1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MAX10 BMC Platform Management Component Interface (PMCI) based
4 * interface.
5 *
6 * Copyright (C) 2020-2023 Intel Corporation.
7 */
8
9 #include <linux/bitfield.h>
10 #include <linux/device.h>
11 #include <linux/dfl.h>
12 #include <linux/mfd/core.h>
13 #include <linux/mfd/intel-m10-bmc.h>
14 #include <linux/minmax.h>
15 #include <linux/module.h>
16 #include <linux/regmap.h>
17
18 struct m10bmc_pmci_device {
19 void __iomem *base;
20 struct intel_m10bmc m10bmc;
21 struct mutex flash_mutex; /* protects flash_busy and serializes flash read/read */
22 bool flash_busy;
23 };
24
25 /*
26 * Intel FGPA indirect register access via hardware controller/bridge.
27 */
28 #define INDIRECT_CMD_OFF 0
29 #define INDIRECT_CMD_CLR 0
30 #define INDIRECT_CMD_RD BIT(0)
31 #define INDIRECT_CMD_WR BIT(1)
32 #define INDIRECT_CMD_ACK BIT(2)
33
34 #define INDIRECT_ADDR_OFF 0x4
35 #define INDIRECT_RD_OFF 0x8
36 #define INDIRECT_WR_OFF 0xc
37
38 #define INDIRECT_INT_US 1
39 #define INDIRECT_TIMEOUT_US 10000
40
41 struct indirect_ctx {
42 void __iomem *base;
43 struct device *dev;
44 };
45
indirect_clear_cmd(struct indirect_ctx * ctx)46 static int indirect_clear_cmd(struct indirect_ctx *ctx)
47 {
48 unsigned int cmd;
49 int ret;
50
51 writel(INDIRECT_CMD_CLR, ctx->base + INDIRECT_CMD_OFF);
52
53 ret = readl_poll_timeout(ctx->base + INDIRECT_CMD_OFF, cmd,
54 cmd == INDIRECT_CMD_CLR,
55 INDIRECT_INT_US, INDIRECT_TIMEOUT_US);
56 if (ret)
57 dev_err(ctx->dev, "timed out waiting clear cmd (residual cmd=0x%x)\n", cmd);
58
59 return ret;
60 }
61
indirect_reg_read(void * context,unsigned int reg,unsigned int * val)62 static int indirect_reg_read(void *context, unsigned int reg, unsigned int *val)
63 {
64 struct indirect_ctx *ctx = context;
65 unsigned int cmd, ack, tmpval;
66 int ret, ret2;
67
68 cmd = readl(ctx->base + INDIRECT_CMD_OFF);
69 if (cmd != INDIRECT_CMD_CLR)
70 dev_warn(ctx->dev, "residual cmd 0x%x on read entry\n", cmd);
71
72 writel(reg, ctx->base + INDIRECT_ADDR_OFF);
73 writel(INDIRECT_CMD_RD, ctx->base + INDIRECT_CMD_OFF);
74
75 ret = readl_poll_timeout(ctx->base + INDIRECT_CMD_OFF, ack,
76 (ack & INDIRECT_CMD_ACK) == INDIRECT_CMD_ACK,
77 INDIRECT_INT_US, INDIRECT_TIMEOUT_US);
78 if (ret)
79 dev_err(ctx->dev, "read timed out on reg 0x%x ack 0x%x\n", reg, ack);
80 else
81 tmpval = readl(ctx->base + INDIRECT_RD_OFF);
82
83 ret2 = indirect_clear_cmd(ctx);
84
85 if (ret)
86 return ret;
87 if (ret2)
88 return ret2;
89
90 *val = tmpval;
91 return 0;
92 }
93
indirect_reg_write(void * context,unsigned int reg,unsigned int val)94 static int indirect_reg_write(void *context, unsigned int reg, unsigned int val)
95 {
96 struct indirect_ctx *ctx = context;
97 unsigned int cmd, ack;
98 int ret, ret2;
99
100 cmd = readl(ctx->base + INDIRECT_CMD_OFF);
