1 /* 2 * Copyright (C) STMicroelectronics 2009 3 * Copyright (C) ST-Ericsson SA 2010 4 * 5 * License Terms: GNU General Public License v2 6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 7 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 9 * 10 * U8500 PRCM Unit interface driver 11 * 12 */ 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/delay.h> 16 #include <linux/errno.h> 17 #include <linux/err.h> 18 #include <linux/spinlock.h> 19 #include <linux/io.h> 20 #include <linux/slab.h> 21 #include <linux/mutex.h> 22 #include <linux/completion.h> 23 #include <linux/irq.h> 24 #include <linux/jiffies.h> 25 #include <linux/bitops.h> 26 #include <linux/fs.h> 27 #include <linux/of.h> 28 #include <linux/of_irq.h> 29 #include <linux/platform_device.h> 30 #include <linux/uaccess.h> 31 #include <linux/mfd/core.h> 32 #include <linux/mfd/dbx500-prcmu.h> 33 #include <linux/mfd/abx500/ab8500.h> 34 #include <linux/regulator/db8500-prcmu.h> 35 #include <linux/regulator/machine.h> 36 #include <linux/cpufreq.h> 37 #include <linux/platform_data/ux500_wdt.h> 38 #include <linux/platform_data/db8500_thermal.h> 39 #include "dbx500-prcmu-regs.h" 40 41 /* Index of different voltages to be used when accessing AVSData */ 42 #define PRCM_AVS_BASE 0x2FC 43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 56 57 #define PRCM_AVS_VOLTAGE 0 58 #define PRCM_AVS_VOLTAGE_MASK 0x3f 59 #define PRCM_AVS_ISSLOWSTARTUP 6 60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 61 #define PRCM_AVS_ISMODEENABLE 7 62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 63 64 #define PRCM_BOOT_STATUS 0xFFF 65 #define PRCM_ROMCODE_A2P 0xFFE 66 #define PRCM_ROMCODE_P2A 0xFFD 67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 68 69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 70 71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 79 80 /* Req Mailboxes */ 81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 87 88 /* Ack Mailboxes */ 89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 95 96 /* Mailbox 0 headers */ 97 #define MB0H_POWER_STATE_TRANS 0 98 #define MB0H_CONFIG_WAKEUPS_EXE 1 99 #define MB0H_READ_WAKEUP_ACK 3 100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 101 102 #define MB0H_WAKEUP_EXE 2 103 #define MB0H_WAKEUP_SLEEP 5 104 105 /* Mailbox 0 REQs */ 106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 112 113 /* Mailbox 0 ACKs */ 114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 121 122 /* Mailbox 1 headers */ 123 #define MB1H_ARM_APE_OPP 0x0 124 #define MB1H_RESET_MODEM 0x2 125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 127 #define MB1H_RELEASE_USB_WAKEUP 0x5 128 #define MB1H_PLL_ON_OFF 0x6 129 130 /* Mailbox 1 Requests */ 131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 134 #define PLL_SOC0_OFF 0x1 135 #define PLL_SOC0_ON 0x2 136 #define PLL_SOC1_OFF 0x4 137 #define PLL_SOC1_ON 0x8 138 139 /* Mailbox 1 ACKs */ 140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 144 145 /* Mailbox 2 headers */ 146 #define MB2H_DPS 0x0 147 #define MB2H_AUTO_PWR 0x1 148 149 /* Mailbox 2 REQs */ 150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 160 161 /* Mailbox 2 ACKs */ 162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 163 #define HWACC_PWR_ST_OK 0xFE 164 165 /* Mailbox 3 headers */ 166 #define MB3H_ANC 0x0 167 #define MB3H_SIDETONE 0x1 168 #define MB3H_SYSCLK 0xE 169 170 /* Mailbox 3 Requests */ 171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 178 179 /* Mailbox 4 headers */ 180 #define MB4H_DDR_INIT 0x0 181 #define MB4H_MEM_ST 0x1 182 #define MB4H_HOTDOG 0x12 183 #define MB4H_HOTMON 0x13 184 #define MB4H_HOT_PERIOD 0x14 185 #define MB4H_A9WDOG_CONF 0x16 186 #define MB4H_A9WDOG_EN 0x17 187 #define MB4H_A9WDOG_DIS 0x18 188 #define MB4H_A9WDOG_LOAD 0x19 189 #define MB4H_A9WDOG_KICK 0x20 190 191 /* Mailbox 4 Requests */ 192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 200 #define HOTMON_CONFIG_LOW BIT(0) 201 #define HOTMON_CONFIG_HIGH BIT(1) 202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 206 #define A9WDOG_AUTO_OFF_EN BIT(7) 207 #define A9WDOG_AUTO_OFF_DIS 0 208 #define A9WDOG_ID_MASK 0xf 209 210 /* Mailbox 5 Requests */ 211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6)) 216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6)) 217 #define PRCMU_I2C_STOP_EN BIT(3) 218 219 /* Mailbox 5 ACKs */ 220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 222 #define I2C_WR_OK 0x1 223 #define I2C_RD_OK 0x2 224 225 #define NUM_MB 8 226 #define MBOX_BIT BIT 227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 228 229 /* 230 * Wakeups/IRQs 231 */ 232 233 #define WAKEUP_BIT_RTC BIT(0) 234 #define WAKEUP_BIT_RTT0 BIT(1) 235 #define WAKEUP_BIT_RTT1 BIT(2) 236 #define WAKEUP_BIT_HSI0 BIT(3) 237 #define WAKEUP_BIT_HSI1 BIT(4) 238 #define WAKEUP_BIT_CA_WAKE BIT(5) 239 #define WAKEUP_BIT_USB BIT(6) 240 #define WAKEUP_BIT_ABB BIT(7) 241 #define WAKEUP_BIT_ABB_FIFO BIT(8) 242 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 243 #define WAKEUP_BIT_CA_SLEEP BIT(10) 244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 246 #define WAKEUP_BIT_ANC_OK BIT(13) 247 #define WAKEUP_BIT_SW_ERROR BIT(14) 248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 249 #define WAKEUP_BIT_ARM BIT(17) 250 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 253 #define WAKEUP_BIT_GPIO0 BIT(23) 254 #define WAKEUP_BIT_GPIO1 BIT(24) 255 #define WAKEUP_BIT_GPIO2 BIT(25) 256 #define WAKEUP_BIT_GPIO3 BIT(26) 257 #define WAKEUP_BIT_GPIO4 BIT(27) 258 #define WAKEUP_BIT_GPIO5 BIT(28) 259 #define WAKEUP_BIT_GPIO6 BIT(29) 260 #define WAKEUP_BIT_GPIO7 BIT(30) 261 #define WAKEUP_BIT_GPIO8 BIT(31) 262 263 static struct { 264 bool valid; 265 struct prcmu_fw_version version; 266 } fw_info; 267 268 static struct irq_domain *db8500_irq_domain; 269 270 /* 271 * This vector maps irq numbers to the bits in the bit field used in 272 * communication with the PRCMU firmware. 273 * 274 * The reason for having this is to keep the irq numbers contiguous even though 275 * the bits in the bit field are not. (The bits also have a tendency to move 276 * around, to further complicate matters.) 277 */ 278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name)) 279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 280 281 #define IRQ_PRCMU_RTC 0 282 #define IRQ_PRCMU_RTT0 1 283 #define IRQ_PRCMU_RTT1 2 284 #define IRQ_PRCMU_HSI0 3 285 #define IRQ_PRCMU_HSI1 4 286 #define IRQ_PRCMU_CA_WAKE 5 287 #define IRQ_PRCMU_USB 6 288 #define IRQ_PRCMU_ABB 7 289 #define IRQ_PRCMU_ABB_FIFO 8 290 #define IRQ_PRCMU_ARM 9 291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10 292 #define IRQ_PRCMU_GPIO0 11 293 #define IRQ_PRCMU_GPIO1 12 294 #define IRQ_PRCMU_GPIO2 13 295 #define IRQ_PRCMU_GPIO3 14 296 #define IRQ_PRCMU_GPIO4 15 297 #define IRQ_PRCMU_GPIO5 16 298 #define IRQ_PRCMU_GPIO6 17 299 #define IRQ_PRCMU_GPIO7 18 300 #define IRQ_PRCMU_GPIO8 19 301 #define IRQ_PRCMU_CA_SLEEP 20 302 #define IRQ_PRCMU_HOTMON_LOW 21 303 #define IRQ_PRCMU_HOTMON_HIGH 22 304 #define NUM_PRCMU_WAKEUPS 23 305 306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 307 IRQ_ENTRY(RTC), 308 IRQ_ENTRY(RTT0), 309 IRQ_ENTRY(RTT1), 310 IRQ_ENTRY(HSI0), 311 IRQ_ENTRY(HSI1), 312 IRQ_ENTRY(CA_WAKE), 313 IRQ_ENTRY(USB), 314 IRQ_ENTRY(ABB), 315 IRQ_ENTRY(ABB_FIFO), 316 IRQ_ENTRY(CA_SLEEP), 317 IRQ_ENTRY(ARM), 318 IRQ_ENTRY(HOTMON_LOW), 319 IRQ_ENTRY(HOTMON_HIGH), 320 IRQ_ENTRY(MODEM_SW_RESET_REQ), 321 IRQ_ENTRY(GPIO0), 322 IRQ_ENTRY(GPIO1), 323 IRQ_ENTRY(GPIO2), 324 IRQ_ENTRY(GPIO3), 325 IRQ_ENTRY(GPIO4), 326 IRQ_ENTRY(GPIO5), 327 IRQ_ENTRY(GPIO6), 328 IRQ_ENTRY(GPIO7), 329 IRQ_ENTRY(GPIO8) 330 }; 331 332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 335 WAKEUP_ENTRY(RTC), 336 WAKEUP_ENTRY(RTT0), 337 WAKEUP_ENTRY(RTT1), 338 WAKEUP_ENTRY(HSI0), 339 WAKEUP_ENTRY(HSI1), 340 WAKEUP_ENTRY(USB), 341 WAKEUP_ENTRY(ABB), 342 WAKEUP_ENTRY(ABB_FIFO), 343 WAKEUP_ENTRY(ARM) 344 }; 345 346 /* 347 * mb0_transfer - state needed for mailbox 0 communication. 348 * @lock: The transaction lock. 349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 350 * the request data. 351 * @mask_work: Work structure used for (un)masking wakeup interrupts. 352 * @req: Request data that need to persist between requests. 353 */ 354 static struct { 355 spinlock_t lock; 356 spinlock_t dbb_irqs_lock; 357 struct work_struct mask_work; 358 struct mutex ac_wake_lock; 359 struct completion ac_wake_work; 360 struct { 361 u32 dbb_irqs; 362 u32 dbb_wakeups; 363 u32 abb_events; 364 } req; 365 } mb0_transfer; 366 367 /* 368 * mb1_transfer - state needed for mailbox 1 communication. 369 * @lock: The transaction lock. 370 * @work: The transaction completion structure. 371 * @ape_opp: The current APE OPP. 372 * @ack: Reply ("acknowledge") data. 373 */ 374 static struct { 375 struct mutex lock; 376 struct completion work; 377 u8 ape_opp; 378 struct { 379 u8 header; 380 u8 arm_opp; 381 u8 ape_opp; 382 u8 ape_voltage_status; 383 } ack; 384 } mb1_transfer; 385 386 /* 387 * mb2_transfer - state needed for mailbox 2 communication. 388 * @lock: The transaction lock. 389 * @work: The transaction completion structure. 390 * @auto_pm_lock: The autonomous power management configuration lock. 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 392 * @req: Request data that need to persist between requests. 393 * @ack: Reply ("acknowledge") data. 394 */ 395 static struct { 396 struct mutex lock; 397 struct completion work; 398 spinlock_t auto_pm_lock; 399 bool auto_pm_enabled; 400 struct { 401 u8 status; 402 } ack; 403 } mb2_transfer; 404 405 /* 406 * mb3_transfer - state needed for mailbox 3 communication. 407 * @lock: The request lock. 408 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 409 * @sysclk_work: Work structure used for sysclk requests. 410 */ 411 static struct { 412 spinlock_t lock; 413 struct mutex sysclk_lock; 414 struct completion sysclk_work; 415 } mb3_transfer; 416 417 /* 418 * mb4_transfer - state needed for mailbox 4 communication. 419 * @lock: The transaction lock. 420 * @work: The transaction completion structure. 421 */ 422 static struct { 423 struct mutex lock; 424 struct completion work; 425 } mb4_transfer; 426 427 /* 428 * mb5_transfer - state needed for mailbox 5 communication. 429 * @lock: The transaction lock. 430 * @work: The transaction completion structure. 