUS_INT_MASK2,
212 the_menelaus->mask2);
213 } else {
214 the_menelaus->mask1 |= (1 << irq);
215 return menelaus_write_reg(MENELAUS_INT_MASK1,
216 the_menelaus->mask1);
217 }
218 }
219
menelaus_ack_irq(int irq)220 static int menelaus_ack_irq(int irq)
221 {
222 if (irq > 7)
223 return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
224 else
225 return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
226 }
227
228 /* Adds a handler for an interrupt. Does not run in interrupt context */
menelaus_add_irq_work(int irq,void (* handler)(struct menelaus_chip *))229 static int menelaus_add_irq_work(int irq,
230 void (*handler)(struct menelaus_chip *))
231 {
232 int ret = 0;
233
234 mutex_lock(&the_menelaus->lock);
235 the_menelaus->handlers[irq] = handler;
236 ret = menelaus_enable_irq(irq);
237 mutex_unlock(&the_menelaus->lock);
238
239 return ret;
240 }
241
242 /* Removes handler for an interrupt */
menelaus_remove_irq_work(int irq)243 static int menelaus_remove_irq_work(int irq)
244 {
245 int ret = 0;
246
247 mutex_lock(&the_menelaus->lock);
248 ret = menelaus_disable_irq(irq);
249 the_menelaus->handlers[irq] = NULL;
250 mutex_unlock(&the_menelaus->lock);
251
252 return ret;
253 }
254
255 /*
256 * Gets scheduled when a card detect interrupt happens. Note that in some cases
257 * this line is wired to card cover switch rather than the card detect switch
258 * in each slot. In this case the cards are not seen by menelaus.
259 * FIXME: Add handling for D1 too
260 */
menelaus_mmc_cd_work(struct menelaus_chip * menelaus_hw)261 static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
262 {
263 int reg;
264 unsigned char card_mask = 0;
265
266 reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
267 if (reg < 0)
268 return;
269
270 if (!(reg & 0x1))
271 card_mask |= MCT_PIN_ST_S1_CD_ST;
272
273 if (!(reg & 0x2))
274 card_mask |= MCT_PIN_ST_S2_CD_ST;
275
276 if (menelaus_hw->mmc_callback)
277 menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
278 card_mask);
279 }
280
281 /*
282 * Toggles the MMC slots between open-drain and push-pull mode.
283 */
menelaus_set_mmc_opendrain(int slot,int enable)284 int menelaus_set_mmc_opendrain(int slot, int enable)
285 {
286 int ret, val;
287
288 if (slot != 1 && slot != 2)
289 return -EINVAL;
290 mutex_lock(&the_menelaus->lock);
291 ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
292 if (ret < 0) {
293 mutex_unlock(&the_menelaus->lock);
294 return ret;
295 }
296 val = ret;
297 if (slot == 1) {
298 if (enable)
299 val |= MCT_CTRL1_S1_CMD_OD;
300 else
301 val &= ~MCT_CTRL1_S1_CMD_OD;
302 } else {
303 if (enable)
304 val |= MCT_CTRL1_S2_CMD_OD;
305 else
306 val &= ~MCT_CTRL1_S2_CMD_OD;
307 }
308 ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
309 mutex_unlock(&the_menelaus->lock);
310
311 return ret;
312 }
313 EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
314
menelaus_set_slot_sel(int enable)315 int menelaus_set_slot_sel(int enable)
316 {
317 int ret;
318
319 mutex_lock(&the_menelaus->lock);
320 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
321 if (ret < 0)
322 goto out;
323 ret |= GPIO2_DIR_INPUT;
324 if (enable)
325 ret |= GPIO_CTRL_SLOTSELEN;
326 else
327 ret &= ~GPIO_CTRL_SLOTSELEN;
328 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
329 out:
330 mutex_unlock(&the_menelaus->lock);
331 return ret;
332 }
333 EXPORT_SYMBOL(menelaus_set_slot_sel);
334
menelaus_set_mmc_slot(int slot,int enable,int power,int cd_en)335 int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
336 {
337 int ret, val;
338
339 if (slot != 1 && slot != 2)
340 return -EINVAL;
341 if (power >= 3)