101 if (cmd != INDIRECT_CMD_CLR)
102 dev_warn(ctx->dev, "residual cmd 0x%x on write entry\n", cmd);
103
104 writel(val, ctx->base + INDIRECT_WR_OFF);
105 writel(reg, ctx->base + INDIRECT_ADDR_OFF);
106 writel(INDIRECT_CMD_WR, ctx->base + INDIRECT_CMD_OFF);
107
108 ret = readl_poll_timeout(ctx->base + INDIRECT_CMD_OFF, ack,
109 (ack & INDIRECT_CMD_ACK) == INDIRECT_CMD_ACK,
110 INDIRECT_INT_US, INDIRECT_TIMEOUT_US);
111 if (ret)
112 dev_err(ctx->dev, "write timed out on reg 0x%x ack 0x%x\n", reg, ack);
113
114 ret2 = indirect_clear_cmd(ctx);
115
116 if (ret)
117 return ret;
118 return ret2;
119 }
120
pmci_write_fifo(void __iomem * base,const u32 * buf,size_t count)121 static void pmci_write_fifo(void __iomem *base, const u32 *buf, size_t count)
122 {
123 while (count--)
124 writel(*buf++, base);
125 }
126
pmci_read_fifo(void __iomem * base,u32 * buf,size_t count)127 static void pmci_read_fifo(void __iomem *base, u32 *buf, size_t count)
128 {
129 while (count--)
130 *buf++ = readl(base);
131 }
132
pmci_get_write_space(struct m10bmc_pmci_device * pmci)133 static u32 pmci_get_write_space(struct m10bmc_pmci_device *pmci)
134 {
135 u32 val;
136 int ret;
137
138 ret = read_poll_timeout(readl, val,
139 FIELD_GET(M10BMC_N6000_FLASH_FIFO_SPACE, val) ==
140 M10BMC_N6000_FIFO_MAX_WORDS,
141 M10BMC_FLASH_INT_US, M10BMC_FLASH_TIMEOUT_US,
142 false, pmci->base + M10BMC_N6000_FLASH_CTRL);
143 if (ret == -ETIMEDOUT)
144 return 0;
145
146 return FIELD_GET(M10BMC_N6000_FLASH_FIFO_SPACE, val) * M10BMC_N6000_FIFO_WORD_SIZE;
147 }
148
pmci_flash_bulk_write(struct intel_m10bmc * m10bmc,const u8 * buf,u32 size)149 static int pmci_flash_bulk_write(struct intel_m10bmc *m10bmc, const u8 *buf, u32 size)
150 {
151 struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
152 u32 blk_size, offset = 0, write_count;
153
154 while (size) {
155 blk_size = min(pmci_get_write_space(pmci), size);
156 if (blk_size == 0) {
157 dev_err(m10bmc->dev, "get FIFO available size fail\n");
158 return -EIO;
159 }
160
161 if (size < M10BMC_N6000_FIFO_WORD_SIZE)
162 break;
163
164 write_count = blk_size / M10BMC_N6000_FIFO_WORD_SIZE;
165 pmci_write_fifo(pmci->base + M10BMC_N6000_FLASH_FIFO,
166 (u32 *)(buf + offset), write_count);
167
168 size -= blk_size;
169 offset += blk_size;
170 }
171
172 /* Handle remainder (less than M10BMC_N6000_FIFO_WORD_SIZE bytes) */
173 if (size) {
174 u32 tmp = 0;
175
176 memcpy(&tmp, buf + offset, size);
177 pmci_write_fifo(pmci->base + M10BMC_N6000_FLASH_FIFO, &tmp, 1);
178 }
179
180 return 0;
181 }
182
pmci_flash_bulk_read(struct intel_m10bmc * m10bmc,u8 * buf,u32 addr,u32 size)183 static int pmci_flash_bulk_read(struct intel_m10bmc *m10bmc, u8 *buf, u32 addr, u32 size)
184 {
185 struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
186 u32 blk_size, offset = 0, val, full_read_count, read_count;
