1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DB8500 PRCM Unit driver 4 * 5 * Copyright (C) STMicroelectronics 2009 6 * Copyright (C) ST-Ericsson SA 2010 7 * 8 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 9 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 10 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 11 * 12 * U8500 PRCM Unit interface driver 13 */ 14 #include <linux/init.h> 15 #include <linux/export.h> 16 #include <linux/kernel.h> 17 #include <linux/delay.h> 18 #include <linux/errno.h> 19 #include <linux/err.h> 20 #include <linux/spinlock.h> 21 #include <linux/io.h> 22 #include <linux/slab.h> 23 #include <linux/mutex.h> 24 #include <linux/completion.h> 25 #include <linux/irq.h> 26 #include <linux/jiffies.h> 27 #include <linux/bitops.h> 28 #include <linux/fs.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_irq.h> 32 #include <linux/platform_device.h> 33 #include <linux/uaccess.h> 34 #include <linux/mfd/core.h> 35 #include <linux/mfd/dbx500-prcmu.h> 36 #include <linux/mfd/abx500/ab8500.h> 37 #include <linux/regulator/db8500-prcmu.h> 38 #include <linux/regulator/machine.h> 39 #include "db8500-prcmu-regs.h" 40 41 /* Index of different voltages to be used when accessing AVSData */ 42 #define PRCM_AVS_BASE 0x2FC 43 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 44 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 45 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 46 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 47 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 48 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 49 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 50 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 51 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 52 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 53 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 54 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 55 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 56 57 #define PRCM_AVS_VOLTAGE 0 58 #define PRCM_AVS_VOLTAGE_MASK 0x3f 59 #define PRCM_AVS_ISSLOWSTARTUP 6 60 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 61 #define PRCM_AVS_ISMODEENABLE 7 62 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 63 64 #define PRCM_BOOT_STATUS 0xFFF 65 #define PRCM_ROMCODE_A2P 0xFFE 66 #define PRCM_ROMCODE_P2A 0xFFD 67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 68 69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 70 71 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 72 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 73 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 74 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 75 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 76 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 77 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 78 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 79 80 /* Req Mailboxes */ 81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 87 88 /* Ack Mailboxes */ 89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 95 96 /* Mailbox 0 headers */ 97 #define MB0H_POWER_STATE_TRANS 0 98 #define MB0H_CONFIG_WAKEUPS_EXE 1 99 #define MB0H_READ_WAKEUP_ACK 3 100 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 101 102 #define MB0H_WAKEUP_EXE 2 103 #define MB0H_WAKEUP_SLEEP 5 104 105 /* Mailbox 0 REQs */ 106 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 107 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 109 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 110 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 111 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 112 113 /* Mailbox 0 ACKs */ 114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 115 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 116 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 117 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 118 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 119 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 121 122 /* Mailbox 1 headers */ 123 #define MB1H_ARM_APE_OPP 0x0 124 #define MB1H_RESET_MODEM 0x2 125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 127 #define MB1H_RELEASE_USB_WAKEUP 0x5 128 #define MB1H_PLL_ON_OFF 0x6 129 130 /* Mailbox 1 Requests */ 131 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 132 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 133 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 134 #define PLL_SOC0_OFF 0x1 135 #define PLL_SOC0_ON 0x2 136 #define PLL_SOC1_OFF 0x4 137 #define PLL_SOC1_ON 0x8 138 139 /* Mailbox 1 ACKs */ 140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 141 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 143 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 144 145 /* Mailbox 2 headers */ 146 #define MB2H_DPS 0x0 147 #define MB2H_AUTO_PWR 0x1 148 149 /* Mailbox 2 REQs */ 150 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 151 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 152 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 153 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 154 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 155 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 156 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 157 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 159 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 160 161 /* Mailbox 2 ACKs */ 162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 163 #define HWACC_PWR_ST_OK 0xFE 164 165 /* Mailbox 3 headers */ 166 #define MB3H_ANC 0x0 167 #define MB3H_SIDETONE 0x1 168 #define MB3H_SYSCLK 0xE 169 170 /* Mailbox 3 Requests */ 171 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 172 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 173 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 174 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 177 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 178 179 /* Mailbox 4 headers */ 180 #define MB4H_DDR_INIT 0x0 181 #define MB4H_MEM_ST 0x1 182 #define MB4H_HOTDOG 0x12 183 #define MB4H_HOTMON 0x13 184 #define MB4H_HOT_PERIOD 0x14 185 #define MB4H_A9WDOG_CONF 0x16 186 #define MB4H_A9WDOG_EN 0x17 187 #define MB4H_A9WDOG_DIS 0x18 188 #define MB4H_A9WDOG_LOAD 0x19 189 #define MB4H_A9WDOG_KICK 0x20 190 191 /* Mailbox 4 Requests */ 192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 194 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 196 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 197 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 198 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 199 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 200 #define HOTMON_CONFIG_LOW BIT(0) 201 #define HOTMON_CONFIG_HIGH BIT(1) 202 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 203 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 204 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 205 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 206 #define A9WDOG_AUTO_OFF_EN BIT(7) 207 #define A9WDOG_AUTO_OFF_DIS 0 208 #define A9WDOG_ID_MASK 0xf 209 210 /* Mailbox 5 Requests */ 211 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 212 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 213 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 214 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6)) 216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6)) 217 #define PRCMU_I2C_STOP_EN BIT(3) 218 219 /* Mailbox 5 ACKs */ 220 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 221 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 222 #define I2C_WR_OK 0x1 223 #define I2C_RD_OK 0x2 224 225 #define NUM_MB 8 226 #define MBOX_BIT BIT 227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 228 229 /* 230 * Wakeups/IRQs 231 */ 232 233 #define WAKEUP_BIT_RTC BIT(0) 234 #define WAKEUP_BIT_RTT0 BIT(1) 235 #define WAKEUP_BIT_RTT1 BIT(2) 236 #define WAKEUP_BIT_HSI0 BIT(3) 237 #define WAKEUP_BIT_HSI1 BIT(4) 238 #define WAKEUP_BIT_CA_WAKE BIT(5) 239 #define WAKEUP_BIT_USB BIT(6) 240 #define WAKEUP_BIT_ABB BIT(7) 241 #define WAKEUP_BIT_ABB_FIFO BIT(8) 242 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 243 #define WAKEUP_BIT_CA_SLEEP BIT(10) 244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 246 #define WAKEUP_BIT_ANC_OK BIT(13) 247 #define WAKEUP_BIT_SW_ERROR BIT(14) 248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 249 #define WAKEUP_BIT_ARM BIT(17) 250 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 253 #define WAKEUP_BIT_GPIO0 BIT(23) 254 #define WAKEUP_BIT_GPIO1 BIT(24) 255 #define WAKEUP_BIT_GPIO2 BIT(25) 256 #define WAKEUP_BIT_GPIO3 BIT(26) 257 #define WAKEUP_BIT_GPIO4 BIT(27) 258 #define WAKEUP_BIT_GPIO5 BIT(28) 259 #define WAKEUP_BIT_GPIO6 BIT(29) 260 #define WAKEUP_BIT_GPIO7 BIT(30) 261 #define WAKEUP_BIT_GPIO8 BIT(31) 262 263 static struct { 264 bool valid; 265 struct prcmu_fw_version version; 266 } fw_info; 267 268 static struct irq_domain *db8500_irq_domain; 269 270 /* 271 * This vector maps irq numbers to the bits in the bit field used in 272 * communication with the PRCMU firmware. 273 * 274 * The reason for having this is to keep the irq numbers contiguous even though 275 * the bits in the bit field are not. (The bits also have a tendency to move 276 * around, to further complicate matters.) 277 */ 278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name)) 279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 280 281 #define IRQ_PRCMU_RTC 0 282 #define IRQ_PRCMU_RTT0 1 283 #define IRQ_PRCMU_RTT1 2 284 #define IRQ_PRCMU_HSI0 3 285 #define IRQ_PRCMU_HSI1 4 286 #define IRQ_PRCMU_CA_WAKE 5 287 #define IRQ_PRCMU_USB 6 288 #define IRQ_PRCMU_ABB 7 289 #define IRQ_PRCMU_ABB_FIFO 8 290 #define IRQ_PRCMU_ARM 9 291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10 292 #define IRQ_PRCMU_GPIO0 11 293 #define IRQ_PRCMU_GPIO1 12 294 #define IRQ_PRCMU_GPIO2 13 295 #define IRQ_PRCMU_GPIO3 14 296 #define IRQ_PRCMU_GPIO4 15 297 #define IRQ_PRCMU_GPIO5 16 298 #define IRQ_PRCMU_GPIO6 17 299 #define IRQ_PRCMU_GPIO7 18 300 #define IRQ_PRCMU_GPIO8 19 301 #define IRQ_PRCMU_CA_SLEEP 20 302 #define IRQ_PRCMU_HOTMON_LOW 21 303 #define IRQ_PRCMU_HOTMON_HIGH 22 304 #define NUM_PRCMU_WAKEUPS 23 305 306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 307 IRQ_ENTRY(RTC), 308 IRQ_ENTRY(RTT0), 309 IRQ_ENTRY(RTT1), 310 IRQ_ENTRY(HSI0), 311 IRQ_ENTRY(HSI1), 312 IRQ_ENTRY(CA_WAKE), 313 IRQ_ENTRY(USB), 314 IRQ_ENTRY(ABB), 315 IRQ_ENTRY(ABB_FIFO), 316 IRQ_ENTRY(CA_SLEEP), 317 IRQ_ENTRY(ARM), 318 IRQ_ENTRY(HOTMON_LOW), 319 IRQ_ENTRY(HOTMON_HIGH), 320 IRQ_ENTRY(MODEM_SW_RESET_REQ), 321 IRQ_ENTRY(GPIO0), 322 IRQ_ENTRY(GPIO1), 323 IRQ_ENTRY(GPIO2), 324 IRQ_ENTRY(GPIO3), 325 IRQ_ENTRY(GPIO4), 326 IRQ_ENTRY(GPIO5), 327 IRQ_ENTRY(GPIO6), 328 IRQ_ENTRY(GPIO7), 329 IRQ_ENTRY(GPIO8) 330 }; 331 332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 335 WAKEUP_ENTRY(RTC), 336 WAKEUP_ENTRY(RTT0), 337 WAKEUP_ENTRY(RTT1), 338 WAKEUP_ENTRY(HSI0), 339 WAKEUP_ENTRY(HSI1), 340 WAKEUP_ENTRY(USB), 341 WAKEUP_ENTRY(ABB), 342 WAKEUP_ENTRY(ABB_FIFO), 343 WAKEUP_ENTRY(ARM) 344 }; 345 346 /* 347 * mb0_transfer - state needed for mailbox 0 communication. 348 * @lock: The transaction lock. 349 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 350 * the request data. 351 * @mask_work: Work structure used for (un)masking wakeup interrupts. 