431 * @ack: Reply ("acknowledge") data. 432 */ 433 static struct { 434 struct mutex lock; 435 struct completion work; 436 struct { 437 u8 status; 438 u8 value; 439 } ack; 440 } mb5_transfer; 441 442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 443 444 /* Spinlocks */ 445 static DEFINE_SPINLOCK(prcmu_lock); 446 static DEFINE_SPINLOCK(clkout_lock); 447 448 /* Global var to runtime determine TCDM base for v2 or v1 */ 449 static __iomem void *tcdm_base; 450 static __iomem void *prcmu_base; 451 452 struct clk_mgt { 453 u32 offset; 454 u32 pllsw; 455 int branch; 456 bool clk38div; 457 }; 458 459 enum { 460 PLL_RAW, 461 PLL_FIX, 462 PLL_DIV 463 }; 464 465 static DEFINE_SPINLOCK(clk_mgt_lock); 466 467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 499 }; 500 501 struct dsiclk { 502 u32 divsel_mask; 503 u32 divsel_shift; 504 u32 divsel; 505 }; 506 507 static struct dsiclk dsiclk[2] = { 508 { 509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 512 }, 513 { 514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 517 } 518 }; 519 520 struct dsiescclk { 521 u32 en; 522 u32 div_mask; 523 u32 div_shift; 524 }; 525 526 static struct dsiescclk dsiescclk[3] = { 527 { 528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 531 }, 532 { 533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 536 }, 537 { 538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 541 } 542 }; 543 544 545 /* 546 * Used by MCDE to setup all necessary PRCMU registers 547 */ 548 #define PRCMU_RESET_DSIPLL 0x00004000 549 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 550 551 #define PRCMU_CLK_PLL_DIV_SHIFT 0 552 #define PRCMU_CLK_PLL_SW_SHIFT 5 553 #define PRCMU_CLK_38 (1 << 9) 554 #define PRCMU_CLK_38_SRC (1 << 10) 555 #define PRCMU_CLK_38_DIV (1 << 11) 556 557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */ 558 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C 559 560 /* DPI 50000000 Hz */ 561 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 562 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 563 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 564 565 /* D=101, N=1, R=4, SELDIV2=0 */ 566 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 567 568 #define PRCMU_ENABLE_PLLDSI 0x00000001 569 #define PRCMU_DISABLE_PLLDSI 0x00000000 570 #define PRCMU_RELEASE_RESET_DSS 0x0000400C 571 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 572 /* ESC clk, div0=1, div1=1, div2=3 */ 573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 575 #define PRCMU_DSI_RESET_SW 0x00000007 576 577 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 578 579 int db8500_prcmu_enable_dsipll(void) 580 { 581 int i; 582 583 /* Clear DSIPLL_RESETN */ 584 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 585 /* Unclamp DSIPLL in/out */ 586 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 587 588 /* Set DSI PLL FREQ */ 589 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 590 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 591 /* Enable Escape clocks */ 592 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 593 594 /* Start DSI PLL */ 595 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 596 /* Reset DSI PLL */ 597 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 598 for (i = 0; i < 10; i++) { 599 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 600 == PRCMU_PLLDSI_LOCKP_LOCKED) 601 break; 602 udelay(100); 603 } 604 /* Set DSIPLL_RESETN */ 605 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 606 return 0; 607 } 608 609 int db8500_prcmu_disable_dsipll(void) 610 { 611 /* Disable dsi pll */ 612 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 613 /* Disable escapeclock */ 614 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 615 return 0; 616 } 617 618 int db8500_prcmu_set_display_clocks(void) 619 { 620 unsigned long flags; 621 622 spin_lock_irqsave(&clk_mgt_lock, flags); 623 624 /* Grab the HW semaphore. */ 625 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 626 cpu_relax(); 627 628 writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT); 629 writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT); 630 writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT); 631 632 /* Release the HW semaphore. */ 633 writel(0, PRCM_SEM); 634 635 spin_unlock_irqrestore(&clk_mgt_lock, flags); 636 637 return 0; 638 } 639 640 u32 db8500_prcmu_read(unsigned int reg) 641 { 642 return readl(prcmu_base + reg); 643 } 644 645 void db8500_prcmu_write(unsigned int reg, u32 value) 646 { 647 unsigned long flags; 648 649 spin_lock_irqsave(&prcmu_lock, flags); 650 writel(value, (prcmu_base + reg)); 651 spin_unlock_irqrestore(&prcmu_lock, flags); 652 } 653 654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 655 { 656 u32 val; 657 unsigned long flags; 658 659 spin_lock_irqsave(&prcmu_lock, flags); 660 val = readl(prcmu_base + reg); 661 val = ((val & ~mask) | (value & mask)); 662 writel(val, (prcmu_base + reg)); 663 spin_unlock_irqrestore(&prcmu_lock, flags); 664 } 665 666 struct prcmu_fw_version *prcmu_get_fw_version(void) 667 { 668 return fw_info.valid ? &fw_info.version : NULL; 669 } 670 671 bool prcmu_has_arm_maxopp(void) 672 { 673 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 674 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 675 } 676 677 /** 678 * prcmu_set_rc_a2p - This function is used to run few power state sequences 679 * @val: Value to be set, i.e. transition requested 680 * Returns: 0 on success, -EINVAL on invalid argument 681 * 682 * This function is used to run the following power state sequences - 683 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 684 */ 685 int prcmu_set_rc_a2p(enum romcode_write val) 686 { 687 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 688 return -EINVAL; 689 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 690 return 0; 691 } 692 693 /** 694 * prcmu_get_rc_p2a - This function is used to get power state sequences 695 * Returns: the power transition that has last happened 696 * 697 * This function can return the following transitions- 698 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 699 */ 700 enum romcode_read prcmu_get_rc_p2a(void) 701 { 702 return readb(tcdm_base + PRCM_ROMCODE_P2A); 703 } 704 705 /** 706 * prcmu_get_current_mode - Return the current XP70 power mode 707 * Returns: Returns the current AP(ARM) power mode: init, 708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 709 */ 710 enum ap_pwrst prcmu_get_xp70_current_state(void) 711 { 712 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 713 } 714 715 /** 716 * prcmu_config_clkout - Configure one of the programmable clock outputs. 717 * @clkout: The CLKOUT number (0 or 1). 718 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 719 * @div: The divider to be applied. 720 * 721 * Configures one of the programmable clock outputs (CLKOUTs). 722 * @div should be in the range [1,63] to request a configuration, or 0 to 723 * inform that the configuration is no longer requested. 724 */ 725 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 726 { 727 static int requests[2]; 728 int r = 0; 729 unsigned long flags; 730 u32 val; 731 u32 bits; 732 u32 mask; 733 u32 div_mask; 734 735 BUG_ON(clkout > 1); 736 BUG_ON(div > 63); 737 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 738 739 if (!div && !requests[clkout]) 740 return -EINVAL; 741 742 if (clkout == 0) { 743 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 744 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 745 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 746 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 747 } else { 748 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 749 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 750 PRCM_CLKOCR_CLK1TYPE); 751 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 752 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 753 } 754 bits &= mask; 755 756 spin_lock_irqsave(&clkout_lock, flags); 757 758 val = readl(PRCM_CLKOCR); 759 if (val & div_mask) { 760 if (div) { 761 if ((val & mask) != bits) { 762 r = -EBUSY; 763 goto unlock_and_return; 764 } 765 } else { 766 if ((val & mask & ~div_mask) != bits) { 767 r = -EINVAL; 768 goto unlock_and_return; 769 } 770 } 771 } 772 writel((bits | (val & ~mask)), PRCM_CLKOCR); 773 requests[clkout] += (div ? 1 : -1); 774 775 unlock_and_return: 776 spin_unlock_irqrestore(&clkout_lock, flags); 777 778 return r; 779 } 780 781 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 782 { 783 unsigned long flags; 784 785 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 786 787 spin_lock_irqsave(&mb0_transfer.lock, flags); 788 789 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 790 cpu_relax(); 791 792 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 793 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 794 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 795 writeb((keep_ulp_clk ? 1 : 0), 796 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 797 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 798 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 799 800 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 801 802 return 0; 803 } 804 805 u8 db8500_prcmu_get_power_state_result(void) 806 { 807 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 808 } 809 810 /* This function should only be called while mb0_transfer.lock is held. */ 811 static void config_wakeups(void) 812 { 813 const u8 header[2] = { 814 MB0H_CONFIG_WAKEUPS_EXE, 815 MB0H_CONFIG_WAKEUPS_SLEEP 816 }; 817 static u32 last_dbb_events; 818 static u32 last_abb_events; 819 u32 dbb_events; 820 u32 abb_events; 821 unsigned int i; 822 823 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 824 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 825 826 abb_events = mb0_transfer.req.abb_events; 827 828 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 829 return; 830 831 for (i = 0; i < 2; i++) { 832 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 833 cpu_relax(); 834 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 835 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 836 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 837 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 838 } 839 last_dbb_events = dbb_events; 840 last_abb_events = abb_events; 841 } 842 843 void db8500_prcmu_enable_wakeups(u32 wakeups) 844 { 845 unsigned long flags; 846 u32 bits; 847 int i; 848 849 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 850 851 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 852 if (wakeups & BIT(i)) 853 bits |= prcmu_wakeup_bit[i]; 854 } 855 856 spin_lock_irqsave(&mb0_transfer.lock, flags); 857 858 mb0_transfer.req.dbb_wakeups = bits; 859 config_wakeups(); 860 861 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 862 } 863 864 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 865 { 866 unsigned long flags; 867 868 spin_lock_irqsave(&mb0_transfer.lock, flags); 869 870 mb0_transfer.req.abb_events = abb_events; 871 config_wakeups(); 872 873 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 874 } 875 876 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 877 { 878 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 879 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 880 else 881 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 882 } 883 884 /** 885 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 886 * @opp: The new ARM operating point to which transition is to be made 887 * Returns: 0 on success, non-zero on failure 888 * 889 * This function sets the the operating point of the ARM. 890 */ 891 int db8500_prcmu_set_arm_opp(u8 opp) 892 { 893 int r; 894 895 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 896 return -EINVAL; 897 898 r = 0; 899 900 mutex_lock(&mb1_transfer.lock); 901 902 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 903 cpu_relax(); 904 905 