342 return -EINVAL;
343
344 mutex_lock(&the_menelaus->lock);
345
346 ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
347 if (ret < 0)
348 goto out;
349 val = ret;
350 if (slot == 1) {
351 if (cd_en)
352 val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
353 else
354 val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
355 } else {
356 if (cd_en)
357 val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
358 else
359 val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
360 }
361 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
362 if (ret < 0)
363 goto out;
364
365 ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
366 if (ret < 0)
367 goto out;
368 val = ret;
369 if (slot == 1) {
370 if (enable)
371 val |= MCT_CTRL3_SLOT1_EN;
372 else
373 val &= ~MCT_CTRL3_SLOT1_EN;
374 } else {
375 int b;
376
377 if (enable)
378 val |= MCT_CTRL3_SLOT2_EN;
379 else
380 val &= ~MCT_CTRL3_SLOT2_EN;
381 b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
382 b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
383 b |= power;
384 ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
385 if (ret < 0)
386 goto out;
387 }
388 /* Disable autonomous shutdown */
389 val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
390 ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
391 out:
392 mutex_unlock(&the_menelaus->lock);
393 return ret;
394 }
395 EXPORT_SYMBOL(menelaus_set_mmc_slot);
396
menelaus_register_mmc_callback(void (* callback)(void * data,u8 card_mask),void * data)397 int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
398 void *data)
399 {
400 int ret = 0;
401
402 the_menelaus->mmc_callback_data = data;
403 the_menelaus->mmc_callback = callback;
404 ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
405 menelaus_mmc_cd_work);
406 if (ret < 0)
407 return ret;
408 ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
409 menelaus_mmc_cd_work);
410 if (ret < 0)
411 return ret;
412 ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
413 menelaus_mmc_cd_work);
414 if (ret < 0)
415 return ret;
416 ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
417 menelaus_mmc_cd_work);
418
419 return ret;
420 }
421 EXPORT_SYMBOL(menelaus_register_mmc_callback);
422
menelaus_unregister_mmc_callback(void)423 void menelaus_unregister_mmc_callback(void)
424 {
425 menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
426 menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
427 menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
428 menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
429
430 the_menelaus->mmc_callback = NULL;
431 the_menelaus->mmc_callback_data = NULL;
432 }
433 EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
434
435 struct menelaus_vtg {
436 const char *name;
437 u8 vtg_reg;
438 u8 vtg_shift;
439 u8 vtg_bits;
440 u8 mode_reg;
441 };
442
443 struct menelaus_vtg_value {
444 u16 vtg;
445 u16 val;
446 };
447
menelaus_set_voltage(const struct menelaus_vtg * vtg,int mV,int vtg_val,int mode)448 static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
449 int vtg_val, int mode)
450 {
451 int val, ret;
452 struct i2c_client *c = the_menelaus->client;
453
454 mutex_lock(&the_menelaus->lock);
455
456 ret = menelaus_read_reg(vtg->vtg_reg);
457 if (ret < 0)
458 goto out;
459 val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
460 val |= vtg_val << vtg->vtg_shift;
461
462 dev_dbg(&c->dev, "Setting voltage '%s'"
463 "to %d mV (reg 0x%02x, val 0x%02x)\n",
464 vtg->name, mV, vtg->vtg_reg, val);
465
466 ret = menelaus_write_reg(vtg->vtg_reg, val);
467 if (ret < 0)
468 goto out;