352 * @req: Request data that need to persist between requests. 353 */ 354 static struct { 355 spinlock_t lock; 356 spinlock_t dbb_irqs_lock; 357 struct work_struct mask_work; 358 struct mutex ac_wake_lock; 359 struct completion ac_wake_work; 360 struct { 361 u32 dbb_irqs; 362 u32 dbb_wakeups; 363 u32 abb_events; 364 } req; 365 } mb0_transfer; 366 367 /* 368 * mb1_transfer - state needed for mailbox 1 communication. 369 * @lock: The transaction lock. 370 * @work: The transaction completion structure. 371 * @ape_opp: The current APE OPP. 372 * @ack: Reply ("acknowledge") data. 373 */ 374 static struct { 375 struct mutex lock; 376 struct completion work; 377 u8 ape_opp; 378 struct { 379 u8 header; 380 u8 arm_opp; 381 u8 ape_opp; 382 u8 ape_voltage_status; 383 } ack; 384 } mb1_transfer; 385 386 /* 387 * mb2_transfer - state needed for mailbox 2 communication. 388 * @lock: The transaction lock. 389 * @work: The transaction completion structure. 390 * @auto_pm_lock: The autonomous power management configuration lock. 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 392 * @req: Request data that need to persist between requests. 393 * @ack: Reply ("acknowledge") data. 394 */ 395 static struct { 396 struct mutex lock; 397 struct completion work; 398 spinlock_t auto_pm_lock; 399 bool auto_pm_enabled; 400 struct { 401 u8 status; 402 } ack; 403 } mb2_transfer; 404 405 /* 406 * mb3_transfer - state needed for mailbox 3 communication. 407 * @lock: The request lock. 408 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 409 * @sysclk_work: Work structure used for sysclk requests. 410 */ 411 static struct { 412 spinlock_t lock; 413 struct mutex sysclk_lock; 414 struct completion sysclk_work; 415 } mb3_transfer; 416 417 /* 418 * mb4_transfer - state needed for mailbox 4 communication. 419 * @lock: The transaction lock. 420 * @work: The transaction completion structure. 421 */ 422 static struct { 423 struct mutex lock; 424 struct completion work; 425 } mb4_transfer; 426 427 /* 428 * mb5_transfer - state needed for mailbox 5 communication. 429 * @lock: The transaction lock. 430 * @work: The transaction completion structure. 431 * @ack: Reply ("acknowledge") data. 432 */ 433 static struct { 434 struct mutex lock; 435 struct completion work; 436 struct { 437 u8 status; 438 u8 value; 439 } ack; 440 } mb5_transfer; 441 442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 443 444 /* Spinlocks */ 445 static DEFINE_SPINLOCK(prcmu_lock); 446 static DEFINE_SPINLOCK(clkout_lock); 447 448 /* Global var to runtime determine TCDM base for v2 or v1 */ 449 static __iomem void *tcdm_base; 450 static __iomem void *prcmu_base; 451 452 struct clk_mgt { 453 u32 offset; 454 u32 pllsw; 455 int branch; 456 bool clk38div; 457 }; 458 459 enum { 460 PLL_RAW, 461 PLL_FIX, 462 PLL_DIV 463 }; 464 465 static DEFINE_SPINLOCK(clk_mgt_lock); 466 467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 468 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 470 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 471 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 472 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 473 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 474 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 475 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 476 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 477 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 478 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 479 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 480 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 481 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 482 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 483 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 484 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 485 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 486 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 487 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 488 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 489 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 490 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 491 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 492 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 493 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 494 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 495 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 496 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 497 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 498 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 499 }; 500 501 struct dsiclk { 502 u32 divsel_mask; 503 u32 divsel_shift; 504 u32 divsel; 505 }; 506 507 static struct dsiclk dsiclk[2] = { 508 { 509 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 510 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 511 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 512 }, 513 { 514 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 515 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 516 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 517 } 518 }; 519 520 struct dsiescclk { 521 u32 en; 522 u32 div_mask; 523 u32 div_shift; 524 }; 525 526 static struct dsiescclk dsiescclk[3] = { 527 { 528 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 529 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 530 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 531 }, 532 { 533 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 534 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 535 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 536 }, 537 { 538 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 539 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 540 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 541 } 542 }; 543 544 u32 db8500_prcmu_read(unsigned int reg) 545 { 546 return readl(prcmu_base + reg); 547 } 548 549 void db8500_prcmu_write(unsigned int reg, u32 value) 550 { 551 unsigned long flags; 552 553 spin_lock_irqsave(&prcmu_lock, flags); 554 writel(value, (prcmu_base + reg)); 555 spin_unlock_irqrestore(&prcmu_lock, flags); 556 } 557 558 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 559 { 560 u32 val; 561 unsigned long flags; 562 563 spin_lock_irqsave(&prcmu_lock, flags); 564 val = readl(prcmu_base + reg); 565 val = ((val & ~mask) | (value & mask)); 566 writel(val, (prcmu_base + reg)); 567 spin_unlock_irqrestore(&prcmu_lock, flags); 568 } 569 570 struct prcmu_fw_version *prcmu_get_fw_version(void) 571 { 572 return fw_info.valid ? &fw_info.version : NULL; 573 } 574 575 static bool prcmu_is_ulppll_disabled(void) 576 { 577 struct prcmu_fw_version *ver; 578 579 ver = prcmu_get_fw_version(); 580 return ver && ver->project == PRCMU_FW_PROJECT_U8420_SYSCLK; 581 } 582 583 bool prcmu_has_arm_maxopp(void) 584 { 585 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 586 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 587 } 588 589 /** 590 * prcmu_set_rc_a2p - This function is used to run few power state sequences 591 * @val: Value to be set, i.e. transition requested 592 * Returns: 0 on success, -EINVAL on invalid argument 593 * 594 * This function is used to run the following power state sequences - 595 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 596 */ 597 int prcmu_set_rc_a2p(enum romcode_write val) 598 { 599 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 600 return -EINVAL; 601 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 602 return 0; 603 } 604 605 /** 606 * prcmu_get_rc_p2a - This function is used to get power state sequences 607 * Returns: the power transition that has last happened 608 * 609 * This function can return the following transitions- 610 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 611 */ 612 enum romcode_read prcmu_get_rc_p2a(void) 613 { 614 return readb(tcdm_base + PRCM_ROMCODE_P2A); 615 } 616 617 /** 618 * prcmu_get_xp70_current_state - Return the current XP70 power mode 619 * Returns: Returns the current AP(ARM) power mode: init, 620 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 621 */ 622 enum ap_pwrst prcmu_get_xp70_current_state(void) 623 { 624 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 625 } 626 627 /** 628 * prcmu_config_clkout - Configure one of the programmable clock outputs. 629 * @clkout: The CLKOUT number (0 or 1). 630 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 631 * @div: The divider to be applied. 632 * 633 * Configures one of the programmable clock outputs (CLKOUTs). 634 * @div should be in the range [1,63] to request a configuration, or 0 to 635 * inform that the configuration is no longer requested. 636 */ 637 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 638 { 639 static int requests[2]; 640 int r = 0; 641 unsigned long flags; 642 u32 val; 643 u32 bits; 644 u32 mask; 645 u32 div_mask; 646 647 BUG_ON(clkout > 1); 648 BUG_ON(div > 63); 649 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 650 651 if (!div && !requests[clkout]) 652 return -EINVAL; 653 654 if (clkout == 0) { 655 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 656 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 657 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 658 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 659 } else { 660 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 661 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 662 PRCM_CLKOCR_CLK1TYPE); 663 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 664 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 665 } 666 bits &= mask; 667 668 spin_lock_irqsave(&clkout_lock, flags); 669 670 val = readl(PRCM_CLKOCR); 671 if (val & div_mask) { 672 if (div) { 673 if ((val & mask) != bits) { 674 r = -EBUSY; 675 goto unlock_and_return; 676 } 677 } else { 678 if ((val & mask & ~div_mask) != bits) { 679 r = -EINVAL; 680 goto unlock_and_return; 681 } 682 } 683 } 684 writel((bits | (val & ~mask)), PRCM_CLKOCR); 685 requests[clkout] += (div ? 1 : -1); 686 687 unlock_and_return: 688 spin_unlock_irqrestore(&clkout_lock, flags); 689 690 return r; 691 } 692 693 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 694 { 695 unsigned long flags; 696 697 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 698 699 spin_lock_irqsave(&mb0_transfer.lock, flags); 700 701 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 702 cpu_relax(); 703 704 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 705 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 706 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 707 writeb((keep_ulp_clk ? 