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 906 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 907 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 908 909 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 910 wait_for_completion(&mb1_transfer.work); 911 912 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 913 (mb1_transfer.ack.arm_opp != opp)) 914 r = -EIO; 915 916 mutex_unlock(&mb1_transfer.lock); 917 918 return r; 919 } 920 921 /** 922 * db8500_prcmu_get_arm_opp - get the current ARM OPP 923 * 924 * Returns: the current ARM OPP 925 */ 926 int db8500_prcmu_get_arm_opp(void) 927 { 928 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 929 } 930 931 /** 932 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 933 * 934 * Returns: the current DDR OPP 935 */ 936 int db8500_prcmu_get_ddr_opp(void) 937 { 938 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 939 } 940 941 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 942 static void request_even_slower_clocks(bool enable) 943 { 944 u32 clock_reg[] = { 945 PRCM_ACLK_MGT, 946 PRCM_DMACLK_MGT 947 }; 948 unsigned long flags; 949 unsigned int i; 950 951 spin_lock_irqsave(&clk_mgt_lock, flags); 952 953 /* Grab the HW semaphore. */ 954 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 955 cpu_relax(); 956 957 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 958 u32 val; 959 u32 div; 960 961 val = readl(prcmu_base + clock_reg[i]); 962 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 963 if (enable) { 964 if ((div <= 1) || (div > 15)) { 965 pr_err("prcmu: Bad clock divider %d in %s\n", 966 div, __func__); 967 goto unlock_and_return; 968 } 969 div <<= 1; 970 } else { 971 if (div <= 2) 972 goto unlock_and_return; 973 div >>= 1; 974 } 975 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 976 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 977 writel(val, prcmu_base + clock_reg[i]); 978 } 979 980 unlock_and_return: 981 /* Release the HW semaphore. */ 982 writel(0, PRCM_SEM); 983 984 spin_unlock_irqrestore(&clk_mgt_lock, flags); 985 } 986 987 /** 988 * db8500_set_ape_opp - set the appropriate APE OPP 989 * @opp: The new APE operating point to which transition is to be made 990 * Returns: 0 on success, non-zero on failure 991 * 992 * This function sets the operating point of the APE. 993 */ 994 int db8500_prcmu_set_ape_opp(u8 opp) 995 { 996 int r = 0; 997 998 if (opp == mb1_transfer.ape_opp) 999 return 0; 1000 1001 mutex_lock(&mb1_transfer.lock); 1002 1003 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 1004 request_even_slower_clocks(false); 1005 1006 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 1007 goto skip_message; 1008 1009 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1010 cpu_relax(); 1011 1012 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1013 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1014 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 1015 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1016 1017 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1018 wait_for_completion(&mb1_transfer.work); 1019 1020 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1021 (mb1_transfer.ack.ape_opp != opp)) 1022 r = -EIO; 1023 1024 skip_message: 1025 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 1026 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 1027 request_even_slower_clocks(true); 1028 if (!r) 1029 mb1_transfer.ape_opp = opp; 1030 1031 mutex_unlock(&mb1_transfer.lock); 1032 1033 return r; 1034 } 1035 1036 /** 1037 * db8500_prcmu_get_ape_opp - get the current APE OPP 1038 * 1039 * Returns: the current APE OPP 1040 */ 1041 int db8500_prcmu_get_ape_opp(void) 1042 { 1043 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 1044 } 1045 1046 /** 1047 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 1048 * @enable: true to request the higher voltage, false to drop a request. 1049 * 1050 * Calls to this function to enable and disable requests must be balanced. 1051 */ 1052 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 1053 { 1054 int r = 0; 1055 u8 header; 1056 static unsigned int requests; 1057 1058 mutex_lock(&mb1_transfer.lock); 1059 1060 if (enable) { 1061 if (0 != requests++) 1062 goto unlock_and_return; 1063 header = MB1H_REQUEST_APE_OPP_100_VOLT; 1064 } else { 1065 if (requests == 0) { 1066 r = -EIO; 1067 goto unlock_and_return; 1068 } else if (1 != requests--) { 1069 goto unlock_and_return; 1070 } 1071 header = MB1H_RELEASE_APE_OPP_100_VOLT; 1072 } 1073 1074 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1075 cpu_relax(); 1076 1077 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1078 1079 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1080 wait_for_completion(&mb1_transfer.work); 1081 1082 if ((mb1_transfer.ack.header != header) || 1083 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1084 r = -EIO; 1085 1086 unlock_and_return: 1087 mutex_unlock(&mb1_transfer.lock); 1088 1089 return r; 1090 } 1091 1092 /** 1093 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1094 * 1095 * This function releases the power state requirements of a USB wakeup. 1096 */ 1097 int prcmu_release_usb_wakeup_state(void) 1098 { 1099 int r = 0; 1100 1101 mutex_lock(&mb1_transfer.lock); 1102 1103 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1104 cpu_relax(); 1105 1106 writeb(MB1H_RELEASE_USB_WAKEUP, 1107 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1108 1109 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1110 wait_for_completion(&mb1_transfer.work); 1111 1112 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1113 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1114 r = -EIO; 1115 1116 mutex_unlock(&mb1_transfer.lock); 1117 1118 return r; 1119 } 1120 1121 static int request_pll(u8 clock, bool enable) 1122 { 1123 int r = 0; 1124 1125 if (clock == PRCMU_PLLSOC0) 1126 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1127 else if (clock == PRCMU_PLLSOC1) 1128 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1129 else 1130 return -EINVAL; 1131 1132 mutex_lock(&mb1_transfer.lock); 1133 1134 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1135 cpu_relax(); 1136 1137 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1138 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1139 1140 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1141 wait_for_completion(&mb1_transfer.work); 1142 1143 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1144 r = -EIO; 1145 1146 mutex_unlock(&mb1_transfer.lock); 1147 1148 return r; 1149 } 1150 1151 /** 1152 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1153 * @epod_id: The EPOD to set 1154 * @epod_state: The new EPOD state 1155 * 1156 * This function sets the state of a EPOD (power domain). It may not be called 1157 * from interrupt context. 1158 */ 1159 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1160 { 1161 int r = 0; 1162 bool ram_retention = false; 1163 int i; 1164 1165 /* check argument */ 1166 BUG_ON(epod_id >= NUM_EPOD_ID); 1167 1168 /* set flag if retention is possible */ 1169 switch (epod_id) { 1170 case EPOD_ID_SVAMMDSP: 1171 case EPOD_ID_SIAMMDSP: 1172 case EPOD_ID_ESRAM12: 1173 case EPOD_ID_ESRAM34: 1174 ram_retention = true; 1175 break; 1176 } 1177 1178 /* check argument */ 1179 BUG_ON(epod_state > EPOD_STATE_ON); 1180 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1181 1182 /* get lock */ 1183 mutex_lock(&mb2_transfer.lock); 1184 1185 /* wait for mailbox */ 1186 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1187 cpu_relax(); 1188 1189 /* fill in mailbox */ 1190 for (i = 0; i < NUM_EPOD_ID; i++) 1191 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1192 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1193 1194 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1195 1196 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1197 1198 /* 1199 * The current firmware version does not handle errors correctly, 1200 * and we cannot recover if there is an error. 1201 * This is expected to change when the firmware is updated. 1202 */ 1203 if (!wait_for_completion_timeout(&mb2_transfer.work, 1204 msecs_to_jiffies(20000))) { 1205 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1206 __func__); 1207 r = -EIO; 1208 goto unlock_and_return; 1209 } 1210 1211 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1212 r = -EIO; 1213 1214 unlock_and_return: 1215 mutex_unlock(&mb2_transfer.lock); 1216 return r; 1217 } 1218 1219 /** 1220 * prcmu_configure_auto_pm - Configure autonomous power management. 1221 * @sleep: Configuration for ApSleep. 1222 * @idle: Configuration for ApIdle. 1223 */ 1224 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1225 struct prcmu_auto_pm_config *idle) 1226 { 1227 u32 sleep_cfg; 1228 u32 idle_cfg; 1229 unsigned long flags; 1230 1231 BUG_ON((sleep == NULL) || (idle == NULL)); 1232 1233 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1234 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1235 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1236 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1237 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1238 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1239 1240 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1241 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1242 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1243 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1244 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1245 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1246 1247 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1248 1249 /* 1250 * The autonomous power management configuration is done through 1251 * fields in mailbox 2, but these fields are only used as shared 1252 * variables - i.e. there is no need to send a message. 1253 */ 1254 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1255 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1256 1257 mb2_transfer.auto_pm_enabled = 1258 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1259 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1260 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1261 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1262 1263 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1264 } 1265 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1266 1267 bool prcmu_is_auto_pm_enabled(void) 1268 { 1269 return mb2_transfer.auto_pm_enabled; 1270 } 1271 1272 static int request_sysclk(bool enable) 1273 { 1274 int r; 1275 unsigned long flags; 1276 1277 r = 0; 1278 1279 mutex_lock(&mb3_transfer.sysclk_lock); 1280 1281 spin_lock_irqsave(&mb3_transfer.lock, flags); 1282 1283 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1284 cpu_relax(); 1285 1286 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1287 1288 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1289 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1290 1291 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1292 1293 /* 1294 * The firmware only sends an ACK if we want to enable the 1295 * SysClk, and it succeeds. 