469 ret = menelaus_write_reg(vtg->mode_reg, mode);
470 out:
471 mutex_unlock(&the_menelaus->lock);
472 if (ret == 0) {
473 /* Wait for voltage to stabilize */
474 msleep(1);
475 }
476 return ret;
477 }
478
menelaus_get_vtg_value(int vtg,const struct menelaus_vtg_value * tbl,int n)479 static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
480 int n)
481 {
482 int i;
483
484 for (i = 0; i < n; i++, tbl++)
485 if (tbl->vtg == vtg)
486 return tbl->val;
487 return -EINVAL;
488 }
489
490 /*
491 * Vcore can be programmed in two ways:
492 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
493 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
494 * and VCORE_CTRL4
495 *
496 * Call correct 'set' function accordingly
497 */
498
499 static const struct menelaus_vtg_value vcore_values[] = {
500 { 1000, 0 },
501 { 1025, 1 },
502 { 1050, 2 },
503 { 1075, 3 },
504 { 1100, 4 },
505 { 1125, 5 },
506 { 1150, 6 },
507 { 1175, 7 },
508 { 1200, 8 },
509 { 1225, 9 },
510 { 1250, 10 },
511 { 1275, 11 },
512 { 1300, 12 },
513 { 1325, 13 },
514 { 1350, 14 },
515 { 1375, 15 },
516 { 1400, 16 },
517 { 1425, 17 },
518 { 1450, 18 },
519 };
520
menelaus_set_vcore_hw(unsigned int roof_mV,unsigned int floor_mV)521 int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
522 {
523 int fval, rval, val, ret;
524 struct i2c_client *c = the_menelaus->client;
525
526 rval = menelaus_get_vtg_value(roof_mV, vcore_values,
527 ARRAY_SIZE(vcore_values));
528 if (rval < 0)
529 return -EINVAL;
530 fval = menelaus_get_vtg_value(floor_mV, vcore_values,
531 ARRAY_SIZE(vcore_values));
532 if (fval < 0)
533 return -EINVAL;
534
535 dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
536 floor_mV, roof_mV);
537
538 mutex_lock(&the_menelaus->lock);
539 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
540 if (ret < 0)
541 goto out;
542 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
543 if (ret < 0)
544 goto out;
545 if (!the_menelaus->vcore_hw_mode) {
546 val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
547 /* HW mode, turn OFF byte comparator */
548 val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
549 ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
550 the_menelaus->vcore_hw_mode = 1;
551 }
552 msleep(1);
553 out:
554 mutex_unlock(&the_menelaus->lock);
555 return ret;
556 }
557
558 static const struct menelaus_vtg vmem_vtg = {
559 .name = "VMEM",
560 .vtg_reg = MENELAUS_LDO_CTRL1,
561 .vtg_shift = 0,
562 .vtg_bits = 2,
563 .mode_reg = MENELAUS_LDO_CTRL3,
564 };
565
566 static const struct menelaus_vtg_value vmem_values[] = {
567 { 1500, 0 },
568 { 1800, 1 },
569 { 1900, 2 },
570 { 2500, 3 },
571 };
572
menelaus_set_vmem(unsigned int mV)573 int menelaus_set_vmem(unsigned int mV)
574 {
575 int val;
576
577 if (mV == 0)
578 return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
579
580 val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
581 if (val < 0)
582 return -EINVAL;
583 return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
584 }
585 EXPORT_SYMBOL(menelaus_set_vmem);
586
587 static const struct menelaus_vtg vio_vtg = {
588 .name = "VIO",
589 .vtg_reg = MENELAUS_LDO_CTRL1,
590 .vtg_shift = 2,
591 .vtg_bits = 2,
592 .mode_reg = MENELAUS_LDO_CTRL4,
593 };
594
595 static const struct menelaus_vtg_value vio_values[] = {
596 { 1500, 0 },
597 { 1800, 1 },
598 { 2500, 2 },
599 { 2800, 3 },
600 };
601
menelaus_set_vio(unsigned int mV)602 int menelaus_set_vio(unsigned int mV)
603 {
604 int val;
605
606 if (mV == 0)
607 return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
608
609 val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