187 int ret;
188
189 while (size) {
190 blk_size = min_t(u32, size, M10BMC_N6000_READ_BLOCK_SIZE);
191 full_read_count = blk_size / M10BMC_N6000_FIFO_WORD_SIZE;
192
193 read_count = full_read_count;
194 if (full_read_count * M10BMC_N6000_FIFO_WORD_SIZE < blk_size)
195 read_count++;
196
197 writel(addr + offset, pmci->base + M10BMC_N6000_FLASH_ADDR);
198 writel(FIELD_PREP(M10BMC_N6000_FLASH_READ_COUNT, read_count) |
199 M10BMC_N6000_FLASH_RD_MODE,
200 pmci->base + M10BMC_N6000_FLASH_CTRL);
201
202 ret = readl_poll_timeout((pmci->base + M10BMC_N6000_FLASH_CTRL), val,
203 !(val & M10BMC_N6000_FLASH_BUSY),
204 M10BMC_FLASH_INT_US, M10BMC_FLASH_TIMEOUT_US);
205 if (ret) {
206 dev_err(m10bmc->dev, "read timed out on reading flash 0x%xn", val);
207 return ret;
208 }
209
210 pmci_read_fifo(pmci->base + M10BMC_N6000_FLASH_FIFO,
211 (u32 *)(buf + offset), full_read_count);
212
213 size -= blk_size;
214 offset += blk_size;
215
216 if (full_read_count < read_count)
217 break;
218
219 writel(0, pmci->base + M10BMC_N6000_FLASH_CTRL);
220 }
221
222 /* Handle remainder (less than M10BMC_N6000_FIFO_WORD_SIZE bytes) */
223 if (size) {
224 u32 tmp;
225
226 pmci_read_fifo(pmci->base + M10BMC_N6000_FLASH_FIFO, &tmp, 1);
227 memcpy(buf + offset, &tmp, size);
228
229 writel(0, pmci->base + M10BMC_N6000_FLASH_CTRL);
230 }
231
232 return 0;
233 }
234
m10bmc_pmci_set_flash_host_mux(struct intel_m10bmc * m10bmc,bool request)235 static int m10bmc_pmci_set_flash_host_mux(struct intel_m10bmc *m10bmc, bool request)
236 {
237 u32 ctrl;
238 int ret;
239
240 ret = regmap_update_bits(m10bmc->regmap, M10BMC_N6000_FLASH_MUX_CTRL,
241 M10BMC_N6000_FLASH_HOST_REQUEST,
242 FIELD_PREP(M10BMC_N6000_FLASH_HOST_REQUEST, request));
243 if (ret)
244 return ret;
245
246 return regmap_read_poll_timeout(m10bmc->regmap,
247 M10BMC_N6000_FLASH_MUX_CTRL, ctrl,
248 request ?
249 (get_flash_mux(ctrl) == M10BMC_N6000_FLASH_MUX_HOST) :
250 (get_flash_mux(ctrl) != M10BMC_N6000_FLASH_MUX_HOST),
251 M10BMC_FLASH_INT_US, M10BMC_FLASH_TIMEOUT_US);
252 }
253
m10bmc_pmci_flash_read(struct intel_m10bmc * m10bmc,u8 * buf,u32 addr,u32 size)254 static int m10bmc_pmci_flash_read(struct intel_m10bmc *m10bmc, u8 *buf, u32 addr, u32 size)
255 {
256 struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
257 int ret, ret2;
258
259 mutex_lock(&pmci->flash_mutex);
260 if (pmci->flash_busy) {
261 ret = -EBUSY;
262 goto unlock;
263 }
264
265 ret = m10bmc_pmci_set_flash_host_mux(m10bmc, true);
266 if (ret)
267 goto mux_fail;
268
269 ret = pmci_flash_bulk_read(m10bmc, buf, addr, size);
270
271 mux_fail:
272 ret2 = m10bmc_pmci_set_flash_host_mux(m10bmc, false);
273
274 unlock:
275 mutex_unlock(&pmci->flash_mutex);
276 if (ret)
277 return ret;
278 return ret2;
279 }
280