1296 */ 1297 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1298 msecs_to_jiffies(20000))) { 1299 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1300 __func__); 1301 r = -EIO; 1302 } 1303 1304 mutex_unlock(&mb3_transfer.sysclk_lock); 1305 1306 return r; 1307 } 1308 1309 static int request_timclk(bool enable) 1310 { 1311 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1312 1313 if (!enable) 1314 val |= PRCM_TCR_STOP_TIMERS; 1315 writel(val, PRCM_TCR); 1316 1317 return 0; 1318 } 1319 1320 static int request_clock(u8 clock, bool enable) 1321 { 1322 u32 val; 1323 unsigned long flags; 1324 1325 spin_lock_irqsave(&clk_mgt_lock, flags); 1326 1327 /* Grab the HW semaphore. */ 1328 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1329 cpu_relax(); 1330 1331 val = readl(prcmu_base + clk_mgt[clock].offset); 1332 if (enable) { 1333 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1334 } else { 1335 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1336 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1337 } 1338 writel(val, prcmu_base + clk_mgt[clock].offset); 1339 1340 /* Release the HW semaphore. */ 1341 writel(0, PRCM_SEM); 1342 1343 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1344 1345 return 0; 1346 } 1347 1348 static int request_sga_clock(u8 clock, bool enable) 1349 { 1350 u32 val; 1351 int ret; 1352 1353 if (enable) { 1354 val = readl(PRCM_CGATING_BYPASS); 1355 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1356 } 1357 1358 ret = request_clock(clock, enable); 1359 1360 if (!ret && !enable) { 1361 val = readl(PRCM_CGATING_BYPASS); 1362 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1363 } 1364 1365 return ret; 1366 } 1367 1368 static inline bool plldsi_locked(void) 1369 { 1370 return (readl(PRCM_PLLDSI_LOCKP) & 1371 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1372 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1373 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1374 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1375 } 1376 1377 static int request_plldsi(bool enable) 1378 { 1379 int r = 0; 1380 u32 val; 1381 1382 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1383 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1384 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1385 1386 val = readl(PRCM_PLLDSI_ENABLE); 1387 if (enable) 1388 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1389 else 1390 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1391 writel(val, PRCM_PLLDSI_ENABLE); 1392 1393 if (enable) { 1394 unsigned int i; 1395 bool locked = plldsi_locked(); 1396 1397 for (i = 10; !locked && (i > 0); --i) { 1398 udelay(100); 1399 locked = plldsi_locked(); 1400 } 1401 if (locked) { 1402 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1403 PRCM_APE_RESETN_SET); 1404 } else { 1405 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1406 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1407 PRCM_MMIP_LS_CLAMP_SET); 1408 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1409 writel(val, PRCM_PLLDSI_ENABLE); 1410 r = -EAGAIN; 1411 } 1412 } else { 1413 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1414 } 1415 return r; 1416 } 1417 1418 static int request_dsiclk(u8 n, bool enable) 1419 { 1420 u32 val; 1421 1422 val = readl(PRCM_DSI_PLLOUT_SEL); 1423 val &= ~dsiclk[n].divsel_mask; 1424 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1425 dsiclk[n].divsel_shift); 1426 writel(val, PRCM_DSI_PLLOUT_SEL); 1427 return 0; 1428 } 1429 1430 static int request_dsiescclk(u8 n, bool enable) 1431 { 1432 u32 val; 1433 1434 val = readl(PRCM_DSITVCLK_DIV); 1435 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1436 writel(val, PRCM_DSITVCLK_DIV); 1437 return 0; 1438 } 1439 1440 /** 1441 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1442 * @clock: The clock for which the request is made. 1443 * @enable: Whether the clock should be enabled (true) or disabled (false). 1444 * 1445 * This function should only be used by the clock implementation. 1446 * Do not use it from any other place! 1447 */ 1448 int db8500_prcmu_request_clock(u8 clock, bool enable) 1449 { 1450 if (clock == PRCMU_SGACLK) 1451 return request_sga_clock(clock, enable); 1452 else if (clock < PRCMU_NUM_REG_CLOCKS) 1453 return request_clock(clock, enable); 1454 else if (clock == PRCMU_TIMCLK) 1455 return request_timclk(enable); 1456 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1457 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1458 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1459 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1460 else if (clock == PRCMU_PLLDSI) 1461 return request_plldsi(enable); 1462 else if (clock == PRCMU_SYSCLK) 1463 return request_sysclk(enable); 1464 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1465 return request_pll(clock, enable); 1466 else 1467 return -EINVAL; 1468 } 1469 1470 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1471 int branch) 1472 { 1473 u64 rate; 1474 u32 val; 1475 u32 d; 1476 u32 div = 1; 1477 1478 val = readl(reg); 1479 1480 rate = src_rate; 1481 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1482 1483 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1484 if (d > 1) 1485 div *= d; 1486 1487 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1488 if (d > 1) 1489 div *= d; 1490 1491 if (val & PRCM_PLL_FREQ_SELDIV2) 1492 div *= 2; 1493 1494 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1495 (val & PRCM_PLL_FREQ_DIV2EN) && 1496 ((reg == PRCM_PLLSOC0_FREQ) || 1497 (reg == PRCM_PLLARM_FREQ) || 1498 (reg == PRCM_PLLDDR_FREQ)))) 1499 div *= 2; 1500 1501 (void)do_div(rate, div); 1502 1503 return (unsigned long)rate; 1504 } 1505 1506 #define ROOT_CLOCK_RATE 38400000 1507 1508 static unsigned long clock_rate(u8 clock) 1509 { 1510 u32 val; 1511 u32 pllsw; 1512 unsigned long rate = ROOT_CLOCK_RATE; 1513 1514 val = readl(prcmu_base + clk_mgt[clock].offset); 1515 1516 if (val & PRCM_CLK_MGT_CLK38) { 1517 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1518 rate /= 2; 1519 return rate; 1520 } 1521 1522 val |= clk_mgt[clock].pllsw; 1523 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1524 1525 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1526 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1527 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1528 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1529 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1530 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1531 else 1532 return 0; 1533 1534 if ((clock == PRCMU_SGACLK) && 1535 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1536 u64 r = (rate * 10); 1537 1538 (void)do_div(r, 25); 1539 return (unsigned long)r; 1540 } 1541 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1542 if (val) 1543 return rate / val; 1544 else 1545 return 0; 1546 } 1547 1548 static unsigned long armss_rate(void) 1549 { 1550 u32 r; 1551 unsigned long rate; 1552 1553 r = readl(PRCM_ARM_CHGCLKREQ); 1554 1555 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1556 /* External ARMCLKFIX clock */ 1557 1558 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1559 1560 /* Check PRCM_ARM_CHGCLKREQ divider */ 1561 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1562 rate /= 2; 1563 1564 /* Check PRCM_ARMCLKFIX_MGT divider */ 1565 r = readl(PRCM_ARMCLKFIX_MGT); 1566 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1567 rate /= r; 1568 1569 } else {/* ARM PLL */ 1570 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1571 } 1572 1573 return rate; 1574 } 1575 1576 static unsigned long dsiclk_rate(u8 n) 1577 { 1578 u32 divsel; 1579 u32 div = 1; 1580 1581 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1582 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1583 1584 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1585 divsel = dsiclk[n].divsel; 1586 else 1587 dsiclk[n].divsel = divsel; 1588 1589 switch (divsel) { 1590 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1591 div *= 2; 1592 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1593 div *= 2; 1594 case PRCM_DSI_PLLOUT_SEL_PHI: 1595 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1596 PLL_RAW) / div; 1597 default: 1598 return 0; 1599 } 1600 } 1601 1602 static unsigned long dsiescclk_rate(u8 n) 1603 { 1604 u32 div; 1605 1606 div = readl(PRCM_DSITVCLK_DIV); 1607 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1608 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1609 } 1610 1611 unsigned long prcmu_clock_rate(u8 clock) 1612 { 1613 if (clock < PRCMU_NUM_REG_CLOCKS) 1614 return clock_rate(clock); 1615 else if (clock == PRCMU_TIMCLK) 1616 return ROOT_CLOCK_RATE / 16; 1617 else if (clock == PRCMU_SYSCLK) 1618 return ROOT_CLOCK_RATE; 1619 else if (clock == PRCMU_PLLSOC0) 1620 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1621 else if (clock == PRCMU_PLLSOC1) 1622 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1623 else if (clock == PRCMU_ARMSS) 1624 return armss_rate(); 1625 else if (clock == PRCMU_PLLDDR) 1626 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1627 else if (clock == PRCMU_PLLDSI) 1628 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1629 PLL_RAW); 1630 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1631 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1632 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1633 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1634 else 1635 return 0; 1636 } 1637 1638 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1639 { 1640 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1641 return ROOT_CLOCK_RATE; 1642 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1643 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1644 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1645 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1646 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1647 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1648 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1649 else 1650 return 0; 1651 } 1652 1653 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1654 { 1655 u32 div; 1656 1657 div = (src_rate / rate); 1658 if (div == 0) 1659 return 1; 1660 if (rate < (src_rate / div)) 1661 div++; 1662 return div; 1663 } 1664 1665 static long round_clock_rate(u8 clock, unsigned long rate) 1666 { 1667 u32 val; 1668 u32 div; 1669 unsigned long src_rate; 1670 long rounded_rate; 1671 1672 val = readl(prcmu_base + clk_mgt[clock].offset); 1673 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1674 clk_mgt[clock].branch); 1675 div = clock_divider(src_rate, rate); 1676 if (val & PRCM_CLK_MGT_CLK38) { 1677 if (clk_mgt[clock].clk38div) { 1678 if (div > 2) 1679 div = 2; 1680 } else { 1681 div = 1; 1682 } 1683 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1684 u64 r = (src_rate * 10); 1685 1686 (void)do_div(r, 25); 1687 if (r <= rate) 1688 return (unsigned long)r; 1689 } 1690 rounded_rate = (src_rate / min(div, (u32)31)); 1691 1692 return rounded_rate; 1693 } 1694 1695 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */ 1696 static struct