1 /* 2 * Copyright (C) STMicroelectronics 2009 3 * Copyright (C) ST-Ericsson SA 2010 4 * 5 * License Terms: GNU General Public License v2 6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com> 7 * Author: Sundar Iyer <sundar.iyer@stericsson.com> 8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com> 9 * 10 * U8500 PRCM Unit interface driver 11 * 12 */ 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/delay.h> 16 #include <linux/errno.h> 17 #include <linux/err.h> 18 #include <linux/spinlock.h> 19 #include <linux/io.h> 20 #include <linux/slab.h> 21 #include <linux/mutex.h> 22 #include <linux/completion.h> 23 #include <linux/irq.h> 24 #include <linux/jiffies.h> 25 #include <linux/bitops.h> 26 #include <linux/fs.h> 27 #include <linux/platform_device.h> 28 #include <linux/uaccess.h> 29 #include <linux/mfd/core.h> 30 #include <linux/mfd/dbx500-prcmu.h> 31 #include <linux/mfd/abx500/ab8500.h> 32 #include <linux/regulator/db8500-prcmu.h> 33 #include <linux/regulator/machine.h> 34 #include <asm/hardware/gic.h> 35 #include <mach/hardware.h> 36 #include <mach/irqs.h> 37 #include <mach/db8500-regs.h> 38 #include <mach/id.h> 39 #include "dbx500-prcmu-regs.h" 40 41 /* Offset for the firmware version within the TCPM */ 42 #define PRCMU_FW_VERSION_OFFSET 0xA4 43 44 /* Index of different voltages to be used when accessing AVSData */ 45 #define PRCM_AVS_BASE 0x2FC 46 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0) 47 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1) 48 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2) 49 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3) 50 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4) 51 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5) 52 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6) 53 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7) 54 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8) 55 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9) 56 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA) 57 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB) 58 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC) 59 60 #define PRCM_AVS_VOLTAGE 0 61 #define PRCM_AVS_VOLTAGE_MASK 0x3f 62 #define PRCM_AVS_ISSLOWSTARTUP 6 63 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP) 64 #define PRCM_AVS_ISMODEENABLE 7 65 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE) 66 67 #define PRCM_BOOT_STATUS 0xFFF 68 #define PRCM_ROMCODE_A2P 0xFFE 69 #define PRCM_ROMCODE_P2A 0xFFD 70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */ 71 72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */ 73 74 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */ 75 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0) 76 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1) 77 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2) 78 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3) 79 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4) 80 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5) 81 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8) 82 83 /* Req Mailboxes */ 84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */ 85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */ 86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */ 87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */ 88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */ 89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */ 90 91 /* Ack Mailboxes */ 92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */ 93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */ 94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */ 95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */ 96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */ 97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */ 98 99 /* Mailbox 0 headers */ 100 #define MB0H_POWER_STATE_TRANS 0 101 #define MB0H_CONFIG_WAKEUPS_EXE 1 102 #define MB0H_READ_WAKEUP_ACK 3 103 #define MB0H_CONFIG_WAKEUPS_SLEEP 4 104 105 #define MB0H_WAKEUP_EXE 2 106 #define MB0H_WAKEUP_SLEEP 5 107 108 /* Mailbox 0 REQs */ 109 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0) 110 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1) 111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2) 112 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3) 113 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4) 114 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8) 115 116 /* Mailbox 0 ACKs */ 117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0) 118 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1) 119 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4) 120 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8) 121 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C) 