1 : 0), 708 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 709 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 710 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 711 712 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 713 714 return 0; 715 } 716 717 u8 db8500_prcmu_get_power_state_result(void) 718 { 719 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 720 } 721 722 /* This function should only be called while mb0_transfer.lock is held. */ 723 static void config_wakeups(void) 724 { 725 const u8 header[2] = { 726 MB0H_CONFIG_WAKEUPS_EXE, 727 MB0H_CONFIG_WAKEUPS_SLEEP 728 }; 729 static u32 last_dbb_events; 730 static u32 last_abb_events; 731 u32 dbb_events; 732 u32 abb_events; 733 unsigned int i; 734 735 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 736 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 737 738 abb_events = mb0_transfer.req.abb_events; 739 740 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 741 return; 742 743 for (i = 0; i < 2; i++) { 744 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 745 cpu_relax(); 746 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 747 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 748 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 749 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 750 } 751 last_dbb_events = dbb_events; 752 last_abb_events = abb_events; 753 } 754 755 void db8500_prcmu_enable_wakeups(u32 wakeups) 756 { 757 unsigned long flags; 758 u32 bits; 759 int i; 760 761 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 762 763 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 764 if (wakeups & BIT(i)) 765 bits |= prcmu_wakeup_bit[i]; 766 } 767 768 spin_lock_irqsave(&mb0_transfer.lock, flags); 769 770 mb0_transfer.req.dbb_wakeups = bits; 771 config_wakeups(); 772 773 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 774 } 775 776 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 777 { 778 unsigned long flags; 779 780 spin_lock_irqsave(&mb0_transfer.lock, flags); 781 782 mb0_transfer.req.abb_events = abb_events; 783 config_wakeups(); 784 785 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 786 } 787 788 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 789 { 790 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 791 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 792 else 793 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 794 } 795 796 /** 797 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 798 * @opp: The new ARM operating point to which transition is to be made 799 * Returns: 0 on success, non-zero on failure 800 * 801 * This function sets the operating point of the ARM. 802 */ 803 int db8500_prcmu_set_arm_opp(u8 opp) 804 { 805 int r; 806 807 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 808 return -EINVAL; 809 810 r = 0; 811 812 mutex_lock(&mb1_transfer.lock); 813 814 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 815 cpu_relax(); 816 817 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 818 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 819 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 820 821 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 822 wait_for_completion(&mb1_transfer.work); 823 824 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 825 (mb1_transfer.ack.arm_opp != opp)) 826 r = -EIO; 827 828 mutex_unlock(&mb1_transfer.lock); 829 830 return r; 831 } 832 833 /** 834 * db8500_prcmu_get_arm_opp - get the current ARM OPP 835 * 836 * Returns: the current ARM OPP 837 */ 838 int db8500_prcmu_get_arm_opp(void) 839 { 840 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 841 } 842 843 /** 844 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 845 * 846 * Returns: the current DDR OPP 847 */ 848 int db8500_prcmu_get_ddr_opp(void) 849 { 850 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 851 } 852 853 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 854 static void request_even_slower_clocks(bool enable) 855 { 856 u32 clock_reg[] = { 857 PRCM_ACLK_MGT, 858 PRCM_DMACLK_MGT 859 }; 860 unsigned long flags; 861 unsigned int i; 862 863 spin_lock_irqsave(&clk_mgt_lock, flags); 864 865 /* Grab the HW semaphore. */ 866 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 867 cpu_relax(); 868 869 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 870 u32 val; 871 u32 div; 872 873 val = readl(prcmu_base + clock_reg[i]); 874 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 875 if (enable) { 876 if ((div <= 1) || (div > 15)) { 877 pr_err("prcmu: Bad clock divider %d in %s\n", 878 div, __func__); 879 goto unlock_and_return; 880 } 881 div <<= 1; 882 } else { 883 if (div <= 2) 884 goto unlock_and_return; 885 div >>= 1; 886 } 887 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 888 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 889 writel(val, prcmu_base + clock_reg[i]); 890 } 891 892 unlock_and_return: 893 /* Release the HW semaphore. */ 894 writel(0, PRCM_SEM); 895 896 spin_unlock_irqrestore(&clk_mgt_lock, flags); 897 } 898 899 /** 900 * db8500_prcmu_set_ape_opp - set the appropriate APE OPP 901 * @opp: The new APE operating point to which transition is to be made 902 * Returns: 0 on success, non-zero on failure 903 * 904 * This function sets the operating point of the APE. 905 */ 906 int db8500_prcmu_set_ape_opp(u8 opp) 907 { 908 int r = 0; 909 910 if (opp == mb1_transfer.ape_opp) 911 return 0; 912 913 mutex_lock(&mb1_transfer.lock); 914 915 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 916 request_even_slower_clocks(false); 917 918 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 919 goto skip_message; 920 921 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 922 cpu_relax(); 923 924 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 925 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 926 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 927 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 928 929 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 930 wait_for_completion(&mb1_transfer.work); 931 932 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 933 (mb1_transfer.ack.ape_opp != opp)) 934 r = -EIO; 935 936 skip_message: 937 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 938 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 939 request_even_slower_clocks(true); 940 if (!r) 941 mb1_transfer.ape_opp = opp; 942 943 mutex_unlock(&mb1_transfer.lock); 944 945 return r; 946 } 947 948 /** 949 * db8500_prcmu_get_ape_opp - get the current APE OPP 950 * 951 * Returns: the current APE OPP 952 */ 953 int db8500_prcmu_get_ape_opp(void) 954 { 955 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 956 } 957 958 /** 959 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 960 * @enable: true to request the higher voltage, false to drop a request. 961 * 962 * Calls to this function to enable and disable requests must be balanced. 963 */ 964 int db8500_prcmu_request_ape_opp_100_voltage(bool enable) 965 { 966 int r = 0; 967 u8 header; 968 static unsigned int requests; 969 970 mutex_lock(&mb1_transfer.lock); 971 972 if (enable) { 973 if (0 != requests++) 974 goto unlock_and_return; 975 header = MB1H_REQUEST_APE_OPP_100_VOLT; 976 } else { 977 if (requests == 0) { 978 r = -EIO; 979 goto unlock_and_return; 980 } else if (1 != requests--) { 981 goto unlock_and_return; 982 } 983 header = MB1H_RELEASE_APE_OPP_100_VOLT; 984 } 985 986 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 987 cpu_relax(); 988 989 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 990 991 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 992 wait_for_completion(&mb1_transfer.work); 993 994 if ((mb1_transfer.ack.header != header) || 995 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 996 r = -EIO; 997 998 unlock_and_return: 999 mutex_unlock(&mb1_transfer.lock); 1000 1001 return r; 1002 } 1003 1004 /** 1005 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1006 * 1007 * This function releases the power state requirements of a USB wakeup. 1008 */ 1009 int prcmu_release_usb_wakeup_state(void) 1010 { 1011 int r = 0; 1012 1013 mutex_lock(&mb1_transfer.lock); 1014 1015 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1016 cpu_relax(); 1017 1018 writeb(MB1H_RELEASE_USB_WAKEUP, 1019 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1020 1021 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1022 wait_for_completion(&mb1_transfer.work); 1023 1024 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1025 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1026 r = -EIO; 1027 1028 mutex_unlock(&mb1_transfer.lock); 1029 1030 return r; 1031 } 1032 1033 static int request_pll(u8 clock, bool enable) 1034 { 1035 int r = 0; 1036 1037 if (clock == PRCMU_PLLSOC0) 1038 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1039 else if (clock == PRCMU_PLLSOC1) 1040 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1041 else 1042 return -EINVAL; 1043 1044 mutex_lock(&mb1_transfer.lock); 1045 1046 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1047 cpu_relax(); 1048 1049 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1050 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1051 1052 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1053 wait_for_completion(&mb1_transfer.work); 1054 1055 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1056 r = -EIO; 1057 1058 mutex_unlock(&mb1_transfer.lock); 1059 1060 return r; 1061 } 1062 1063 /** 1064 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1065 * @epod_id: The EPOD to set 1066 * @epod_state: The new EPOD state 1067 * 1068 * This function sets the state of a EPOD (power domain). It may not be called 1069 * from interrupt context. 1070 */ 1071 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1072 { 1073 int r = 0; 1074 bool ram_retention = false; 1075 int i; 1076 1077 /* check argument */ 1078 BUG_ON(epod_id >= NUM_EPOD_ID); 1079 1080 /* set flag if retention is possible */ 1081 switch (epod_id) { 1082 case EPOD_ID_SVAMMDSP: 1083 case EPOD_ID_SIAMMDSP: 1084 case EPOD_ID_ESRAM12: 1085 case EPOD_ID_ESRAM34: 1086 ram_retention = true; 1087 break; 1088 } 1089 1090 /* check argument */ 1091 BUG_ON(epod_state > EPOD_STATE_ON); 1092 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1093 1094 /* get lock */ 1095 mutex_lock(&mb2_transfer.lock); 1096 1097 /* wait for mailbox */ 1098 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1099 cpu_relax(); 1100 1101 /* fill in mailbox */ 1102 for (i = 0; i < NUM_EPOD_ID; i++) 1103 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1104 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1105 1106 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1107 1108 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1109 1110 /* 1111 * The current firmware version does not handle errors correctly, 1112 * and we cannot recover if there is an error. 1113 * This is expected to change when the firmware is updated. 1114 */ 1115 if (!wait_for_completion_timeout(&mb2_transfer.work, 1116 msecs_to_jiffies(20000))) { 1117 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1118 __func__); 1119 r = -EIO; 1120 goto unlock_and_return; 1121 } 1122 1123 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1124 r = -EIO; 1125 1126 unlock_and_return: 1127 mutex_unlock(&mb2_transfer.lock); 1128 return r; 1129 } 1130 1131 /** 1132 * prcmu_configure_auto_pm - Configure autonomous power management. 1133 * @sleep: Configuration for ApSleep. 1134 * @idle: Configuration for ApIdle. 