m10bmc_pmci_flash_write(struct intel_m10bmc * m10bmc,const u8 * buf,u32 offset,u32 size)281 static int m10bmc_pmci_flash_write(struct intel_m10bmc *m10bmc, const u8 *buf, u32 offset, u32 size)
282 {
283 struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
284 int ret;
285
286 mutex_lock(&pmci->flash_mutex);
287 WARN_ON_ONCE(!pmci->flash_busy);
288 /* On write, firmware manages flash MUX */
289 ret = pmci_flash_bulk_write(m10bmc, buf + offset, size);
290 mutex_unlock(&pmci->flash_mutex);
291
292 return ret;
293 }
294
m10bmc_pmci_flash_lock(struct intel_m10bmc * m10bmc)295 static int m10bmc_pmci_flash_lock(struct intel_m10bmc *m10bmc)
296 {
297 struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
298 int ret = 0;
299
300 mutex_lock(&pmci->flash_mutex);
301 if (pmci->flash_busy) {
302 ret = -EBUSY;
303 goto unlock;
304 }
305
306 pmci->flash_busy = true;
307
308 unlock:
309 mutex_unlock(&pmci->flash_mutex);
310 return ret;
311 }
312
m10bmc_pmci_flash_unlock(struct intel_m10bmc * m10bmc)313 static void m10bmc_pmci_flash_unlock(struct intel_m10bmc *m10bmc)
314 {
315 struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
316
317 mutex_lock(&pmci->flash_mutex);
318 WARN_ON_ONCE(!pmci->flash_busy);
319 pmci->flash_busy = false;
320 mutex_unlock(&pmci->flash_mutex);
321 }
322
323 static const struct intel_m10bmc_flash_bulk_ops m10bmc_pmci_flash_bulk_ops = {
324 .read = m10bmc_pmci_flash_read,
325 .write = m10bmc_pmci_flash_write,
326 .lock_write = m10bmc_pmci_flash_lock,
327 .unlock_write = m10bmc_pmci_flash_unlock,
328 };
329
330 static const struct regmap_range m10bmc_pmci_regmap_range[] = {
331 regmap_reg_range(M10BMC_N6000_SYS_BASE, M10BMC_N6000_SYS_END),
332 };
333
334 static const struct regmap_access_table m10bmc_pmci_access_table = {
335 .yes_ranges = m10bmc_pmci_regmap_range,
336 .n_yes_ranges = ARRAY_SIZE(m10bmc_pmci_regmap_range),
337 };
338
339 static const struct regmap_config m10bmc_pmci_regmap_config = {
340 .reg_bits = 32,
341 .reg_stride = 4,
342 .val_bits = 32,
343 .wr_table = &m10bmc_pmci_access_table,
344 .rd_table = &m10bmc_pmci_access_table,
345 .reg_read = &indirect_reg_read,
346 .reg_write = &indirect_reg_write,
347 .max_register = M10BMC_N6000_SYS_END,
348 };
349
350 static struct mfd_cell m10bmc_pmci_n6000_bmc_subdevs[] = {
351 { .name = "n6000bmc-hwmon" },
352 { .name = "n6000bmc-sec-update" },
353 };
354
355 static const struct m10bmc_csr_map m10bmc_n6000_csr_map = {
356 .base = M10BMC_N6000_SYS_BASE,
357 .build_version = M10BMC_N6000_BUILD_VER,
358 .fw_version = NIOS2_N6000_FW_VERSION,
359 .mac_low = M10BMC_N6000_MAC_LOW,
360 .mac_high = M10BMC_N6000_MAC_HIGH,
361 .doorbell = M10BMC_N6000_DOORBELL,
362 .auth_result = M10BMC_N6000_AUTH_RESULT,
363 .bmc_prog_addr = M10BMC_N6000_BMC_PROG_ADDR,
364 .bmc_reh_addr = M10BMC_N6000_BMC_REH_ADDR,
365 .bmc_magic = M10BMC_N6000_BMC_PROG_MAGIC,