122 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20) 123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20 124 125 /* Mailbox 1 headers */ 126 #define MB1H_ARM_APE_OPP 0x0 127 #define MB1H_RESET_MODEM 0x2 128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3 129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4 130 #define MB1H_RELEASE_USB_WAKEUP 0x5 131 #define MB1H_PLL_ON_OFF 0x6 132 133 /* Mailbox 1 Requests */ 134 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0) 135 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1) 136 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4) 137 #define PLL_SOC0_OFF 0x1 138 #define PLL_SOC0_ON 0x2 139 #define PLL_SOC1_OFF 0x4 140 #define PLL_SOC1_ON 0x8 141 142 /* Mailbox 1 ACKs */ 143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0) 144 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1) 145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2) 146 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3) 147 148 /* Mailbox 2 headers */ 149 #define MB2H_DPS 0x0 150 #define MB2H_AUTO_PWR 0x1 151 152 /* Mailbox 2 REQs */ 153 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0) 154 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1) 155 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2) 156 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3) 157 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4) 158 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5) 159 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6) 160 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7) 161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8) 162 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC) 163 164 /* Mailbox 2 ACKs */ 165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0) 166 #define HWACC_PWR_ST_OK 0xFE 167 168 /* Mailbox 3 headers */ 169 #define MB3H_ANC 0x0 170 #define MB3H_SIDETONE 0x1 171 #define MB3H_SYSCLK 0xE 172 173 /* Mailbox 3 Requests */ 174 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0) 175 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20) 176 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60) 177 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64) 178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68) 179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C) 180 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C) 181 182 /* Mailbox 4 headers */ 183 #define MB4H_DDR_INIT 0x0 184 #define MB4H_MEM_ST 0x1 185 #define MB4H_HOTDOG 0x12 186 #define MB4H_HOTMON 0x13 187 #define MB4H_HOT_PERIOD 0x14 188 #define MB4H_A9WDOG_CONF 0x16 189 #define MB4H_A9WDOG_EN 0x17 190 #define MB4H_A9WDOG_DIS 0x18 191 #define MB4H_A9WDOG_LOAD 0x19 192 #define MB4H_A9WDOG_KICK 0x20 193 194 /* Mailbox 4 Requests */ 195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0) 196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1) 197 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3) 198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0) 199 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0) 200 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1) 201 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2) 202 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0) 203 #define HOTMON_CONFIG_LOW BIT(0) 204 #define HOTMON_CONFIG_HIGH BIT(1) 205 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0) 206 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1) 207 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2) 208 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3) 209 #define A9WDOG_AUTO_OFF_EN BIT(7) 210 #define A9WDOG_AUTO_OFF_DIS 0 211 #define A9WDOG_ID_MASK 0xf 212 213 /* Mailbox 5 Requests */ 214 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0) 215 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1) 216 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2) 217 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3) 218 #define PRCMU_I2C_WRITE(slave) \ 219 (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0)) 220 #define PRCMU_I2C_READ(slave) \ 221 (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0)) 222 #define PRCMU_I2C_STOP_EN BIT(3) 223 224 /* Mailbox 5 ACKs */ 225 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1) 226 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3) 227 #define I2C_WR_OK 0x1 228 #define I2C_RD_OK 0x2 229 230 #define NUM_MB 8 231 #define MBOX_BIT BIT 232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1) 233 234 /* 235 * Wakeups/IRQs 236 */ 237 238 #define WAKEUP_BIT_RTC BIT(0) 239 #define WAKEUP_BIT_RTT0 BIT(1) 240 #define WAKEUP_BIT_RTT1 BIT(2) 241 #define WAKEUP_BIT_HSI0 BIT(3) 242 #define WAKEUP_BIT_HSI1 BIT(4) 243 #define WAKEUP_BIT_CA_WAKE BIT(5) 244 #define WAKEUP_BIT_USB BIT(6) 245 #define WAKEUP_BIT_ABB