xref: /linux/drivers/mfd/db8500-prcmu.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
31 #include <linux/mfd/abx500/ab8500.h>
32 #include <linux/regulator/db8500-prcmu.h>
33 #include <linux/regulator/machine.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
38 #include <mach/id.h>
39 #include "dbx500-prcmu-regs.h"
40 
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
43 
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE		0x2FC
46 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
59 
60 #define PRCM_AVS_VOLTAGE		0
61 #define PRCM_AVS_VOLTAGE_MASK		0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP		6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE		7
65 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
66 
67 #define PRCM_BOOT_STATUS	0xFFF
68 #define PRCM_ROMCODE_A2P	0xFFE
69 #define PRCM_ROMCODE_P2A	0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
71 
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
73 
74 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
82 
83 /* Req Mailboxes */
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
90 
91 /* Ack Mailboxes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
98 
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS		0
101 #define MB0H_CONFIG_WAKEUPS_EXE		1
102 #define MB0H_READ_WAKEUP_ACK		3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
104 
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
107 
108 /* Mailbox 0 REQs */
109 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
115 
116 /* Mailbox 0 ACKs */
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
124 
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
132 
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF	0x1
138 #define PLL_SOC0_ON	0x2
139 #define PLL_SOC1_OFF	0x4
140 #define PLL_SOC1_ON	0x8
141 
142 /* Mailbox 1 ACKs */
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
147 
148 /* Mailbox 2 headers */
149 #define MB2H_DPS	0x0
150 #define MB2H_AUTO_PWR	0x1
151 
152 /* Mailbox 2 REQs */
153 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
163 
164 /* Mailbox 2 ACKs */
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
167 
168 /* Mailbox 3 headers */
169 #define MB3H_ANC	0x0
170 #define MB3H_SIDETONE	0x1
171 #define MB3H_SYSCLK	0xE
172 
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
181 
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT	0x0
184 #define MB4H_MEM_ST	0x1
185 #define MB4H_HOTDOG	0x12
186 #define MB4H_HOTMON	0x13
187 #define MB4H_HOT_PERIOD	0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN   0x17
190 #define MB4H_A9WDOG_DIS  0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
193 
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW			BIT(0)
204 #define HOTMON_CONFIG_HIGH			BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN			BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS			0
211 #define A9WDOG_ID_MASK				0xf
212 
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219 	(((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221 	(((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN		BIT(3)
223 
224 /* Mailbox 5 ACKs */
225 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
229 
230 #define NUM_MB 8
231 #define MBOX_BIT BIT
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233 
234 /*
235  * Wakeups/IRQs
236  */
237 
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
267 
268 static struct {
269 	bool valid;
270 	struct prcmu_fw_version version;
271 } fw_info;
272 
273 /*
274  * This vector maps irq numbers to the bits in the bit field used in
275  * communication with the PRCMU firmware.
276  *
277  * The reason for having this is to keep the irq numbers contiguous even though
278  * the bits in the bit field are not. (The bits also have a tendency to move
279  * around, to further complicate matters.)
280  */
281 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
282 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
283 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
284 	IRQ_ENTRY(RTC),
285 	IRQ_ENTRY(RTT0),
286 	IRQ_ENTRY(RTT1),
287 	IRQ_ENTRY(HSI0),
288 	IRQ_ENTRY(HSI1),
289 	IRQ_ENTRY(CA_WAKE),
290 	IRQ_ENTRY(USB),
291 	IRQ_ENTRY(ABB),
292 	IRQ_ENTRY(ABB_FIFO),
293 	IRQ_ENTRY(CA_SLEEP),
294 	IRQ_ENTRY(ARM),
295 	IRQ_ENTRY(HOTMON_LOW),
296 	IRQ_ENTRY(HOTMON_HIGH),
297 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
298 	IRQ_ENTRY(GPIO0),
299 	IRQ_ENTRY(GPIO1),
300 	IRQ_ENTRY(GPIO2),
301 	IRQ_ENTRY(GPIO3),
302 	IRQ_ENTRY(GPIO4),
303 	IRQ_ENTRY(GPIO5),
304 	IRQ_ENTRY(GPIO6),
305 	IRQ_ENTRY(GPIO7),
306 	IRQ_ENTRY(GPIO8)
307 };
308 
309 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
310 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
311 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
312 	WAKEUP_ENTRY(RTC),
313 	WAKEUP_ENTRY(RTT0),
314 	WAKEUP_ENTRY(RTT1),
315 	WAKEUP_ENTRY(HSI0),
316 	WAKEUP_ENTRY(HSI1),
317 	WAKEUP_ENTRY(USB),
318 	WAKEUP_ENTRY(ABB),
319 	WAKEUP_ENTRY(ABB_FIFO),
320 	WAKEUP_ENTRY(ARM)
321 };
322 
323 /*
324  * mb0_transfer - state needed for mailbox 0 communication.
325  * @lock:		The transaction lock.
326  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
327  *			the request data.
328  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
329  * @req:		Request data that need to persist between requests.
330  */
331 static struct {
332 	spinlock_t lock;
333 	spinlock_t dbb_irqs_lock;
334 	struct work_struct mask_work;
335 	struct mutex ac_wake_lock;
336 	struct completion ac_wake_work;
337 	struct {
338 		u32 dbb_irqs;
339 		u32 dbb_wakeups;
340 		u32 abb_events;
341 	} req;
342 } mb0_transfer;
343 
344 /*
345  * mb1_transfer - state needed for mailbox 1 communication.
346  * @lock:	The transaction lock.
347  * @work:	The transaction completion structure.
348  * @ape_opp:	The current APE OPP.
349  * @ack:	Reply ("acknowledge") data.
350  */
351 static struct {
352 	struct mutex lock;
353 	struct completion work;
354 	u8 ape_opp;
355 	struct {
356 		u8 header;
357 		u8 arm_opp;
358 		u8 ape_opp;
359 		u8 ape_voltage_status;
360 	} ack;
361 } mb1_transfer;
362 
363 /*
364  * mb2_transfer - state needed for mailbox 2 communication.
365  * @lock:            The transaction lock.
366  * @work:            The transaction completion structure.
367  * @auto_pm_lock:    The autonomous power management configuration lock.
368  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
369  * @req:             Request data that need to persist between requests.
370  * @ack:             Reply ("acknowledge") data.
371  */
372 static struct {
373 	struct mutex lock;
374 	struct completion work;
375 	spinlock_t auto_pm_lock;
376 	bool auto_pm_enabled;
377 	struct {
378 		u8 status;
379 	} ack;
380 } mb2_transfer;
381 
382 /*
383  * mb3_transfer - state needed for mailbox 3 communication.
384  * @lock:		The request lock.
385  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
386  * @sysclk_work:	Work structure used for sysclk requests.
387  */
388 static struct {
389 	spinlock_t lock;
390 	struct mutex sysclk_lock;
391 	struct completion sysclk_work;
392 } mb3_transfer;
393 
394 /*
395  * mb4_transfer - state needed for mailbox 4 communication.
396  * @lock:	The transaction lock.
397  * @work:	The transaction completion structure.
398  */
399 static struct {
400 	struct mutex lock;
401 	struct completion work;
402 } mb4_transfer;
403 
404 /*
405  * mb5_transfer - state needed for mailbox 5 communication.
406  * @lock:	The transaction lock.
407  * @work:	The transaction completion structure.
408  * @ack:	Reply ("acknowledge") data.