366 .sr_prog_addr = M10BMC_N6000_SR_PROG_ADDR,
367 .sr_reh_addr = M10BMC_N6000_SR_REH_ADDR,
368 .sr_magic = M10BMC_N6000_SR_PROG_MAGIC,
369 .pr_prog_addr = M10BMC_N6000_PR_PROG_ADDR,
370 .pr_reh_addr = M10BMC_N6000_PR_REH_ADDR,
371 .pr_magic = M10BMC_N6000_PR_PROG_MAGIC,
372 .rsu_update_counter = M10BMC_N6000_STAGING_FLASH_COUNT,
373 .staging_size = M10BMC_STAGING_SIZE,
374 };
375
376 static const struct intel_m10bmc_platform_info m10bmc_pmci_n6000 = {
377 .cells = m10bmc_pmci_n6000_bmc_subdevs,
378 .n_cells = ARRAY_SIZE(m10bmc_pmci_n6000_bmc_subdevs),
379 .csr_map = &m10bmc_n6000_csr_map,
380 };
381
m10bmc_pmci_probe(struct dfl_device * ddev)382 static int m10bmc_pmci_probe(struct dfl_device *ddev)
383 {
384 struct device *dev = &ddev->dev;
385 struct m10bmc_pmci_device *pmci;
386 struct indirect_ctx *ctx;
387 int ret;
388
389 pmci = devm_kzalloc(dev, sizeof(*pmci), GFP_KERNEL);
390 if (!pmci)
391 return -ENOMEM;
392
393 pmci->m10bmc.flash_bulk_ops = &m10bmc_pmci_flash_bulk_ops;
394 pmci->m10bmc.dev = dev;
395
396 pmci->base = devm_ioremap_resource(dev, &ddev->mmio_res);
397 if (IS_ERR(pmci->base))
398 return PTR_ERR(pmci->base);
399
400 ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
401 if (!ctx)
402 return -ENOMEM;
403
404 mutex_init(&pmci->flash_mutex);
405
406 ctx->base = pmci->base + M10BMC_N6000_INDIRECT_BASE;
407 ctx->dev = dev;
408 indirect_clear_cmd(ctx);
409 pmci->m10bmc.regmap = devm_regmap_init(dev, NULL, ctx, &m10bmc_pmci_regmap_config);
410
411 if (IS_ERR(pmci->m10bmc.regmap)) {
412 ret = PTR_ERR(pmci->m10bmc.regmap);
413 goto destroy_mutex;
414 }
415
416 ret = m10bmc_dev_init(&pmci->m10bmc, &m10bmc_pmci_n6000);
417 if (ret)
418 goto destroy_mutex;
419 return 0;
420
421 destroy_mutex:
422 mutex_destroy(&pmci->flash_mutex);
423 return ret;
424 }
425
m10bmc_pmci_remove(struct dfl_device * ddev)426 static void m10bmc_pmci_remove(struct dfl_device *ddev)
427 {
428 struct intel_m10bmc *m10bmc = dev_get_drvdata(&ddev->dev);
429 struct m10bmc_pmci_device *pmci = container_of(m10bmc, struct m10bmc_pmci_device, m10bmc);
430
431 mutex_destroy(&pmci->flash_mutex);
432 }
433
434 #define FME_FEATURE_ID_M10BMC_PMCI 0x12
435
436 static const struct dfl_device_id m10bmc_pmci_ids[] = {
437 { FME_ID, FME_FEATURE_ID_M10BMC_PMCI },
438 { }
439 };
440 MODULE_DEVICE_TABLE(dfl, m10bmc_pmci_ids);
441
442 static struct dfl_driver m10bmc_pmci_driver = {
443 .drv = {
444 .name = "intel-m10-bmc",
445 .dev_groups = m10bmc_dev_groups,
446 },
447 .id_table = m10bmc_pmci_ids,
448 .probe = m10bmc_pmci_probe,
449 .remove = m10bmc_pmci_remove,
450 };
451
452 module_dfl_driver(m10bmc_pmci_driver);
453
454 MODULE_DESCRIPTION("MAX10 BMC PMCI-based interface");
455 MODULE_AUTHOR("Intel Corporation");
456 MODULE_LICENSE("GPL");
457 MODULE_IMPORT_NS("INTEL_M10_BMC_CORE");
458