BIT(7) 246 #define WAKEUP_BIT_ABB_FIFO BIT(8) 247 #define WAKEUP_BIT_SYSCLK_OK BIT(9) 248 #define WAKEUP_BIT_CA_SLEEP BIT(10) 249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11) 250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12) 251 #define WAKEUP_BIT_ANC_OK BIT(13) 252 #define WAKEUP_BIT_SW_ERROR BIT(14) 253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15) 254 #define WAKEUP_BIT_ARM BIT(17) 255 #define WAKEUP_BIT_HOTMON_LOW BIT(18) 256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19) 257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20) 258 #define WAKEUP_BIT_GPIO0 BIT(23) 259 #define WAKEUP_BIT_GPIO1 BIT(24) 260 #define WAKEUP_BIT_GPIO2 BIT(25) 261 #define WAKEUP_BIT_GPIO3 BIT(26) 262 #define WAKEUP_BIT_GPIO4 BIT(27) 263 #define WAKEUP_BIT_GPIO5 BIT(28) 264 #define WAKEUP_BIT_GPIO6 BIT(29) 265 #define WAKEUP_BIT_GPIO7 BIT(30) 266 #define WAKEUP_BIT_GPIO8 BIT(31) 267 268 static struct { 269 bool valid; 270 struct prcmu_fw_version version; 271 } fw_info; 272 273 static struct irq_domain *db8500_irq_domain; 274 275 /* 276 * This vector maps irq numbers to the bits in the bit field used in 277 * communication with the PRCMU firmware. 278 * 279 * The reason for having this is to keep the irq numbers contiguous even though 280 * the bits in the bit field are not. (The bits also have a tendency to move 281 * around, to further complicate matters.) 282 */ 283 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE) 284 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name) 285 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = { 286 IRQ_ENTRY(RTC), 287 IRQ_ENTRY(RTT0), 288 IRQ_ENTRY(RTT1), 289 IRQ_ENTRY(HSI0), 290 IRQ_ENTRY(HSI1), 291 IRQ_ENTRY(CA_WAKE), 292 IRQ_ENTRY(USB), 293 IRQ_ENTRY(ABB), 294 IRQ_ENTRY(ABB_FIFO), 295 IRQ_ENTRY(CA_SLEEP), 296 IRQ_ENTRY(ARM), 297 IRQ_ENTRY(HOTMON_LOW), 298 IRQ_ENTRY(HOTMON_HIGH), 299 IRQ_ENTRY(MODEM_SW_RESET_REQ), 300 IRQ_ENTRY(GPIO0), 301 IRQ_ENTRY(GPIO1), 302 IRQ_ENTRY(GPIO2), 303 IRQ_ENTRY(GPIO3), 304 IRQ_ENTRY(GPIO4), 305 IRQ_ENTRY(GPIO5), 306 IRQ_ENTRY(GPIO6), 307 IRQ_ENTRY(GPIO7), 308 IRQ_ENTRY(GPIO8) 309 }; 310 311 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1) 312 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name) 313 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = { 314 WAKEUP_ENTRY(RTC), 315 WAKEUP_ENTRY(RTT0), 316 WAKEUP_ENTRY(RTT1), 317 WAKEUP_ENTRY(HSI0), 318 WAKEUP_ENTRY(HSI1), 319 WAKEUP_ENTRY(USB), 320 WAKEUP_ENTRY(ABB), 321 WAKEUP_ENTRY(ABB_FIFO), 322 WAKEUP_ENTRY(ARM) 323 }; 324 325 /* 326 * mb0_transfer - state needed for mailbox 0 communication. 327 * @lock: The transaction lock. 328 * @dbb_events_lock: A lock used to handle concurrent access to (parts of) 329 * the request data. 330 * @mask_work: Work structure used for (un)masking wakeup interrupts. 331 * @req: Request data that need to persist between requests. 332 */ 333 static struct { 334 spinlock_t lock; 335 spinlock_t dbb_irqs_lock; 336 struct work_struct mask_work; 337 struct mutex ac_wake_lock; 338 struct completion ac_wake_work; 339 struct { 340 u32 dbb_irqs; 341 u32 dbb_wakeups; 342 u32 abb_events; 343 } req; 344 } mb0_transfer; 345 346 /* 347 * mb1_transfer - state needed for mailbox 1 communication. 348 * @lock: The transaction lock. 349 * @work: The transaction completion structure. 350 * @ape_opp: The current APE OPP. 351 * @ack: Reply ("acknowledge") data. 352 */ 353 static struct { 354 struct mutex lock; 355 struct completion work; 356 u8 ape_opp; 357 struct { 358 u8 header; 359 u8 arm_opp; 360 u8 ape_opp; 361 u8 ape_voltage_status; 362 } ack; 363 } mb1_transfer; 364 365 /* 366 * mb2_transfer - state needed for mailbox 2 communication. 367 * @lock: The transaction lock. 368 * @work: The transaction completion structure. 369 * @auto_pm_lock: The autonomous power management configuration lock. 370 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled. 371 * @req: Request data that need to persist between requests. 372 * @ack: Reply ("acknowledge") data. 373 */ 374 static struct { 375 struct mutex lock; 376 struct completion work; 377 spinlock_t auto_pm_lock; 378 bool auto_pm_enabled; 379 struct { 380 u8 status; 381 } ack; 382 } mb2_transfer; 383 384 /* 385 * mb3_transfer - state needed for mailbox 3 communication. 386 * @lock: The request lock. 387 * @sysclk_lock: A lock used to handle concurrent sysclk requests. 388 * @sysclk_work: Work structure used for sysclk requests. 389 */ 390 static struct { 391 spinlock_t lock; 392 struct mutex sysclk_lock; 393 struct completion sysclk_work; 394 } mb3_transfer; 395 396 /* 397 * mb4_transfer - state needed for mailbox 4 communication. 398 * @lock: The transaction lock. 399 * @work: The transaction completion structure. 