1135 */ 1136 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1137 struct prcmu_auto_pm_config *idle) 1138 { 1139 u32 sleep_cfg; 1140 u32 idle_cfg; 1141 unsigned long flags; 1142 1143 BUG_ON((sleep == NULL) || (idle == NULL)); 1144 1145 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1146 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1147 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1148 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1149 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1150 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1151 1152 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1153 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1154 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1155 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1156 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1157 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1158 1159 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1160 1161 /* 1162 * The autonomous power management configuration is done through 1163 * fields in mailbox 2, but these fields are only used as shared 1164 * variables - i.e. there is no need to send a message. 1165 */ 1166 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1167 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1168 1169 mb2_transfer.auto_pm_enabled = 1170 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1171 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1172 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1173 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1174 1175 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1176 } 1177 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1178 1179 bool prcmu_is_auto_pm_enabled(void) 1180 { 1181 return mb2_transfer.auto_pm_enabled; 1182 } 1183 1184 static int request_sysclk(bool enable) 1185 { 1186 int r; 1187 unsigned long flags; 1188 1189 r = 0; 1190 1191 mutex_lock(&mb3_transfer.sysclk_lock); 1192 1193 spin_lock_irqsave(&mb3_transfer.lock, flags); 1194 1195 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1196 cpu_relax(); 1197 1198 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1199 1200 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1201 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1202 1203 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1204 1205 /* 1206 * The firmware only sends an ACK if we want to enable the 1207 * SysClk, and it succeeds. 1208 */ 1209 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1210 msecs_to_jiffies(20000))) { 1211 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1212 __func__); 1213 r = -EIO; 1214 } 1215 1216 mutex_unlock(&mb3_transfer.sysclk_lock); 1217 1218 return r; 1219 } 1220 1221 static int request_timclk(bool enable) 1222 { 1223 u32 val; 1224 1225 /* 1226 * On the U8420_CLKSEL firmware, the ULP (Ultra Low Power) 1227 * PLL is disabled so we cannot use doze mode, this will 1228 * stop the clock on this firmware. 1229 */ 1230 if (prcmu_is_ulppll_disabled()) 1231 val = 0; 1232 else 1233 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1234 1235 if (!enable) 1236 val |= PRCM_TCR_STOP_TIMERS | 1237 PRCM_TCR_DOZE_MODE | 1238 PRCM_TCR_TENSEL_MASK; 1239 1240 writel(val, PRCM_TCR); 1241 1242 return 0; 1243 } 1244 1245 static int request_clock(u8 clock, bool enable) 1246 { 1247 u32 val; 1248 unsigned long flags; 1249 1250 spin_lock_irqsave(&clk_mgt_lock, flags); 1251 1252 /* Grab the HW semaphore. */ 1253 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1254 cpu_relax(); 1255 1256 val = readl(prcmu_base + clk_mgt[clock].offset); 1257 if (enable) { 1258 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1259 } else { 1260 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1261 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1262 } 1263 writel(val, prcmu_base + clk_mgt[clock].offset); 1264 1265 /* Release the HW semaphore. */ 1266 writel(0, PRCM_SEM); 1267 1268 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1269 1270 return 0; 1271 } 1272 1273 static int request_sga_clock(u8 clock, bool enable) 1274 { 1275 u32 val; 1276 int ret; 1277 1278 if (enable) { 1279 val = readl(PRCM_CGATING_BYPASS); 1280 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1281 } 1282 1283 ret = request_clock(clock, enable); 1284 1285 if (!ret && !enable) { 1286 val = readl(PRCM_CGATING_BYPASS); 1287 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1288 } 1289 1290 return ret; 1291 } 1292 1293 static inline bool plldsi_locked(void) 1294 { 1295 return (readl(PRCM_PLLDSI_LOCKP) & 1296 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1297 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1298 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1299 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1300 } 1301 1302 static int request_plldsi(bool enable) 1303 { 1304 int r = 0; 1305 u32 val; 1306 1307 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1308 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1309 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1310 1311 val = readl(PRCM_PLLDSI_ENABLE); 1312 if (enable) 1313 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1314 else 1315 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1316 writel(val, PRCM_PLLDSI_ENABLE); 1317 1318 if (enable) { 1319 unsigned int i; 1320 bool locked = plldsi_locked(); 1321 1322 for (i = 10; !locked && (i > 0); --i) { 1323 udelay(100); 1324 locked = plldsi_locked(); 1325 } 1326 if (locked) { 1327 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1328 PRCM_APE_RESETN_SET); 1329 } else { 1330 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1331 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1332 PRCM_MMIP_LS_CLAMP_SET); 1333 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1334 writel(val, PRCM_PLLDSI_ENABLE); 1335 r = -EAGAIN; 1336 } 1337 } else { 1338 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1339 } 1340 return r; 1341 } 1342 1343 static int request_dsiclk(u8 n, bool enable) 1344 { 1345 u32 val; 1346 1347 val = readl(PRCM_DSI_PLLOUT_SEL); 1348 val &= ~dsiclk[n].divsel_mask; 1349 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1350 dsiclk[n].divsel_shift); 1351 writel(val, PRCM_DSI_PLLOUT_SEL); 1352 return 0; 1353 } 1354 1355 static int request_dsiescclk(u8 n, bool enable) 1356 { 1357 u32 val; 1358 1359 val = readl(PRCM_DSITVCLK_DIV); 1360 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1361 writel(val, PRCM_DSITVCLK_DIV); 1362 return 0; 1363 } 1364 1365 /** 1366 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1367 * @clock: The clock for which the request is made. 1368 * @enable: Whether the clock should be enabled (true) or disabled (false). 1369 * 1370 * This function should only be used by the clock implementation. 1371 * Do not use it from any other place! 1372 */ 1373 int db8500_prcmu_request_clock(u8 clock, bool enable) 1374 { 1375 if (clock == PRCMU_SGACLK) 1376 return request_sga_clock(clock, enable); 1377 else if (clock < PRCMU_NUM_REG_CLOCKS) 1378 return request_clock(clock, enable); 1379 else if (clock == PRCMU_TIMCLK) 1380 return request_timclk(enable); 1381 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1382 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1383 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1384 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1385 else if (clock == PRCMU_PLLDSI) 1386 return request_plldsi(enable); 1387 else if (clock == PRCMU_SYSCLK) 1388 return request_sysclk(enable); 1389 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1390 return request_pll(clock, enable); 1391 else 1392 return -EINVAL; 1393 } 1394 1395 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1396 int branch) 1397 { 1398 u64 rate; 1399 u32 val; 1400 u32 d; 1401 u32 div = 1; 1402 1403 val = readl(reg); 1404 1405 rate = src_rate; 1406 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1407 1408 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1409 if (d > 1) 1410 div *= d; 1411 1412 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1413 if (d > 1) 1414 div *= d; 1415 1416 if (val & PRCM_PLL_FREQ_SELDIV2) 1417 div *= 2; 1418 1419 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1420 (val & PRCM_PLL_FREQ_DIV2EN) && 1421 ((reg == PRCM_PLLSOC0_FREQ) || 1422 (reg == PRCM_PLLARM_FREQ) || 1423 (reg == PRCM_PLLDDR_FREQ)))) 1424 div *= 2; 1425 1426 (void)do_div(rate, div); 1427 1428 return (unsigned long)rate; 1429 } 1430 1431 #define ROOT_CLOCK_RATE 38400000 1432 1433 static unsigned long clock_rate(u8 clock) 1434 { 1435 u32 val; 1436 u32 pllsw; 1437 unsigned long rate = ROOT_CLOCK_RATE; 1438 1439 val = readl(prcmu_base + clk_mgt[clock].offset); 1440 1441 if (val & PRCM_CLK_MGT_CLK38) { 1442 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1443 rate /= 2; 1444 return rate; 1445 } 1446 1447 val |= clk_mgt[clock].pllsw; 1448 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1449 1450 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1451 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1452 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1453 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1454 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1455 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1456 else 1457 return 0; 1458 1459 if ((clock == PRCMU_SGACLK) && 1460 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1461 u64 r = (rate * 10); 1462 1463 (void)do_div(r, 25); 1464 return (unsigned long)r; 1465 } 1466 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1467 if (val) 1468 return rate / val; 1469 else 1470 return 0; 1471 } 1472 1473 static unsigned long armss_rate(void) 1474 { 1475 u32 r; 1476 unsigned long rate; 1477 1478 r = readl(PRCM_ARM_CHGCLKREQ); 1479 1480 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1481 /* External ARMCLKFIX clock */ 1482 1483 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1484 1485 /* Check PRCM_ARM_CHGCLKREQ divider */ 1486 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1487 rate /= 2; 1488 1489 /* Check PRCM_ARMCLKFIX_MGT divider */ 1490 r = readl(PRCM_ARMCLKFIX_MGT); 1491 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1492 rate /= r; 1493 1494 } else {/* ARM PLL */ 1495 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1496 } 1497 1498 return rate; 1499 } 1500 1501 static unsigned long dsiclk_rate(u8 n) 1502 { 1503 u32 divsel; 1504 u32 div = 1; 1505 1506 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1507 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1508 1509 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1510 divsel = dsiclk[n].divsel; 1511 else 1512 dsiclk[n].divsel = divsel; 1513 1514 switch (divsel) { 1515 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1516 div *= 2; 1517 fallthrough; 1518 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1519 div *= 2; 1520 fallthrough; 1521 case PRCM_DSI_PLLOUT_SEL_PHI: 1522 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1523 PLL_RAW) / div; 1524 default: 1525 return 0; 1526 } 1527 } 1528 1529 static unsigned long dsiescclk_rate(u8 n) 1530 { 1531 u32 div; 1532 1533 div = readl(PRCM_DSITVCLK_DIV); 1534 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1535 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1536 } 1537 1538 unsigned long prcmu_clock_rate(u8 clock) 1539 { 1540 if (clock < PRCMU_NUM_REG_CLOCKS) 1541 return clock_rate(clock); 1542 else if (clock == PRCMU_TIMCLK) 1543 return prcmu_is_ulppll_disabled() ? 