409  */
410 static struct {
411 	struct mutex lock;
412 	struct completion work;
413 	struct {
414 		u8 status;
415 		u8 value;
416 	} ack;
417 } mb5_transfer;
418 
419 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
420 
421 /* Spinlocks */
422 static DEFINE_SPINLOCK(prcmu_lock);
423 static DEFINE_SPINLOCK(clkout_lock);
424 
425 /* Global var to runtime determine TCDM base for v2 or v1 */
426 static __iomem void *tcdm_base;
427 
428 struct clk_mgt {
429 	void __iomem *reg;
430 	u32 pllsw;
431 	int branch;
432 	bool clk38div;
433 };
434 
435 enum {
436 	PLL_RAW,
437 	PLL_FIX,
438 	PLL_DIV
439 };
440 
441 static DEFINE_SPINLOCK(clk_mgt_lock);
442 
443 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
444 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
445 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
446 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
447 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
448 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
449 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
450 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
451 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
452 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
453 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
454 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
455 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
456 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
457 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
458 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
459 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
460 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
461 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
462 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
463 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
464 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
465 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
466 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
467 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
468 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
469 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
470 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
471 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
472 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
475 };
476 
477 struct dsiclk {
478 	u32 divsel_mask;
479 	u32 divsel_shift;
480 	u32 divsel;
481 };
482 
483 static struct dsiclk dsiclk[2] = {
484 	{
485 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
486 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
487 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
488 	},
489 	{
490 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
491 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
492 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
493 	}
494 };
495 
496 struct dsiescclk {
497 	u32 en;
498 	u32 div_mask;
499 	u32 div_shift;
500 };
501 
502 static struct dsiescclk dsiescclk[3] = {
503 	{
504 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
505 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
506 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
507 	},
508 	{
509 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
510 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
511 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
512 	},
513 	{
514 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
515 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
516 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
517 	}
518 };
519 
520 /*
521 * Used by MCDE to setup all necessary PRCMU registers
522 */
523 #define PRCMU_RESET_DSIPLL		0x00004000
524 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
525 
526 #define PRCMU_CLK_PLL_DIV_SHIFT		0
527 #define PRCMU_CLK_PLL_SW_SHIFT		5
528 #define PRCMU_CLK_38			(1 << 9)
529 #define PRCMU_CLK_38_SRC		(1 << 10)
530 #define PRCMU_CLK_38_DIV		(1 << 11)
531 
532 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
533 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
534 
535 /* DPI 50000000 Hz */
536 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
537 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
538 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
539 
540 /* D=101, N=1, R=4, SELDIV2=0 */
541 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
542 
543 #define PRCMU_ENABLE_PLLDSI		0x00000001
544 #define PRCMU_DISABLE_PLLDSI		0x00000000
545 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
546 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
547 /* ESC clk, div0=1, div1=1, div2=3 */
548 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
549 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
550 #define PRCMU_DSI_RESET_SW		0x00000007
551 
552 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
553 
554 int db8500_prcmu_enable_dsipll(void)
555 {
556 	int i;
557 
558 	/* Clear DSIPLL_RESETN */
559 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
560 	/* Unclamp DSIPLL in/out */
561 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
562 
563 	/* Set DSI PLL FREQ */
564 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
565 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
566 	/* Enable Escape clocks */
567 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
568 
569 	/* Start DSI PLL */
570 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
571 	/* Reset DSI PLL */
572 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
573 	for (i = 0; i < 10; i++) {
574 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
575 					== PRCMU_PLLDSI_LOCKP_LOCKED)
576 			break;
577 		udelay(100);
578 	}
579 	/* Set DSIPLL_RESETN */
580 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
581 	return 0;
582 }
583 
584 int db8500_prcmu_disable_dsipll(void)
585 {
586 	/* Disable dsi pll */
587 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
588 	/* Disable  escapeclock */
589 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
590 	return 0;
591 }
592 
593 int db8500_prcmu_set_display_clocks(void)
594 {
595 	unsigned long flags;
596 
597 	spin_lock_irqsave(&clk_mgt_lock, flags);
598 
599 	/* Grab the HW semaphore. */
600 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
601 		cpu_relax();
602 
603 	writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
604 	writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
605 	writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
606 
607 	/* Release the HW semaphore. */
608 	writel(0, PRCM_SEM);
609 
610 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
611 
612 	return 0;
613 }
614 
615 u32 db8500_prcmu_read(unsigned int reg)
616 {
617 	return readl(_PRCMU_BASE + reg);
618 }
619 
620 void db8500_prcmu_write(unsigned int reg, u32 value)
621 {
622 	unsigned long flags;
623 
624 	spin_lock_irqsave(&prcmu_lock, flags);
625 	writel(value, (_PRCMU_BASE + reg));
626 	spin_unlock_irqrestore(&prcmu_lock, flags);
627 }
628 
629 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
630 {
631 	u32 val;
632 	unsigned long flags;
633 
634 	spin_lock_irqsave(&prcmu_lock, flags);
635 	val = readl(_PRCMU_BASE + reg);
636 	val = ((val & ~mask) | (value & mask));
637 	writel(val, (_PRCMU_BASE + reg));
638 	spin_unlock_irqrestore(&prcmu_lock, flags);
639 }
640 
641 struct prcmu_fw_version *prcmu_get_fw_version(void)
642 {
643 	return fw_info.valid ? &fw_info.version : NULL;
644 }
645 
646 bool prcmu_has_arm_maxopp(void)
647 {
648 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
649 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
650 }
651 
652 /**
653  * prcmu_get_boot_status - PRCMU boot status checking
654  * Returns: the current PRCMU boot status
655  */
656 int prcmu_get_boot_status(void)
657 {
658 	return readb(tcdm_base + PRCM_BOOT_STATUS);
659 }
660 
661 /**
662  * prcmu_set_rc_a2p - This function is used to run few power state sequences
663  * @val: Value to be set, i.e. transition requested
664  * Returns: 0 on success, -EINVAL on invalid argument
665  *
666  * This function is used to run the following power state sequences -
667  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
668  */
669 int prcmu_set_rc_a2p(enum romcode_write val)
670 {
671 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
672 		return -EINVAL;
673 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
674 	return 0;
675 }
676 
677 /**
678  * prcmu_get_rc_p2a - This function is used to get power state sequences
679  * Returns: the power transition that has last happened
680  *
681  * This function can return the following transitions-
682  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
683  */
684 enum romcode_read prcmu_get_rc_p2a(void)
685 {
686 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
687 }
688 
689 /**
690  * prcmu_get_current_mode - Return the current XP70 power mode
691  * Returns: Returns the current AP(ARM) power mode: init,
692  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
693  */
694 enum ap_pwrst prcmu_get_xp70_current_state(void)
695 {
696 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
697 }
698 
699 /**
700  * prcmu_config_clkout - Configure one of the programmable clock outputs.
701  * @clkout:	The CLKOUT number (0 or 1).
702  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
703  * @div:	The divider to be applied.
704  *
705  * Configures one of the programmable clock outputs (CLKOUTs).
706  * @div should be in the range [1,63] to request a configuration, or 0 to
707  * inform that the configuration is no longer requested.
708  */
709 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
710 {
711 	static int requests[2];
712 	int r = 0;
713 	unsigned long flags;
714 	u32 val;
715 	u32 bits;
716 	u32 mask;
717 	u32 div_mask;
718 
719 	BUG_ON(clkout > 1);
720 	BUG_ON(div > 63);
721 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
722 
723 	if (!div && !requests[clkout])
724 		return -EINVAL;
725 
726 	switch (clkout) {
727 	case 0:
728 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
729 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
730 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
731 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
732 		break;
733 	case 1:
734 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
735 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
736 			PRCM_CLKOCR_CLK1TYPE);
737 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
738 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
739 		break;
740 	}
741 	bits &= mask;
742 
743 	spin_lock_irqsave(&clkout_lock, flags);
744 
745 	val = readl(PRCM_CLKOCR);
746 	if (val & div_mask) {
747 		if (div) {
748 			if ((val & mask) != bits) {
749 				r = -EBUSY;
750 				goto unlock_and_return;
751 			}
752 		} else {
753 			if ((val & mask & ~div_mask) != bits) {
754 				r = -EINVAL;
755 				goto unlock_and_return;
756 			}
757 		}
758 	}
759 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
760 	requests[clkout] += (div ? 1 : -1);
761 
762 unlock_and_return:
763 	spin_unlock_irqrestore(&clkout_lock, flags);
764 
765 	return r;
766 }
767 
768 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
769 {
770 	unsigned long flags;
771 
772 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
773 
774 	spin_lock_irqsave(&mb0_transfer.lock, flags);
775 
776 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
777 		cpu_relax();
778 
779 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
780 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
781 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
782 	writeb((keep_ulp_clk ? 1 : 0),
783 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
784 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
785 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
786 
787 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
788 
789 	return 0;
790 }
791 
792 u8 db8500_prcmu_get_power_state_result(void)
793 {
794 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
795 }
796 
797 /* This function decouple the gic from the prcmu */
798 int db8500_prcmu_gic_decouple(void)
799 {
800 	u32 val = readl(PRCM_A9_MASK_REQ);
801 
802 	/* Set bit 0 register value to 1 */
803 	writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ,
804 	       PRCM_A9_MASK_REQ);
805 
806 	/* Make sure the register is updated */
807 	readl(PRCM_A9_MASK_REQ);
808 
809 	/* Wait a few cycles for the gic mask completion */
810 	udelay(1);
811 
812 	return 0;
813 }
814 
815 /* This function recouple the gic with the prcmu */
816 int db8500_prcmu_gic_recouple(void)
817 {
818 	u32 val = readl(PRCM_A9_MASK_REQ);
819 
820 	/* Set bit 0 register value to 0 */
821 	writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ);
822 
823 	return 0;
824 }
825 
826 #define PRCMU_GIC_NUMBER_REGS 5
827 
828 /*
829  * This function checks if there are pending irq on the gic. It only
830  * makes sense if the gic has been decoupled before with the
831  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
832  * disables the forwarding of the interrupt to any CPU interface. It
833  * does not prevent the interrupt from changing state, for example
834  * becoming pending, or active and pending if it is already
835  * active. Hence, we have to check the interrupt is pending *and* is
836  * active.
837  */
838 bool db8500_prcmu_gic_pending_irq(void)
839 {
840 	u32 pr; /* Pending register */
841 	u32 er; /* Enable register */
842 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
843 	int i;
844 
845         /* 5 registers. STI & PPI not skipped */
846 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
847 
848 		pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
849 		er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
850 
851 		if (pr & er)
852 			return true; /* There is a pending interrupt */
853 	}
854 
855 	return false;
856 }
857 
858 /*
859  * This function checks if there are pending interrupt on the
860  * prcmu which has been delegated to monitor the irqs with the
861  * db8500_prcmu_copy_gic_settings function.
862  */
863 bool db8500_prcmu_pending_irq(void)
864 {
865 	u32 it, im;
866 	int i;
867 
868 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
869 		it = readl(PRCM_ARMITVAL31TO0 + i * 4);
870 		im = readl(PRCM_ARMITMSK31TO0 + i * 4);
871 		if (it & im)
872 			return true; /* There is a pending interrupt */
873 	}
874 
875 	return false;
876 }
877 
878 /*
879  * This function checks if the specified cpu is in in WFI. It's usage
880  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
881  * function. Of course passing smp_processor_id() to this function will
882  * always return false...
