xref: /linux/drivers/mfd/db8500-prcmu.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
38 #include <mach/id.h>
39 #include "dbx500-prcmu-regs.h"
40 
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
43 
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE		0x2FC
46 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
59 
60 #define PRCM_AVS_VOLTAGE		0
61 #define PRCM_AVS_VOLTAGE_MASK		0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP		6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE		7
65 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
66 
67 #define PRCM_BOOT_STATUS	0xFFF
68 #define PRCM_ROMCODE_A2P	0xFFE
69 #define PRCM_ROMCODE_P2A	0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
71 
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
73 
74 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
82 
83 /* Req Mailboxes */
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
90 
91 /* Ack Mailboxes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
98 
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS		0
101 #define MB0H_CONFIG_WAKEUPS_EXE		1
102 #define MB0H_READ_WAKEUP_ACK		3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
104 
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
107 
108 /* Mailbox 0 REQs */
109 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
115 
116 /* Mailbox 0 ACKs */
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
124 
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
132 
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF	0x1
138 #define PLL_SOC0_ON	0x2
139 #define PLL_SOC1_OFF	0x4
140 #define PLL_SOC1_ON	0x8
141 
142 /* Mailbox 1 ACKs */
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
147 
148 /* Mailbox 2 headers */
149 #define MB2H_DPS	0x0
150 #define MB2H_AUTO_PWR	0x1
151 
152 /* Mailbox 2 REQs */
153 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
163 
164 /* Mailbox 2 ACKs */
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
167 
168 /* Mailbox 3 headers */
169 #define MB3H_ANC	0x0
170 #define MB3H_SIDETONE	0x1
171 #define MB3H_SYSCLK	0xE
172 
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
181 
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT	0x0
184 #define MB4H_MEM_ST	0x1
185 #define MB4H_HOTDOG	0x12
186 #define MB4H_HOTMON	0x13
187 #define MB4H_HOT_PERIOD	0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN   0x17
190 #define MB4H_A9WDOG_DIS  0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
193 
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW			BIT(0)
204 #define HOTMON_CONFIG_HIGH			BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN			BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS			0
211 #define A9WDOG_ID_MASK				0xf
212 
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219 	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221 	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN		BIT(3)
223 
224 /* Mailbox 5 ACKs */
225 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
229 
230 #define NUM_MB 8
231 #define MBOX_BIT BIT
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233 
234 /*
235  * Wakeups/IRQs
236  */
237 
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
267 
268 static struct {
269 	bool valid;
270 	struct prcmu_fw_version version;
271 } fw_info;
272 
273 static struct irq_domain *db8500_irq_domain;
274 
275 /*
276  * This vector maps irq numbers to the bits in the bit field used in
277  * communication with the PRCMU firmware.
278  *
279  * The reason for having this is to keep the irq numbers contiguous even though
280  * the bits in the bit field are not. (The bits also have a tendency to move
281  * around, to further complicate matters.)
282  */
283 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
284 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
285 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
286 	IRQ_ENTRY(RTC),
287 	IRQ_ENTRY(RTT0),
288 	IRQ_ENTRY(RTT1),
289 	IRQ_ENTRY(HSI0),
290 	IRQ_ENTRY(HSI1),
291 	IRQ_ENTRY(CA_WAKE),
292 	IRQ_ENTRY(USB),
293 	IRQ_ENTRY(ABB),
294 	IRQ_ENTRY(ABB_FIFO),
295 	IRQ_ENTRY(CA_SLEEP),
296 	IRQ_ENTRY(ARM),
297 	IRQ_ENTRY(HOTMON_LOW),
298 	IRQ_ENTRY(HOTMON_HIGH),
299 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
300 	IRQ_ENTRY(GPIO0),
301 	IRQ_ENTRY(GPIO1),
302 	IRQ_ENTRY(GPIO2),
303 	IRQ_ENTRY(GPIO3),
304 	IRQ_ENTRY(GPIO4),
305 	IRQ_ENTRY(GPIO5),
306 	IRQ_ENTRY(GPIO6),
307 	IRQ_ENTRY(GPIO7),
308 	IRQ_ENTRY(GPIO8)
309 };
310 
311 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
312 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
313 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
314 	WAKEUP_ENTRY(RTC),
315 	WAKEUP_ENTRY(RTT0),
316 	WAKEUP_ENTRY(RTT1),
317 	WAKEUP_ENTRY(HSI0),
318 	WAKEUP_ENTRY(HSI1),
319 	WAKEUP_ENTRY(USB),
320 	WAKEUP_ENTRY(ABB),
321 	WAKEUP_ENTRY(ABB_FIFO),
322 	WAKEUP_ENTRY(ARM)
323 };
324 
325 /*
326  * mb0_transfer - state needed for mailbox 0 communication.
327  * @lock:		The transaction lock.
328  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
329  *			the request data.
330  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
331  * @req:		Request data that need to persist between requests.
332  */
333 static struct {
334 	spinlock_t lock;
335 	spinlock_t dbb_irqs_lock;
336 	struct work_struct mask_work;
337 	struct mutex ac_wake_lock;
338 	struct completion ac_wake_work;
339 	struct {
340 		u32 dbb_irqs;
341 		u32 dbb_wakeups;
342 		u32 abb_events;
343 	} req;
344 } mb0_transfer;
345 
346 /*
347  * mb1_transfer - state needed for mailbox 1 communication.
348  * @lock:	The transaction lock.
349  * @work:	The transaction completion structure.
350  * @ape_opp:	The current APE OPP.
351  * @ack:	Reply ("acknowledge") data.
352  */
353 static struct {
354 	struct mutex lock;
355 	struct completion work;
356 	u8 ape_opp;
357 	struct {
358 		u8 header;
359 		u8 arm_opp;
360 		u8 ape_opp;
361 		u8 ape_voltage_status;
362 	} ack;
363 } mb1_transfer;
364 
365 /*
366  * mb2_transfer - state needed for mailbox 2 communication.
367  * @lock:            The transaction lock.
368  * @work:            The transaction completion structure.
369  * @auto_pm_lock:    The autonomous power management configuration lock.
370  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
371  * @req:             Request data that need to persist between requests.
372  * @ack:             Reply ("acknowledge") data.
373  */
374 static struct {
375 	struct mutex lock;
376 	struct completion work;
377 	spinlock_t auto_pm_lock;
378 	bool auto_pm_enabled;
379 	struct {
380 		u8 status;
381 	} ack;
382 } mb2_transfer;
383 
384 /*
385  * mb3_transfer - state needed for mailbox 3 communication.
386  * @lock:		The request lock.
387  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
388  * @sysclk_work:	Work structure used for sysclk requests.
389  */
390 static struct {
391 	spinlock_t lock;
392 	struct mutex sysclk_lock;
393 	struct completion sysclk_work;
394 } mb3_transfer;
395 
396 /*
397  * mb4_transfer - state needed for mailbox 4 communication.
398  * @lock:	The transaction lock.
399  * @work:	The transaction completion structure.
400  */
401 static struct {
402 	struct mutex lock;
403 	struct completion work;
404 } mb4_transfer;
405 
406 /*
407  * mb5_transfer - state needed for mailbox 5 communication.
408  * @lock:	The transaction lock.
409  * @work:	The transaction completion structure.
410  * @ack:	Reply ("acknowledge") data.