610 if (val < 0)
611 return -EINVAL;
612 return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
613 }
614 EXPORT_SYMBOL(menelaus_set_vio);
615
616 static const struct menelaus_vtg_value vdcdc_values[] = {
617 { 1500, 0 },
618 { 1800, 1 },
619 { 2000, 2 },
620 { 2200, 3 },
621 { 2400, 4 },
622 { 2800, 5 },
623 { 3000, 6 },
624 { 3300, 7 },
625 };
626
627 static const struct menelaus_vtg vdcdc2_vtg = {
628 .name = "VDCDC2",
629 .vtg_reg = MENELAUS_DCDC_CTRL1,
630 .vtg_shift = 0,
631 .vtg_bits = 3,
632 .mode_reg = MENELAUS_DCDC_CTRL2,
633 };
634
635 static const struct menelaus_vtg vdcdc3_vtg = {
636 .name = "VDCDC3",
637 .vtg_reg = MENELAUS_DCDC_CTRL1,
638 .vtg_shift = 3,
639 .vtg_bits = 3,
640 .mode_reg = MENELAUS_DCDC_CTRL3,
641 };
642
menelaus_set_vdcdc(int dcdc,unsigned int mV)643 int menelaus_set_vdcdc(int dcdc, unsigned int mV)
644 {
645 const struct menelaus_vtg *vtg;
646 int val;
647
648 if (dcdc != 2 && dcdc != 3)
649 return -EINVAL;
650 if (dcdc == 2)
651 vtg = &vdcdc2_vtg;
652 else
653 vtg = &vdcdc3_vtg;
654
655 if (mV == 0)
656 return menelaus_set_voltage(vtg, 0, 0, 0);
657
658 val = menelaus_get_vtg_value(mV, vdcdc_values,
659 ARRAY_SIZE(vdcdc_values));
660 if (val < 0)
661 return -EINVAL;
662 return menelaus_set_voltage(vtg, mV, val, 0x03);
663 }
664
665 static const struct menelaus_vtg_value vmmc_values[] = {
666 { 1850, 0 },
667 { 2800, 1 },
668 { 3000, 2 },
669 { 3100, 3 },
670 };
671
672 static const struct menelaus_vtg vmmc_vtg = {
673 .name = "VMMC",
674 .vtg_reg = MENELAUS_LDO_CTRL1,
675 .vtg_shift = 6,
676 .vtg_bits = 2,
677 .mode_reg = MENELAUS_LDO_CTRL7,
678 };
679
menelaus_set_vmmc(unsigned int mV)680 int menelaus_set_vmmc(unsigned int mV)
681 {
682 int val;
683
684 if (mV == 0)
685 return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
686
687 val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
688 if (val < 0)
689 return -EINVAL;
690 return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
691 }
692 EXPORT_SYMBOL(menelaus_set_vmmc);
693
694
695 static const struct menelaus_vtg_value vaux_values[] = {
696 { 1500, 0 },
697 { 1800, 1 },
698 { 2500, 2 },
699 { 2800, 3 },
700 };
701
702 static const struct menelaus_vtg vaux_vtg = {
703 .name = "VAUX",
704 .vtg_reg = MENELAUS_LDO_CTRL1,
705 .vtg_shift = 4,
706 .vtg_bits = 2,
707 .mode_reg = MENELAUS_LDO_CTRL6,
708 };
709
menelaus_set_vaux(unsigned int mV)710 int menelaus_set_vaux(unsigned int mV)
711 {
712 int val;
713
714 if (mV == 0)
715 return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
716
717 val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
718 if (val < 0)
719 return -EINVAL;
720 return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
721 }
722 EXPORT_SYMBOL(menelaus_set_vaux);
723
menelaus_get_slot_pin_states(void)724 int menelaus_get_slot_pin_states(void)
725 {
726 return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
727 }
728 EXPORT_SYMBOL(menelaus_get_slot_pin_states);
729
menelaus_set_regulator_sleep(int enable,u32 val)730 int menelaus_set_regulator_sleep(int enable, u32 val)
731 {
732 int t, ret;
733 struct i2c_client *c = the_menelaus->client;
734
735 mutex_lock(&the_menelaus->lock);
736 ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
737 if (ret < 0)
738 goto out;
739
740 dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
741
742 ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
743 if (ret < 0)
744 goto out;
745 t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
746 if (enable)
747 ret |= t;
748 else
749 ret &= ~t;
750 ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
751 out:
752 mutex_unlock(&the_menelaus->lock);
753 return ret;
754 }
755
756 /*-----------------------------------------------------------------------*/
757
758 /* Handles Menelaus interrupts. Does not run in interrupt context */
menelaus_work(struct work_struct * _menelaus)759 static void menelaus_work(struct work_struct *_menelaus)
760 {
761 struct menelaus_chip *menelaus =
762 container_of(_menelaus, struct menelaus_chip, work);
763 void (*handler)(struct menelaus_chip *menelaus);
764
765 while (1) {
766 unsigned isr;
767
768 isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
769 & ~menelaus->mask2) << 8;
770 isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
771 & ~menelaus->mask1;
772 if (!isr)
773 break;
774
775 while (isr) {
776 int irq = fls(isr) - 1;
777 isr &= ~(1 << irq);
778
779 mutex_lock(&menelaus->lock);
780 menelaus_disable_irq(irq);
781 menelaus_ack_irq(irq);
782 handler = menelaus->handlers[irq];
783 if (handler)
784 handler(menelaus);
785 menelaus_enable_irq(irq);
786 mutex_unlock(&menelaus->lock);
787 }
788 }
789 enable_irq(menelaus->client->irq);
790 }
791
792 /*
793 * We cannot use I2C in interrupt context, so we just schedule work.
794 */
menelaus_irq(int irq,void * _menelaus)795 static irqreturn_t menelaus_irq(int irq, void *_menelaus)
796 {
797 struct menelaus_chip *menelaus = _menelaus;
798
799 disable_irq_nosync(irq);
800 (void)schedule_work(&menelaus->work);
801
802 return IRQ_HANDLED;
803 }
804
805 /*-----------------------------------------------------------------------*/
806
807 /*
808 * The RTC needs to be set once, then it runs on backup battery power.
809 * It supports alarms, including system wake alarms (from some modes);
810 * and 1/second IRQs if requested.
811 */
812 #ifdef CONFIG_RTC_DRV_TWL92330
813
814 #define RTC_CTRL_RTC_EN (1 << 0)
815 #define RTC_CTRL_AL_EN (1 << 1)
816 #define RTC_CTRL_MODE12 (1 << 2)
817 #define RTC_CTRL_EVERY_MASK (3 << 3)
818 #define RTC_CTRL_EVERY_SEC (0 << 3)
819 #define RTC_CTRL_EVERY_MIN (1 << 3)
820 #define RTC_CTRL_EVERY_HR (2 << 3)
821 #define RTC_CTRL_EVERY_DAY (3 << 3)
822
823 #define RTC_UPDATE_EVERY 0x08
824
825 #define RTC_HR_PM (1 << 7)
826
menelaus_to_time(char * regs,struct rtc_time * t)827 static void menelaus_to_time(char *regs, struct rtc_time *t)
828 {
829 t->tm_sec = bcd2bin(regs[0]);
830 t->tm_min = bcd2bin(regs[1]);
831 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
832 t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
833 if (regs[2] & RTC_HR_PM)
834 t->tm_hour += 12;
835 } else
836 t->tm_hour = bcd2bin(regs[2] & 0x3f);
837 t->tm_mday = bcd2bin(regs[3]);
838 t->tm_mon = bcd2bin(regs[4]) - 1;
839 t->tm_year = bcd2bin(regs[5]) + 100;
840 }
841
time_to_menelaus(struct rtc_time * t,int regnum)842 static int time_to_menelaus(struct rtc_time *t, int regnum)
843 {
844 int hour, status;
845
846 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
847 if (status < 0)
848 goto fail;
849
850 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
851 if (status < 0)
852 goto fail;
853
854 if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
855 hour = t->tm_hour + 1;
856 if (hour > 12)
857 hour = RTC_HR_PM | bin2bcd(hour - 12);
858 else
859 hour = bin2bcd(hour);
860 } else
861 hour = bin2bcd(t->tm_hour);
862 status = menelaus_write_reg(regnum++, hour);
863 if (status < 0)
864 goto fail;
865
866 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
867 if (status < 0)
868 goto fail;
869
870 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
871 if (status < 0)
872 goto fail;
873
874 status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