883  */
884 bool db8500_prcmu_is_cpu_in_wfi(int cpu)
885 {
886 	return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 :
887 		     PRCM_ARM_WFI_STANDBY_WFI0;
888 }
889 
890 /*
891  * This function copies the gic SPI settings to the prcmu in order to
892  * monitor them and abort/finish the retention/off sequence or state.
893  */
894 int db8500_prcmu_copy_gic_settings(void)
895 {
896 	u32 er; /* Enable register */
897 	void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
898 	int i;
899 
900         /* We skip the STI and PPI */
901 	for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
902 		er = readl_relaxed(dist_base +
903 				   GIC_DIST_ENABLE_SET + (i + 1) * 4);
904 		writel(er, PRCM_ARMITMSK31TO0 + i * 4);
905 	}
906 
907 	return 0;
908 }
909 
910 /* This function should only be called while mb0_transfer.lock is held. */
911 static void config_wakeups(void)
912 {
913 	const u8 header[2] = {
914 		MB0H_CONFIG_WAKEUPS_EXE,
915 		MB0H_CONFIG_WAKEUPS_SLEEP
916 	};
917 	static u32 last_dbb_events;
918 	static u32 last_abb_events;
919 	u32 dbb_events;
920 	u32 abb_events;
921 	unsigned int i;
922 
923 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
924 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
925 
926 	abb_events = mb0_transfer.req.abb_events;
927 
928 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
929 		return;
930 
931 	for (i = 0; i < 2; i++) {
932 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
933 			cpu_relax();
934 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
935 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
936 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
937 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
938 	}
939 	last_dbb_events = dbb_events;
940 	last_abb_events = abb_events;
941 }
942 
943 void db8500_prcmu_enable_wakeups(u32 wakeups)
944 {
945 	unsigned long flags;
946 	u32 bits;
947 	int i;
948 
949 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
950 
951 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
952 		if (wakeups & BIT(i))
953 			bits |= prcmu_wakeup_bit[i];
954 	}
955 
956 	spin_lock_irqsave(&mb0_transfer.lock, flags);
957 
958 	mb0_transfer.req.dbb_wakeups = bits;
959 	config_wakeups();
960 
961 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
962 }
963 
964 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
965 {
966 	unsigned long flags;
967 
968 	spin_lock_irqsave(&mb0_transfer.lock, flags);
969 
970 	mb0_transfer.req.abb_events = abb_events;
971 	config_wakeups();
972 
973 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
974 }
975 
976 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
977 {
978 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
979 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
980 	else
981 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
982 }
983 
984 /**
985  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
986  * @opp: The new ARM operating point to which transition is to be made
987  * Returns: 0 on success, non-zero on failure
988  *
989  * This function sets the the operating point of the ARM.
990  */
991 int db8500_prcmu_set_arm_opp(u8 opp)
992 {
993 	int r;
994 
995 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
996 		return -EINVAL;
997 
998 	r = 0;
999 
1000 	mutex_lock(&mb1_transfer.lock);
1001 
1002 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1003 		cpu_relax();
1004 
1005 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1006 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1007 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1008 
1009 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1010 	wait_for_completion(&mb1_transfer.work);
1011 
1012 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1013 		(mb1_transfer.ack.arm_opp != opp))
1014 		r = -EIO;
1015 
1016 	mutex_unlock(&mb1_transfer.lock);
1017 
1018 	return r;
1019 }
1020 
1021 /**
1022  * db8500_prcmu_get_arm_opp - get the current ARM OPP
1023  *
1024  * Returns: the current ARM OPP
1025  */
1026 int db8500_prcmu_get_arm_opp(void)
1027 {
1028 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1029 }
1030 
1031 /**
1032  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
1033  *
1034  * Returns: the current DDR OPP
1035  */
1036 int db8500_prcmu_get_ddr_opp(void)
1037 {
1038 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
1039 }
1040 
1041 /**
1042  * db8500_set_ddr_opp - set the appropriate DDR OPP
1043  * @opp: The new DDR operating point to which transition is to be made
1044  * Returns: 0 on success, non-zero on failure
1045  *
1046  * This function sets the operating point of the DDR.
1047  */
1048 int db8500_prcmu_set_ddr_opp(u8 opp)
1049 {
1050 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
1051 		return -EINVAL;
1052 	/* Changing the DDR OPP can hang the hardware pre-v21 */
1053 	if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1054 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
1055 
1056 	return 0;
1057 }
1058 
1059 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1060 static void request_even_slower_clocks(bool enable)
1061 {
1062 	void __iomem *clock_reg[] = {
1063 		PRCM_ACLK_MGT,
1064 		PRCM_DMACLK_MGT
1065 	};
1066 	unsigned long flags;
1067 	unsigned int i;
1068 
1069 	spin_lock_irqsave(&clk_mgt_lock, flags);
1070 
1071 	/* Grab the HW semaphore. */
1072 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1073 		cpu_relax();
1074 
1075 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1076 		u32 val;
1077 		u32 div;
1078 
1079 		val = readl(clock_reg[i]);
1080 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1081 		if (enable) {
1082 			if ((div <= 1) || (div > 15)) {
1083 				pr_err("prcmu: Bad clock divider %d in %s\n",
1084 					div, __func__);
1085 				goto unlock_and_return;
1086 			}
1087 			div <<= 1;
1088 		} else {
1089 			if (div <= 2)
1090 				goto unlock_and_return;
1091 			div >>= 1;
1092 		}
1093 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1094 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1095 		writel(val, clock_reg[i]);
1096 	}
1097 
1098 unlock_and_return:
1099 	/* Release the HW semaphore. */
1100 	writel(0, PRCM_SEM);
1101 
1102 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1103 }
1104 
1105 /**
1106  * db8500_set_ape_opp - set the appropriate APE OPP
1107  * @opp: The new APE operating point to which transition is to be made
1108  * Returns: 0 on success, non-zero on failure
1109  *
1110  * This function sets the operating point of the APE.
1111  */
1112 int db8500_prcmu_set_ape_opp(u8 opp)
1113 {
1114 	int r = 0;
1115 
1116 	if (opp == mb1_transfer.ape_opp)
1117 		return 0;
1118 
1119 	mutex_lock(&mb1_transfer.lock);
1120 
1121 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1122 		request_even_slower_clocks(false);
1123 
1124 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1125 		goto skip_message;
1126 
1127 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1128 		cpu_relax();
1129 
1130 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1131 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1132 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1133 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1134 
1135 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1136 	wait_for_completion(&mb1_transfer.work);
1137 
1138 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1139 		(mb1_transfer.ack.ape_opp != opp))
1140 		r = -EIO;
1141 
1142 skip_message:
1143 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1144 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1145 		request_even_slower_clocks(true);
1146 	if (!r)
1147 		mb1_transfer.ape_opp = opp;
1148 
1149 	mutex_unlock(&mb1_transfer.lock);
1150 
1151 	return r;
1152 }
1153 
1154 /**
1155  * db8500_prcmu_get_ape_opp - get the current APE OPP
1156  *
1157  * Returns: the current APE OPP
1158  */
1159 int db8500_prcmu_get_ape_opp(void)
1160 {
1161 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1162 }
1163 
1164 /**
1165  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1166  * @enable: true to request the higher voltage, false to drop a request.
1167  *
1168  * Calls to this function to enable and disable requests must be balanced.
1169  */
1170 int prcmu_request_ape_opp_100_voltage(bool enable)
1171 {
1172 	int r = 0;
1173 	u8 header;
1174 	static unsigned int requests;
1175 
1176 	mutex_lock(&mb1_transfer.lock);
1177 
1178 	if (enable) {
1179 		if (0 != requests++)
1180 			goto unlock_and_return;
1181 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1182 	} else {
1183 		if (requests == 0) {
1184 			r = -EIO;
1185 			goto unlock_and_return;
1186 		} else if (1 != requests--) {
1187 			goto unlock_and_return;
1188 		}
1189 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1190 	}
1191 
1192 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1193 		cpu_relax();
1194 
1195 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1196 
1197 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1198 	wait_for_completion(&mb1_transfer.work);
1199 
1200 	if ((mb1_transfer.ack.header != header) ||
1201 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1202 		r = -EIO;
1203 
1204 unlock_and_return:
1205 	mutex_unlock(&mb1_transfer.lock);
1206 
1207 	return r;
1208 }
1209 
1210 /**
1211  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1212  *
1213  * This function releases the power state requirements of a USB wakeup.
1214  */
1215 int prcmu_release_usb_wakeup_state(void)
1216 {
1217 	int r = 0;
1218 
1219 	mutex_lock(&mb1_transfer.lock);
1220 
1221 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1222 		cpu_relax();
1223 
1224 	writeb(MB1H_RELEASE_USB_WAKEUP,
1225 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1226 
1227 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1228 	wait_for_completion(&mb1_transfer.work);
1229 
1230 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1231 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1232 		r = -EIO;
1233 
1234 	mutex_unlock(&mb1_transfer.lock);
1235 
1236 	return r;
1237 }
1238 
1239 static int request_pll(u8 clock, bool enable)
1240 {
1241 	int r = 0;
1242 
1243 	if (clock == PRCMU_PLLSOC0)
1244 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1245 	else if (clock == PRCMU_PLLSOC1)
1246 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1247 	else
1248 		return -EINVAL;
1249 
1250 	mutex_lock(&mb1_transfer.lock);
1251 
1252 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1253 		cpu_relax();
1254 
1255 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1256 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1257 
1258 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1259 	wait_for_completion(&mb1_transfer.work);
1260 
1261 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1262 		r = -EIO;
1263 
1264 	mutex_unlock(&mb1_transfer.lock);
1265 
1266 	return r;
1267 }
1268 
1269 /**
1270  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1271  * @epod_id: The EPOD to set
1272  * @epod_state: The new EPOD state
1273  *
1274  * This function sets the state of a EPOD (power domain). It may not be called
1275  * from interrupt context.