411  */
412 static struct {
413 	struct mutex lock;
414 	struct completion work;
415 	struct {
416 		u8 status;
417 		u8 value;
418 	} ack;
419 } mb5_transfer;
420 
421 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
422 
423 /* Functions definition */
424 static void compute_armss_rate(void);
425 
426 /* Spinlocks */
427 static DEFINE_SPINLOCK(prcmu_lock);
428 static DEFINE_SPINLOCK(clkout_lock);
429 
430 /* Global var to runtime determine TCDM base for v2 or v1 */
431 static __iomem void *tcdm_base;
432 
433 struct clk_mgt {
434 	void __iomem *reg;
435 	u32 pllsw;
436 	int branch;
437 	bool clk38div;
438 };
439 
440 enum {
441 	PLL_RAW,
442 	PLL_FIX,
443 	PLL_DIV
444 };
445 
446 static DEFINE_SPINLOCK(clk_mgt_lock);
447 
448 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
449 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
450 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
451 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
452 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
453 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
454 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
455 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
456 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
457 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
458 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
459 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
460 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
461 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
462 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
463 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
464 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
465 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
466 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
467 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
468 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
469 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
470 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
471 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
472 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
474 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
475 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
476 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
477 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
478 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
479 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
480 };
481 
482 struct dsiclk {
483 	u32 divsel_mask;
484 	u32 divsel_shift;
485 	u32 divsel;
486 };
487 
488 static struct dsiclk dsiclk[2] = {
489 	{
490 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
491 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
492 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
493 	},
494 	{
495 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
496 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
497 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
498 	}
499 };
500 
501 struct dsiescclk {
502 	u32 en;
503 	u32 div_mask;
504 	u32 div_shift;
505 };
506 
507 static struct dsiescclk dsiescclk[3] = {
508 	{
509 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
510 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
511 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
512 	},
513 	{
514 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
515 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
516 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
517 	},
518 	{
519 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
520 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
521 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
522 	}
523 };
524 
525 
526 /*
527 * Used by MCDE to setup all necessary PRCMU registers
528 */
529 #define PRCMU_RESET_DSIPLL		0x00004000
530 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
531 
532 #define PRCMU_CLK_PLL_DIV_SHIFT		0
533 #define PRCMU_CLK_PLL_SW_SHIFT		5
534 #define PRCMU_CLK_38			(1 << 9)
535 #define PRCMU_CLK_38_SRC		(1 << 10)
536 #define PRCMU_CLK_38_DIV		(1 << 11)
537 
538 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
539 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
540 
541 /* DPI 50000000 Hz */
542 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
543 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
544 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
545 
546 /* D=101, N=1, R=4, SELDIV2=0 */
547 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
548 
549 #define PRCMU_ENABLE_PLLDSI		0x00000001
550 #define PRCMU_DISABLE_PLLDSI		0x00000000
551 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
552 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
553 /* ESC clk, div0=1, div1=1, div2=3 */
554 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
555 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
556 #define PRCMU_DSI_RESET_SW		0x00000007
557 
558 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
559 
560 int db8500_prcmu_enable_dsipll(void)
561 {
562 	int i;
563 
564 	/* Clear DSIPLL_RESETN */
565 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
566 	/* Unclamp DSIPLL in/out */
567 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
568 
569 	/* Set DSI PLL FREQ */
570 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
571 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
572 	/* Enable Escape clocks */
573 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
574 
575 	/* Start DSI PLL */
576 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
577 	/* Reset DSI PLL */
578 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
579 	for (i = 0; i < 10; i++) {
580 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
581 					== PRCMU_PLLDSI_LOCKP_LOCKED)
582 			break;
583 		udelay(100);
584 	}
585 	/* Set DSIPLL_RESETN */
586 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
587 	return 0;
588 }
589 
590 int db8500_prcmu_disable_dsipll(void)
591 {
592 	/* Disable dsi pll */
593 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
594 	/* Disable  escapeclock */
595 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
596 	return 0;
597 }
598 
599 int db8500_prcmu_set_display_clocks(void)
600 {
601 	unsigned long flags;
602 
603 	spin_lock_irqsave(&clk_mgt_lock, flags);
604 
605 	/* Grab the HW semaphore. */
606 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
607 		cpu_relax();
608 
609 	writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
610 	writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
611 	writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
612 
613 	/* Release the HW semaphore. */
614 	writel(0, PRCM_SEM);
615 
616 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
617 
618 	return 0;
619 }
620 
621 u32 db8500_prcmu_read(unsigned int reg)
622 {
623 	return readl(_PRCMU_BASE + reg);
624 }
625 
626 void db8500_prcmu_write(unsigned int reg, u32 value)
627 {
628 	unsigned long flags;
629 
630 	spin_lock_irqsave(&prcmu_lock, flags);
631 	writel(value, (_PRCMU_BASE + reg));
632 	spin_unlock_irqrestore(&prcmu_lock, flags);
633 }
634 
635 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
636 {
637 	u32 val;
638 	unsigned long flags;
639 
640 	spin_lock_irqsave(&prcmu_lock, flags);
641 	val = readl(_PRCMU_BASE + reg);
642 	val = ((val & ~mask) | (value & mask));
643 	writel(val, (_PRCMU_BASE + reg));
644 	spin_unlock_irqrestore(&prcmu_lock, flags);
645 }
646 
647 struct prcmu_fw_version *prcmu_get_fw_version(void)
648 {
649 	return fw_info.valid ? &fw_info.version : NULL;
650 }
651 
652 bool prcmu_has_arm_maxopp(void)
653 {
654 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
655 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
656 }
657 
658 /**
659  * prcmu_get_boot_status - PRCMU boot status checking
660  * Returns: the current PRCMU boot status
661  */
662 int prcmu_get_boot_status(void)
663 {
664 	return readb(tcdm_base + PRCM_BOOT_STATUS);
665 }
666 
667 /**
668  * prcmu_set_rc_a2p - This function is used to run few power state sequences
669  * @val: Value to be set, i.e. transition requested
670  * Returns: 0 on success, -EINVAL on invalid argument
671  *
672  * This function is used to run the following power state sequences -
673  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
674  */
675 int prcmu_set_rc_a2p(enum romcode_write val)
676 {
677 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
678 		return -EINVAL;
679 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
680 	return 0;
681 }
682 
683 /**
684  * prcmu_get_rc_p2a - This function is used to get power state sequences
685  * Returns: the power transition that has last happened
686  *
687  * This function can return the following transitions-
688  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
689  */
690 enum romcode_read prcmu_get_rc_p2a(void)
691 {
692 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
693 }
694 
695 /**
696  * prcmu_get_current_mode - Return the current XP70 power mode
697  * Returns: Returns the current AP(ARM) power mode: init,
698  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
699  */
700 enum ap_pwrst prcmu_get_xp70_current_state(void)
701 {
702 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
703 }
704 
705 /**
706  * prcmu_config_clkout - Configure one of the programmable clock outputs.
707  * @clkout:	The CLKOUT number (0 or 1).
708  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
709  * @div:	The divider to be applied.
710  *
711  * Configures one of the programmable clock outputs (CLKOUTs).
712  * @div should be in the range [1,63] to request a configuration, or 0 to
713  * inform that the configuration is no longer requested.
714  */
715 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
716 {
717 	static int requests[2];
718 	int r = 0;
719 	unsigned long flags;
720 	u32 val;
721 	u32 bits;
722 	u32 mask;
723 	u32 div_mask;
724 
725 	BUG_ON(clkout > 1);
726 	BUG_ON(div > 63);
727 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
728 
729 	if (!div && !requests[clkout])
730 		return -EINVAL;
731 
732 	switch (clkout) {
733 	case 0:
734 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
735 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
736 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
737 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
738 		break;
739 	case 1:
740 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
741 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
742 			PRCM_CLKOCR_CLK1TYPE);
743 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
744 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
745 		break;
746 	}
747 	bits &= mask;
748 
749 	spin_lock_irqsave(&clkout_lock, flags);
750 
751 	val = readl(PRCM_CLKOCR);
752 	if (val & div_mask) {
753 		if (div) {
754 			if ((val & mask) != bits) {
755 				r = -EBUSY;
756 				goto unlock_and_return;
757 			}
758 		} else {
759 			if ((val & mask & ~div_mask) != bits) {
760 				r = -EINVAL;
761 				goto unlock_and_return;
762 			}
763 		}
764 	}
765 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
766 	requests[clkout] += (div ? 1 : -1);
767 
768 unlock_and_return:
769 	spin_unlock_irqrestore(&clkout_lock, flags);
770 
771 	return r;
772 }
773 
774 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
775 {
776 	unsigned long flags;
777 
778 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
779 
780 	spin_lock_irqsave(&mb0_transfer.lock, flags);
781 
782 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
783 		cpu_relax();
784 
785 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
786 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
787 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
788 	writeb((keep_ulp_clk ? 1 : 0),
789 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
790 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
791 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
792 
793 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
794 
795 	return 0;
796 }
797 
798 u8 db8500_prcmu_get_power_state_result(void)
799 {
800 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
801 }
802 
803 /* This function decouple the gic from the prcmu */
804 int db8500_prcmu_gic_decouple(void)
805 {
806 	u32 val = readl(PRCM_A9_MASK_REQ);
807 
808 	/* Set bit 0 register value to 1 */
809 	writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
810 	       PRCM_A9_MASK_REQ);
811 
812 	/* Make sure the register is updated */
813 	readl(PRCM_A9_MASK_REQ);
814 
815 	/* Wait a few cycles for the gic mask completion */
816 	udelay(1);
817 
818 	return 0;
819 }
820 
821 /* This function recouple the gic with the prcmu */
822 int db8500_prcmu_gic_recouple(void)
823 {
824 	u32 val = readl(PRCM_A9_MASK_REQ);
825 
826 	/* Set bit 0 register value to 0 */
827 	writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
828 
829 	return 0;
830 }
831 
832 #define PRCMU_GIC_NUMBER_REGS 5
833 
834 /*
835  * This function checks if there are pending irq on the gic. It only
836  * makes sense if the gic has been decoupled before with the
837  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
838  * disables the forwarding of the interrupt to any CPU interface. It
839  * does not prevent the interrupt from changing state, for example
840  * becoming pending, or active and pending if it is already
841  * active. Hence, we have to check the interrupt is pending *and* is
842  * active.
843  */
844 bool db8500_prcmu_gic_pending_irq(void)
845 {
846 	u32 pr; /* Pending register */
847 	u32 er; /* Enable register */
848 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
849 	int i;
850 
851         /* 5 registers. STI & PPI not skipped */
852 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
853 
854 		pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
855 		er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
856 
857 		if (pr & er)
858 			return true; /* There is a pending interrupt */
859 	}
860 
861 	return false;
862 }
863 
864 /*
865  * This function checks if there are pending interrupt on the
866  * prcmu which has been delegated to monitor the irqs with the
867  * db8500_prcmu_copy_gic_settings function.
868  */
869 bool db8500_prcmu_pending_irq(void)
870 {
871 	u32 it, im;
872 	int i;
873 
874 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
875 		it = readl(PRCM_ARMITVAL31TO0 + i * 4);
876 		im = readl(PRCM_ARMITMSK31TO0 + i * 4);
877 		if (it & im)
878 			return true; /* There is a pending interrupt */
879 	}
880 
881 	return false;
882 }
883 
884 /*
885  * This function checks if the specified cpu is in in WFI. It's usage
886  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
887  * function. Of course passing smp_processor_id() to this function will
888  * always return false...
889  */
890 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
891 {
892 	return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
893 		     PRCM_ARM_WFI_STANDBY_WFI0;
894 }
895 
896 /*
897  * This function copies the gic SPI settings to the prcmu in order to
898  * monitor them and abort/finish the retention/off sequence or state.