cpufreq_frequency_table db8500_cpufreq_table[] = { 1697 { .frequency = 200000, .driver_data = ARM_EXTCLK,}, 1698 { .frequency = 400000, .driver_data = ARM_50_OPP,}, 1699 { .frequency = 800000, .driver_data = ARM_100_OPP,}, 1700 { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */ 1701 { .frequency = CPUFREQ_TABLE_END,}, 1702 }; 1703 1704 static long round_armss_rate(unsigned long rate) 1705 { 1706 struct cpufreq_frequency_table *pos; 1707 long freq = 0; 1708 1709 /* cpufreq table frequencies is in KHz. */ 1710 rate = rate / 1000; 1711 1712 /* Find the corresponding arm opp from the cpufreq table. */ 1713 cpufreq_for_each_entry(pos, db8500_cpufreq_table) { 1714 freq = pos->frequency; 1715 if (freq == rate) 1716 break; 1717 } 1718 1719 /* Return the last valid value, even if a match was not found. */ 1720 return freq * 1000; 1721 } 1722 1723 #define MIN_PLL_VCO_RATE 600000000ULL 1724 #define MAX_PLL_VCO_RATE 1680640000ULL 1725 1726 static long round_plldsi_rate(unsigned long rate) 1727 { 1728 long rounded_rate = 0; 1729 unsigned long src_rate; 1730 unsigned long rem; 1731 u32 r; 1732 1733 src_rate = clock_rate(PRCMU_HDMICLK); 1734 rem = rate; 1735 1736 for (r = 7; (rem > 0) && (r > 0); r--) { 1737 u64 d; 1738 1739 d = (r * rate); 1740 (void)do_div(d, src_rate); 1741 if (d < 6) 1742 d = 6; 1743 else if (d > 255) 1744 d = 255; 1745 d *= src_rate; 1746 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1747 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1748 continue; 1749 (void)do_div(d, r); 1750 if (rate < d) { 1751 if (rounded_rate == 0) 1752 rounded_rate = (long)d; 1753 break; 1754 } 1755 if ((rate - d) < rem) { 1756 rem = (rate - d); 1757 rounded_rate = (long)d; 1758 } 1759 } 1760 return rounded_rate; 1761 } 1762 1763 static long round_dsiclk_rate(unsigned long rate) 1764 { 1765 u32 div; 1766 unsigned long src_rate; 1767 long rounded_rate; 1768 1769 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1770 PLL_RAW); 1771 div = clock_divider(src_rate, rate); 1772 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1773 1774 return rounded_rate; 1775 } 1776 1777 static long round_dsiescclk_rate(unsigned long rate) 1778 { 1779 u32 div; 1780 unsigned long src_rate; 1781 long rounded_rate; 1782 1783 src_rate = clock_rate(PRCMU_TVCLK); 1784 div = clock_divider(src_rate, rate); 1785 rounded_rate = (src_rate / min(div, (u32)255)); 1786 1787 return rounded_rate; 1788 } 1789 1790 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1791 { 1792 if (clock < PRCMU_NUM_REG_CLOCKS) 1793 return round_clock_rate(clock, rate); 1794 else if (clock == PRCMU_ARMSS) 1795 return round_armss_rate(rate); 1796 else if (clock == PRCMU_PLLDSI) 1797 return round_plldsi_rate(rate); 1798 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1799 return round_dsiclk_rate(rate); 1800 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1801 return round_dsiescclk_rate(rate); 1802 else 1803 return (long)prcmu_clock_rate(clock); 1804 } 1805 1806 static void set_clock_rate(u8 clock, unsigned long rate) 1807 { 1808 u32 val; 1809 u32 div; 1810 unsigned long src_rate; 1811 unsigned long flags; 1812 1813 spin_lock_irqsave(&clk_mgt_lock, flags); 1814 1815 /* Grab the HW semaphore. */ 1816 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1817 cpu_relax(); 1818 1819 val = readl(prcmu_base + clk_mgt[clock].offset); 1820 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1821 clk_mgt[clock].branch); 1822 div = clock_divider(src_rate, rate); 1823 if (val & PRCM_CLK_MGT_CLK38) { 1824 if (clk_mgt[clock].clk38div) { 1825 if (div > 1) 1826 val |= PRCM_CLK_MGT_CLK38DIV; 1827 else 1828 val &= ~PRCM_CLK_MGT_CLK38DIV; 1829 } 1830 } else if (clock == PRCMU_SGACLK) { 1831 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1832 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1833 if (div == 3) { 1834 u64 r = (src_rate * 10); 1835 1836 (void)do_div(r, 25); 1837 if (r <= rate) { 1838 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1839 div = 0; 1840 } 1841 } 1842 val |= min(div, (u32)31); 1843 } else { 1844 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1845 val |= min(div, (u32)31); 1846 } 1847 writel(val, prcmu_base + clk_mgt[clock].offset); 1848 1849 /* Release the HW semaphore. */ 1850 writel(0, PRCM_SEM); 1851 1852 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1853 } 1854 1855 static int set_armss_rate(unsigned long rate) 1856 { 1857 struct cpufreq_frequency_table *pos; 1858 1859 /* cpufreq table frequencies is in KHz. */ 1860 rate = rate / 1000; 1861 1862 /* Find the corresponding arm opp from the cpufreq table. */ 1863 cpufreq_for_each_entry(pos, db8500_cpufreq_table) 1864 if (pos->frequency == rate) 1865 break; 1866 1867 if (pos->frequency != rate) 1868 return -EINVAL; 1869 1870 /* Set the new arm opp. */ 1871 return db8500_prcmu_set_arm_opp(pos->driver_data); 1872 } 1873 1874 static int set_plldsi_rate(unsigned long rate) 1875 { 1876 unsigned long src_rate; 1877 unsigned long rem; 1878 u32 pll_freq = 0; 1879 u32 r; 1880 1881 src_rate = clock_rate(PRCMU_HDMICLK); 1882 rem = rate; 1883 1884 for (r = 7; (rem > 0) && (r > 0); r--) { 1885 u64 d; 1886 u64 hwrate; 1887 1888 d = (r * rate); 1889 (void)do_div(d, src_rate); 1890 if (d < 6) 1891 d = 6; 1892 else if (d > 255) 1893 d = 255; 1894 hwrate = (d * src_rate); 1895 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 1896 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 1897 continue; 1898 (void)do_div(hwrate, r); 1899 if (rate < hwrate) { 1900 if (pll_freq == 0) 1901 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1902 (r << PRCM_PLL_FREQ_R_SHIFT)); 1903 break; 1904 } 1905 if ((rate - hwrate) < rem) { 1906 rem = (rate - hwrate); 1907 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1908 (r << PRCM_PLL_FREQ_R_SHIFT)); 1909 } 1910 } 1911 if (pll_freq == 0) 1912 return -EINVAL; 1913 1914 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 1915 writel(pll_freq, PRCM_PLLDSI_FREQ); 1916 1917 return 0; 1918 } 1919 1920 static void set_dsiclk_rate(u8 n, unsigned long rate) 1921 { 1922 u32 val; 1923 u32 div; 1924 1925 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 1926 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 1927 1928 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 1929 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 1930 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 1931 1932 val = readl(PRCM_DSI_PLLOUT_SEL); 1933 val &= ~dsiclk[n].divsel_mask; 1934 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 1935 writel(val, PRCM_DSI_PLLOUT_SEL); 1936 } 1937 1938 static void set_dsiescclk_rate(u8 n, unsigned long rate) 1939 { 1940 u32 val; 1941 u32 div; 1942 1943 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 1944 val = readl(PRCM_DSITVCLK_DIV); 1945 val &= ~dsiescclk[n].div_mask; 1946 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 1947 writel(val, PRCM_DSITVCLK_DIV); 1948 } 1949 1950 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 1951 { 1952 if (clock < PRCMU_NUM_REG_CLOCKS) 1953 set_clock_rate(clock, rate); 1954 else if (clock == PRCMU_ARMSS) 1955 return set_armss_rate(rate); 1956 else if (clock == PRCMU_PLLDSI) 1957 return set_plldsi_rate(rate); 1958 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1959 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 1960 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1961 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 1962 return 0; 1963 } 1964 1965 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 1966 { 1967 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 1968 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 1969 return -EINVAL; 1970 1971 mutex_lock(&mb4_transfer.lock); 1972 1973 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1974 cpu_relax(); 1975 1976 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1977 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 1978 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 1979 writeb(DDR_PWR_STATE_ON, 1980 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 1981 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 1982 1983 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1984 wait_for_completion(&mb4_transfer.work); 1985 1986 mutex_unlock(&mb4_transfer.lock); 1987 1988 return 0; 1989 } 1990 1991 int db8500_prcmu_config_hotdog(u8 threshold) 1992 { 1993 mutex_lock(&mb4_transfer.lock); 1994 1995 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1996 cpu_relax(); 1997 1998 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 1999 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2000 2001 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2002 wait_for_completion(&mb4_transfer.work); 2003 2004 mutex_unlock(&mb4_transfer.lock); 2005 2006 return 0; 2007 } 2008 2009 int db8500_prcmu_config_hotmon(u8 low, u8 high) 2010 { 2011 mutex_lock(&mb4_transfer.lock); 2012 2013 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2014 cpu_relax(); 2015 2016 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 2017 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 2018 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 2019 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 2020 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2021 2022 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2023 wait_for_completion(&mb4_transfer.work); 2024 2025 mutex_unlock(&mb4_transfer.lock); 2026 2027 return 0; 2028 } 2029 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon); 2030 2031 static int config_hot_period(u16 val) 2032 { 2033 mutex_lock(&mb4_transfer.lock); 2034 2035 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2036 cpu_relax(); 2037 2038 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 2039 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2040 2041 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2042 wait_for_completion(&mb4_transfer.work); 2043 2044 mutex_unlock(&mb4_transfer.lock); 2045 2046 return 0; 2047 } 2048 2049 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2050 { 2051 if (cycles32k == 0xFFFF) 2052 return -EINVAL; 2053 2054 return config_hot_period(cycles32k); 2055 } 2056 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense); 2057 2058 int db8500_prcmu_stop_temp_sense(void) 2059 { 2060 return config_hot_period(0xFFFF); 2061 } 2062 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense); 2063 2064 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2065 { 2066 2067 mutex_lock(&mb4_transfer.lock); 2068 2069 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2070 cpu_relax(); 2071 2072 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2073 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2074 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2075 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2076 2077 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2078 2079 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2080 wait_for_completion(&mb4_transfer.work); 2081 2082 mutex_unlock(&mb4_transfer.lock); 2083 2084 return 0; 2085 2086 } 2087 2088 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2089 { 2090 BUG_ON(num == 0 || num > 0xf); 2091 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2092 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2093 A9WDOG_AUTO_OFF_DIS); 2094 } 2095 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog); 2096 2097 int db8500_prcmu_enable_a9wdog(u8 id) 2098 { 2099 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2100 } 2101 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog); 2102 2103 int db8500_prcmu_disable_a9wdog(u8 id) 2104 { 2105 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2106 } 2107 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog); 2108 2109 int db8500_prcmu_kick_a9wdog(u8 id) 2110 { 2111 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2112 } 2113 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog); 2114 2115 /* 2116 * timeout is 28 bit, in ms. 2117 */ 2118 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2119 { 2120 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2121 (id & A9WDOG_ID_MASK) | 2122 /* 2123 * Put the lowest 28 bits of timeout at 2124 * offset 4. Four first bits are used for id. 2125 */ 2126 (u8)((timeout << 4) & 0xf0), 2127 (u8)((timeout >> 4) & 0xff), 2128 (u8)((timeout >> 12) & 0xff), 2129 (u8)((timeout >> 20) & 0xff)); 2130 } 2131 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog); 2132 2133 /** 2134 * prcmu_abb_read() - Read register value(s) from the ABB. 2135 * @slave: The I2C slave address. 