1276  */
1277 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1278 {
1279 	int r = 0;
1280 	bool ram_retention = false;
1281 	int i;
1282 
1283 	/* check argument */
1284 	BUG_ON(epod_id >= NUM_EPOD_ID);
1285 
1286 	/* set flag if retention is possible */
1287 	switch (epod_id) {
1288 	case EPOD_ID_SVAMMDSP:
1289 	case EPOD_ID_SIAMMDSP:
1290 	case EPOD_ID_ESRAM12:
1291 	case EPOD_ID_ESRAM34:
1292 		ram_retention = true;
1293 		break;
1294 	}
1295 
1296 	/* check argument */
1297 	BUG_ON(epod_state > EPOD_STATE_ON);
1298 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1299 
1300 	/* get lock */
1301 	mutex_lock(&mb2_transfer.lock);
1302 
1303 	/* wait for mailbox */
1304 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1305 		cpu_relax();
1306 
1307 	/* fill in mailbox */
1308 	for (i = 0; i < NUM_EPOD_ID; i++)
1309 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1310 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1311 
1312 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1313 
1314 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1315 
1316 	/*
1317 	 * The current firmware version does not handle errors correctly,
1318 	 * and we cannot recover if there is an error.
1319 	 * This is expected to change when the firmware is updated.
1320 	 */
1321 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1322 			msecs_to_jiffies(20000))) {
1323 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1324 			__func__);
1325 		r = -EIO;
1326 		goto unlock_and_return;
1327 	}
1328 
1329 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1330 		r = -EIO;
1331 
1332 unlock_and_return:
1333 	mutex_unlock(&mb2_transfer.lock);
1334 	return r;
1335 }
1336 
1337 /**
1338  * prcmu_configure_auto_pm - Configure autonomous power management.
1339  * @sleep: Configuration for ApSleep.
1340  * @idle:  Configuration for ApIdle.
1341  */
1342 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1343 	struct prcmu_auto_pm_config *idle)
1344 {
1345 	u32 sleep_cfg;
1346 	u32 idle_cfg;
1347 	unsigned long flags;
1348 
1349 	BUG_ON((sleep == NULL) || (idle == NULL));
1350 
1351 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1352 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1353 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1354 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1355 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1356 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1357 
1358 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1359 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1360 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1361 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1362 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1363 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1364 
1365 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1366 
1367 	/*
1368 	 * The autonomous power management configuration is done through
1369 	 * fields in mailbox 2, but these fields are only used as shared
1370 	 * variables - i.e. there is no need to send a message.
1371 	 */
1372 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1373 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1374 
1375 	mb2_transfer.auto_pm_enabled =
1376 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1377 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1378 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1379 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1380 
1381 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1382 }
1383 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1384 
1385 bool prcmu_is_auto_pm_enabled(void)
1386 {
1387 	return mb2_transfer.auto_pm_enabled;
1388 }
1389 
1390 static int request_sysclk(bool enable)
1391 {
1392 	int r;
1393 	unsigned long flags;
1394 
1395 	r = 0;
1396 
1397 	mutex_lock(&mb3_transfer.sysclk_lock);
1398 
1399 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1400 
1401 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1402 		cpu_relax();
1403 
1404 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1405 
1406 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1407 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1408 
1409 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1410 
1411 	/*
1412 	 * The firmware only sends an ACK if we want to enable the
1413 	 * SysClk, and it succeeds.
1414 	 */
1415 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1416 			msecs_to_jiffies(20000))) {
1417 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1418 			__func__);
1419 		r = -EIO;
1420 	}
1421 
1422 	mutex_unlock(&mb3_transfer.sysclk_lock);
1423 
1424 	return r;
1425 }
1426 
1427 static int request_timclk(bool enable)
1428 {
1429 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1430 
1431 	if (!enable)
1432 		val |= PRCM_TCR_STOP_TIMERS;
1433 	writel(val, PRCM_TCR);
1434 
1435 	return 0;
1436 }
1437 
1438 static int request_clock(u8 clock, bool enable)
1439 {
1440 	u32 val;
1441 	unsigned long flags;
1442 
1443 	spin_lock_irqsave(&clk_mgt_lock, flags);
1444 
1445 	/* Grab the HW semaphore. */
1446 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1447 		cpu_relax();
1448 
1449 	val = readl(clk_mgt[clock].reg);
1450 	if (enable) {
1451 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1452 	} else {
1453 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1454 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1455 	}
1456 	writel(val, clk_mgt[clock].reg);
1457 
1458 	/* Release the HW semaphore. */
1459 	writel(0, PRCM_SEM);
1460 
1461 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1462 
1463 	return 0;
1464 }
1465 
1466 static int request_sga_clock(u8 clock, bool enable)
1467 {
1468 	u32 val;
1469 	int ret;
1470 
1471 	if (enable) {
1472 		val = readl(PRCM_CGATING_BYPASS);
1473 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1474 	}
1475 
1476 	ret = request_clock(clock, enable);
1477 
1478 	if (!ret && !enable) {
1479 		val = readl(PRCM_CGATING_BYPASS);
1480 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1481 	}
1482 
1483 	return ret;
1484 }
1485 
1486 static inline bool plldsi_locked(void)
1487 {
1488 	return (readl(PRCM_PLLDSI_LOCKP) &
1489 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1490 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1491 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1492 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1493 }
1494 
1495 static int request_plldsi(bool enable)
1496 {
1497 	int r = 0;
1498 	u32 val;
1499 
1500 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1501 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1502 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1503 
1504 	val = readl(PRCM_PLLDSI_ENABLE);
1505 	if (enable)
1506 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1507 	else
1508 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1509 	writel(val, PRCM_PLLDSI_ENABLE);
1510 
1511 	if (enable) {
1512 		unsigned int i;
1513 		bool locked = plldsi_locked();
1514 
1515 		for (i = 10; !locked && (i > 0); --i) {
1516 			udelay(100);
1517 			locked = plldsi_locked();
1518 		}
1519 		if (locked) {
1520 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1521 				PRCM_APE_RESETN_SET);
1522 		} else {
1523 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1524 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1525 				PRCM_MMIP_LS_CLAMP_SET);
1526 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1527 			writel(val, PRCM_PLLDSI_ENABLE);
1528 			r = -EAGAIN;
1529 		}
1530 	} else {
1531 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1532 	}
1533 	return r;
1534 }
1535 
1536 static int request_dsiclk(u8 n, bool enable)
1537 {
1538 	u32 val;
1539 
1540 	val = readl(PRCM_DSI_PLLOUT_SEL);
1541 	val &= ~dsiclk[n].divsel_mask;
1542 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1543 		dsiclk[n].divsel_shift);
1544 	writel(val, PRCM_DSI_PLLOUT_SEL);
1545 	return 0;
1546 }
1547 
1548 static int request_dsiescclk(u8 n, bool enable)
1549 {
1550 	u32 val;
1551 
1552 	val = readl(PRCM_DSITVCLK_DIV);
1553 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1554 	writel(val, PRCM_DSITVCLK_DIV);
1555 	return 0;
1556 }
1557 
1558 /**
1559  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1560  * @clock:      The clock for which the request is made.
1561  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1562  *
1563  * This function should only be used by the clock implementation.
1564  * Do not use it from any other place!