899  */
900 int db8500_prcmu_copy_gic_settings(void)
901 {
902 	u32 er; /* Enable register */
903 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
904 	int i;
905 
906         /* We skip the STI and PPI */
907 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
908 		er = readl_relaxed(dist_base +
909 				   GIC_DIST_ENABLE_SET + (i + 1) * 4);
910 		writel(er, PRCM_ARMITMSK31TO0 + i * 4);
911 	}
912 
913 	return 0;
914 }
915 
916 /* This function should only be called while mb0_transfer.lock is held. */
917 static void config_wakeups(void)
918 {
919 	const u8 header[2] = {
920 		MB0H_CONFIG_WAKEUPS_EXE,
921 		MB0H_CONFIG_WAKEUPS_SLEEP
922 	};
923 	static u32 last_dbb_events;
924 	static u32 last_abb_events;
925 	u32 dbb_events;
926 	u32 abb_events;
927 	unsigned int i;
928 
929 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
930 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
931 
932 	abb_events = mb0_transfer.req.abb_events;
933 
934 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
935 		return;
936 
937 	for (i = 0; i < 2; i++) {
938 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
939 			cpu_relax();
940 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
941 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
942 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
943 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
944 	}
945 	last_dbb_events = dbb_events;
946 	last_abb_events = abb_events;
947 }
948 
949 void db8500_prcmu_enable_wakeups(u32 wakeups)
950 {
951 	unsigned long flags;
952 	u32 bits;
953 	int i;
954 
955 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
956 
957 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
958 		if (wakeups & BIT(i))
959 			bits |= prcmu_wakeup_bit[i];
960 	}
961 
962 	spin_lock_irqsave(&mb0_transfer.lock, flags);
963 
964 	mb0_transfer.req.dbb_wakeups = bits;
965 	config_wakeups();
966 
967 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
968 }
969 
970 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
971 {
972 	unsigned long flags;
973 
974 	spin_lock_irqsave(&mb0_transfer.lock, flags);
975 
976 	mb0_transfer.req.abb_events = abb_events;
977 	config_wakeups();
978 
979 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
980 }
981 
982 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
983 {
984 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
985 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
986 	else
987 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
988 }
989 
990 /**
991  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
992  * @opp: The new ARM operating point to which transition is to be made
993  * Returns: 0 on success, non-zero on failure
994  *
995  * This function sets the the operating point of the ARM.
996  */
997 int db8500_prcmu_set_arm_opp(u8 opp)
998 {
999 	int r;
1000 
1001 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
1002 		return -EINVAL;
1003 
1004 	r = 0;
1005 
1006 	mutex_lock(&mb1_transfer.lock);
1007 
1008 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1009 		cpu_relax();
1010 
1011 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1012 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1013 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1014 
1015 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1016 	wait_for_completion(&mb1_transfer.work);
1017 
1018 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1019 		(mb1_transfer.ack.arm_opp != opp))
1020 		r = -EIO;
1021 
1022 	compute_armss_rate();
1023 	mutex_unlock(&mb1_transfer.lock);
1024 
1025 	return r;
1026 }
1027 
1028 /**
1029  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1030  *
1031  * Returns: the current ARM OPP
1032  */
1033 int db8500_prcmu_get_arm_opp(void)
1034 {
1035 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1036 }
1037 
1038 /**
1039  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1040  *
1041  * Returns: the current DDR OPP
1042  */
1043 int db8500_prcmu_get_ddr_opp(void)
1044 {
1045 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1046 }
1047 
1048 /**
1049  * db8500_set_ddr_opp - set the appropriate DDR OPP
1050  * @opp: The new DDR operating point to which transition is to be made
1051  * Returns: 0 on success, non-zero on failure
1052  *
1053  * This function sets the operating point of the DDR.
1054  */
1055 int db8500_prcmu_set_ddr_opp(u8 opp)
1056 {
1057 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1058 		return -EINVAL;
1059 	/* Changing the DDR OPP can hang the hardware pre-v21 */
1060 	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1061 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1062 
1063 	return 0;
1064 }
1065 
1066 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1067 static void request_even_slower_clocks(bool enable)
1068 {
1069 	void __iomem *clock_reg[] = {
1070 		PRCM_ACLK_MGT,
1071 		PRCM_DMACLK_MGT
1072 	};
1073 	unsigned long flags;
1074 	unsigned int i;
1075 
1076 	spin_lock_irqsave(&clk_mgt_lock, flags);
1077 
1078 	/* Grab the HW semaphore. */
1079 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1080 		cpu_relax();
1081 
1082 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1083 		u32 val;
1084 		u32 div;
1085 
1086 		val = readl(clock_reg[i]);
1087 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1088 		if (enable) {
1089 			if ((div <= 1) || (div > 15)) {
1090 				pr_err("prcmu: Bad clock divider %d in %s\n",
1091 					div, __func__);
1092 				goto unlock_and_return;
1093 			}
1094 			div <<= 1;
1095 		} else {
1096 			if (div <= 2)
1097 				goto unlock_and_return;
1098 			div >>= 1;
1099 		}
1100 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1101 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1102 		writel(val, clock_reg[i]);
1103 	}
1104 
1105 unlock_and_return:
1106 	/* Release the HW semaphore. */
1107 	writel(0, PRCM_SEM);
1108 
1109 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1110 }
1111 
1112 /**
1113  * db8500_set_ape_opp - set the appropriate APE OPP
1114  * @opp: The new APE operating point to which transition is to be made
1115  * Returns: 0 on success, non-zero on failure
1116  *
1117  * This function sets the operating point of the APE.
1118  */
1119 int db8500_prcmu_set_ape_opp(u8 opp)
1120 {
1121 	int r = 0;
1122 
1123 	if (opp == mb1_transfer.ape_opp)
1124 		return 0;
1125 
1126 	mutex_lock(&mb1_transfer.lock);
1127 
1128 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1129 		request_even_slower_clocks(false);
1130 
1131 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1132 		goto skip_message;
1133 
1134 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135 		cpu_relax();
1136 
1137 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1138 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1139 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1140 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1141 
1142 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1143 	wait_for_completion(&mb1_transfer.work);
1144 
1145 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1146 		(mb1_transfer.ack.ape_opp != opp))
1147 		r = -EIO;
1148 
1149 skip_message:
1150 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1151 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1152 		request_even_slower_clocks(true);
1153 	if (!r)
1154 		mb1_transfer.ape_opp = opp;
1155 
1156 	mutex_unlock(&mb1_transfer.lock);
1157 
1158 	return r;
1159 }
1160 
1161 /**
1162  * db8500_prcmu_get_ape_opp - get the current APE OPP
1163  *
1164  * Returns: the current APE OPP
1165  */
1166 int db8500_prcmu_get_ape_opp(void)
1167 {
1168 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1169 }
1170 
1171 /**
1172  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1173  * @enable: true to request the higher voltage, false to drop a request.
1174  *
1175  * Calls to this function to enable and disable requests must be balanced.
1176  */
1177 int prcmu_request_ape_opp_100_voltage(bool enable)
1178 {
1179 	int r = 0;
1180 	u8 header;
1181 	static unsigned int requests;
1182 
1183 	mutex_lock(&mb1_transfer.lock);
1184 
1185 	if (enable) {
1186 		if (0 != requests++)
1187 			goto unlock_and_return;
1188 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1189 	} else {
1190 		if (requests == 0) {
1191 			r = -EIO;
1192 			goto unlock_and_return;
1193 		} else if (1 != requests--) {
1194 			goto unlock_and_return;
1195 		}
1196 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1197 	}
1198 
1199 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1200 		cpu_relax();
1201 
1202 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1203 
1204 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1205 	wait_for_completion(&mb1_transfer.work);
1206 
1207 	if ((mb1_transfer.ack.header != header) ||
1208 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1209 		r = -EIO;
1210 
1211 unlock_and_return:
1212 	mutex_unlock(&mb1_transfer.lock);
1213 
1214 	return r;
1215 }
1216 
1217 /**
1218  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1219  *
1220  * This function releases the power state requirements of a USB wakeup.
1221  */
1222 int prcmu_release_usb_wakeup_state(void)
1223 {
1224 	int r = 0;
1225 
1226 	mutex_lock(&mb1_transfer.lock);
1227 
1228 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1229 		cpu_relax();
1230 
1231 	writeb(MB1H_RELEASE_USB_WAKEUP,
1232 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1233 
1234 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1235 	wait_for_completion(&mb1_transfer.work);
1236 
1237 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1238 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1239 		r = -EIO;
1240 
1241 	mutex_unlock(&mb1_transfer.lock);
1242 
1243 	return r;
1244 }
1245 
1246 static int request_pll(u8 clock, bool enable)
1247 {
1248 	int r = 0;
1249 
1250 	if (clock == PRCMU_PLLSOC0)
1251 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1252 	else if (clock == PRCMU_PLLSOC1)
1253 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1254 	else
1255 		return -EINVAL;
1256 
1257 	mutex_lock(&mb1_transfer.lock);
1258 
1259 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1260 		cpu_relax();
1261 
1262 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1263 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1264 
1265 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1266 	wait_for_completion(&mb1_transfer.work);
1267 
1268 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1269 		r = -EIO;
1270 
1271 	mutex_unlock(&mb1_transfer.lock);
1272 
1273 	return r;
1274 }
1275 
1276 /**
1277  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1278  * @epod_id: The EPOD to set
1279  * @epod_state: The new EPOD state
1280  *
1281  * This function sets the state of a EPOD (power domain). It may not be called
1282  * from interrupt context.