1544 32768 : ROOT_CLOCK_RATE / 16; 1545 else if (clock == PRCMU_SYSCLK) 1546 return ROOT_CLOCK_RATE; 1547 else if (clock == PRCMU_PLLSOC0) 1548 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1549 else if (clock == PRCMU_PLLSOC1) 1550 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1551 else if (clock == PRCMU_ARMSS) 1552 return armss_rate(); 1553 else if (clock == PRCMU_PLLDDR) 1554 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1555 else if (clock == PRCMU_PLLDSI) 1556 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1557 PLL_RAW); 1558 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1559 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1560 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1561 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1562 else 1563 return 0; 1564 } 1565 1566 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1567 { 1568 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1569 return ROOT_CLOCK_RATE; 1570 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1571 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1572 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1573 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1574 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1575 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1576 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1577 else 1578 return 0; 1579 } 1580 1581 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1582 { 1583 u32 div; 1584 1585 div = (src_rate / rate); 1586 if (div == 0) 1587 return 1; 1588 if (rate < (src_rate / div)) 1589 div++; 1590 return div; 1591 } 1592 1593 static long round_clock_rate(u8 clock, unsigned long rate) 1594 { 1595 u32 val; 1596 u32 div; 1597 unsigned long src_rate; 1598 long rounded_rate; 1599 1600 val = readl(prcmu_base + clk_mgt[clock].offset); 1601 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1602 clk_mgt[clock].branch); 1603 div = clock_divider(src_rate, rate); 1604 if (val & PRCM_CLK_MGT_CLK38) { 1605 if (clk_mgt[clock].clk38div) { 1606 if (div > 2) 1607 div = 2; 1608 } else { 1609 div = 1; 1610 } 1611 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1612 u64 r = (src_rate * 10); 1613 1614 (void)do_div(r, 25); 1615 if (r <= rate) 1616 return (unsigned long)r; 1617 } 1618 rounded_rate = (src_rate / min(div, (u32)31)); 1619 1620 return rounded_rate; 1621 } 1622 1623 static const unsigned long db8500_armss_freqs[] = { 1624 199680000, 1625 399360000, 1626 798720000, 1627 998400000 1628 }; 1629 1630 /* The DB8520 has slightly higher ARMSS max frequency */ 1631 static const unsigned long db8520_armss_freqs[] = { 1632 199680000, 1633 399360000, 1634 798720000, 1635 1152000000 1636 }; 1637 1638 static long round_armss_rate(unsigned long rate) 1639 { 1640 unsigned long freq = 0; 1641 const unsigned long *freqs; 1642 int nfreqs; 1643 int i; 1644 1645 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) { 1646 freqs = db8520_armss_freqs; 1647 nfreqs = ARRAY_SIZE(db8520_armss_freqs); 1648 } else { 1649 freqs = db8500_armss_freqs; 1650 nfreqs = ARRAY_SIZE(db8500_armss_freqs); 1651 } 1652 1653 /* Find the corresponding arm opp from the cpufreq table. */ 1654 for (i = 0; i < nfreqs; i++) { 1655 freq = freqs[i]; 1656 if (rate <= freq) 1657 break; 1658 } 1659 1660 /* Return the last valid value, even if a match was not found. */ 1661 return freq; 1662 } 1663 1664 #define MIN_PLL_VCO_RATE 600000000ULL 1665 #define MAX_PLL_VCO_RATE 1680640000ULL 1666 1667 static long round_plldsi_rate(unsigned long rate) 1668 { 1669 long rounded_rate = 0; 1670 unsigned long src_rate; 1671 unsigned long rem; 1672 u32 r; 1673 1674 src_rate = clock_rate(PRCMU_HDMICLK); 1675 rem = rate; 1676 1677 for (r = 7; (rem > 0) && (r > 0); r--) { 1678 u64 d; 1679 1680 d = (r * rate); 1681 (void)do_div(d, src_rate); 1682 if (d < 6) 1683 d = 6; 1684 else if (d > 255) 1685 d = 255; 1686 d *= src_rate; 1687 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1688 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1689 continue; 1690 (void)do_div(d, r); 1691 if (rate < d) { 1692 if (rounded_rate == 0) 1693 rounded_rate = (long)d; 1694 break; 1695 } 1696 if ((rate - d) < rem) { 1697 rem = (rate - d); 1698 rounded_rate = (long)d; 1699 } 1700 } 1701 return rounded_rate; 1702 } 1703 1704 static long round_dsiclk_rate(unsigned long rate) 1705 { 1706 u32 div; 1707 unsigned long src_rate; 1708 long rounded_rate; 1709 1710 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1711 PLL_RAW); 1712 div = clock_divider(src_rate, rate); 1713 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1714 1715 return rounded_rate; 1716 } 1717 1718 static long round_dsiescclk_rate(unsigned long rate) 1719 { 1720 u32 div; 1721 unsigned long src_rate; 1722 long rounded_rate; 1723 1724 src_rate = clock_rate(PRCMU_TVCLK); 1725 div = clock_divider(src_rate, rate); 1726 rounded_rate = (src_rate / min(div, (u32)255)); 1727 1728 return rounded_rate; 1729 } 1730 1731 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1732 { 1733 if (clock < PRCMU_NUM_REG_CLOCKS) 1734 return round_clock_rate(clock, rate); 1735 else if (clock == PRCMU_ARMSS) 1736 return round_armss_rate(rate); 1737 else if (clock == PRCMU_PLLDSI) 1738 return round_plldsi_rate(rate); 1739 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1740 return round_dsiclk_rate(rate); 1741 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1742 return round_dsiescclk_rate(rate); 1743 else 1744 return (long)prcmu_clock_rate(clock); 1745 } 1746 1747 static void set_clock_rate(u8 clock, unsigned long rate) 1748 { 1749 u32 val; 1750 u32 div; 1751 unsigned long src_rate; 1752 unsigned long flags; 1753 1754 spin_lock_irqsave(&clk_mgt_lock, flags); 1755 1756 /* Grab the HW semaphore. */ 1757 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1758 cpu_relax(); 1759 1760 val = readl(prcmu_base + clk_mgt[clock].offset); 1761 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1762 clk_mgt[clock].branch); 1763 div = clock_divider(src_rate, rate); 1764 if (val & PRCM_CLK_MGT_CLK38) { 1765 if (clk_mgt[clock].clk38div) { 1766 if (div > 1) 1767 val |= PRCM_CLK_MGT_CLK38DIV; 1768 else 1769 val &= ~PRCM_CLK_MGT_CLK38DIV; 1770 } 1771 } else if (clock == PRCMU_SGACLK) { 1772 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1773 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1774 if (div == 3) { 1775 u64 r = (src_rate * 10); 1776 1777 (void)do_div(r, 25); 1778 if (r <= rate) { 1779 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1780 div = 0; 1781 } 1782 } 1783 val |= min(div, (u32)31); 1784 } else { 1785 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1786 val |= min(div, (u32)31); 1787 } 1788 writel(val, prcmu_base + clk_mgt[clock].offset); 1789 1790 /* Release the HW semaphore. */ 1791 writel(0, PRCM_SEM); 1792 1793 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1794 } 1795 1796 static int set_armss_rate(unsigned long rate) 1797 { 1798 unsigned long freq; 1799 u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP }; 1800 const unsigned long *freqs; 1801 int nfreqs; 1802 int i; 1803 1804 if (fw_info.version.project == PRCMU_FW_PROJECT_U8520) { 1805 freqs = db8520_armss_freqs; 1806 nfreqs = ARRAY_SIZE(db8520_armss_freqs); 1807 } else { 1808 freqs = db8500_armss_freqs; 1809 nfreqs = ARRAY_SIZE(db8500_armss_freqs); 1810 } 1811 1812 /* Find the corresponding arm opp from the cpufreq table. */ 1813 for (i = 0; i < nfreqs; i++) { 1814 freq = freqs[i]; 1815 if (rate == freq) 1816 break; 1817 } 1818 1819 if (rate != freq) 1820 return -EINVAL; 1821 1822 /* Set the new arm opp. */ 1823 pr_debug("SET ARM OPP 0x%02x\n", opps[i]); 1824 return db8500_prcmu_set_arm_opp(opps[i]); 1825 } 1826 1827 static int set_plldsi_rate(unsigned long rate) 1828 { 1829 unsigned long src_rate; 1830 unsigned long rem; 1831 u32 pll_freq = 0; 1832 u32 r; 1833 1834 src_rate = clock_rate(PRCMU_HDMICLK); 1835 rem = rate; 1836 1837 for (r = 7; (rem > 0) && (r > 0); r--) { 1838 u64 d; 1839 u64 hwrate; 1840 1841 d = (r * rate); 1842 (void)do_div(d, src_rate); 1843 if (d < 6) 1844 d = 6; 1845 else if (d > 255) 1846 d = 255; 1847 hwrate = (d * src_rate); 1848 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 1849 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 1850 continue; 1851 (void)do_div(hwrate, r); 1852 if (rate < hwrate) { 1853 if (pll_freq == 0) 1854 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1855 (r << PRCM_PLL_FREQ_R_SHIFT)); 1856 break; 1857 } 1858 if ((rate - hwrate) < rem) { 1859 rem = (rate - hwrate); 1860 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1861 (r << PRCM_PLL_FREQ_R_SHIFT)); 1862 } 1863 } 1864 if (pll_freq == 0) 1865 return -EINVAL; 1866 1867 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 1868 writel(pll_freq, PRCM_PLLDSI_FREQ); 1869 1870 return 0; 1871 } 1872 1873 static void set_dsiclk_rate(u8 n, unsigned long rate) 1874 { 1875 u32 val; 1876 u32 div; 1877 1878 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 1879 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 1880 1881 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 1882 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 1883 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 1884 1885 val = readl(PRCM_DSI_PLLOUT_SEL); 1886 val &= ~dsiclk[n].divsel_mask; 1887 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 1888 writel(val, PRCM_DSI_PLLOUT_SEL); 1889 } 1890 1891 static void set_dsiescclk_rate(u8 n, unsigned long rate) 1892 { 1893 u32 val; 1894 u32 div; 1895 1896 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 1897 val = readl(PRCM_DSITVCLK_DIV); 1898 val &= ~dsiescclk[n].div_mask; 1899 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 1900 writel(val, PRCM_DSITVCLK_DIV); 1901 } 1902 1903 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 1904 { 1905 if (clock < PRCMU_NUM_REG_CLOCKS) 1906 set_clock_rate(clock, rate); 1907 else if (clock == PRCMU_ARMSS) 1908 return set_armss_rate(rate); 1909 else if (clock == PRCMU_PLLDSI) 1910 return set_plldsi_rate(rate); 1911 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1912 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 1913 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1914 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 1915 return 0; 1916 } 1917 1918 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 1919 { 1920 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 1921 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 1922 return -EINVAL; 1923 1924 mutex_lock(&mb4_transfer.lock); 1925 1926 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1927 cpu_relax(); 1928 1929 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1930 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 1931 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 1932 writeb(DDR_PWR_STATE_ON, 1933 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 1934 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 1935 1936 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1937 wait_for_completion(&mb4_transfer.work); 1938 1939 mutex_unlock(&mb4_transfer.lock); 1940 1941 return 0; 1942 } 1943 1944 int db8500_prcmu_config_hotdog(u8 threshold) 1945 { 1946 mutex_lock(&mb4_transfer.lock); 1947 1948 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1949 cpu_relax(); 1950 1951 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 1952 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1953 1954 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1955 