875 if (status < 0)
876 goto fail;
877
878 return 0;
879 fail:
880 dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
881 --regnum, status);
882 return status;
883 }
884
menelaus_read_time(struct device * dev,struct rtc_time * t)885 static int menelaus_read_time(struct device *dev, struct rtc_time *t)
886 {
887 struct i2c_msg msg[2];
888 char regs[7];
889 int status;
890
891 /* block read date and time registers */
892 regs[0] = MENELAUS_RTC_SEC;
893
894 msg[0].addr = MENELAUS_I2C_ADDRESS;
895 msg[0].flags = 0;
896 msg[0].len = 1;
897 msg[0].buf = regs;
898
899 msg[1].addr = MENELAUS_I2C_ADDRESS;
900 msg[1].flags = I2C_M_RD;
901 msg[1].len = sizeof(regs);
902 msg[1].buf = regs;
903
904 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
905 if (status != 2) {
906 dev_err(dev, "%s error %d\n", "read", status);
907 return -EIO;
908 }
909
910 menelaus_to_time(regs, t);
911 t->tm_wday = bcd2bin(regs[6]);
912
913 return 0;
914 }
915
menelaus_set_time(struct device * dev,struct rtc_time * t)916 static int menelaus_set_time(struct device *dev, struct rtc_time *t)
917 {
918 int status;
919
920 /* write date and time registers */
921 status = time_to_menelaus(t, MENELAUS_RTC_SEC);
922 if (status < 0)
923 return status;
924 status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
925 if (status < 0) {
926 dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
927 "err %d\n", MENELAUS_RTC_WKDAY, status);
928 return status;
929 }
930
931 /* now commit the write */
932 status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
933 if (status < 0)
934 dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
935 status);
936
937 return 0;
938 }
939
menelaus_read_alarm(struct device * dev,struct rtc_wkalrm * w)940 static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
941 {
942 struct i2c_msg msg[2];
943 char regs[6];
944 int status;
945
946 /* block read alarm registers */
947 regs[0] = MENELAUS_RTC_AL_SEC;
948
949 msg[0].addr = MENELAUS_I2C_ADDRESS;
950 msg[0].flags = 0;
951 msg[0].len = 1;
952 msg[0].buf = regs;
953
954 msg[1].addr = MENELAUS_I2C_ADDRESS;
955 msg[1].flags = I2C_M_RD;
956 msg[1].len = sizeof(regs);
957 msg[1].buf = regs;
958
959 status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
960 if (status != 2) {
961 dev_err(dev, "%s error %d\n", "alarm read", status);
962 return -EIO;
963 }
964
965 menelaus_to_time(regs, &w->time);
966
967 w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
968
969 /* NOTE we *could* check if actually pending... */
970 w->pending = 0;
971
972 return 0;
973 }
974
menelaus_set_alarm(struct device * dev,struct rtc_wkalrm * w)975 static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
976 {
977 int status;
978
979 if (the_menelaus->client->irq <= 0 && w->enabled)
980 return -ENODEV;
981
982 /* clear previous alarm enable */
983 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
984 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
985 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
986 the_menelaus->rtc_control);
987 if (status < 0)
988 return status;
989 }
990
991 /* write alarm registers */
992 status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
993 if (status < 0)
994 return status;
995
996 /* enable alarm if requested */
997 if (w->enabled) {
998 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
999 status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1000 the_menelaus->rtc_control);
1001 }
1002
1003 return status;
1004 }
1005
1006 #ifdef CONFIG_RTC_INTF_DEV
1007
menelaus_rtc_update_work(struct menelaus_chip * m)1008 static void menelaus_rtc_update_work(struct menelaus_chip *m)