1283  */
1284 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1285 {
1286 	int r = 0;
1287 	bool ram_retention = false;
1288 	int i;
1289 
1290 	/* check argument */
1291 	BUG_ON(epod_id >= NUM_EPOD_ID);
1292 
1293 	/* set flag if retention is possible */
1294 	switch (epod_id) {
1295 	case EPOD_ID_SVAMMDSP:
1296 	case EPOD_ID_SIAMMDSP:
1297 	case EPOD_ID_ESRAM12:
1298 	case EPOD_ID_ESRAM34:
1299 		ram_retention = true;
1300 		break;
1301 	}
1302 
1303 	/* check argument */
1304 	BUG_ON(epod_state > EPOD_STATE_ON);
1305 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1306 
1307 	/* get lock */
1308 	mutex_lock(&mb2_transfer.lock);
1309 
1310 	/* wait for mailbox */
1311 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1312 		cpu_relax();
1313 
1314 	/* fill in mailbox */
1315 	for (i = 0; i < NUM_EPOD_ID; i++)
1316 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1317 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1318 
1319 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1320 
1321 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1322 
1323 	/*
1324 	 * The current firmware version does not handle errors correctly,
1325 	 * and we cannot recover if there is an error.
1326 	 * This is expected to change when the firmware is updated.
1327 	 */
1328 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1329 			msecs_to_jiffies(20000))) {
1330 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1331 			__func__);
1332 		r = -EIO;
1333 		goto unlock_and_return;
1334 	}
1335 
1336 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1337 		r = -EIO;
1338 
1339 unlock_and_return:
1340 	mutex_unlock(&mb2_transfer.lock);
1341 	return r;
1342 }
1343 
1344 /**
1345  * prcmu_configure_auto_pm - Configure autonomous power management.
1346  * @sleep: Configuration for ApSleep.
1347  * @idle:  Configuration for ApIdle.
1348  */
1349 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1350 	struct prcmu_auto_pm_config *idle)
1351 {
1352 	u32 sleep_cfg;
1353 	u32 idle_cfg;
1354 	unsigned long flags;
1355 
1356 	BUG_ON((sleep == NULL) || (idle == NULL));
1357 
1358 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1359 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1360 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1361 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1362 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1363 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1364 
1365 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1366 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1367 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1368 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1369 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1370 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1371 
1372 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1373 
1374 	/*
1375 	 * The autonomous power management configuration is done through
1376 	 * fields in mailbox 2, but these fields are only used as shared
1377 	 * variables - i.e. there is no need to send a message.
1378 	 */
1379 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1380 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1381 
1382 	mb2_transfer.auto_pm_enabled =
1383 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1384 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1385 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1386 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1387 
1388 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1389 }
1390 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1391 
1392 bool prcmu_is_auto_pm_enabled(void)
1393 {
1394 	return mb2_transfer.auto_pm_enabled;
1395 }
1396 
1397 static int request_sysclk(bool enable)
1398 {
1399 	int r;
1400 	unsigned long flags;
1401 
1402 	r = 0;
1403 
1404 	mutex_lock(&mb3_transfer.sysclk_lock);
1405 
1406 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1407 
1408 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1409 		cpu_relax();
1410 
1411 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1412 
1413 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1414 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1415 
1416 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1417 
1418 	/*
1419 	 * The firmware only sends an ACK if we want to enable the
1420 	 * SysClk, and it succeeds.
1421 	 */
1422 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1423 			msecs_to_jiffies(20000))) {
1424 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1425 			__func__);
1426 		r = -EIO;
1427 	}
1428 
1429 	mutex_unlock(&mb3_transfer.sysclk_lock);
1430 
1431 	return r;
1432 }
1433 
1434 static int request_timclk(bool enable)
1435 {
1436 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1437 
1438 	if (!enable)
1439 		val |= PRCM_TCR_STOP_TIMERS;
1440 	writel(val, PRCM_TCR);
1441 
1442 	return 0;
1443 }
1444 
1445 static int request_clock(u8 clock, bool enable)
1446 {
1447 	u32 val;
1448 	unsigned long flags;
1449 
1450 	spin_lock_irqsave(&clk_mgt_lock, flags);
1451 
1452 	/* Grab the HW semaphore. */
1453 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1454 		cpu_relax();
1455 
1456 	val = readl(clk_mgt[clock].reg);
1457 	if (enable) {
1458 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1459 	} else {
1460 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1461 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1462 	}
1463 	writel(val, clk_mgt[clock].reg);
1464 
1465 	/* Release the HW semaphore. */
1466 	writel(0, PRCM_SEM);
1467 
1468 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1469 
1470 	return 0;
1471 }
1472 
1473 static int request_sga_clock(u8 clock, bool enable)
1474 {
1475 	u32 val;
1476 	int ret;
1477 
1478 	if (enable) {
1479 		val = readl(PRCM_CGATING_BYPASS);
1480 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1481 	}
1482 
1483 	ret = request_clock(clock, enable);
1484 
1485 	if (!ret && !enable) {
1486 		val = readl(PRCM_CGATING_BYPASS);
1487 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1488 	}
1489 
1490 	return ret;
1491 }
1492 
1493 static inline bool plldsi_locked(void)
1494 {
1495 	return (readl(PRCM_PLLDSI_LOCKP) &
1496 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1497 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1498 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1499 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1500 }
1501 
1502 static int request_plldsi(bool enable)
1503 {
1504 	int r = 0;
1505 	u32 val;
1506 
1507 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1508 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1509 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1510 
1511 	val = readl(PRCM_PLLDSI_ENABLE);
1512 	if (enable)
1513 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1514 	else
1515 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1516 	writel(val, PRCM_PLLDSI_ENABLE);
1517 
1518 	if (enable) {
1519 		unsigned int i;
1520 		bool locked = plldsi_locked();
1521 
1522 		for (i = 10; !locked && (i > 0); --i) {
1523 			udelay(100);
1524 			locked = plldsi_locked();
1525 		}
1526 		if (locked) {
1527 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1528 				PRCM_APE_RESETN_SET);
1529 		} else {
1530 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1531 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1532 				PRCM_MMIP_LS_CLAMP_SET);
1533 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1534 			writel(val, PRCM_PLLDSI_ENABLE);
1535 			r = -EAGAIN;
1536 		}
1537 	} else {
1538 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1539 	}
1540 	return r;
1541 }
1542 
1543 static int request_dsiclk(u8 n, bool enable)
1544 {
1545 	u32 val;
1546 
1547 	val = readl(PRCM_DSI_PLLOUT_SEL);
1548 	val &= ~dsiclk[n].divsel_mask;
1549 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1550 		dsiclk[n].divsel_shift);
1551 	writel(val, PRCM_DSI_PLLOUT_SEL);
1552 	return 0;
1553 }
1554 
1555 static int request_dsiescclk(u8 n, bool enable)
1556 {
1557 	u32 val;
1558 
1559 	val = readl(PRCM_DSITVCLK_DIV);
1560 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1561 	writel(val, PRCM_DSITVCLK_DIV);
1562 	return 0;
1563 }
1564 
1565 /**
1566  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1567  * @clock:      The clock for which the request is made.
1568  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1569  *
1570  * This function should only be used by the clock implementation.
1571  * Do not use it from any other place!