2136 * @reg: The (start) register address. 2137 * @value: The read out value(s). 2138 * @size: The number of registers to read. 2139 * 2140 * Reads register value(s) from the ABB. 2141 * @size has to be 1 for the current firmware version. 2142 */ 2143 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2144 { 2145 int r; 2146 2147 if (size != 1) 2148 return -EINVAL; 2149 2150 mutex_lock(&mb5_transfer.lock); 2151 2152 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2153 cpu_relax(); 2154 2155 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2156 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2157 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2158 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2159 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2160 2161 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2162 2163 if (!wait_for_completion_timeout(&mb5_transfer.work, 2164 msecs_to_jiffies(20000))) { 2165 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2166 __func__); 2167 r = -EIO; 2168 } else { 2169 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2170 } 2171 2172 if (!r) 2173 *value = mb5_transfer.ack.value; 2174 2175 mutex_unlock(&mb5_transfer.lock); 2176 2177 return r; 2178 } 2179 2180 /** 2181 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2182 * @slave: The I2C slave address. 2183 * @reg: The (start) register address. 2184 * @value: The value(s) to write. 2185 * @mask: The mask(s) to use. 2186 * @size: The number of registers to write. 2187 * 2188 * Writes masked register value(s) to the ABB. 2189 * For each @value, only the bits set to 1 in the corresponding @mask 2190 * will be written. The other bits are not changed. 2191 * @size has to be 1 for the current firmware version. 2192 */ 2193 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2194 { 2195 int r; 2196 2197 if (size != 1) 2198 return -EINVAL; 2199 2200 mutex_lock(&mb5_transfer.lock); 2201 2202 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2203 cpu_relax(); 2204 2205 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2206 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2207 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2208 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2209 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2210 2211 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2212 2213 if (!wait_for_completion_timeout(&mb5_transfer.work, 2214 msecs_to_jiffies(20000))) { 2215 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2216 __func__); 2217 r = -EIO; 2218 } else { 2219 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2220 } 2221 2222 mutex_unlock(&mb5_transfer.lock); 2223 2224 return r; 2225 } 2226 2227 /** 2228 * prcmu_abb_write() - Write register value(s) to the ABB. 2229 * @slave: The I2C slave address. 2230 * @reg: The (start) register address. 2231 * @value: The value(s) to write. 2232 * @size: The number of registers to write. 2233 * 2234 * Writes register value(s) to the ABB. 2235 * @size has to be 1 for the current firmware version. 2236 */ 2237 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2238 { 2239 u8 mask = ~0; 2240 2241 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2242 } 2243 2244 /** 2245 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2246 */ 2247 int prcmu_ac_wake_req(void) 2248 { 2249 u32 val; 2250 int ret = 0; 2251 2252 mutex_lock(&mb0_transfer.ac_wake_lock); 2253 2254 val = readl(PRCM_HOSTACCESS_REQ); 2255 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2256 goto unlock_and_return; 2257 2258 atomic_set(&ac_wake_req_state, 1); 2259 2260 /* 2261 * Force Modem Wake-up before hostaccess_req ping-pong. 2262 * It prevents Modem to enter in Sleep while acking the hostaccess 2263 * request. The 31us delay has been calculated by HWI. 2264 */ 2265 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2266 writel(val, PRCM_HOSTACCESS_REQ); 2267 2268 udelay(31); 2269 2270 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2271 writel(val, PRCM_HOSTACCESS_REQ); 2272 2273 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2274 msecs_to_jiffies(5000))) { 2275 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2276 __func__); 2277 ret = -EFAULT; 2278 } 2279 2280 unlock_and_return: 2281 mutex_unlock(&mb0_transfer.ac_wake_lock); 2282 return ret; 2283 } 2284 2285 /** 2286 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2287 */ 2288 void prcmu_ac_sleep_req(void) 2289 { 2290 u32 val; 2291 2292 mutex_lock(&mb0_transfer.ac_wake_lock); 2293 2294 val = readl(PRCM_HOSTACCESS_REQ); 2295 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2296 goto unlock_and_return; 2297 2298 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2299 PRCM_HOSTACCESS_REQ); 2300 2301 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2302 msecs_to_jiffies(5000))) { 2303 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2304 __func__); 2305 } 2306 2307 atomic_set(&ac_wake_req_state, 0); 2308 2309 unlock_and_return: 2310 mutex_unlock(&mb0_transfer.ac_wake_lock); 2311 } 2312 2313 bool db8500_prcmu_is_ac_wake_requested(void) 2314 { 2315 return (atomic_read(&ac_wake_req_state) != 0); 2316 } 2317 2318 /** 2319 * db8500_prcmu_system_reset - System reset 2320 * 2321 * Saves the reset reason code and then sets the APE_SOFTRST register which 2322 * fires interrupt to fw 2323 */ 2324 void db8500_prcmu_system_reset(u16 reset_code) 2325 { 2326 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2327 writel(1, PRCM_APE_SOFTRST); 2328 } 2329 2330 /** 2331 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2332 * 2333 * Retrieves the reset reason code stored by prcmu_system_reset() before 2334 * last restart. 2335 */ 2336 u16 db8500_prcmu_get_reset_code(void) 2337 { 2338 return readw(tcdm_base + PRCM_SW_RST_REASON); 2339 } 2340 2341 /** 2342 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2343 */ 2344 void db8500_prcmu_modem_reset(void) 2345 { 2346 mutex_lock(&mb1_transfer.lock); 2347 2348 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2349 cpu_relax(); 2350 2351 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2352 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2353 wait_for_completion(&mb1_transfer.work); 2354 2355 /* 2356 * No need to check return from PRCMU as modem should go in reset state 2357 * This state is already managed by upper layer 2358 */ 2359 2360 mutex_unlock(&mb1_transfer.lock); 2361 } 2362 2363 static void ack_dbb_wakeup(void) 2364 { 2365 unsigned long flags; 2366 2367 spin_lock_irqsave(&mb0_transfer.lock, flags); 2368 2369 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2370 cpu_relax(); 2371 2372 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2373 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2374 2375 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2376 } 2377 2378 static inline void print_unknown_header_warning(u8 n, u8 header) 2379 { 2380 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n", 2381 header, n); 2382 } 2383 2384 static bool read_mailbox_0(void) 2385 { 2386 bool r; 2387 u32 ev; 2388 unsigned int n; 2389 u8 header; 2390 2391 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2392 switch (header) { 2393 case MB0H_WAKEUP_EXE: 2394 case MB0H_WAKEUP_SLEEP: 2395 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2396 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2397 else 2398 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2399 2400 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2401 complete(&mb0_transfer.ac_wake_work); 2402 if (ev & WAKEUP_BIT_SYSCLK_OK) 2403 complete(&mb3_transfer.sysclk_work); 2404 2405 ev &= mb0_transfer.req.dbb_irqs; 2406 2407 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2408 if (ev & prcmu_irq_bit[n]) 2409 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n)); 2410 } 2411 r = true; 2412 break; 2413 default: 2414 print_unknown_header_warning(0, header); 2415 r = false; 2416 break; 2417 } 2418 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2419 return r; 2420 } 2421 2422 static bool read_mailbox_1(void) 2423 { 2424 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2425 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2426 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2427 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2428 PRCM_ACK_MB1_CURRENT_APE_OPP); 2429 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2430 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2431 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2432 complete(&mb1_transfer.work); 2433 return false; 2434 } 2435 2436 static bool read_mailbox_2(void) 2437 { 2438 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2439 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2440 complete(&mb2_transfer.work); 2441 return false; 2442 } 2443 2444 static bool read_mailbox_3(void) 2445 { 2446 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2447 return false; 2448 } 2449 2450 static bool read_mailbox_4(void) 2451 { 2452 u8 header; 2453 bool do_complete = true; 2454 2455 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2456 switch (header) { 2457 case MB4H_MEM_ST: 2458 case MB4H_HOTDOG: 2459 case MB4H_HOTMON: 2460 case MB4H_HOT_PERIOD: 2461 case MB4H_A9WDOG_CONF: 2462 case MB4H_A9WDOG_EN: 2463 case MB4H_A9WDOG_DIS: 2464 case MB4H_A9WDOG_LOAD: 2465 case MB4H_A9WDOG_KICK: 2466 break; 2467 default: 2468 print_unknown_header_warning(4, header); 2469 do_complete = false; 2470 break; 2471 } 2472 2473 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2474 2475 if (do_complete) 2476 complete(&mb4_transfer.work); 2477 2478 return false; 2479 } 2480 2481 static bool read_mailbox_5(void) 