1565  */
1566 int db8500_prcmu_request_clock(u8 clock, bool enable)
1567 {
1568 	if (clock == PRCMU_SGACLK)
1569 		return request_sga_clock(clock, enable);
1570 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1571 		return request_clock(clock, enable);
1572 	else if (clock == PRCMU_TIMCLK)
1573 		return request_timclk(enable);
1574 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1575 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1576 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1577 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1578 	else if (clock == PRCMU_PLLDSI)
1579 		return request_plldsi(enable);
1580 	else if (clock == PRCMU_SYSCLK)
1581 		return request_sysclk(enable);
1582 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1583 		return request_pll(clock, enable);
1584 	else
1585 		return -EINVAL;
1586 }
1587 
1588 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1589 	int branch)
1590 {
1591 	u64 rate;
1592 	u32 val;
1593 	u32 d;
1594 	u32 div = 1;
1595 
1596 	val = readl(reg);
1597 
1598 	rate = src_rate;
1599 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1600 
1601 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1602 	if (d > 1)
1603 		div *= d;
1604 
1605 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1606 	if (d > 1)
1607 		div *= d;
1608 
1609 	if (val & PRCM_PLL_FREQ_SELDIV2)
1610 		div *= 2;
1611 
1612 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1613 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1614 		((reg == PRCM_PLLSOC0_FREQ) ||
1615 		 (reg == PRCM_PLLDDR_FREQ))))
1616 		div *= 2;
1617 
1618 	(void)do_div(rate, div);
1619 
1620 	return (unsigned long)rate;
1621 }
1622 
1623 #define ROOT_CLOCK_RATE 38400000
1624 
1625 static unsigned long clock_rate(u8 clock)
1626 {
1627 	u32 val;
1628 	u32 pllsw;
1629 	unsigned long rate = ROOT_CLOCK_RATE;
1630 
1631 	val = readl(clk_mgt[clock].reg);
1632 
1633 	if (val & PRCM_CLK_MGT_CLK38) {
1634 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1635 			rate /= 2;
1636 		return rate;
1637 	}
1638 
1639 	val |= clk_mgt[clock].pllsw;
1640 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1641 
1642 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1643 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1644 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1645 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1646 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1647 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1648 	else
1649 		return 0;
1650 
1651 	if ((clock == PRCMU_SGACLK) &&
1652 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1653 		u64 r = (rate * 10);
1654 
1655 		(void)do_div(r, 25);
1656 		return (unsigned long)r;
1657 	}
1658 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1659 	if (val)
1660 		return rate / val;
1661 	else
1662 		return 0;
1663 }
1664 
1665 static unsigned long dsiclk_rate(u8 n)
1666 {
1667 	u32 divsel;
1668 	u32 div = 1;
1669 
1670 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1671 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1672 
1673 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1674 		divsel = dsiclk[n].divsel;
1675 
1676 	switch (divsel) {
1677 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1678 		div *= 2;
1679 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1680 		div *= 2;
1681 	case PRCM_DSI_PLLOUT_SEL_PHI:
1682 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1683 			PLL_RAW) / div;
1684 	default:
1685 		return 0;
1686 	}
1687 }
1688 
1689 static unsigned long dsiescclk_rate(u8 n)
1690 {
1691 	u32 div;
1692 
1693 	div = readl(PRCM_DSITVCLK_DIV);
1694 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1695 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1696 }
1697 
1698 unsigned long prcmu_clock_rate(u8 clock)
1699 {
1700 	if (clock < PRCMU_NUM_REG_CLOCKS)
1701 		return clock_rate(clock);
1702 	else if (clock == PRCMU_TIMCLK)
1703 		return ROOT_CLOCK_RATE / 16;
1704 	else if (clock == PRCMU_SYSCLK)
1705 		return ROOT_CLOCK_RATE;
1706 	else if (clock == PRCMU_PLLSOC0)
1707 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1708 	else if (clock == PRCMU_PLLSOC1)
1709 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1710 	else if (clock == PRCMU_PLLDDR)
1711 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1712 	else if (clock == PRCMU_PLLDSI)
1713 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1714 			PLL_RAW);
1715 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1716 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1717 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1718 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1719 	else
1720 		return 0;
1721 }
1722 
1723 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1724 {
1725 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1726 		return ROOT_CLOCK_RATE;
1727 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1728 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1729 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1730 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1731 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1732 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1733 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1734 	else
1735 		return 0;
1736 }
1737 
1738 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1739 {
1740 	u32 div;
1741 
1742 	div = (src_rate / rate);
1743 	if (div == 0)
1744 		return 1;
1745 	if (rate < (src_rate / div))
1746 		div++;
1747 	return div;
1748 }
1749 
1750 static long round_clock_rate(u8 clock, unsigned long rate)
1751 {
1752 	u32 val;
1753 	u32 div;
1754 	unsigned long src_rate;
1755 	long rounded_rate;
1756 
1757 	val = readl(clk_mgt[clock].reg);
1758 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1759 		clk_mgt[clock].branch);
1760 	div = clock_divider(src_rate, rate);
1761 	if (val & PRCM_CLK_MGT_CLK38) {
1762 		if (clk_mgt[clock].clk38div) {
1763 			if (div > 2)
1764 				div = 2;
1765 		} else {
1766 			div = 1;
1767 		}
1768 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1769 		u64 r = (src_rate * 10);
1770 
1771 		(void)do_div(r, 25);
1772 		if (r <= rate)
1773 			return (unsigned long)r;
1774 	}
1775 	rounded_rate = (src_rate / min(div, (u32)31));
1776 
1777 	return rounded_rate;
1778 }
1779 
1780 #define MIN_PLL_VCO_RATE 600000000ULL
1781 #define MAX_PLL_VCO_RATE 1680640000ULL
1782 
1783 static long round_plldsi_rate(unsigned long rate)
1784 {
1785 	long rounded_rate = 0;
1786 	unsigned long src_rate;
1787 	unsigned long rem;
1788 	u32 r;
1789 
1790 	src_rate = clock_rate(PRCMU_HDMICLK);
1791 	rem = rate;
1792 
1793 	for (r = 7; (rem > 0) && (r > 0); r--) {
1794 		u64 d;
1795 
1796 		d = (r * rate);
1797 		(void)do_div(d, src_rate);
1798 		if (d < 6)
1799 			d = 6;
1800 		else if (d > 255)
1801 			d = 255;
1802 		d *= src_rate;
1803 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1804 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1805 			continue;
1806 		(void)do_div(d, r);
1807 		if (rate < d) {
1808 			if (rounded_rate == 0)
1809 				rounded_rate = (long)d;
1810 			break;
1811 		}
1812 		if ((rate - d) < rem) {
1813 			rem = (rate - d);
1814 			rounded_rate = (long)d;
1815 		}
1816 	}
1817 	return rounded_rate;
1818 }
1819 
1820 static long round_dsiclk_rate(unsigned long rate)
1821 {
1822 	u32 div;
1823 	unsigned long src_rate;
1824 	long rounded_rate;
1825 
1826 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1827 		PLL_RAW);
1828 	div = clock_divider(src_rate, rate);
1829 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1830 
1831 	return rounded_rate;
1832 }
1833 
1834 static long round_dsiescclk_rate(unsigned long rate)
1835 {
1836 	u32 div;
1837 	unsigned long src_rate;
1838 	long rounded_rate;
1839 
1840 	src_rate = clock_rate(PRCMU_TVCLK);
1841 	div = clock_divider(src_rate, rate);
1842 	rounded_rate = (src_rate / min(div, (u32)255));
1843 
1844 	return rounded_rate;
1845 }
1846 
1847 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1848 {
1849 	if (clock < PRCMU_NUM_REG_CLOCKS)
1850 		return round_clock_rate(clock, rate);
1851 	else if (clock == PRCMU_PLLDSI)
1852 		return round_plldsi_rate(rate);
1853 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1854 		return round_dsiclk_rate(rate);
1855 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1856 		return round_dsiescclk_rate(rate);
1857 	else
1858 		return (long)prcmu_clock_rate(clock);
1859 }
1860 
1861 static void set_clock_rate(u8 clock, unsigned long rate)
1862 {
1863 	u32 val;
1864 	u32 div;
1865 	unsigned long src_rate;
1866 	unsigned long flags;
1867 
1868 	spin_lock_irqsave(&clk_mgt_lock, flags);
1869 
1870 	/* Grab the HW semaphore. */
1871 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1872 		cpu_relax();
1873 
1874 	val = readl(clk_mgt[clock].reg);
1875 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1876 		clk_mgt[clock].branch);
1877 	div = clock_divider(src_rate, rate);
1878 	if (val & PRCM_CLK_MGT_CLK38) {
1879 		if (clk_mgt[clock].clk38div) {
1880 			if (div > 1)
1881 				val |= PRCM_CLK_MGT_CLK38DIV;
1882 			else
1883 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1884 		}
1885 	} else if (clock == PRCMU_SGACLK) {
1886 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1887 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1888 		if (div == 3) {
1889 			u64 r = (src_rate * 10);
1890 
1891 			(void)do_div(r, 25);
1892 			if (r <= rate) {
1893 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1894 				div = 0;
1895 			}
1896 		}
1897 		val |= min(div, (u32)31);
1898 	} else {
1899 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1900 		val |= min(div, (u32)31);
1901 	}
1902 	writel(val, clk_mgt[clock].reg);
1903 
1904 	/* Release the HW semaphore. */
1905 	writel(0, PRCM_SEM);
1906 
1907 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1908 }
1909 
1910 static int set_plldsi_rate(unsigned long rate)
1911 {
1912 	unsigned long src_rate;
1913 	unsigned long rem;
1914 	u32 pll_freq = 0;
1915 	u32 r;
1916 
1917 	src_rate = clock_rate(PRCMU_HDMICLK);
1918 	rem = rate;
1919 
1920 	for (r = 7; (rem > 0) && (r > 0); r--) {
1921 		u64 d;
1922 		u64 hwrate;
1923 
1924 		d = (r * rate);
1925 		(void)do_div(d, src_rate);
1926 		if (d < 6)
1927 			d = 6;
1928 		else if (d > 255)
1929 			d = 255;
1930 		hwrate = (d * src_rate);
1931 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1932 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1933 			continue;
1934 		(void)do_div(hwrate, r);
1935 		if (rate < hwrate) {
1936 			if (pll_freq == 0)
1937 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1938 					(r << PRCM_PLL_FREQ_R_SHIFT));
1939 			break;
1940 		}
1941 		if ((rate - hwrate) < rem) {
1942 			rem = (rate - hwrate);
1943 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1944 				(r << PRCM_PLL_FREQ_R_SHIFT));
1945 		}
1946 	}
1947 	if (pll_freq == 0)
1948 		return -EINVAL;
1949 
1950 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1951 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1952 
1953 	return 0;
1954 }
1955 
1956 static void set_dsiclk_rate(u8 n, unsigned long rate)
1957 {
1958 	u32 val;
1959 	u32 div;
1960 
1961 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1962 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1963 
1964 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1965 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1966 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1967 
1968 	val = readl(PRCM_DSI_PLLOUT_SEL);
1969 	val &= ~dsiclk[n].divsel_mask;