1572  */
1573 int db8500_prcmu_request_clock(u8 clock, bool enable)
1574 {
1575 	if (clock == PRCMU_SGACLK)
1576 		return request_sga_clock(clock, enable);
1577 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1578 		return request_clock(clock, enable);
1579 	else if (clock == PRCMU_TIMCLK)
1580 		return request_timclk(enable);
1581 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1582 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1583 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1584 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1585 	else if (clock == PRCMU_PLLDSI)
1586 		return request_plldsi(enable);
1587 	else if (clock == PRCMU_SYSCLK)
1588 		return request_sysclk(enable);
1589 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1590 		return request_pll(clock, enable);
1591 	else
1592 		return -EINVAL;
1593 }
1594 
1595 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1596 	int branch)
1597 {
1598 	u64 rate;
1599 	u32 val;
1600 	u32 d;
1601 	u32 div = 1;
1602 
1603 	val = readl(reg);
1604 
1605 	rate = src_rate;
1606 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1607 
1608 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1609 	if (d > 1)
1610 		div *= d;
1611 
1612 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1613 	if (d > 1)
1614 		div *= d;
1615 
1616 	if (val & PRCM_PLL_FREQ_SELDIV2)
1617 		div *= 2;
1618 
1619 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1620 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1621 		((reg == PRCM_PLLSOC0_FREQ) ||
1622 		 (reg == PRCM_PLLARM_FREQ) ||
1623 		 (reg == PRCM_PLLDDR_FREQ))))
1624 		div *= 2;
1625 
1626 	(void)do_div(rate, div);
1627 
1628 	return (unsigned long)rate;
1629 }
1630 
1631 #define ROOT_CLOCK_RATE 38400000
1632 
1633 static unsigned long clock_rate(u8 clock)
1634 {
1635 	u32 val;
1636 	u32 pllsw;
1637 	unsigned long rate = ROOT_CLOCK_RATE;
1638 
1639 	val = readl(clk_mgt[clock].reg);
1640 
1641 	if (val & PRCM_CLK_MGT_CLK38) {
1642 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1643 			rate /= 2;
1644 		return rate;
1645 	}
1646 
1647 	val |= clk_mgt[clock].pllsw;
1648 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1649 
1650 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1651 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1652 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1653 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1654 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1655 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1656 	else
1657 		return 0;
1658 
1659 	if ((clock == PRCMU_SGACLK) &&
1660 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1661 		u64 r = (rate * 10);
1662 
1663 		(void)do_div(r, 25);
1664 		return (unsigned long)r;
1665 	}
1666 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1667 	if (val)
1668 		return rate / val;
1669 	else
1670 		return 0;
1671 }
1672 static unsigned long latest_armss_rate;
1673 static unsigned long armss_rate(void)
1674 {
1675 	return latest_armss_rate;
1676 }
1677 
1678 static void compute_armss_rate(void)
1679 {
1680 	u32 r;
1681 	unsigned long rate;
1682 
1683 	r = readl(PRCM_ARM_CHGCLKREQ);
1684 
1685 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1686 		/* External ARMCLKFIX clock */
1687 
1688 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1689 
1690 		/* Check PRCM_ARM_CHGCLKREQ divider */
1691 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1692 			rate /= 2;
1693 
1694 		/* Check PRCM_ARMCLKFIX_MGT divider */
1695 		r = readl(PRCM_ARMCLKFIX_MGT);
1696 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1697 		rate /= r;
1698 
1699 	} else {/* ARM PLL */
1700 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1701 	}
1702 
1703 	latest_armss_rate = rate;
1704 }
1705 
1706 static unsigned long dsiclk_rate(u8 n)
1707 {
1708 	u32 divsel;
1709 	u32 div = 1;
1710 
1711 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1712 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1713 
1714 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1715 		divsel = dsiclk[n].divsel;
1716 
1717 	switch (divsel) {
1718 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1719 		div *= 2;
1720 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1721 		div *= 2;
1722 	case PRCM_DSI_PLLOUT_SEL_PHI:
1723 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1724 			PLL_RAW) / div;
1725 	default:
1726 		return 0;
1727 	}
1728 }
1729 
1730 static unsigned long dsiescclk_rate(u8 n)
1731 {
1732 	u32 div;
1733 
1734 	div = readl(PRCM_DSITVCLK_DIV);
1735 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1736 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1737 }
1738 
1739 unsigned long prcmu_clock_rate(u8 clock)
1740 {
1741 	if (clock < PRCMU_NUM_REG_CLOCKS)
1742 		return clock_rate(clock);
1743 	else if (clock == PRCMU_TIMCLK)
1744 		return ROOT_CLOCK_RATE / 16;
1745 	else if (clock == PRCMU_SYSCLK)
1746 		return ROOT_CLOCK_RATE;
1747 	else if (clock == PRCMU_PLLSOC0)
1748 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1749 	else if (clock == PRCMU_PLLSOC1)
1750 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1751 	else if (clock == PRCMU_ARMSS)
1752 		return armss_rate();
1753 	else if (clock == PRCMU_PLLDDR)
1754 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1755 	else if (clock == PRCMU_PLLDSI)
1756 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1757 			PLL_RAW);
1758 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1759 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1760 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1761 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1762 	else
1763 		return 0;
1764 }
1765 
1766 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1767 {
1768 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1769 		return ROOT_CLOCK_RATE;
1770 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1771 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1772 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1773 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1774 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1775 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1776 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1777 	else
1778 		return 0;
1779 }
1780 
1781 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1782 {
1783 	u32 div;
1784 
1785 	div = (src_rate / rate);
1786 	if (div == 0)
1787 		return 1;
1788 	if (rate < (src_rate / div))
1789 		div++;
1790 	return div;
1791 }
1792 
1793 static long round_clock_rate(u8 clock, unsigned long rate)
1794 {
1795 	u32 val;
1796 	u32 div;
1797 	unsigned long src_rate;
1798 	long rounded_rate;
1799 
1800 	val = readl(clk_mgt[clock].reg);
1801 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1802 		clk_mgt[clock].branch);
1803 	div = clock_divider(src_rate, rate);
1804 	if (val & PRCM_CLK_MGT_CLK38) {
1805 		if (clk_mgt[clock].clk38div) {
1806 			if (div > 2)
1807 				div = 2;
1808 		} else {
1809 			div = 1;
1810 		}
1811 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1812 		u64 r = (src_rate * 10);
1813 
1814 		(void)do_div(r, 25);
1815 		if (r <= rate)
1816 			return (unsigned long)r;
1817 	}
1818 	rounded_rate = (src_rate / min(div, (u32)31));
1819 
1820 	return rounded_rate;
1821 }
1822 
1823 #define MIN_PLL_VCO_RATE 600000000ULL
1824 #define MAX_PLL_VCO_RATE 1680640000ULL
1825 
1826 static long round_plldsi_rate(unsigned long rate)
1827 {
1828 	long rounded_rate = 0;
1829 	unsigned long src_rate;
1830 	unsigned long rem;
1831 	u32 r;
1832 
1833 	src_rate = clock_rate(PRCMU_HDMICLK);
1834 	rem = rate;
1835 
1836 	for (r = 7; (rem > 0) && (r > 0); r--) {
1837 		u64 d;
1838 
1839 		d = (r * rate);
1840 		(void)do_div(d, src_rate);
1841 		if (d < 6)
1842 			d = 6;
1843 		else if (d > 255)
1844 			d = 255;
1845 		d *= src_rate;
1846 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1847 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1848 			continue;
1849 		(void)do_div(d, r);
1850 		if (rate < d) {
1851 			if (rounded_rate == 0)
1852 				rounded_rate = (long)d;
1853 			break;
1854 		}
1855 		if ((rate - d) < rem) {
1856 			rem = (rate - d);
1857 			rounded_rate = (long)d;
1858 		}
1859 	}
1860 	return rounded_rate;
1861 }
1862 
1863 static long round_dsiclk_rate(unsigned long rate)
1864 {
1865 	u32 div;
1866 	unsigned long src_rate;
1867 	long rounded_rate;
1868 
1869 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1870 		PLL_RAW);
1871 	div = clock_divider(src_rate, rate);
1872 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1873 
1874 	return rounded_rate;
1875 }
1876 
1877 static long round_dsiescclk_rate(unsigned long rate)
1878 {
1879 	u32 div;
1880 	unsigned long src_rate;
1881 	long rounded_rate;
1882 
1883 	src_rate = clock_rate(PRCMU_TVCLK);
1884 	div = clock_divider(src_rate, rate);
1885 	rounded_rate = (src_rate / min(div, (u32)255));
1886 
1887 	return rounded_rate;
1888 }
1889 
1890 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1891 {
1892 	if (clock < PRCMU_NUM_REG_CLOCKS)
1893 		return round_clock_rate(clock, rate);
1894 	else if (clock == PRCMU_PLLDSI)
1895 		return round_plldsi_rate(rate);
1896 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1897 		return round_dsiclk_rate(rate);
1898 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1899 		return round_dsiescclk_rate(rate);
1900 	else
1901 		return (long)prcmu_clock_rate(clock);
1902 }
1903 
1904 static void set_clock_rate(u8 clock, unsigned long rate)
1905 {
1906 	u32 val;
1907 	u32 div;
1908 	unsigned long src_rate;
1909 	unsigned long flags;
1910 
1911 	spin_lock_irqsave(&clk_mgt_lock, flags);
1912 
1913 	/* Grab the HW semaphore. */
1914 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1915 		cpu_relax();
1916 
1917 	val = readl(clk_mgt[clock].reg);
1918 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1919 		clk_mgt[clock].branch);
1920 	div = clock_divider(src_rate, rate);
1921 	if (val & PRCM_CLK_MGT_CLK38) {
1922 		if (clk_mgt[clock].clk38div) {
1923 			if (div > 1)
1924 				val |= PRCM_CLK_MGT_CLK38DIV;
1925 			else
1926 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1927 		}
1928 	} else if (clock == PRCMU_SGACLK) {
1929 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1930 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1931 		if (div == 3) {
1932 			u64 r = (src_rate * 10);
1933 
1934 			(void)do_div(r, 25);
1935 			if (r <= rate) {
1936 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1937 				div = 0;
1938 			}
1939 		}
1940 		val |= min(div, (u32)31);
1941 	} else {
1942 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1943 		val |= min(div, (u32)31);
1944 	}
1945 	writel(val, clk_mgt[clock].reg);
1946 
1947 	/* Release the HW semaphore. */
1948 	writel(0, PRCM_SEM);
1949 
1950 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1951 }
1952 
1953 static int set_plldsi_rate(unsigned long rate)
1954 {
1955 	unsigned long src_rate;
1956 	unsigned long rem;
1957 	u32 pll_freq = 0;
1958 	u32 r;
1959 
1960 	src_rate = clock_rate(PRCMU_HDMICLK);
1961 	rem = rate;
1962 
1963 	for (r = 7; (rem > 0) && (r > 0); r--) {
1964 		u64 d;
1965 		u64 hwrate;
1966 
1967 		d = (r * rate);
1968 		(void)do_div(d, src_rate);
1969 		if (d < 6)
1970 			d = 6;
1971 		else if (d > 255)
1972 			d = 255;
1973 		hwrate = (d * src_rate);
1974 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1975 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1976 			continue;
1977 		(void)do_div(hwrate, r);
1978 		if (rate < hwrate) {
1979 			if (pll_freq == 0)
1980 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1981 					(r << PRCM_PLL_FREQ_R_SHIFT));
1982 			break;
1983 		}
1984 		if ((rate - hwrate) < rem) {
1985 			rem = (rate - hwrate);
1986 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1987 				(r << PRCM_PLL_FREQ_R_SHIFT));
1988 		}
1989 	}
1990 	if (pll_freq == 0)
1991 		return -EINVAL;
1992 
1993 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1994 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1995 
1996 	return 0;
1997 }
1998 