2482 { 2483 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2484 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2485 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2486 complete(&mb5_transfer.work); 2487 return false; 2488 } 2489 2490 static bool read_mailbox_6(void) 2491 { 2492 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2493 return false; 2494 } 2495 2496 static bool read_mailbox_7(void) 2497 { 2498 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2499 return false; 2500 } 2501 2502 static bool (* const read_mailbox[NUM_MB])(void) = { 2503 read_mailbox_0, 2504 read_mailbox_1, 2505 read_mailbox_2, 2506 read_mailbox_3, 2507 read_mailbox_4, 2508 read_mailbox_5, 2509 read_mailbox_6, 2510 read_mailbox_7 2511 }; 2512 2513 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2514 { 2515 u32 bits; 2516 u8 n; 2517 irqreturn_t r; 2518 2519 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2520 if (unlikely(!bits)) 2521 return IRQ_NONE; 2522 2523 r = IRQ_HANDLED; 2524 for (n = 0; bits; n++) { 2525 if (bits & MBOX_BIT(n)) { 2526 bits -= MBOX_BIT(n); 2527 if (read_mailbox[n]()) 2528 r = IRQ_WAKE_THREAD; 2529 } 2530 } 2531 return r; 2532 } 2533 2534 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2535 { 2536 ack_dbb_wakeup(); 2537 return IRQ_HANDLED; 2538 } 2539 2540 static void prcmu_mask_work(struct work_struct *work) 2541 { 2542 unsigned long flags; 2543 2544 spin_lock_irqsave(&mb0_transfer.lock, flags); 2545 2546 config_wakeups(); 2547 2548 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2549 } 2550 2551 static void prcmu_irq_mask(struct irq_data *d) 2552 { 2553 unsigned long flags; 2554 2555 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2556 2557 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2558 2559 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2560 2561 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2562 schedule_work(&mb0_transfer.mask_work); 2563 } 2564 2565 static void prcmu_irq_unmask(struct irq_data *d) 2566 { 2567 unsigned long flags; 2568 2569 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2570 2571 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2572 2573 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2574 2575 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2576 schedule_work(&mb0_transfer.mask_work); 2577 } 2578 2579 static void noop(struct irq_data *d) 2580 { 2581 } 2582 2583 static struct irq_chip prcmu_irq_chip = { 2584 .name = "prcmu", 2585 .irq_disable = prcmu_irq_mask, 2586 .irq_ack = noop, 2587 .irq_mask = prcmu_irq_mask, 2588 .irq_unmask = prcmu_irq_unmask, 2589 }; 2590 2591 static __init char *fw_project_name(u32 project) 2592 { 2593 switch (project) { 2594 case PRCMU_FW_PROJECT_U8500: 2595 return "U8500"; 2596 case PRCMU_FW_PROJECT_U8400: 2597 return "U8400"; 2598 case PRCMU_FW_PROJECT_U9500: 2599 return "U9500"; 2600 case PRCMU_FW_PROJECT_U8500_MBB: 2601 return "U8500 MBB"; 2602 case PRCMU_FW_PROJECT_U8500_C1: 2603 return "U8500 C1"; 2604 case PRCMU_FW_PROJECT_U8500_C2: 2605 return "U8500 C2"; 2606 case PRCMU_FW_PROJECT_U8500_C3: 2607 return "U8500 C3"; 2608 case PRCMU_FW_PROJECT_U8500_C4: 2609 return "U8500 C4"; 2610 case PRCMU_FW_PROJECT_U9500_MBL: 2611 return "U9500 MBL"; 2612 case PRCMU_FW_PROJECT_U8500_MBL: 2613 return "U8500 MBL"; 2614 case PRCMU_FW_PROJECT_U8500_MBL2: 2615 return "U8500 MBL2"; 2616 case PRCMU_FW_PROJECT_U8520: 2617 return "U8520 MBL"; 2618 case PRCMU_FW_PROJECT_U8420: 2619 return "U8420"; 2620 case PRCMU_FW_PROJECT_U9540: 2621 return "U9540"; 2622 case PRCMU_FW_PROJECT_A9420: 2623 return "A9420"; 2624 case PRCMU_FW_PROJECT_L8540: 2625 return "L8540"; 2626 case PRCMU_FW_PROJECT_L8580: 2627 return "L8580"; 2628 default: 2629 return "Unknown"; 2630 } 2631 } 2632 2633 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2634 irq_hw_number_t hwirq) 2635 { 2636 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2637 handle_simple_irq); 2638 2639 return 0; 2640 } 2641 2642 static const struct irq_domain_ops db8500_irq_ops = { 2643 .map = db8500_irq_map, 2644 .xlate = irq_domain_xlate_twocell, 2645 }; 2646 2647 static int db8500_irq_init(struct device_node *np) 2648 { 2649 int i; 2650 2651 db8500_irq_domain = irq_domain_add_simple( 2652 np, NUM_PRCMU_WAKEUPS, 0, 2653 &db8500_irq_ops, NULL); 2654 2655 if (!db8500_irq_domain) { 2656 pr_err("Failed to create irqdomain\n"); 2657 return -ENOSYS; 2658 } 2659 2660 /* All wakeups will be used, so create mappings for all */ 2661 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) 2662 irq_create_mapping(db8500_irq_domain, i); 2663 2664 return 0; 2665 } 2666 2667 static void dbx500_fw_version_init(struct platform_device *pdev, 2668 u32 version_offset) 2669 { 2670 struct resource *res; 2671 void __iomem *tcpm_base; 2672 u32 version; 2673 2674 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2675 "prcmu-tcpm"); 2676 if (!res) { 2677 dev_err(&pdev->dev, 2678 "Error: no prcmu tcpm memory region provided\n"); 2679 return; 2680 } 2681 tcpm_base = ioremap(res->start, resource_size(res)); 2682 if (!tcpm_base) { 2683 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n"); 2684 return; 2685 } 2686 2687 version = readl(tcpm_base + version_offset); 2688 fw_info.version.project = (version & 0xFF); 2689 fw_info.version.api_version = (version >> 8) & 0xFF; 2690 fw_info.version.func_version = (version >> 16) & 0xFF; 2691 fw_info.version.errata = (version >> 24) & 0xFF; 2692 strncpy(fw_info.version.project_name, 2693 fw_project_name(fw_info.version.project), 2694 PRCMU_FW_PROJECT_NAME_LEN); 2695 fw_info.valid = true; 2696 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n", 2697 fw_info.version.project_name, 2698 fw_info.version.project, 2699 fw_info.version.api_version, 2700 fw_info.version.func_version, 2701 fw_info.version.errata); 2702 iounmap(tcpm_base); 2703 } 2704 2705 void __init db8500_prcmu_early_init(u32 phy_base, u32 size) 2706 { 2707 /* 2708 * This is a temporary remap to bring up the clocks. It is 2709 * subsequently replaces with a real remap. After the merge of 2710 * the mailbox subsystem all of this early code goes away, and the 2711 * clock driver can probe independently. An early initcall will 2712 * still be needed, but it can be diverted into drivers/clk/ux500. 2713 */ 2714 prcmu_base = ioremap(phy_base, size); 2715 if (!prcmu_base) 2716 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__); 2717 2718 spin_lock_init(&mb0_transfer.lock); 2719 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2720 mutex_init(&mb0_transfer.ac_wake_lock); 2721 init_completion(&mb0_transfer.ac_wake_work); 2722 mutex_init(&mb1_transfer.lock); 2723 init_completion(&mb1_transfer.work); 2724 mb1_transfer.ape_opp = APE_NO_CHANGE; 2725 mutex_init(&mb2_transfer.lock); 2726 init_completion(&mb2_transfer.work); 2727 spin_lock_init(&mb2_transfer.auto_pm_lock); 2728 spin_lock_init(&mb3_transfer.lock); 2729 mutex_init(&mb3_transfer.sysclk_lock); 2730 init_completion(&mb3_transfer.sysclk_work); 2731 mutex_init(&mb4_transfer.lock); 2732 init_completion(&mb4_transfer.work); 2733 mutex_init(&mb5_transfer.lock); 2734 init_completion(&mb5_transfer.work); 2735 2736 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2737 } 2738 2739 static void __init init_prcm_registers(void) 2740 { 2741 u32 val; 2742 2743 val = readl(PRCM_A9PL_FORCE_CLKEN); 2744 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2745 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2746 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2747 } 2748 2749 /* 2750 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2751 */ 2752 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2753 REGULATOR_SUPPLY("v-ape", NULL), 2754 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2755 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2756 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2757 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2758 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2759 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2760 REGULATOR_SUPPLY("vcore", "sdi0"), 2761 REGULATOR_SUPPLY("vcore", "sdi1"), 2762 REGULATOR_SUPPLY("vcore", "sdi2"), 2763 REGULATOR_SUPPLY("vcore", "sdi3"), 2764 REGULATOR_SUPPLY("vcore", "sdi4"), 2765 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2766 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2767 /* "v-uart" changed to "vcore" in the mainline kernel */ 2768 REGULATOR_SUPPLY("vcore", "uart0"), 2769 REGULATOR_SUPPLY("vcore", "uart1"), 2770 REGULATOR_SUPPLY("vcore", "uart2"), 2771 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2772 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2773 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2774 }; 2775 2776 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2777 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2778 /* AV8100 regulator */ 2779 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2780 }; 2781 2782 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2783 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2784 REGULATOR_SUPPLY("vsupply", "mcde"), 2785 }; 2786 2787 /* SVA MMDSP regulator switch */ 2788 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2789 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2790 }; 2791 2792 /* SVA pipe regulator switch */ 2793 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2794 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2795 }; 2796 2797 /* SIA MMDSP regulator switch */ 2798 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2799 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2800 }; 2801 2802 /* SIA pipe regulator switch */ 2803 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2804 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2805 }; 2806 2807 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2808 REGULATOR_SUPPLY("v-mali", NULL), 2809 }; 2810 2811 /* ESRAM1 and 2 regulator switch */ 2812 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2813 REGULATOR_SUPPLY("esram12", "cm_control"), 2814 }; 2815 2816 /* ESRAM3 and 4 regulator switch */ 2817 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2818 REGULATOR_SUPPLY("v-esram34", "mcde"), 2819 REGULATOR_SUPPLY("esram34", "cm_control"), 2820 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2821 }; 2822 2823 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2824 [DB8500_REGULATOR_VAPE] = { 2825 .constraints = { 2826 .name = "db8500-vape", 2827 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2828 .always_on = true, 2829 }, 2830 .consumer_supplies = db8500_vape_consumers, 2831 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2832 }, 2833 [DB8500_REGULATOR_VARM] = { 2834 .constraints = { 2835 .name = "db8500-varm", 2836 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2837 }, 2838 }, 2839 [DB8500_REGULATOR_VMODEM] = { 2840 .constraints = { 2841 .name = "db8500-vmodem", 2842 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2843 }, 2844 }, 2845 [DB8500_REGULATOR_VPLL] = { 2846 .constraints = { 2847 .name = "db8500-vpll", 2848 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2849 }, 2850 }, 2851 [DB8500_REGULATOR_VSMPS1] = { 2852 .constraints = { 2853 .name = "db8500-vsmps1", 2854 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2855 }, 2856 }, 2857 [DB8500_REGULATOR_VSMPS2] = { 2858 .constraints = { 2859 .name = "db8500-vsmps2", 2860 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2861 }, 2862 .consumer_supplies = db8500_vsmps2_consumers, 2863 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2864 }, 2865 [DB8500_REGULATOR_VSMPS3] = { 2866 .constraints = { 2867 .name = "db8500-vsmps3", 2868 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2869 }, 2870 }, 2871 [DB8500_REGULATOR_VRF1] = { 2872 .constraints = { 2873 .name = "db8500-vrf1", 2874 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2875 }, 2876 }, 2877 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2878 /* dependency to u8500-vape is handled outside regulator framework */ 2879 .constraints = { 2880 .name = "db8500-sva-mmdsp", 2881 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2882 }, 2883 .consumer_supplies = db8500_svammdsp_consumers, 2884 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2885 }, 2886 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2887 .constraints = { 2888 /* "ret" means "retention" */ 2889 .name = "db8500-sva-mmdsp-ret", 2890 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2891 }, 2892 }, 2893 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2894 /* dependency to u8500-vape is handled outside regulator framework */ 2895 .constraints = { 2896 .name = "db8500-sva-pipe", 2897 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2898 }, 2899 .consumer_supplies = db8500_svapipe_consumers, 2900 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2901 }, 2902 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2903 /* dependency to u8500-vape is handled outside regulator framework */ 2904 .constraints = { 2905 .name = "db8500-sia-mmdsp", 2906 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2907 }, 2908 .consumer_supplies = db8500_siammdsp_consumers, 2909 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2910 }, 2911 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2912 .constraints = { 2913 .name = "db8500-sia-mmdsp-ret", 2914 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2915 }, 2916 }, 2917 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2918 /* dependency to u8500-vape is handled outside regulator framework */ 2919 .constraints = { 2920 .name = "db8500-sia-pipe", 2921 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2922 }, 2923 .consumer_supplies = db8500_siapipe_consumers, 2924 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 2925 }, 2926 [DB8500_REGULATOR_SWITCH_SGA] = { 2927 .supply_regulator = "db8500-vape", 2928 .constraints = { 2929 .name = "db8500-sga", 2930 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2931 }, 2932 .consumer_supplies = db8500_sga_consumers, 2933 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 2934 2935 }, 2936 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 2937 .supply_regulator = "db8500-vape", 2938 .constraints = { 2939 .name = "db8500-b2r2-mcde", 2940 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2941 }, 2942 .consumer_supplies = db8500_b2r2_mcde_consumers, 2943 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 2944 }, 2945 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 2946 /* 2947 * esram12 is set in retention and supplied by Vsafe when Vape is off, 2948 * no need to hold Vape 2949 */ 2950 .constraints = { 2951 .name = "db8500-esram12", 2952 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2953 }, 2954 .consumer_supplies = db8500_esram12_consumers, 2955 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 2956 }, 2957 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 2958 .constraints = { 2959 .name = "db8500-esram12-ret", 2960 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2961 }, 2962 }, 2963 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 2964 /* 2965 * esram34 is set in retention and supplied by Vsafe when Vape is off, 2966 * no need to hold Vape 2967 */ 2968 .constraints = { 2969 .name = "db8500-esram34", 2970 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2971 }, 2972 .consumer_supplies = db8500_esram34_consumers, 2973 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 2974 }, 2975 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 2976 .constraints = { 2977 .name = "db8500-esram34-ret", 2978 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2979 }, 2980 }, 2981 }; 2982 2983 static struct ux500_wdt_data db8500_wdt_pdata = { 2984 .timeout = 600, /* 10 minutes */ 2985 .has_28_bits_resolution = true, 2986 }; 2987 /* 2988 * Thermal Sensor 2989 */ 2990 2991 static struct resource db8500_thsens_resources[] = { 2992 { 2993 .name = "IRQ_HOTMON_LOW", 2994 .start = IRQ_PRCMU_HOTMON_LOW, 2995 .end = IRQ_PRCMU_HOTMON_LOW, 2996 .flags = IORESOURCE_IRQ, 2997 }, 2998 { 2999 .name = "IRQ_HOTMON_HIGH", 3000 .start = IRQ_PRCMU_HOTMON_HIGH, 3001 .end = IRQ_PRCMU_HOTMON_HIGH, 3002 .flags = IORESOURCE_IRQ, 3003 }, 3004 }; 3005 3006 static struct db8500_thsens_platform_data db8500_thsens_data = { 3007 .trip_points[0] = { 3008 .temp = 70000, 3009 .type = THERMAL_TRIP_ACTIVE, 3010 .cdev_name = { 3011 [0] = "thermal-cpufreq-0", 3012 }, 3013 }, 3014 .trip_points[1] = { 3015 .temp = 75000, 3016 .type = THERMAL_TRIP_ACTIVE, 3017 .cdev_name = { 3018 [0] = "thermal-cpufreq-0", 3019 }, 3020 }, 3021 .trip_points[2] = { 3022 .temp = 80000, 3023 .type = THERMAL_TRIP_ACTIVE, 3024 .cdev_name = { 3025 [0] = "thermal-cpufreq-0", 3026 }, 3027 }, 3028 .trip_points[3] = { 3029 .temp = 85000, 3030 .type = THERMAL_TRIP_CRITICAL, 3031 }, 3032 .num_trips = 4, 3033 }; 3034 3035 static const struct mfd_cell common_prcmu_devs[] = { 3036 { 3037 .name = "ux500_wdt", 3038 .platform_data = &db8500_wdt_pdata, 3039 .pdata_size = sizeof(db8500_wdt_pdata), 3040 .id = -1, 3041 }, 3042 }; 3043 3044 static const struct mfd_cell db8500_prcmu_devs[] = { 3045 { 3046 .name = "db8500-prcmu-regulators", 3047 .of_compatible = "stericsson,db8500-prcmu-regulator", 3048 .platform_data = &db8500_regulators, 3049 .pdata_size = sizeof(db8500_regulators), 3050 }, 3051 { 3052 .name = "cpufreq-ux500", 3053 .of_compatible = "stericsson,cpufreq-ux500", 3054 .platform_data = &db8500_cpufreq_table, 3055 .pdata_size = sizeof(db8500_cpufreq_table), 3056 }, 3057 { 3058 .name = "cpuidle-dbx500", 3059 .of_compatible = "stericsson,cpuidle-dbx500", 3060 }, 3061 { 3062 .name = "db8500-thermal", 3063 .num_resources = ARRAY_SIZE(db8500_thsens_resources), 3064 .resources = db8500_thsens_resources, 3065 .platform_data = &db8500_thsens_data, 3066 .pdata_size = sizeof(db8500_thsens_data), 3067 }, 3068 }; 3069 3070 static void db8500_prcmu_update_cpufreq(void) 3071 { 3072 if (prcmu_has_arm_maxopp()) { 3073 db8500_cpufreq_table[3].frequency = 1000000; 3074 db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP; 3075 } 3076 } 3077 3078 static int db8500_prcmu_register_ab8500(struct device *parent) 3079 { 3080 struct device_node *np; 3081 struct resource ab8500_resource; 3082 const struct mfd_cell ab8500_cell = { 3083 .name = "ab8500-core", 3084 .of_compatible = "stericsson,ab8500", 3085 .id = AB8500_VERSION_AB8500, 3086 .resources = &ab8500_resource, 3087 .num_resources = 1, 3088 }; 3089 3090 if (!parent->of_node) 3091 return -ENODEV; 3092 3093 /* Look up the device node, sneak the IRQ out of it */ 3094 for_each_child_of_node(parent->of_node, np) { 3095 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) 3096 break; 3097 } 3098 if (!np) { 3099 dev_info(parent, "could not find AB8500 node in the device tree\n"); 3100 return -ENODEV; 3101 } 3102 of_irq_to_resource_table(np, &ab8500_resource, 1); 3103 3104 return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL); 3105 } 3106 3107 /** 3108 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 3109 * 3110 */ 3111 static int db8500_prcmu_probe(struct platform_device *pdev) 3112 { 3113 struct device_node *np = pdev->dev.of_node; 3114 int irq = 0, err = 0; 3115 struct resource *res; 3116 3117 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu"); 3118 if (!res) { 3119 dev_err(&pdev->dev, "no prcmu memory region provided\n"); 3120 return -EINVAL; 3121 } 3122 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); 3123 if (!prcmu_base) { 3124 dev_err(&pdev->dev, 3125 "failed to ioremap prcmu register memory\n"); 3126 return -ENOMEM; 3127 } 3128 init_prcm_registers(); 3129 dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET); 3130 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm"); 3131 if (!res) { 3132 dev_err(&pdev->dev, "no prcmu tcdm region provided\n"); 3133 return -EINVAL; 3134 } 3135 tcdm_base = devm_ioremap(&pdev->dev, res->start, 3136 resource_size(res)); 3137 if (!tcdm_base) { 3138 dev_err(&pdev->dev, 3139 "failed to ioremap prcmu-tcdm register memory\n"); 3140 return -ENOMEM; 3141 } 3142 3143 /* Clean up the mailbox interrupts after pre-kernel code. */ 3144 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3145 3146 irq = platform_get_irq(pdev, 0); 3147 if (irq <= 0) { 3148 dev_err(&pdev->dev, "no prcmu irq provided\n"); 3149 return irq; 3150 } 3151 3152 err = request_threaded_irq(irq, prcmu_irq_handler, 3153 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3154 if (err < 0) { 3155 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3156 return err; 3157 } 3158 3159 db8500_irq_init(np); 3160 3161 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3162 3163 db8500_prcmu_update_cpufreq(); 3164 3165 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs, 3166 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain); 3167 if (err) { 3168 pr_err("prcmu: Failed to add subdevices\n"); 3169 return err; 3170 } 3171 3172 /* TODO: Remove restriction when clk definitions are available. */ 3173 if (!of_machine_is_compatible("st-ericsson,u8540")) { 3174 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3175 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, 3176 db8500_irq_domain); 3177 if (err) { 3178 mfd_remove_devices(&pdev->dev); 3179 pr_err("prcmu: Failed to add subdevices\n"); 3180 return err; 3181 } 3182 } 3183 3184 err = db8500_prcmu_register_ab8500(&pdev->dev); 3185 if (err) { 3186 mfd_remove_devices(&pdev->dev); 3187 pr_err("prcmu: Failed to add ab8500 subdevice\n"); 3188 return err; 3189 } 3190 3191 pr_info("DB8500 PRCMU initialized\n"); 3192 return err; 3193 } 3194 static const struct of_device_id db8500_prcmu_match[] = { 3195 { .compatible = "stericsson,db8500-prcmu"}, 3196 { }, 3197 }; 3198 3199 static struct platform_driver db8500_prcmu_driver = { 3200 .driver = { 3201 .name = "db8500-prcmu", 3202 .of_match_table = db8500_prcmu_match, 3203 }, 3204 .probe = db8500_prcmu_probe, 3205 }; 3206 3207 static int __init db8500_prcmu_init(void) 3208 { 3209 return platform_driver_register(&db8500_prcmu_driver); 3210 } 3211 3212 core_initcall(db8500_prcmu_init); 3213 3214 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>"); 3215 MODULE_DESCRIPTION("DB8500 PRCM Unit driver"); 3216 MODULE_LICENSE("GPL v2"); 3217