1009 {
1010 /* report 1/sec update */
1011 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1012 }
1013
menelaus_ioctl(struct device * dev,unsigned cmd,unsigned long arg)1014 static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1015 {
1016 int status;
1017
1018 if (the_menelaus->client->irq <= 0)
1019 return -ENOIOCTLCMD;
1020
1021 switch (cmd) {
1022 /* alarm IRQ */
1023 case RTC_AIE_ON:
1024 if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1025 return 0;
1026 the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1027 break;
1028 case RTC_AIE_OFF:
1029 if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1030 return 0;
1031 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1032 break;
1033 /* 1/second "update" IRQ */
1034 case RTC_UIE_ON:
1035 if (the_menelaus->uie)
1036 return 0;
1037 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1038 status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1039 menelaus_rtc_update_work);
1040 if (status == 0)
1041 the_menelaus->uie = 1;
1042 return status;
1043 case RTC_UIE_OFF:
1044 if (!the_menelaus->uie)
1045 return 0;
1046 status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1047 if (status == 0)
1048 the_menelaus->uie = 0;
1049 return status;
1050 default:
1051 return -ENOIOCTLCMD;
1052 }
1053 return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1054 }
1055
1056 #else
1057 #define menelaus_ioctl NULL
1058 #endif
1059
1060 /* REVISIT no compensation register support ... */
1061
1062 static const struct rtc_class_ops menelaus_rtc_ops = {
1063 .ioctl = menelaus_ioctl,
1064 .read_time = menelaus_read_time,
1065 .set_time = menelaus_set_time,
1066 .read_alarm = menelaus_read_alarm,
1067 .set_alarm = menelaus_set_alarm,
1068 };
1069
menelaus_rtc_alarm_work(struct menelaus_chip * m)1070 static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1071 {
1072 /* report alarm */
1073 rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1074
1075 /* then disable it; alarms are oneshot */
1076 the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1077 menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1078 }
1079
menelaus_rtc_init(struct menelaus_chip * m)1080 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1081 {
1082 int alarm = (m->client->irq > 0);
1083 int err;
1084
1085 /* assume 32KDETEN pin is pulled high */
1086 if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1087 dev_dbg(&m->client->dev, "no 32k oscillator\n");
1088 return;
1089 }
1090
1091 m->rtc = devm_rtc_allocate_device(&m->client->dev);
1092 if (IS_ERR(m->rtc))
1093 return;
1094
1095 m->rtc->ops = &menelaus_rtc_ops;
1096
1097 /* support RTC alarm; it can issue wakeups */
1098 if (alarm) {
1099 if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1100 menelaus_rtc_alarm_work) < 0) {
1101 dev_err(&m->client->dev, "can't handle RTC alarm\n");
1102 return;
1103 }
1104 device_init_wakeup(&m->client->dev, 1);
1105 }
1106
1107 /* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1108 m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1109 if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1110 || (m->rtc_control & RTC_CTRL_AL_EN)
1111 || (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1112 if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1113 dev_warn(&m->client->dev, "rtc clock needs setting\n");
1114 m->rtc_control |= RTC_CTRL_RTC_EN;
1115 }
1116 m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1117 m->rtc_control &= ~RTC_CTRL_AL_EN;
1118 menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1119 }
1120