1970 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1971 	writel(val, PRCM_DSI_PLLOUT_SEL);
1972 }
1973 
1974 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1975 {
1976 	u32 val;
1977 	u32 div;
1978 
1979 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1980 	val = readl(PRCM_DSITVCLK_DIV);
1981 	val &= ~dsiescclk[n].div_mask;
1982 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1983 	writel(val, PRCM_DSITVCLK_DIV);
1984 }
1985 
1986 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1987 {
1988 	if (clock < PRCMU_NUM_REG_CLOCKS)
1989 		set_clock_rate(clock, rate);
1990 	else if (clock == PRCMU_PLLDSI)
1991 		return set_plldsi_rate(rate);
1992 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1993 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1994 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1995 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1996 	return 0;
1997 }
1998 
1999 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
2000 {
2001 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2002 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2003 		return -EINVAL;
2004 
2005 	mutex_lock(&mb4_transfer.lock);
2006 
2007 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2008 		cpu_relax();
2009 
2010 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2011 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2012 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2013 	writeb(DDR_PWR_STATE_ON,
2014 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2015 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2016 
2017 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2018 	wait_for_completion(&mb4_transfer.work);
2019 
2020 	mutex_unlock(&mb4_transfer.lock);
2021 
2022 	return 0;
2023 }
2024 
2025 int db8500_prcmu_config_hotdog(u8 threshold)
2026 {
2027 	mutex_lock(&mb4_transfer.lock);
2028 
2029 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2030 		cpu_relax();
2031 
2032 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2033 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2034 
2035 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2036 	wait_for_completion(&mb4_transfer.work);
2037 
2038 	mutex_unlock(&mb4_transfer.lock);
2039 
2040 	return 0;
2041 }
2042 
2043 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2044 {
2045 	mutex_lock(&mb4_transfer.lock);
2046 
2047 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2048 		cpu_relax();
2049 
2050 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2051 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2052 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2053 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2054 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2055 
2056 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2057 	wait_for_completion(&mb4_transfer.work);
2058 
2059 	mutex_unlock(&mb4_transfer.lock);
2060 
2061 	return 0;
2062 }
2063 
2064 static int config_hot_period(u16 val)
2065 {
2066 	mutex_lock(&mb4_transfer.lock);
2067 
2068 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2069 		cpu_relax();
2070 
2071 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2072 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2073 
2074 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2075 	wait_for_completion(&mb4_transfer.work);
2076 
2077 	mutex_unlock(&mb4_transfer.lock);
2078 
2079 	return 0;
2080 }
2081 
2082 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2083 {
2084 	if (cycles32k == 0xFFFF)
2085 		return -EINVAL;
2086 
2087 	return config_hot_period(cycles32k);
2088 }
2089 
2090 int db8500_prcmu_stop_temp_sense(void)
2091 {
2092 	return config_hot_period(0xFFFF);
2093 }
2094 
2095 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2096 {
2097 
2098 	mutex_lock(&mb4_transfer.lock);
2099 
2100 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2101 		cpu_relax();
2102 
2103 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2104 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2105 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2106 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2107 
2108 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2109 
2110 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2111 	wait_for_completion(&mb4_transfer.work);
2112 
2113 	mutex_unlock(&mb4_transfer.lock);
2114 
2115 	return 0;
2116 
2117 }
2118 
2119 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2120 {
2121 	BUG_ON(num == 0 || num > 0xf);
2122 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2123 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2124 			    A9WDOG_AUTO_OFF_DIS);
2125 }
2126 
2127 int db8500_prcmu_enable_a9wdog(u8 id)
2128 {
2129 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2130 }
2131 
2132 int db8500_prcmu_disable_a9wdog(u8 id)
2133 {
2134 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2135 }
2136 
2137 int db8500_prcmu_kick_a9wdog(u8 id)
2138 {
2139 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2140 }
2141 
2142 /*
2143  * timeout is 28 bit, in ms.
2144  */
2145 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2146 {
2147 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2148 			    (id & A9WDOG_ID_MASK) |
2149 			    /*
2150 			     * Put the lowest 28 bits of timeout at
2151 			     * offset 4. Four first bits are used for id.
2152 			     */
2153 			    (u8)((timeout << 4) & 0xf0),
2154 			    (u8)((timeout >> 4) & 0xff),
2155 			    (u8)((timeout >> 12) & 0xff),
2156 			    (u8)((timeout >> 20) & 0xff));
2157 }
2158 
2159 /**
2160  * prcmu_abb_read() - Read register value(s) from the ABB.
2161  * @slave:	The I2C slave address.
2162  * @reg:	The (start) register address.
2163  * @value:	The read out value(s).
2164  * @size:	The number of registers to read.
2165  *
2166  * Reads register value(s) from the ABB.
2167  * @size has to be 1 for the current firmware version.
2168  */
2169 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2170 {
2171 	int r;
2172 
2173 	if (size != 1)
2174 		return -EINVAL;
2175 
2176 	mutex_lock(&mb5_transfer.lock);
2177 
2178 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2179 		cpu_relax();
2180 
2181 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2182 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2183 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2184 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2185 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2186 
2187 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2188 
2189 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2190 				msecs_to_jiffies(20000))) {
2191 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2192 			__func__);
2193 		r = -EIO;
2194 	} else {
2195 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2196 	}
2197 
2198 	if (!r)
2199 		*value = mb5_transfer.ack.value;
2200 
2201 	mutex_unlock(&mb5_transfer.lock);
2202 
2203 	return r;
2204 }
2205 
2206 /**
2207  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2208  * @slave:	The I2C slave address.
2209  * @reg:	The (start) register address.
2210  * @value:	The value(s) to write.
2211  * @mask:	The mask(s) to use.
2212  * @size:	The number of registers to write.
2213  *
2214  * Writes masked register value(s) to the ABB.
2215  * For each @value, only the bits set to 1 in the corresponding @mask
2216  * will be written. The other bits are not changed.
2217  * @size has to be 1 for the current firmware version.
2218  */
2219 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2220 {
2221 	int r;
2222 
2223 	if (size != 1)
2224 		return -EINVAL;
2225 
2226 	mutex_lock(&mb5_transfer.lock);
2227 
2228 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2229 		cpu_relax();
2230 
2231 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2232 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2233 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2234 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2235 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2236 
2237 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2238 
2239 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2240 				msecs_to_jiffies(20000))) {
2241 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2242 			__func__);
2243 		r = -EIO;
2244 	} else {
2245 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2246 	}
2247 
2248 	mutex_unlock(&mb5_transfer.lock);
2249 
2250 	return r;
2251 }
2252 
2253 /**
2254  * prcmu_abb_write() - Write register value(s) to the ABB.
2255  * @slave:	The I2C slave address.
2256  * @reg:	The (start) register address.
2257  * @value:	The value(s) to write.
2258  * @size:	The number of registers to write.
2259  *
2260  * Writes register value(s) to the ABB.
2261  * @size has to be 1 for the current firmware version.
2262  */
2263 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2264 {
2265 	u8 mask = ~0;
2266 
2267 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2268 }
2269 
2270 /**
2271  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2272  */
2273 int prcmu_ac_wake_req(void)
2274 {
2275 	u32 val;
2276 	int ret = 0;
2277 
2278 	mutex_lock(&mb0_transfer.ac_wake_lock);
2279 
2280 	val = readl(PRCM_HOSTACCESS_REQ);
2281 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2282 		goto unlock_and_return;
2283 
2284 	atomic_set(&ac_wake_req_state, 1);
2285 
2286 	/*
2287 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2288 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2289 	 * request. The 31us delay has been calculated by HWI.
2290 	 */
2291 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2292 	writel(val, PRCM_HOSTACCESS_REQ);
2293 
2294 	udelay(31);
2295 
2296 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2297 	writel(val, PRCM_HOSTACCESS_REQ);
2298 
2299 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2300 			msecs_to_jiffies(5000))) {
2301 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2302 		db8500_prcmu_debug_dump(__func__, true, true);
2303 #endif
2304 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2305 			__func__);
2306 		ret = -EFAULT;
2307 	}
2308 
2309 unlock_and_return:
2310 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2311 	return ret;
2312 }
2313 
2314 /**
2315  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2316  */
2317 void prcmu_ac_sleep_req()
2318 {
2319 	u32 val;
2320 
2321 	mutex_lock(&mb0_transfer.ac_wake_lock);
2322 
2323 	val = readl(PRCM_HOSTACCESS_REQ);
2324 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2325 		goto unlock_and_return;
2326 
2327 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2328 		PRCM_HOSTACCESS_REQ);
2329 
2330 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2331 			msecs_to_jiffies(5000))) {
2332 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2333 			__func__);
2334 	}
2335 
2336 	atomic_set(&ac_wake_req_state, 0);
2337 
2338 unlock_and_return:
2339 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2340 }
2341 
2342 bool db8500_prcmu_is_ac_wake_requested(void)
2343 {
2344 	return (atomic_read(&ac_wake_req_state) != 0);
2345 }
2346 
2347 /**
2348  * db8500_prcmu_system_reset - System reset
2349  *
2350  * Saves the reset reason code and then sets the APE_SOFTRST register which
2351  * fires interrupt to fw
2352  */
2353 void db8500_prcmu_system_reset(u16 reset_code)
2354 {
2355 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2356 	writel(1, PRCM_APE_SOFTRST);
2357 }
2358 
2359 /**
2360  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2361  *
2362  * Retrieves the reset reason code stored by prcmu_system_reset() before
2363  * last restart.