1999 static void set_dsiclk_rate(u8 n, unsigned long rate)
2000 {
2001 	u32 val;
2002 	u32 div;
2003 
2004 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2005 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2006 
2007 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2008 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2009 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
2010 
2011 	val = readl(PRCM_DSI_PLLOUT_SEL);
2012 	val &= ~dsiclk[n].divsel_mask;
2013 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2014 	writel(val, PRCM_DSI_PLLOUT_SEL);
2015 }
2016 
2017 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2018 {
2019 	u32 val;
2020 	u32 div;
2021 
2022 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2023 	val = readl(PRCM_DSITVCLK_DIV);
2024 	val &= ~dsiescclk[n].div_mask;
2025 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2026 	writel(val, PRCM_DSITVCLK_DIV);
2027 }
2028 
2029 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2030 {
2031 	if (clock < PRCMU_NUM_REG_CLOCKS)
2032 		set_clock_rate(clock, rate);
2033 	else if (clock == PRCMU_PLLDSI)
2034 		return set_plldsi_rate(rate);
2035 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2036 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2037 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2038 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2039 	return 0;
2040 }
2041 
2042 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2043 {
2044 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2045 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2046 		return -EINVAL;
2047 
2048 	mutex_lock(&mb4_transfer.lock);
2049 
2050 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2051 		cpu_relax();
2052 
2053 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2054 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2055 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2056 	writeb(DDR_PWR_STATE_ON,
2057 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2058 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2059 
2060 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2061 	wait_for_completion(&mb4_transfer.work);
2062 
2063 	mutex_unlock(&mb4_transfer.lock);
2064 
2065 	return 0;
2066 }
2067 
2068 int db8500_prcmu_config_hotdog(u8 threshold)
2069 {
2070 	mutex_lock(&mb4_transfer.lock);
2071 
2072 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2073 		cpu_relax();
2074 
2075 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2076 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2077 
2078 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2079 	wait_for_completion(&mb4_transfer.work);
2080 
2081 	mutex_unlock(&mb4_transfer.lock);
2082 
2083 	return 0;
2084 }
2085 
2086 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2087 {
2088 	mutex_lock(&mb4_transfer.lock);
2089 
2090 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2091 		cpu_relax();
2092 
2093 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2094 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2095 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2096 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2097 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2098 
2099 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2100 	wait_for_completion(&mb4_transfer.work);
2101 
2102 	mutex_unlock(&mb4_transfer.lock);
2103 
2104 	return 0;
2105 }
2106 
2107 static int config_hot_period(u16 val)
2108 {
2109 	mutex_lock(&mb4_transfer.lock);
2110 
2111 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2112 		cpu_relax();
2113 
2114 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2115 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2116 
2117 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2118 	wait_for_completion(&mb4_transfer.work);
2119 
2120 	mutex_unlock(&mb4_transfer.lock);
2121 
2122 	return 0;
2123 }
2124 
2125 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2126 {
2127 	if (cycles32k == 0xFFFF)
2128 		return -EINVAL;
2129 
2130 	return config_hot_period(cycles32k);
2131 }
2132 
2133 int db8500_prcmu_stop_temp_sense(void)
2134 {
2135 	return config_hot_period(0xFFFF);
2136 }
2137 
2138 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2139 {
2140 
2141 	mutex_lock(&mb4_transfer.lock);
2142 
2143 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2144 		cpu_relax();
2145 
2146 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2147 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2148 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2149 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2150 
2151 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2152 
2153 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2154 	wait_for_completion(&mb4_transfer.work);
2155 
2156 	mutex_unlock(&mb4_transfer.lock);
2157 
2158 	return 0;
2159 
2160 }
2161 
2162 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2163 {
2164 	BUG_ON(num == 0 || num > 0xf);
2165 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2166 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2167 			    A9WDOG_AUTO_OFF_DIS);
2168 }
2169 
2170 int db8500_prcmu_enable_a9wdog(u8 id)
2171 {
2172 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2173 }
2174 
2175 int db8500_prcmu_disable_a9wdog(u8 id)
2176 {
2177 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2178 }
2179 
2180 int db8500_prcmu_kick_a9wdog(u8 id)
2181 {
2182 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2183 }
2184 
2185 /*
2186  * timeout is 28 bit, in ms.
2187  */
2188 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2189 {
2190 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2191 			    (id & A9WDOG_ID_MASK) |
2192 			    /*
2193 			     * Put the lowest 28 bits of timeout at
2194 			     * offset 4. Four first bits are used for id.
2195 			     */
2196 			    (u8)((timeout << 4) & 0xf0),
2197 			    (u8)((timeout >> 4) & 0xff),
2198 			    (u8)((timeout >> 12) & 0xff),
2199 			    (u8)((timeout >> 20) & 0xff));
2200 }
2201 
2202 /**
2203  * prcmu_abb_read() - Read register value(s) from the ABB.
2204  * @slave:	The I2C slave address.
2205  * @reg:	The (start) register address.
2206  * @value:	The read out value(s).
2207  * @size:	The number of registers to read.
2208  *
2209  * Reads register value(s) from the ABB.
2210  * @size has to be 1 for the current firmware version.
2211  */
2212 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2213 {
2214 	int r;
2215 
2216 	if (size != 1)
2217 		return -EINVAL;
2218 
2219 	mutex_lock(&mb5_transfer.lock);
2220 
2221 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2222 		cpu_relax();
2223 
2224 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2225 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2226 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2227 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2228 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2229 
2230 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2231 
2232 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2233 				msecs_to_jiffies(20000))) {
2234 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2235 			__func__);
2236 		r = -EIO;
2237 	} else {
2238 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2239 	}
2240 
2241 	if (!r)
2242 		*value = mb5_transfer.ack.value;
2243 
2244 	mutex_unlock(&mb5_transfer.lock);
2245 
2246 	return r;
2247 }
2248 
2249 /**
2250  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2251  * @slave:	The I2C slave address.
2252  * @reg:	The (start) register address.
2253  * @value:	The value(s) to write.
2254  * @mask:	The mask(s) to use.
2255  * @size:	The number of registers to write.
2256  *
2257  * Writes masked register value(s) to the ABB.
2258  * For each @value, only the bits set to 1 in the corresponding @mask
2259  * will be written. The other bits are not changed.
2260  * @size has to be 1 for the current firmware version.
2261  */
2262 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2263 {
2264 	int r;
2265 
2266 	if (size != 1)
2267 		return -EINVAL;
2268 
2269 	mutex_lock(&mb5_transfer.lock);
2270 
2271 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2272 		cpu_relax();
2273 
2274 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2275 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2276 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2277 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2278 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2279 
2280 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2281 
2282 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2283 				msecs_to_jiffies(20000))) {
2284 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2285 			__func__);
2286 		r = -EIO;
2287 	} else {
2288 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2289 	}
2290 
2291 	mutex_unlock(&mb5_transfer.lock);
2292 
2293 	return r;
2294 }
2295 
2296 /**
2297  * prcmu_abb_write() - Write register value(s) to the ABB.
2298  * @slave:	The I2C slave address.
2299  * @reg:	The (start) register address.
2300  * @value:	The value(s) to write.
2301  * @size:	The number of registers to write.
2302  *
2303  * Writes register value(s) to the ABB.
2304  * @size has to be 1 for the current firmware version.
2305  */
2306 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2307 {
2308 	u8 mask = ~0;
2309 
2310 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2311 }
2312 
2313 /**
2314  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2315  */
2316 int prcmu_ac_wake_req(void)
2317 {
2318 	u32 val;
2319 	int ret = 0;
2320 
2321 	mutex_lock(&mb0_transfer.ac_wake_lock);
2322 
2323 	val = readl(PRCM_HOSTACCESS_REQ);
2324 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2325 		goto unlock_and_return;
2326 
2327 	atomic_set(&ac_wake_req_state, 1);
2328 
2329 	/*
2330 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2331 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2332 	 * request. The 31us delay has been calculated by HWI.
2333 	 */
2334 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2335 	writel(val, PRCM_HOSTACCESS_REQ);
2336 
2337 	udelay(31);
2338 
2339 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2340 	writel(val, PRCM_HOSTACCESS_REQ);
2341 
2342 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2343 			msecs_to_jiffies(5000))) {
2344 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2345 		db8500_prcmu_debug_dump(__func__, true, true);
2346 #endif
2347 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2348 			__func__);
2349 		ret = -EFAULT;
2350 	}
2351 
2352 unlock_and_return:
2353 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2354 	return ret;
2355 }
2356 
2357 /**
2358  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2359  */
2360 void prcmu_ac_sleep_req()
2361 {
2362 	u32 val;
2363 
2364 	mutex_lock(&mb0_transfer.ac_wake_lock);
2365 
2366 	val = readl(PRCM_HOSTACCESS_REQ);
2367 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2368 		goto unlock_and_return;
2369 
2370 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2371 		PRCM_HOSTACCESS_REQ);
2372 
2373 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2374 			msecs_to_jiffies(5000))) {
2375 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2376 			__func__);
2377 	}
2378 
2379 	atomic_set(&ac_wake_req_state, 0);
2380 
2381 unlock_and_return:
2382 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2383 }
2384 
2385 bool db8500_prcmu_is_ac_wake_requested(void)
2386 {
2387 	return (atomic_read(&ac_wake_req_state) != 0);
2388 }
2389 
2390 /**
2391  * db8500_prcmu_system_reset - System reset
2392  *
2393  * Saves the reset reason code and then sets the APE_SOFTRST register which
2394  * fires interrupt to fw
2395  */
2396 void db8500_prcmu_system_reset(u16 reset_code)
2397 {
2398 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2399 	writel(1, PRCM_APE_SOFTRST);
2400 }
2401 
2402 /**
2403  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2404  *
2405  * Retrieves the reset reason code stored by prcmu_system_reset() before
2406  * last restart.