wait_for_completion(&mb4_transfer.work); 1956 1957 mutex_unlock(&mb4_transfer.lock); 1958 1959 return 0; 1960 } 1961 1962 int db8500_prcmu_config_hotmon(u8 low, u8 high) 1963 { 1964 mutex_lock(&mb4_transfer.lock); 1965 1966 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1967 cpu_relax(); 1968 1969 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 1970 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 1971 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 1972 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 1973 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1974 1975 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1976 wait_for_completion(&mb4_transfer.work); 1977 1978 mutex_unlock(&mb4_transfer.lock); 1979 1980 return 0; 1981 } 1982 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon); 1983 1984 static int config_hot_period(u16 val) 1985 { 1986 mutex_lock(&mb4_transfer.lock); 1987 1988 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 1989 cpu_relax(); 1990 1991 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 1992 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 1993 1994 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 1995 wait_for_completion(&mb4_transfer.work); 1996 1997 mutex_unlock(&mb4_transfer.lock); 1998 1999 return 0; 2000 } 2001 2002 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2003 { 2004 if (cycles32k == 0xFFFF) 2005 return -EINVAL; 2006 2007 return config_hot_period(cycles32k); 2008 } 2009 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense); 2010 2011 int db8500_prcmu_stop_temp_sense(void) 2012 { 2013 return config_hot_period(0xFFFF); 2014 } 2015 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense); 2016 2017 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2018 { 2019 2020 mutex_lock(&mb4_transfer.lock); 2021 2022 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2023 cpu_relax(); 2024 2025 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2026 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2027 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2028 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2029 2030 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2031 2032 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2033 wait_for_completion(&mb4_transfer.work); 2034 2035 mutex_unlock(&mb4_transfer.lock); 2036 2037 return 0; 2038 2039 } 2040 2041 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2042 { 2043 BUG_ON(num == 0 || num > 0xf); 2044 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2045 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2046 A9WDOG_AUTO_OFF_DIS); 2047 } 2048 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog); 2049 2050 int db8500_prcmu_enable_a9wdog(u8 id) 2051 { 2052 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2053 } 2054 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog); 2055 2056 int db8500_prcmu_disable_a9wdog(u8 id) 2057 { 2058 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2059 } 2060 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog); 2061 2062 int db8500_prcmu_kick_a9wdog(u8 id) 2063 { 2064 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2065 } 2066 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog); 2067 2068 /* 2069 * timeout is 28 bit, in ms. 2070 */ 2071 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2072 { 2073 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2074 (id & A9WDOG_ID_MASK) | 2075 /* 2076 * Put the lowest 28 bits of timeout at 2077 * offset 4. Four first bits are used for id. 2078 */ 2079 (u8)((timeout << 4) & 0xf0), 2080 (u8)((timeout >> 4) & 0xff), 2081 (u8)((timeout >> 12) & 0xff), 2082 (u8)((timeout >> 20) & 0xff)); 2083 } 2084 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog); 2085 2086 /** 2087 * prcmu_abb_read() - Read register value(s) from the ABB. 2088 * @slave: The I2C slave address. 2089 * @reg: The (start) register address. 2090 * @value: The read out value(s). 2091 * @size: The number of registers to read. 2092 * 2093 * Reads register value(s) from the ABB. 2094 * @size has to be 1 for the current firmware version. 2095 */ 2096 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2097 { 2098 int r; 2099 2100 if (size != 1) 2101 return -EINVAL; 2102 2103 mutex_lock(&mb5_transfer.lock); 2104 2105 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2106 cpu_relax(); 2107 2108 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2109 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2110 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2111 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2112 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2113 2114 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2115 2116 if (!wait_for_completion_timeout(&mb5_transfer.work, 2117 msecs_to_jiffies(20000))) { 2118 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2119 __func__); 2120 r = -EIO; 2121 } else { 2122 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2123 } 2124 2125 if (!r) 2126 *value = mb5_transfer.ack.value; 2127 2128 mutex_unlock(&mb5_transfer.lock); 2129 2130 return r; 2131 } 2132 2133 /** 2134 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2135 * @slave: The I2C slave address. 2136 * @reg: The (start) register address. 2137 * @value: The value(s) to write. 2138 * @mask: The mask(s) to use. 2139 * @size: The number of registers to write. 2140 * 2141 * Writes masked register value(s) to the ABB. 2142 * For each @value, only the bits set to 1 in the corresponding @mask 2143 * will be written. The other bits are not changed. 2144 * @size has to be 1 for the current firmware version. 2145 */ 2146 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2147 { 2148 int r; 2149 2150 if (size != 1) 2151 return -EINVAL; 2152 2153 mutex_lock(&mb5_transfer.lock); 2154 2155 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2156 cpu_relax(); 2157 2158 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2159 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2160 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2161 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2162 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2163 2164 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2165 2166 if (!wait_for_completion_timeout(&mb5_transfer.work, 2167 msecs_to_jiffies(20000))) { 2168 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2169 __func__); 2170 r = -EIO; 2171 } else { 2172 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2173 } 2174 2175 mutex_unlock(&mb5_transfer.lock); 2176 2177 return r; 2178 } 2179 2180 /** 2181 * prcmu_abb_write() - Write register value(s) to the ABB. 2182 * @slave: The I2C slave address. 2183 * @reg: The (start) register address. 2184 * @value: The value(s) to write. 2185 * @size: The number of registers to write. 2186 * 2187 * Writes register value(s) to the ABB. 2188 * @size has to be 1 for the current firmware version. 2189 */ 2190 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2191 { 2192 u8 mask = ~0; 2193 2194 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2195 } 2196 2197 /** 2198 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2199 */ 2200 int prcmu_ac_wake_req(void) 2201 { 2202 u32 val; 2203 int ret = 0; 2204 2205 mutex_lock(&mb0_transfer.ac_wake_lock); 2206 2207 val = readl(PRCM_HOSTACCESS_REQ); 2208 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2209 goto unlock_and_return; 2210 2211 atomic_set(&ac_wake_req_state, 1); 2212 2213 /* 2214 * Force Modem Wake-up before hostaccess_req ping-pong. 2215 * It prevents Modem to enter in Sleep while acking the hostaccess 2216 * request. The 31us delay has been calculated by HWI. 2217 */ 2218 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2219 writel(val, PRCM_HOSTACCESS_REQ); 2220 2221 udelay(31); 2222 2223 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2224 writel(val, PRCM_HOSTACCESS_REQ); 2225 2226 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2227 msecs_to_jiffies(5000))) { 2228 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2229 __func__); 2230 ret = -EFAULT; 2231 } 2232 2233 unlock_and_return: 2234 mutex_unlock(&mb0_transfer.ac_wake_lock); 2235 return ret; 2236 } 2237 2238 /** 2239 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2240 */ 2241 void prcmu_ac_sleep_req(void) 2242 { 2243 u32 val; 2244 2245 mutex_lock(&mb0_transfer.ac_wake_lock); 2246 2247 val = readl(PRCM_HOSTACCESS_REQ); 2248 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2249 goto unlock_and_return; 2250 2251 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2252 PRCM_HOSTACCESS_REQ); 2253 2254 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2255 msecs_to_jiffies(5000))) { 2256 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2257 __func__); 2258 } 2259 2260 atomic_set(&ac_wake_req_state, 0); 2261 2262 unlock_and_return: 2263 mutex_unlock(&mb0_transfer.ac_wake_lock); 2264 } 2265 2266 bool db8500_prcmu_is_ac_wake_requested(void) 2267 { 2268 return (atomic_read(&ac_wake_req_state) != 0); 2269 } 2270 2271 /** 2272 * db8500_prcmu_system_reset - System reset 2273 * 2274 * Saves the reset reason code and then sets the APE_SOFTRST register which 2275 * fires interrupt to fw 2276 * 2277 * @reset_code: The reason for system reset 2278 */ 2279 void db8500_prcmu_system_reset(u16 reset_code) 2280 { 2281 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2282 writel(1, PRCM_APE_SOFTRST); 2283 } 2284 2285 /** 2286 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2287 * 2288 * Retrieves the reset reason code stored by prcmu_system_reset() before 2289 * last restart. 