2364  */
2365 u16 db8500_prcmu_get_reset_code(void)
2366 {
2367 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2368 }
2369 
2370 /**
2371  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2372  */
2373 void db8500_prcmu_modem_reset(void)
2374 {
2375 	mutex_lock(&mb1_transfer.lock);
2376 
2377 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2378 		cpu_relax();
2379 
2380 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2381 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2382 	wait_for_completion(&mb1_transfer.work);
2383 
2384 	/*
2385 	 * No need to check return from PRCMU as modem should go in reset state
2386 	 * This state is already managed by upper layer
2387 	 */
2388 
2389 	mutex_unlock(&mb1_transfer.lock);
2390 }
2391 
2392 static void ack_dbb_wakeup(void)
2393 {
2394 	unsigned long flags;
2395 
2396 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2397 
2398 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2399 		cpu_relax();
2400 
2401 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2402 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2403 
2404 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2405 }
2406 
2407 static inline void print_unknown_header_warning(u8 n, u8 header)
2408 {
2409 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2410 		header, n);
2411 }
2412 
2413 static bool read_mailbox_0(void)
2414 {
2415 	bool r;
2416 	u32 ev;
2417 	unsigned int n;
2418 	u8 header;
2419 
2420 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2421 	switch (header) {
2422 	case MB0H_WAKEUP_EXE:
2423 	case MB0H_WAKEUP_SLEEP:
2424 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2425 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2426 		else
2427 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2428 
2429 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2430 			complete(&mb0_transfer.ac_wake_work);
2431 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2432 			complete(&mb3_transfer.sysclk_work);
2433 
2434 		ev &= mb0_transfer.req.dbb_irqs;
2435 
2436 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2437 			if (ev & prcmu_irq_bit[n])
2438 				generic_handle_irq(IRQ_PRCMU_BASE + n);
2439 		}
2440 		r = true;
2441 		break;
2442 	default:
2443 		print_unknown_header_warning(0, header);
2444 		r = false;
2445 		break;
2446 	}
2447 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2448 	return r;
2449 }
2450 
2451 static bool read_mailbox_1(void)
2452 {
2453 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2454 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2455 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2456 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2457 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2458 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2459 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2460 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2461 	complete(&mb1_transfer.work);
2462 	return false;
2463 }
2464 
2465 static bool read_mailbox_2(void)
2466 {
2467 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2468 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2469 	complete(&mb2_transfer.work);
2470 	return false;
2471 }
2472 
2473 static bool read_mailbox_3(void)
2474 {
2475 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2476 	return false;
2477 }
2478 
2479 static bool read_mailbox_4(void)
2480 {
2481 	u8 header;
2482 	bool do_complete = true;
2483 
2484 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2485 	switch (header) {
2486 	case MB4H_MEM_ST:
2487 	case MB4H_HOTDOG:
2488 	case MB4H_HOTMON:
2489 	case MB4H_HOT_PERIOD:
2490 	case MB4H_A9WDOG_CONF:
2491 	case MB4H_A9WDOG_EN:
2492 	case MB4H_A9WDOG_DIS:
2493 	case MB4H_A9WDOG_LOAD:
2494 	case MB4H_A9WDOG_KICK:
2495 		break;
2496 	default:
2497 		print_unknown_header_warning(4, header);
2498 		do_complete = false;
2499 		break;
2500 	}
2501 
2502 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2503 
2504 	if (do_complete)
2505 		complete(&mb4_transfer.work);
2506 
2507 	return false;
2508 }
2509 
2510 static bool read_mailbox_5(void)
2511 {
2512 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2513 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2514 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2515 	complete(&mb5_transfer.work);
2516 	return false;
2517 }
2518 
2519 static bool read_mailbox_6(void)
2520 {
2521 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2522 	return false;
2523 }
2524 
2525 static bool read_mailbox_7(void)
2526 {
2527 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2528 	return false;
2529 }
2530 
2531 static bool (* const read_mailbox[NUM_MB])(void) = {
2532 	read_mailbox_0,
2533 	read_mailbox_1,
2534 	read_mailbox_2,
2535 	read_mailbox_3,
2536 	read_mailbox_4,
2537 	read_mailbox_5,
2538 	read_mailbox_6,
2539 	read_mailbox_7
2540 };
2541 
2542 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2543 {
2544 	u32 bits;
2545 	u8 n;
2546 	irqreturn_t r;
2547 
2548 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2549 	if (unlikely(!bits))
2550 		return IRQ_NONE;
2551 
2552 	r = IRQ_HANDLED;
2553 	for (n = 0; bits; n++) {
2554 		if (bits & MBOX_BIT(n)) {
2555 			bits -= MBOX_BIT(n);
2556 			if (read_mailbox[n]())
2557 				r = IRQ_WAKE_THREAD;
2558 		}
2559 	}
2560 	return r;
2561 }
2562 
2563 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2564 {
2565 	ack_dbb_wakeup();
2566 	return IRQ_HANDLED;
2567 }
2568 
2569 static void prcmu_mask_work(struct work_struct *work)
2570 {
2571 	unsigned long flags;
2572 
2573 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2574 
2575 	config_wakeups();
2576 
2577 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2578 }
2579 
2580 static void prcmu_irq_mask(struct irq_data *d)
2581 {
2582 	unsigned long flags;
2583 
2584 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2585 
2586 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2587 
2588 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2589 
2590 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2591 		schedule_work(&mb0_transfer.mask_work);
2592 }
2593 
2594 static void prcmu_irq_unmask(struct irq_data *d)
2595 {
2596 	unsigned long flags;
2597 
2598 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2599 
2600 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
2601 
2602 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2603 
2604 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2605 		schedule_work(&mb0_transfer.mask_work);
2606 }
2607 
2608 static void noop(struct irq_data *d)
2609 {
2610 }
2611 
2612 static struct irq_chip prcmu_irq_chip = {
2613 	.name		= "prcmu",
2614 	.irq_disable	= prcmu_irq_mask,
2615 	.irq_ack	= noop,
2616 	.irq_mask	= prcmu_irq_mask,
2617 	.irq_unmask	= prcmu_irq_unmask,
2618 };
2619 
2620 static char *fw_project_name(u8 project)
2621 {
2622 	switch (project) {
2623 	case PRCMU_FW_PROJECT_U8500:
2624 		return "U8500";
2625 	case PRCMU_FW_PROJECT_U8500_C2:
2626 		return "U8500 C2";
2627 	case PRCMU_FW_PROJECT_U9500:
2628 		return "U9500";
2629 	case PRCMU_FW_PROJECT_U9500_C2:
2630 		return "U9500 C2";
2631 	case PRCMU_FW_PROJECT_U8520:
2632 		return "U8520";
2633 	case PRCMU_FW_PROJECT_U8420:
2634 		return "U8420";
2635 	default:
2636 		return "Unknown";
2637 	}
2638 }
2639 
2640 void __init db8500_prcmu_early_init(void)
2641 {
2642 	unsigned int i;
2643 	if (cpu_is_u8500v2()) {
2644 		void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2645 
2646 		if (tcpm_base != NULL) {
2647 			u32 version;
2648 			version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2649 			fw_info.version.project = version & 0xFF;
2650 			fw_info.version.api_version = (version >> 8) & 0xFF;
2651 			fw_info.version.func_version = (version >> 16) & 0xFF;
2652 			fw_info.version.errata = (version >> 24) & 0xFF;
2653 			fw_info.valid = true;
2654 			pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2655 				fw_project_name(fw_info.version.project),
2656 				(version >> 8) & 0xFF, (version >> 16) & 0xFF,
2657 				(version >> 24) & 0xFF);
2658 			iounmap(tcpm_base);
2659 		}
2660 
2661 		tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2662 	} else {
2663 		pr_err("prcmu: Unsupported chip version\n");
2664 		BUG();
2665 	}
2666 
2667 	spin_lock_init(&mb0_transfer.lock);
2668 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2669 	mutex_init(&mb0_transfer.ac_wake_lock);
2670 	init_completion(&mb0_transfer.ac_wake_work);
2671 	mutex_init(&mb1_transfer.lock);
2672 	init_completion(&mb1_transfer.work);
2673 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2674 	mutex_init(&mb2_transfer.lock);
2675 	init_completion(&mb2_transfer.work);
2676 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2677 	spin_lock_init(&mb3_transfer.lock);
2678 	mutex_init(&mb3_transfer.sysclk_lock);
2679 	init_completion(&mb3_transfer.sysclk_work);
2680 	mutex_init(&mb4_transfer.lock);
2681 	init_completion(&mb4_transfer.work);
2682 	mutex_init(&mb5_transfer.lock);
2683 	init_completion(&mb5_transfer.work);
2684 
2685 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2686 
2687 	/* Initalize irqs. */
2688 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
2689 		unsigned int irq;
2690 
2691 		irq = IRQ_PRCMU_BASE + i;
2692 		irq_set_chip_and_handler(irq, &prcmu_irq_chip,
2693 					 handle_simple_irq);
2694 		set_irq_flags(irq, IRQF_VALID);
2695 	}
2696 }
2697 
2698 static void __init init_prcm_registers(void)
2699 {
2700 	u32 val;
2701 
2702 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2703 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2704 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2705 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2706 }
2707 
2708 /*
2709  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2710  */
2711 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2712 	REGULATOR_SUPPLY("v-ape", NULL),
2713 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2714 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2715 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2716 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2717 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2718 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2719 	REGULATOR_SUPPLY("vcore", "sdi0"),
2720 	REGULATOR_SUPPLY("vcore", "sdi1"),
2721 	REGULATOR_SUPPLY("vcore", "sdi2"),
2722 	REGULATOR_SUPPLY("vcore", "sdi3"),
2723 	REGULATOR_SUPPLY("vcore", "sdi4"),
2724 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2725 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2726 	/* "v-uart" changed to "vcore" in the mainline kernel */