2407  */
2408 u16 db8500_prcmu_get_reset_code(void)
2409 {
2410 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2411 }
2412 
2413 /**
2414  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2415  */
2416 void db8500_prcmu_modem_reset(void)
2417 {
2418 	mutex_lock(&mb1_transfer.lock);
2419 
2420 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2421 		cpu_relax();
2422 
2423 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2424 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2425 	wait_for_completion(&mb1_transfer.work);
2426 
2427 	/*
2428 	 * No need to check return from PRCMU as modem should go in reset state
2429 	 * This state is already managed by upper layer
2430 	 */
2431 
2432 	mutex_unlock(&mb1_transfer.lock);
2433 }
2434 
2435 static void ack_dbb_wakeup(void)
2436 {
2437 	unsigned long flags;
2438 
2439 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2440 
2441 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2442 		cpu_relax();
2443 
2444 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2445 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2446 
2447 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2448 }
2449 
2450 static inline void print_unknown_header_warning(u8 n, u8 header)
2451 {
2452 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2453 		header, n);
2454 }
2455 
2456 static bool read_mailbox_0(void)
2457 {
2458 	bool r;
2459 	u32 ev;
2460 	unsigned int n;
2461 	u8 header;
2462 
2463 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2464 	switch (header) {
2465 	case MB0H_WAKEUP_EXE:
2466 	case MB0H_WAKEUP_SLEEP:
2467 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2468 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2469 		else
2470 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2471 
2472 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2473 			complete(&mb0_transfer.ac_wake_work);
2474 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2475 			complete(&mb3_transfer.sysclk_work);
2476 
2477 		ev &= mb0_transfer.req.dbb_irqs;
2478 
2479 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2480 			if (ev & prcmu_irq_bit[n])
2481 				generic_handle_irq(IRQ_PRCMU_BASE + n);
2482 		}
2483 		r = true;
2484 		break;
2485 	default:
2486 		print_unknown_header_warning(0, header);
2487 		r = false;
2488 		break;
2489 	}
2490 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2491 	return r;
2492 }
2493 
2494 static bool read_mailbox_1(void)
2495 {
2496 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2497 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2498 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2499 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2500 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2501 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2502 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2503 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2504 	complete(&mb1_transfer.work);
2505 	return false;
2506 }
2507 
2508 static bool read_mailbox_2(void)
2509 {
2510 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2511 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2512 	complete(&mb2_transfer.work);
2513 	return false;
2514 }
2515 
2516 static bool read_mailbox_3(void)
2517 {
2518 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2519 	return false;
2520 }
2521 
2522 static bool read_mailbox_4(void)
2523 {
2524 	u8 header;
2525 	bool do_complete = true;
2526 
2527 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2528 	switch (header) {
2529 	case MB4H_MEM_ST:
2530 	case MB4H_HOTDOG:
2531 	case MB4H_HOTMON:
2532 	case MB4H_HOT_PERIOD:
2533 	case MB4H_A9WDOG_CONF:
2534 	case MB4H_A9WDOG_EN:
2535 	case MB4H_A9WDOG_DIS:
2536 	case MB4H_A9WDOG_LOAD:
2537 	case MB4H_A9WDOG_KICK:
2538 		break;
2539 	default:
2540 		print_unknown_header_warning(4, header);
2541 		do_complete = false;
2542 		break;
2543 	}
2544 
2545 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2546 
2547 	if (do_complete)
2548 		complete(&mb4_transfer.work);
2549 
2550 	return false;
2551 }
2552 
2553 static bool read_mailbox_5(void)
2554 {
2555 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2556 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2557 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2558 	complete(&mb5_transfer.work);
2559 	return false;
2560 }
2561 
2562 static bool read_mailbox_6(void)
2563 {
2564 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2565 	return false;
2566 }
2567 
2568 static bool read_mailbox_7(void)
2569 {
2570 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2571 	return false;
2572 }
2573 
2574 static bool (* const read_mailbox[NUM_MB])(void) = {
2575 	read_mailbox_0,
2576 	read_mailbox_1,
2577 	read_mailbox_2,
2578 	read_mailbox_3,
2579 	read_mailbox_4,
2580 	read_mailbox_5,
2581 	read_mailbox_6,
2582 	read_mailbox_7
2583 };
2584 
2585 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2586 {
2587 	u32 bits;
2588 	u8 n;
2589 	irqreturn_t r;
2590 
2591 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2592 	if (unlikely(!bits))
2593 		return IRQ_NONE;
2594 
2595 	r = IRQ_HANDLED;
2596 	for (n = 0; bits; n++) {
2597 		if (bits & MBOX_BIT(n)) {
2598 			bits -= MBOX_BIT(n);
2599 			if (read_mailbox[n]())
2600 				r = IRQ_WAKE_THREAD;
2601 		}
2602 	}
2603 	return r;
2604 }
2605 
2606 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2607 {
2608 	ack_dbb_wakeup();
2609 	return IRQ_HANDLED;
2610 }
2611 
2612 static void prcmu_mask_work(struct work_struct *work)
2613 {
2614 	unsigned long flags;
2615 
2616 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2617 
2618 	config_wakeups();
2619 
2620 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2621 }
2622 
2623 static void prcmu_irq_mask(struct irq_data *d)
2624 {
2625 	unsigned long flags;
2626 
2627 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2628 
2629 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2630 
2631 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2632 
2633 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2634 		schedule_work(&mb0_transfer.mask_work);
2635 }
2636 
2637 static void prcmu_irq_unmask(struct irq_data *d)
2638 {
2639 	unsigned long flags;
2640 
2641 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2642 
2643 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2644 
2645 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2646 
2647 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2648 		schedule_work(&mb0_transfer.mask_work);
2649 }
2650 
2651 static void noop(struct irq_data *d)
2652 {
2653 }
2654 
2655 static struct irq_chip prcmu_irq_chip = {
2656 	.name		= "prcmu",
2657 	.irq_disable	= prcmu_irq_mask,
2658 	.irq_ack	= noop,
2659 	.irq_mask	= prcmu_irq_mask,
2660 	.irq_unmask	= prcmu_irq_unmask,
2661 };
2662 
2663 static char *fw_project_name(u8 project)
2664 {
2665 	switch (project) {
2666 	case PRCMU_FW_PROJECT_U8500:
2667 		return "U8500";
2668 	case PRCMU_FW_PROJECT_U8500_C2:
2669 		return "U8500 C2";
2670 	case PRCMU_FW_PROJECT_U9500:
2671 		return "U9500";
2672 	case PRCMU_FW_PROJECT_U9500_C2:
2673 		return "U9500 C2";
2674 	case PRCMU_FW_PROJECT_U8520:
2675 		return "U8520";
2676 	case PRCMU_FW_PROJECT_U8420:
2677 		return "U8420";
2678 	default:
2679 		return "Unknown";
2680 	}
2681 }
2682 
2683 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2684 				irq_hw_number_t hwirq)
2685 {
2686 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2687 				handle_simple_irq);
2688 	set_irq_flags(virq, IRQF_VALID);
2689 
2690 	return 0;
2691 }
2692 
2693 static struct irq_domain_ops db8500_irq_ops = {
2694         .map    = db8500_irq_map,
2695         .xlate  = irq_domain_xlate_twocell,
2696 };
2697 
2698 static int db8500_irq_init(struct device_node *np)
2699 {
2700 	db8500_irq_domain = irq_domain_add_legacy(
2701 		np, NUM_PRCMU_WAKEUPS, IRQ_PRCMU_BASE,
2702 		0, &db8500_irq_ops, NULL);
2703 
2704 	if (!db8500_irq_domain) {
2705 		pr_err("Failed to create irqdomain\n");
2706 		return -ENOSYS;
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 void __init db8500_prcmu_early_init(void)
2713 {
2714 	if (cpu_is_u8500v2()) {
2715 		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2716 
2717 		if (tcpm_base != NULL) {
2718 			u32 version;
2719 			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2720 			fw_info.version.project = version & 0xFF;
2721 			fw_info.version.api_version = (version >> 8) & 0xFF;
2722 			fw_info.version.func_version = (version >> 16) & 0xFF;
2723 			fw_info.version.errata = (version >> 24) & 0xFF;
2724 			fw_info.valid = true;
2725 			pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2726 				fw_project_name(fw_info.version.project),
2727 				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
2728 				(version >> 24) & 0xFF);
2729 			iounmap(tcpm_base);
2730 		}
2731 
2732 		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2733 	} else {
2734 		pr_err("prcmu: Unsupported chip version\n");
2735 		BUG();
2736 	}
2737 
2738 	spin_lock_init(&mb0_transfer.lock);
2739 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2740 	mutex_init(&mb0_transfer.ac_wake_lock);
2741 	init_completion(&mb0_transfer.ac_wake_work);
2742 	mutex_init(&mb1_transfer.lock);
2743 	init_completion(&mb1_transfer.work);
2744 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2745 	mutex_init(&mb2_transfer.lock);
2746 	init_completion(&mb2_transfer.work);
2747 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2748 	spin_lock_init(&mb3_transfer.lock);
2749 	mutex_init(&mb3_transfer.sysclk_lock);
2750 	init_completion(&mb3_transfer.sysclk_work);
2751 	mutex_init(&mb4_transfer.lock);
2752 	init_completion(&mb4_transfer.work);
2753 	mutex_init(&mb5_transfer.lock);
2754 	init_completion(&mb5_transfer.work);
2755 
2756 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2757 
2758 	compute_armss_rate();
2759 }
2760 
2761 static void __init init_prcm_registers(void)
2762 {
2763 	u32 val;
2764 
2765 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2766 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2767 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2768 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2769 }
2770 
2771 /*
2772  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2773  */
2774 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2775 	REGULATOR_SUPPLY("v-ape", NULL),
2776 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2777 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2778 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2779 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2780 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2781 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2782 	REGULATOR_SUPPLY("vcore", "sdi0"),
2783 	REGULATOR_SUPPLY("vcore", "sdi1"),
2784 	REGULATOR_SUPPLY("vcore", "sdi2"),