2290 */ 2291 u16 db8500_prcmu_get_reset_code(void) 2292 { 2293 return readw(tcdm_base + PRCM_SW_RST_REASON); 2294 } 2295 2296 /** 2297 * db8500_prcmu_modem_reset - ask the PRCMU to reset modem 2298 */ 2299 void db8500_prcmu_modem_reset(void) 2300 { 2301 mutex_lock(&mb1_transfer.lock); 2302 2303 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2304 cpu_relax(); 2305 2306 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2307 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2308 wait_for_completion(&mb1_transfer.work); 2309 2310 /* 2311 * No need to check return from PRCMU as modem should go in reset state 2312 * This state is already managed by upper layer 2313 */ 2314 2315 mutex_unlock(&mb1_transfer.lock); 2316 } 2317 2318 static void ack_dbb_wakeup(void) 2319 { 2320 unsigned long flags; 2321 2322 spin_lock_irqsave(&mb0_transfer.lock, flags); 2323 2324 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2325 cpu_relax(); 2326 2327 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2328 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2329 2330 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2331 } 2332 2333 static inline void print_unknown_header_warning(u8 n, u8 header) 2334 { 2335 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n", 2336 header, n); 2337 } 2338 2339 static bool read_mailbox_0(void) 2340 { 2341 bool r; 2342 u32 ev; 2343 unsigned int n; 2344 u8 header; 2345 2346 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2347 switch (header) { 2348 case MB0H_WAKEUP_EXE: 2349 case MB0H_WAKEUP_SLEEP: 2350 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2351 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2352 else 2353 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2354 2355 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2356 complete(&mb0_transfer.ac_wake_work); 2357 if (ev & WAKEUP_BIT_SYSCLK_OK) 2358 complete(&mb3_transfer.sysclk_work); 2359 2360 ev &= mb0_transfer.req.dbb_irqs; 2361 2362 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2363 if (ev & prcmu_irq_bit[n]) 2364 generic_handle_domain_irq(db8500_irq_domain, n); 2365 } 2366 r = true; 2367 break; 2368 default: 2369 print_unknown_header_warning(0, header); 2370 r = false; 2371 break; 2372 } 2373 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2374 return r; 2375 } 2376 2377 static bool read_mailbox_1(void) 2378 { 2379 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2380 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2381 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2382 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2383 PRCM_ACK_MB1_CURRENT_APE_OPP); 2384 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2385 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2386 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2387 complete(&mb1_transfer.work); 2388 return false; 2389 } 2390 2391 static bool read_mailbox_2(void) 2392 { 2393 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2394 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2395 complete(&mb2_transfer.work); 2396 return false; 2397 } 2398 2399 static bool read_mailbox_3(void) 2400 { 2401 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2402 return false; 2403 } 2404 2405 static bool read_mailbox_4(void) 2406 { 2407 u8 header; 2408 bool do_complete = true; 2409 2410 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2411 switch (header) { 2412 case MB4H_MEM_ST: 2413 case MB4H_HOTDOG: 2414 case MB4H_HOTMON: 2415 case MB4H_HOT_PERIOD: 2416 case MB4H_A9WDOG_CONF: 2417 case MB4H_A9WDOG_EN: 2418 case MB4H_A9WDOG_DIS: 2419 case MB4H_A9WDOG_LOAD: 2420 case MB4H_A9WDOG_KICK: 2421 break; 2422 default: 2423 print_unknown_header_warning(4, header); 2424 do_complete = false; 2425 break; 2426 } 2427 2428 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2429 2430 if (do_complete) 2431 complete(&mb4_transfer.work); 2432 2433 return false; 2434 } 2435 2436 static bool read_mailbox_5(void) 2437 { 2438 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2439 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2440 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2441 complete(&mb5_transfer.work); 2442 return false; 2443 } 2444 2445 static bool read_mailbox_6(void) 2446 { 2447 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2448 return false; 2449 } 2450 2451 static bool read_mailbox_7(void) 2452 { 2453 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2454 return false; 2455 } 2456 2457 static bool (* const read_mailbox[NUM_MB])(void) = { 2458 read_mailbox_0, 2459 read_mailbox_1, 2460 read_mailbox_2, 2461 read_mailbox_3, 2462 read_mailbox_4, 2463 read_mailbox_5, 2464 read_mailbox_6, 2465 read_mailbox_7 2466 }; 2467 2468 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2469 { 2470 u32 bits; 2471 u8 n; 2472 irqreturn_t r; 2473 2474 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2475 if (unlikely(!bits)) 2476 return IRQ_NONE; 2477 2478 r = IRQ_HANDLED; 2479 for (n = 0; bits; n++) { 2480 if (bits & MBOX_BIT(n)) { 2481 bits -= MBOX_BIT(n); 2482 if (read_mailbox[n]()) 2483 r = IRQ_WAKE_THREAD; 2484 } 2485 } 2486 return r; 2487 } 2488 2489 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2490 { 2491 ack_dbb_wakeup(); 2492 return IRQ_HANDLED; 2493 } 2494 2495 static void prcmu_mask_work(struct work_struct *work) 2496 { 2497 unsigned long flags; 2498 2499 spin_lock_irqsave(&mb0_transfer.lock, flags); 2500 2501 config_wakeups(); 2502 2503 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2504 } 2505 2506 static void prcmu_irq_mask(struct irq_data *d) 2507 { 2508 unsigned long flags; 2509 2510 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2511 2512 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2513 2514 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2515 2516 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2517 schedule_work(&mb0_transfer.mask_work); 2518 } 2519 2520 static void prcmu_irq_unmask(struct irq_data *d) 2521 { 2522 unsigned long flags; 2523 2524 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2525 2526 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2527 2528 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2529 2530 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2531 schedule_work(&mb0_transfer.mask_work); 2532 } 2533 2534 static void noop(struct irq_data *d) 2535 { 2536 } 2537 2538 static struct irq_chip prcmu_irq_chip = { 2539 .name = "prcmu", 2540 .irq_disable = prcmu_irq_mask, 2541 .irq_ack = noop, 2542 .irq_mask = prcmu_irq_mask, 2543 .irq_unmask = prcmu_irq_unmask, 2544 }; 2545 2546 static char *fw_project_name(u32 project) 2547 { 2548 switch (project) { 2549 case PRCMU_FW_PROJECT_U8500: 2550 return "U8500"; 2551 case PRCMU_FW_PROJECT_U8400: 2552 return "U8400"; 2553 case PRCMU_FW_PROJECT_U9500: 2554 return "U9500"; 2555 case PRCMU_FW_PROJECT_U8500_MBB: 2556 return "U8500 MBB"; 2557 case PRCMU_FW_PROJECT_U8500_C1: 2558 return "U8500 C1"; 2559 case PRCMU_FW_PROJECT_U8500_C2: 2560 return "U8500 C2"; 2561 case PRCMU_FW_PROJECT_U8500_C3: 2562 return "U8500 C3"; 2563 case PRCMU_FW_PROJECT_U8500_C4: 2564 return "U8500 C4"; 2565 case PRCMU_FW_PROJECT_U9500_MBL: 2566 return "U9500 MBL"; 2567 case PRCMU_FW_PROJECT_U8500_SSG1: 2568 return "U8500 Samsung 1"; 2569 case PRCMU_FW_PROJECT_U8500_MBL2: 2570 return "U8500 MBL2"; 2571 case PRCMU_FW_PROJECT_U8520: 2572 return "U8520 MBL"; 2573 case PRCMU_FW_PROJECT_U8420: 2574 return "U8420"; 2575 case PRCMU_FW_PROJECT_U8500_SSG2: 2576 return "U8500 Samsung 2"; 2577 case PRCMU_FW_PROJECT_U8420_SYSCLK: 2578 return "U8420-sysclk"; 2579 case PRCMU_FW_PROJECT_U9540: 2580 return "U9540"; 2581 case PRCMU_FW_PROJECT_A9420: 2582 return "A9420"; 2583 case PRCMU_FW_PROJECT_L8540: 2584 return "L8540"; 2585 case PRCMU_FW_PROJECT_L8580: 2586 return "L8580"; 2587 default: 2588 return "Unknown"; 2589 } 2590 } 2591 2592 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2593 irq_hw_number_t hwirq) 2594 { 2595 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2596 handle_simple_irq); 2597 2598 return 0; 2599 } 2600 2601 static const struct irq_domain_ops db8500_irq_ops = { 2602 .map = db8500_irq_map, 2603 .xlate = irq_domain_xlate_twocell, 2604 }; 2605 2606 static int db8500_irq_init(struct device_node *np) 2607 { 2608 int i; 2609 2610 db8500_irq_domain = irq_domain_add_simple( 2611 np, NUM_PRCMU_WAKEUPS, 0, 2612 &db8500_irq_ops, NULL); 2613 2614 if (!db8500_irq_domain) { 2615 pr_err("Failed to create irqdomain\n"); 2616 return -ENOSYS; 2617 } 2618 2619 /* All wakeups will be used, so create mappings for all */ 2620 for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) 2621 irq_create_mapping(db8500_irq_domain, i); 2622 2623 return 0; 2624 } 2625 2626 static void dbx500_fw_version_init(struct device_node *np) 2627 { 2628 void __iomem *tcpm_base; 2629 u32 version; 2630 2631 tcpm_base = of_iomap(np, 1); 2632 if (!tcpm_base) { 2633 pr_err("no prcmu tcpm mem region provided\n"); 2634 return; 2635 } 2636 2637 version = readl(tcpm_base + DB8500_PRCMU_FW_VERSION_OFFSET); 2638 fw_info.version.project = (version & 0xFF); 2639 fw_info.version.api_version = (version >> 8) & 0xFF; 2640 fw_info.version.func_version = (version >> 16) & 0xFF; 2641 fw_info.version.errata = (version >> 24) & 0xFF; 2642 strscpy(fw_info.version.project_name, 2643 fw_project_name(fw_info.version.project), 2644 sizeof(fw_info.version.project_name)); 2645 fw_info.valid = true; 2646 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n", 2647 fw_info.version.project_name, 2648 fw_info.version.project, 2649 fw_info.version.api_version, 2650 fw_info.version.func_version, 2651 fw_info.version.errata); 2652 iounmap(tcpm_base); 2653 } 2654 2655 void __init db8500_prcmu_early_init(void) 2656 { 2657 /* 2658 * This is a temporary remap to bring up the clocks. It is 2659 * subsequently replaces with a real remap. After the merge of 2660 * the mailbox subsystem all of this early code goes away, and the 2661 * clock driver can probe independently. An early initcall will 2662 * still be needed, but it can be diverted into drivers/clk/ux500. 2663 */ 2664 struct device_node *np; 2665 2666 np = of_find_compatible_node(NULL, NULL, "stericsson,db8500-prcmu"); 2667 prcmu_base = of_iomap(np, 0); 2668 if (!prcmu_base) { 2669 of_node_put(np); 2670 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__); 2671 return; 2672 } 2673 dbx500_fw_version_init(np); 2674 of_node_put(np); 2675 2676 spin_lock_init(&mb0_transfer.lock); 2677 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2678 mutex_init(&mb0_transfer.ac_wake_lock); 2679 init_completion(&mb0_transfer.ac_wake_work); 2680 mutex_init(&mb1_transfer.lock); 2681 init_completion(&mb1_transfer.work); 2682 mb1_transfer.ape_opp = APE_NO_CHANGE; 2683 mutex_init(&mb2_transfer.lock); 2684 init_completion(&mb2_transfer.work); 2685 spin_lock_init(&mb2_transfer.auto_pm_lock); 2686 spin_lock_init(&mb3_transfer.lock); 2687 mutex_init(&mb3_transfer.sysclk_lock); 2688 init_completion(&mb3_transfer.sysclk_work); 2689 mutex_init(&mb4_transfer.lock); 2690 init_completion(&mb4_transfer.work); 2691 mutex_init(&mb5_transfer.lock); 2692 init_completion(&mb5_transfer.work); 2693 2694 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2695 } 2696 2697 static void init_prcm_registers(void) 2698 { 2699 u32 val; 2700 2701 val = readl(PRCM_A9PL_FORCE_CLKEN); 2702 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2703 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2704 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2705 } 2706 2707 /* 2708 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2709 */ 2710 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2711 REGULATOR_SUPPLY("v-ape", NULL), 2712 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2713 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2714 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2715 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2716 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2717 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2718 REGULATOR_SUPPLY("vcore", "sdi0"), 2719 REGULATOR_SUPPLY("vcore", "sdi1"), 2720 REGULATOR_SUPPLY("vcore", "sdi2"), 2721 REGULATOR_SUPPLY("vcore", "sdi3"), 2722 REGULATOR_SUPPLY("vcore", "sdi4"), 2723 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2724 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2725 /* "v-uart" changed to "vcore" in the mainline kernel */ 2726 REGULATOR_SUPPLY("vcore", "uart0"), 2727 REGULATOR_SUPPLY("vcore", "uart1"), 2728 REGULATOR_SUPPLY("vcore", "uart2"), 2729 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2730 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2731 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2732 }; 2733 2734 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2735 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2736 /* AV8100 regulator */ 2737 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2738 }; 2739 2740 