1121 err = devm_rtc_register_device(m->rtc);
1122 if (err) {
1123 if (alarm) {
1124 menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1125 device_init_wakeup(&m->client->dev, 0);
1126 }
1127 the_menelaus->rtc = NULL;
1128 }
1129 }
1130
1131 #else
1132
menelaus_rtc_init(struct menelaus_chip * m)1133 static inline void menelaus_rtc_init(struct menelaus_chip *m)
1134 {
1135 /* nothing */
1136 }
1137
1138 #endif
1139
1140 /*-----------------------------------------------------------------------*/
1141
1142 static struct i2c_driver menelaus_i2c_driver;
1143
menelaus_probe(struct i2c_client * client)1144 static int menelaus_probe(struct i2c_client *client)
1145 {
1146 struct menelaus_chip *menelaus;
1147 int rev = 0;
1148 int err = 0;
1149 struct menelaus_platform_data *menelaus_pdata =
1150 dev_get_platdata(&client->dev);
1151
1152 if (the_menelaus) {
1153 dev_dbg(&client->dev, "only one %s for now\n",
1154 DRIVER_NAME);
1155 return -ENODEV;
1156 }
1157
1158 menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL);
1159 if (!menelaus)
1160 return -ENOMEM;
1161
1162 i2c_set_clientdata(client, menelaus);
1163
1164 the_menelaus = menelaus;
1165 menelaus->client = client;
1166
1167 /* If a true probe check the device */
1168 rev = menelaus_read_reg(MENELAUS_REV);
1169 if (rev < 0) {
1170 pr_err(DRIVER_NAME ": device not found");
1171 return -ENODEV;
1172 }
1173
1174 /* Ack and disable all Menelaus interrupts */
1175 menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1176 menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1177 menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1178 menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1179 menelaus->mask1 = 0xff;
1180 menelaus->mask2 = 0xff;
1181
1182 /* Set output buffer strengths */
1183 menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1184
1185 if (client->irq > 0) {
1186 err = request_irq(client->irq, menelaus_irq, 0,
1187 DRIVER_NAME, menelaus);
1188 if (err) {
1189 dev_dbg(&client->dev, "can't get IRQ %d, err %d\n",
1190 client->irq, err);
1191 return err;
1192 }
1193 }
1194
1195 mutex_init(&menelaus->lock);
1196 INIT_WORK(&menelaus->work, menelaus_work);
1197
1198 pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1199
1200 err = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1201 if (err < 0)
1202 goto fail;
1203 if (err & VCORE_CTRL1_HW_NSW)
1204 menelaus->vcore_hw_mode = 1;
1205 else
1206 menelaus->vcore_hw_mode = 0;
1207
1208 if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1209 err = menelaus_pdata->late_init(&client->dev);
1210 if (err < 0)
1211 goto fail;
1212 }
1213
1214 menelaus_rtc_init(menelaus);
1215
1216 return 0;
1217 fail:
1218 free_irq(client->irq, menelaus);
1219 flush_work(&menelaus->work);
1220 return err;
1221 }
1222
menelaus_remove(struct i2c_client * client)1223 static void menelaus_remove(struct i2c_client *client)
1224 {
1225 struct menelaus_chip *menelaus = i2c_get_clientdata(client);
1226
1227 free_irq(client->irq, menelaus);
1228 flush_work(&menelaus->work);
1229 the_menelaus = NULL;
1230 }
1231
1232 static const struct i2c_device_id menelaus_id[] = {
1233 { "menelaus" },
1234 { }
1235 };
1236 MODULE_DEVICE_TABLE(i2c, menelaus_id);
1237
1238 static struct i2c_driver menelaus_i2c_driver = {
1239 .driver = {
1240 .name = DRIVER_NAME,
1241 },
1242 .probe = menelaus_probe,
1243 .remove = menelaus_remove,
1244 .id_table = menelaus_id,
1245 };
1246
1247 module_i2c_driver(menelaus_i2c_driver);
1248
1249 MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1250 MODULE_DESCRIPTION("I2C interface for Menelaus.");
1251 MODULE_LICENSE("GPL");
1252