2727 	REGULATOR_SUPPLY("vcore", "uart0"),
2728 	REGULATOR_SUPPLY("vcore", "uart1"),
2729 	REGULATOR_SUPPLY("vcore", "uart2"),
2730 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2731 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2732 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2733 };
2734 
2735 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2736 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2737 	/* AV8100 regulator */
2738 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2739 };
2740 
2741 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2742 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2743 	REGULATOR_SUPPLY("vsupply", "mcde"),
2744 };
2745 
2746 /* SVA MMDSP regulator switch */
2747 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2748 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2749 };
2750 
2751 /* SVA pipe regulator switch */
2752 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2753 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2754 };
2755 
2756 /* SIA MMDSP regulator switch */
2757 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2758 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2759 };
2760 
2761 /* SIA pipe regulator switch */
2762 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2763 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2764 };
2765 
2766 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2767 	REGULATOR_SUPPLY("v-mali", NULL),
2768 };
2769 
2770 /* ESRAM1 and 2 regulator switch */
2771 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2772 	REGULATOR_SUPPLY("esram12", "cm_control"),
2773 };
2774 
2775 /* ESRAM3 and 4 regulator switch */
2776 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2777 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2778 	REGULATOR_SUPPLY("esram34", "cm_control"),
2779 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2780 };
2781 
2782 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2783 	[DB8500_REGULATOR_VAPE] = {
2784 		.constraints = {
2785 			.name = "db8500-vape",
2786 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2787 			.always_on = true,
2788 		},
2789 		.consumer_supplies = db8500_vape_consumers,
2790 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2791 	},
2792 	[DB8500_REGULATOR_VARM] = {
2793 		.constraints = {
2794 			.name = "db8500-varm",
2795 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2796 		},
2797 	},
2798 	[DB8500_REGULATOR_VMODEM] = {
2799 		.constraints = {
2800 			.name = "db8500-vmodem",
2801 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2802 		},
2803 	},
2804 	[DB8500_REGULATOR_VPLL] = {
2805 		.constraints = {
2806 			.name = "db8500-vpll",
2807 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2808 		},
2809 	},
2810 	[DB8500_REGULATOR_VSMPS1] = {
2811 		.constraints = {
2812 			.name = "db8500-vsmps1",
2813 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2814 		},
2815 	},
2816 	[DB8500_REGULATOR_VSMPS2] = {
2817 		.constraints = {
2818 			.name = "db8500-vsmps2",
2819 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2820 		},
2821 		.consumer_supplies = db8500_vsmps2_consumers,
2822 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2823 	},
2824 	[DB8500_REGULATOR_VSMPS3] = {
2825 		.constraints = {
2826 			.name = "db8500-vsmps3",
2827 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2828 		},
2829 	},
2830 	[DB8500_REGULATOR_VRF1] = {
2831 		.constraints = {
2832 			.name = "db8500-vrf1",
2833 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2834 		},
2835 	},
2836 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2837 		/* dependency to u8500-vape is handled outside regulator framework */
2838 		.constraints = {
2839 			.name = "db8500-sva-mmdsp",
2840 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2841 		},
2842 		.consumer_supplies = db8500_svammdsp_consumers,
2843 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2844 	},
2845 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2846 		.constraints = {
2847 			/* "ret" means "retention" */
2848 			.name = "db8500-sva-mmdsp-ret",
2849 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850 		},
2851 	},
2852 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2853 		/* dependency to u8500-vape is handled outside regulator framework */
2854 		.constraints = {
2855 			.name = "db8500-sva-pipe",
2856 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857 		},
2858 		.consumer_supplies = db8500_svapipe_consumers,
2859 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2860 	},
2861 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2862 		/* dependency to u8500-vape is handled outside regulator framework */
2863 		.constraints = {
2864 			.name = "db8500-sia-mmdsp",
2865 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2866 		},
2867 		.consumer_supplies = db8500_siammdsp_consumers,
2868 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2869 	},
2870 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2871 		.constraints = {
2872 			.name = "db8500-sia-mmdsp-ret",
2873 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874 		},
2875 	},
2876 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2877 		/* dependency to u8500-vape is handled outside regulator framework */
2878 		.constraints = {
2879 			.name = "db8500-sia-pipe",
2880 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881 		},
2882 		.consumer_supplies = db8500_siapipe_consumers,
2883 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2884 	},
2885 	[DB8500_REGULATOR_SWITCH_SGA] = {
2886 		.supply_regulator = "db8500-vape",
2887 		.constraints = {
2888 			.name = "db8500-sga",
2889 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2890 		},
2891 		.consumer_supplies = db8500_sga_consumers,
2892 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2893 
2894 	},
2895 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2896 		.supply_regulator = "db8500-vape",
2897 		.constraints = {
2898 			.name = "db8500-b2r2-mcde",
2899 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2900 		},
2901 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2902 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2903 	},
2904 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2905 		/*
2906 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2907 		 * no need to hold Vape
2908 		 */
2909 		.constraints = {
2910 			.name = "db8500-esram12",
2911 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2912 		},
2913 		.consumer_supplies = db8500_esram12_consumers,
2914 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2915 	},
2916 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2917 		.constraints = {
2918 			.name = "db8500-esram12-ret",
2919 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920 		},
2921 	},
2922 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2923 		/*
2924 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2925 		 * no need to hold Vape
2926 		 */
2927 		.constraints = {
2928 			.name = "db8500-esram34",
2929 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2930 		},
2931 		.consumer_supplies = db8500_esram34_consumers,
2932 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2933 	},
2934 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2935 		.constraints = {
2936 			.name = "db8500-esram34-ret",
2937 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2938 		},
2939 	},
2940 };
2941 
2942 static struct resource ab8500_resources[] = {
2943 	[0] = {
2944 		.start	= IRQ_DB8500_AB8500,
2945 		.end	= IRQ_DB8500_AB8500,
2946 		.flags	= IORESOURCE_IRQ
2947 	}
2948 };
2949 
2950 static struct mfd_cell db8500_prcmu_devs[] = {
2951 	{
2952 		.name = "db8500-prcmu-regulators",
2953 		.of_compatible = "stericsson,db8500-prcmu-regulator",
2954 		.platform_data = &db8500_regulators,
2955 		.pdata_size = sizeof(db8500_regulators),
2956 	},
2957 	{
2958 		.name = "cpufreq-u8500",
2959 		.of_compatible = "stericsson,cpufreq-u8500",
2960 	},
2961 	{
2962 		.name = "ab8500-core",
2963 		.of_compatible = "stericsson,ab8500",
2964 		.num_resources = ARRAY_SIZE(ab8500_resources),
2965 		.resources = ab8500_resources,
2966 		.id = AB8500_VERSION_AB8500,
2967 	},
2968 };
2969 
2970 /**
2971  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2972  *
2973  */
2974 static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
2975 {
2976 	struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
2977 	struct device_node *np = pdev->dev.of_node;
2978 	int irq = 0, err = 0, i;
2979 
2980 	if (ux500_is_svp())
2981 		return -ENODEV;
2982 
2983 	init_prcm_registers();
2984 
2985 	/* Clean up the mailbox interrupts after pre-kernel code. */
2986 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2987 
2988 	if (np)
2989 		irq = platform_get_irq(pdev, 0);
2990 
2991 	if (!np || irq <= 0)
2992 		irq = IRQ_DB8500_PRCMU1;
2993 
2994 	err = request_threaded_irq(irq, prcmu_irq_handler,
2995 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2996 	if (err < 0) {
2997 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2998 		err = -EBUSY;
2999 		goto no_irq_return;
3000 	}
3001 
3002 	for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3003 		if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3004 			db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3005 			db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3006 		}
3007 	}
3008 
3009 	if (cpu_is_u8500v20_or_later())
3010 		prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3011 
3012 	err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3013 			ARRAY_SIZE(db8500_prcmu_devs), NULL, 0);
3014 	if (err) {
3015 		pr_err("prcmu: Failed to add subdevices\n");
3016 		return err;
3017 	}
3018 
3019 	pr_info("DB8500 PRCMU initialized\n");
3020 
3021 no_irq_return:
3022 	return err;
3023 }
3024 static const struct of_device_id db8500_prcmu_match[] = {
3025 	{ .compatible = "stericsson,db8500-prcmu"},
3026 	{ },
3027 };
3028 
3029 static struct platform_driver db8500_prcmu_driver = {
3030 	.driver = {
3031 		.name = "db8500-prcmu",
3032 		.owner = THIS_MODULE,
3033 		.of_match_table = db8500_prcmu_match,
3034 	},
3035 	.probe = db8500_prcmu_probe,
3036 };
3037 
3038 static int __init db8500_prcmu_init(void)
3039 {
3040 	return platform_driver_register(&db8500_prcmu_driver);
3041 }
3042 
3043 core_initcall(db8500_prcmu_init);
3044 
3045 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3046 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3047 MODULE_LICENSE("GPL v2");
3048