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2741 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2742 REGULATOR_SUPPLY("vsupply", "mcde"), 2743 }; 2744 2745 /* SVA MMDSP regulator switch */ 2746 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2747 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2748 }; 2749 2750 /* SVA pipe regulator switch */ 2751 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2752 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2753 }; 2754 2755 /* SIA MMDSP regulator switch */ 2756 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2757 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2758 }; 2759 2760 /* SIA pipe regulator switch */ 2761 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2762 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2763 }; 2764 2765 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2766 REGULATOR_SUPPLY("v-mali", NULL), 2767 }; 2768 2769 /* ESRAM1 and 2 regulator switch */ 2770 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2771 REGULATOR_SUPPLY("esram12", "cm_control"), 2772 }; 2773 2774 /* ESRAM3 and 4 regulator switch */ 2775 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2776 REGULATOR_SUPPLY("v-esram34", "mcde"), 2777 REGULATOR_SUPPLY("esram34", "cm_control"), 2778 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2779 }; 2780 2781 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2782 [DB8500_REGULATOR_VAPE] = { 2783 .constraints = { 2784 .name = "db8500-vape", 2785 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2786 .always_on = true, 2787 }, 2788 .consumer_supplies = db8500_vape_consumers, 2789 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2790 }, 2791 [DB8500_REGULATOR_VARM] = { 2792 .constraints = { 2793 .name = "db8500-varm", 2794 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2795 }, 2796 }, 2797 [DB8500_REGULATOR_VMODEM] = { 2798 .constraints = { 2799 .name = "db8500-vmodem", 2800 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2801 }, 2802 }, 2803 [DB8500_REGULATOR_VPLL] = { 2804 .constraints = { 2805 .name = "db8500-vpll", 2806 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2807 }, 2808 }, 2809 [DB8500_REGULATOR_VSMPS1] = { 2810 .constraints = { 2811 .name = "db8500-vsmps1", 2812 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2813 }, 2814 }, 2815 [DB8500_REGULATOR_VSMPS2] = { 2816 .constraints = { 2817 .name = "db8500-vsmps2", 2818 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2819 }, 2820 .consumer_supplies = db8500_vsmps2_consumers, 2821 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2822 }, 2823 [DB8500_REGULATOR_VSMPS3] = { 2824 .constraints = { 2825 .name = "db8500-vsmps3", 2826 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2827 }, 2828 }, 2829 [DB8500_REGULATOR_VRF1] = { 2830 .constraints = { 2831 .name = "db8500-vrf1", 2832 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2833 }, 2834 }, 2835 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2836 /* dependency to u8500-vape is handled outside regulator framework */ 2837 .constraints = { 2838 .name = "db8500-sva-mmdsp", 2839 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2840 }, 2841 .consumer_supplies = db8500_svammdsp_consumers, 2842 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2843 }, 2844 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2845 .constraints = { 2846 /* "ret" means "retention" */ 2847 .name = "db8500-sva-mmdsp-ret", 2848 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2849 }, 2850 }, 2851 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2852 /* dependency to u8500-vape is handled outside regulator framework */ 2853 .constraints = { 2854 .name = "db8500-sva-pipe", 2855 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2856 }, 2857 .consumer_supplies = db8500_svapipe_consumers, 2858 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2859 }, 2860 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2861 /* dependency to u8500-vape is handled outside regulator framework */ 2862 .constraints = { 2863 .name = "db8500-sia-mmdsp", 2864 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2865 }, 2866 .consumer_supplies = db8500_siammdsp_consumers, 2867 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2868 }, 2869 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2870 .constraints = { 2871 .name = "db8500-sia-mmdsp-ret", 2872 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2873 }, 2874 }, 2875 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2876 /* dependency to u8500-vape is handled outside regulator framework */ 2877 .constraints = { 2878 .name = "db8500-sia-pipe", 2879 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2880 }, 2881 .consumer_supplies = db8500_siapipe_consumers, 2882 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 2883 }, 2884 [DB8500_REGULATOR_SWITCH_SGA] = { 2885 .supply_regulator = "db8500-vape", 2886 .constraints = { 2887 .name = "db8500-sga", 2888 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2889 }, 2890 .consumer_supplies = db8500_sga_consumers, 2891 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 2892 2893 }, 2894 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 2895 .supply_regulator = "db8500-vape", 2896 .constraints = { 2897 .name = "db8500-b2r2-mcde", 2898 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2899 }, 2900 .consumer_supplies = db8500_b2r2_mcde_consumers, 2901 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 2902 }, 2903 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 2904 /* 2905 * esram12 is set in retention and supplied by Vsafe when Vape is off, 2906 * no need to hold Vape 2907 */ 2908 .constraints = { 2909 .name = "db8500-esram12", 2910 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2911 }, 2912 .consumer_supplies = db8500_esram12_consumers, 2913 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 2914 }, 2915 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 2916 .constraints = { 2917 .name = "db8500-esram12-ret", 2918 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2919 }, 2920 }, 2921 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 2922 /* 2923 * esram34 is set in retention and supplied by Vsafe when Vape is off, 2924 * no need to hold Vape 2925 */ 2926 .constraints = { 2927 .name = "db8500-esram34", 2928 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2929 }, 2930 .consumer_supplies = db8500_esram34_consumers, 2931 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 2932 }, 2933 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 2934 .constraints = { 2935 .name = "db8500-esram34-ret", 2936 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2937 }, 2938 }, 2939 }; 2940 2941 static const struct mfd_cell common_prcmu_devs[] = { 2942 MFD_CELL_NAME("db8500_wdt"), 2943 MFD_CELL_NAME("db8500-cpuidle"), 2944 }; 2945 2946 static const struct mfd_cell db8500_prcmu_devs[] = { 2947 MFD_CELL_OF("db8500-prcmu-regulators", NULL, 2948 &db8500_regulators, sizeof(db8500_regulators), 0, 2949 "stericsson,db8500-prcmu-regulator"), 2950 MFD_CELL_OF("db8500-thermal", 2951 NULL, NULL, 0, 0, "stericsson,db8500-thermal"), 2952 }; 2953 2954 static int db8500_prcmu_register_ab8500(struct device *parent) 2955 { 2956 struct device_node *np; 2957 struct resource ab850x_resource; 2958 const struct mfd_cell ab8500_cell = { 2959 .name = "ab8500-core", 2960 .of_compatible = "stericsson,ab8500", 2961 .id = AB8500_VERSION_AB8500, 2962 .resources = &ab850x_resource, 2963 .num_resources = 1, 2964 }; 2965 const struct mfd_cell ab8505_cell = { 2966 .name = "ab8505-core", 2967 .of_compatible = "stericsson,ab8505", 2968 .id = AB8500_VERSION_AB8505, 2969 .resources = &ab850x_resource, 2970 .num_resources = 1, 2971 }; 2972 const struct mfd_cell *ab850x_cell; 2973 2974 if (!parent->of_node) 2975 return -ENODEV; 2976 2977 /* Look up the device node, sneak the IRQ out of it */ 2978 for_each_child_of_node(parent->of_node, np) { 2979 if (of_device_is_compatible(np, ab8500_cell.of_compatible)) { 2980 ab850x_cell = &ab8500_cell; 2981 break; 2982 } 2983 if (of_device_is_compatible(np, ab8505_cell.of_compatible)) { 2984 ab850x_cell = &ab8505_cell; 2985 break; 2986 } 2987 } 2988 if (!np) { 2989 dev_info(parent, "could not find AB850X node in the device tree\n"); 2990 return -ENODEV; 2991 } 2992 of_irq_to_resource_table(np, &ab850x_resource, 1); 2993 2994 return mfd_add_devices(parent, 0, ab850x_cell, 1, NULL, 0, NULL); 2995 } 2996 2997 static int db8500_prcmu_probe(struct platform_device *pdev) 2998 { 2999 struct device_node *np = pdev->dev.of_node; 3000 int irq = 0, err = 0; 3001 struct resource *res; 3002 3003 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu"); 3004 if (!res) { 3005 dev_err(&pdev->dev, "no prcmu memory region provided\n"); 3006 return -EINVAL; 3007 } 3008 prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); 3009 if (!prcmu_base) { 3010 dev_err(&pdev->dev, 3011 "failed to ioremap prcmu register memory\n"); 3012 return -ENOMEM; 3013 } 3014 init_prcm_registers(); 3015 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm"); 3016 if (!res) { 3017 dev_err(&pdev->dev, "no prcmu tcdm region provided\n"); 3018 return -EINVAL; 3019 } 3020 tcdm_base = devm_ioremap(&pdev->dev, res->start, 3021 resource_size(res)); 3022 if (!tcdm_base) { 3023 dev_err(&pdev->dev, 3024 "failed to ioremap prcmu-tcdm register memory\n"); 3025 return -ENOMEM; 3026 } 3027 3028 /* Clean up the mailbox interrupts after pre-kernel code. */ 3029 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3030 3031 irq = platform_get_irq(pdev, 0); 3032 if (irq <= 0) 3033 return irq; 3034 3035 err = request_threaded_irq(irq, prcmu_irq_handler, 3036 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3037 if (err < 0) { 3038 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3039 return err; 3040 } 3041 3042 db8500_irq_init(np); 3043 3044 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3045 3046 err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs, 3047 ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain); 3048 if (err) { 3049 pr_err("prcmu: Failed to add subdevices\n"); 3050 return err; 3051 } 3052 3053 /* TODO: Remove restriction when clk definitions are available. */ 3054 if (!of_machine_is_compatible("st-ericsson,u8540")) { 3055 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3056 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, 3057 db8500_irq_domain); 3058 if (err) { 3059 mfd_remove_devices(&pdev->dev); 3060 pr_err("prcmu: Failed to add subdevices\n"); 3061 return err; 3062 } 3063 } 3064 3065 err = db8500_prcmu_register_ab8500(&pdev->dev); 3066 if (err) { 3067 mfd_remove_devices(&pdev->dev); 3068 pr_err("prcmu: Failed to add ab8500 subdevice\n"); 3069 return err; 3070 } 3071 3072 pr_info("DB8500 PRCMU initialized\n"); 3073 return err; 3074 } 3075 static const struct of_device_id db8500_prcmu_match[] = { 3076 { .compatible = "stericsson,db8500-prcmu"}, 3077 { }, 3078 }; 3079 3080 static struct platform_driver db8500_prcmu_driver = { 3081 .driver = { 3082 .name = "db8500-prcmu", 3083 .of_match_table = db8500_prcmu_match, 3084 }, 3085 .probe = db8500_prcmu_probe, 3086 }; 3087 3088 static int __init db8500_prcmu_init(void) 3089 { 3090 return platform_driver_register(&db8500_prcmu_driver); 3091 } 3092 core_initcall(db8500_prcmu_init); 3093