2785 	REGULATOR_SUPPLY("vcore", "sdi3"),
2786 	REGULATOR_SUPPLY("vcore", "sdi4"),
2787 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2788 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2789 	/* "v-uart" changed to "vcore" in the mainline kernel */
2790 	REGULATOR_SUPPLY("vcore", "uart0"),
2791 	REGULATOR_SUPPLY("vcore", "uart1"),
2792 	REGULATOR_SUPPLY("vcore", "uart2"),
2793 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2794 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2795 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2796 };
2797 
2798 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2799 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2800 	/* AV8100 regulator */
2801 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2802 };
2803 
2804 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2805 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2806 	REGULATOR_SUPPLY("vsupply", "mcde"),
2807 };
2808 
2809 /* SVA MMDSP regulator switch */
2810 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2811 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2812 };
2813 
2814 /* SVA pipe regulator switch */
2815 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2816 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2817 };
2818 
2819 /* SIA MMDSP regulator switch */
2820 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2821 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2822 };
2823 
2824 /* SIA pipe regulator switch */
2825 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2826 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2827 };
2828 
2829 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2830 	REGULATOR_SUPPLY("v-mali", NULL),
2831 };
2832 
2833 /* ESRAM1 and 2 regulator switch */
2834 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2835 	REGULATOR_SUPPLY("esram12", "cm_control"),
2836 };
2837 
2838 /* ESRAM3 and 4 regulator switch */
2839 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2840 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2841 	REGULATOR_SUPPLY("esram34", "cm_control"),
2842 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2843 };
2844 
2845 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2846 	[DB8500_REGULATOR_VAPE] = {
2847 		.constraints = {
2848 			.name = "db8500-vape",
2849 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850 			.always_on = true,
2851 		},
2852 		.consumer_supplies = db8500_vape_consumers,
2853 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2854 	},
2855 	[DB8500_REGULATOR_VARM] = {
2856 		.constraints = {
2857 			.name = "db8500-varm",
2858 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2859 		},
2860 	},
2861 	[DB8500_REGULATOR_VMODEM] = {
2862 		.constraints = {
2863 			.name = "db8500-vmodem",
2864 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865 		},
2866 	},
2867 	[DB8500_REGULATOR_VPLL] = {
2868 		.constraints = {
2869 			.name = "db8500-vpll",
2870 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2871 		},
2872 	},
2873 	[DB8500_REGULATOR_VSMPS1] = {
2874 		.constraints = {
2875 			.name = "db8500-vsmps1",
2876 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2877 		},
2878 	},
2879 	[DB8500_REGULATOR_VSMPS2] = {
2880 		.constraints = {
2881 			.name = "db8500-vsmps2",
2882 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2883 		},
2884 		.consumer_supplies = db8500_vsmps2_consumers,
2885 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2886 	},
2887 	[DB8500_REGULATOR_VSMPS3] = {
2888 		.constraints = {
2889 			.name = "db8500-vsmps3",
2890 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891 		},
2892 	},
2893 	[DB8500_REGULATOR_VRF1] = {
2894 		.constraints = {
2895 			.name = "db8500-vrf1",
2896 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2897 		},
2898 	},
2899 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2900 		/* dependency to u8500-vape is handled outside regulator framework */
2901 		.constraints = {
2902 			.name = "db8500-sva-mmdsp",
2903 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904 		},
2905 		.consumer_supplies = db8500_svammdsp_consumers,
2906 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2907 	},
2908 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2909 		.constraints = {
2910 			/* "ret" means "retention" */
2911 			.name = "db8500-sva-mmdsp-ret",
2912 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913 		},
2914 	},
2915 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2916 		/* dependency to u8500-vape is handled outside regulator framework */
2917 		.constraints = {
2918 			.name = "db8500-sva-pipe",
2919 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 		},
2921 		.consumer_supplies = db8500_svapipe_consumers,
2922 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2923 	},
2924 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2925 		/* dependency to u8500-vape is handled outside regulator framework */
2926 		.constraints = {
2927 			.name = "db8500-sia-mmdsp",
2928 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929 		},
2930 		.consumer_supplies = db8500_siammdsp_consumers,
2931 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2932 	},
2933 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2934 		.constraints = {
2935 			.name = "db8500-sia-mmdsp-ret",
2936 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937 		},
2938 	},
2939 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2940 		/* dependency to u8500-vape is handled outside regulator framework */
2941 		.constraints = {
2942 			.name = "db8500-sia-pipe",
2943 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944 		},
2945 		.consumer_supplies = db8500_siapipe_consumers,
2946 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2947 	},
2948 	[DB8500_REGULATOR_SWITCH_SGA] = {
2949 		.supply_regulator = "db8500-vape",
2950 		.constraints = {
2951 			.name = "db8500-sga",
2952 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953 		},
2954 		.consumer_supplies = db8500_sga_consumers,
2955 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2956 
2957 	},
2958 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2959 		.supply_regulator = "db8500-vape",
2960 		.constraints = {
2961 			.name = "db8500-b2r2-mcde",
2962 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2963 		},
2964 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2965 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2966 	},
2967 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2968 		/*
2969 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2970 		 * no need to hold Vape
2971 		 */
2972 		.constraints = {
2973 			.name = "db8500-esram12",
2974 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975 		},
2976 		.consumer_supplies = db8500_esram12_consumers,
2977 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2978 	},
2979 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2980 		.constraints = {
2981 			.name = "db8500-esram12-ret",
2982 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983 		},
2984 	},
2985 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2986 		/*
2987 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2988 		 * no need to hold Vape
2989 		 */
2990 		.constraints = {
2991 			.name = "db8500-esram34",
2992 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2993 		},
2994 		.consumer_supplies = db8500_esram34_consumers,
2995 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2996 	},
2997 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2998 		.constraints = {
2999 			.name = "db8500-esram34-ret",
3000 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
3001 		},
3002 	},
3003 };
3004 
3005 static struct resource ab8500_resources[] = {
3006 	[0] = {
3007 		.start	= IRQ_DB8500_AB8500,
3008 		.end	= IRQ_DB8500_AB8500,
3009 		.flags	= IORESOURCE_IRQ
3010 	}
3011 };
3012 
3013 static struct mfd_cell db8500_prcmu_devs[] = {
3014 	{
3015 		.name = "db8500-prcmu-regulators",
3016 		.of_compatible = "stericsson,db8500-prcmu-regulator",
3017 		.platform_data = &db8500_regulators,
3018 		.pdata_size = sizeof(db8500_regulators),
3019 	},
3020 	{
3021 		.name = "cpufreq-u8500",
3022 		.of_compatible = "stericsson,cpufreq-u8500",
3023 	},
3024 	{
3025 		.name = "ab8500-core",
3026 		.of_compatible = "stericsson,ab8500",
3027 		.num_resources = ARRAY_SIZE(ab8500_resources),
3028 		.resources = ab8500_resources,
3029 		.id = AB8500_VERSION_AB8500,
3030 	},
3031 };
3032 
3033 /**
3034  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3035  *
3036  */
3037 static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
3038 {
3039 	struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3040 	struct device_node *np = pdev->dev.of_node;
3041 	int irq = 0, err = 0, i;
3042 
3043 	if (ux500_is_svp())
3044 		return -ENODEV;
3045 
3046 	init_prcm_registers();
3047 
3048 	/* Clean up the mailbox interrupts after pre-kernel code. */
3049 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3050 
3051 	if (np)
3052 		irq = platform_get_irq(pdev, 0);
3053 
3054 	if (!np || irq <= 0)
3055 		irq = IRQ_DB8500_PRCMU1;
3056 
3057 	err = request_threaded_irq(irq, prcmu_irq_handler,
3058 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3059 	if (err < 0) {
3060 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3061 		err = -EBUSY;
3062 		goto no_irq_return;
3063 	}
3064 
3065 	db8500_irq_init(np);
3066 
3067 	for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3068 		if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3069 			db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3070 			db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3071 		}
3072 	}
3073 
3074 	if (cpu_is_u8500v20_or_later())
3075 		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3076 
3077 	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3078 			      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3079 	if (err) {
3080 		pr_err("prcmu: Failed to add subdevices\n");
3081 		return err;
3082 	}
3083 
3084 	pr_info("DB8500 PRCMU initialized\n");
3085 
3086 no_irq_return:
3087 	return err;
3088 }
3089 static const struct of_device_id db8500_prcmu_match[] = {
3090 	{ .compatible = "stericsson,db8500-prcmu"},
3091 	{ },
3092 };
3093 
3094 static struct platform_driver db8500_prcmu_driver = {
3095 	.driver = {
3096 		.name = "db8500-prcmu",
3097 		.owner = THIS_MODULE,
3098 		.of_match_table = db8500_prcmu_match,
3099 	},
3100 	.probe = db8500_prcmu_probe,
3101 };
3102 
3103 static int __init db8500_prcmu_init(void)
3104 {
3105 	return platform_driver_register(&db8500_prcmu_driver);
3106 }
3107 
3108 core_initcall(db8500_prcmu_init);
3109 
3110 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3111 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3112 MODULE_LICENSE("GPL v2");
3113