400 */ 401 static struct { 402 struct mutex lock; 403 struct completion work; 404 } mb4_transfer; 405 406 /* 407 * mb5_transfer - state needed for mailbox 5 communication. 408 * @lock: The transaction lock. 409 * @work: The transaction completion structure. 410 * @ack: Reply ("acknowledge") data. 411 */ 412 static struct { 413 struct mutex lock; 414 struct completion work; 415 struct { 416 u8 status; 417 u8 value; 418 } ack; 419 } mb5_transfer; 420 421 static atomic_t ac_wake_req_state = ATOMIC_INIT(0); 422 423 /* Functions definition */ 424 static void compute_armss_rate(void); 425 426 /* Spinlocks */ 427 static DEFINE_SPINLOCK(prcmu_lock); 428 static DEFINE_SPINLOCK(clkout_lock); 429 430 /* Global var to runtime determine TCDM base for v2 or v1 */ 431 static __iomem void *tcdm_base; 432 433 struct clk_mgt { 434 void __iomem *reg; 435 u32 pllsw; 436 int branch; 437 bool clk38div; 438 }; 439 440 enum { 441 PLL_RAW, 442 PLL_FIX, 443 PLL_DIV 444 }; 445 446 static DEFINE_SPINLOCK(clk_mgt_lock); 447 448 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \ 449 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div} 450 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = { 451 CLK_MGT_ENTRY(SGACLK, PLL_DIV, false), 452 CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true), 453 CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true), 454 CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true), 455 CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true), 456 CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true), 457 CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true), 458 CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true), 459 CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true), 460 CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true), 461 CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true), 462 CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true), 463 CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true), 464 CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true), 465 CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true), 466 CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true), 467 CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true), 468 CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false), 469 CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true), 470 CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true), 471 CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true), 472 CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true), 473 CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false), 474 CLK_MGT_ENTRY(DMACLK, PLL_DIV, true), 475 CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true), 476 CLK_MGT_ENTRY(TVCLK, PLL_FIX, true), 477 CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true), 478 CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true), 479 CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false), 480 }; 481 482 struct dsiclk { 483 u32 divsel_mask; 484 u32 divsel_shift; 485 u32 divsel; 486 }; 487 488 static struct dsiclk dsiclk[2] = { 489 { 490 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK, 491 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT, 492 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 493 }, 494 { 495 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK, 496 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT, 497 .divsel = PRCM_DSI_PLLOUT_SEL_PHI, 498 } 499 }; 500 501 struct dsiescclk { 502 u32 en; 503 u32 div_mask; 504 u32 div_shift; 505 }; 506 507 static struct dsiescclk dsiescclk[3] = { 508 { 509 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN, 510 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK, 511 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT, 512 }, 513 { 514 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN, 515 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK, 516 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT, 517 }, 518 { 519 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN, 520 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK, 521 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT, 522 } 523 }; 524 525 526 /* 527 * Used by MCDE to setup all necessary PRCMU registers 528 */ 529 #define PRCMU_RESET_DSIPLL 0x00004000 530 #define PRCMU_UNCLAMP_DSIPLL 0x00400800 531 532 #define PRCMU_CLK_PLL_DIV_SHIFT 0 533 #define PRCMU_CLK_PLL_SW_SHIFT 5 534 #define PRCMU_CLK_38 (1 << 9) 535 #define PRCMU_CLK_38_SRC (1 << 10) 536 #define PRCMU_CLK_38_DIV (1 << 11) 537 538 /* PLLDIV=12, PLLSW=4 (PLLDDR) */ 539 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C 540 541 /* DPI 50000000 Hz */ 542 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \ 543 (16 << PRCMU_CLK_PLL_DIV_SHIFT)) 544 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00 545 546 /* D=101, N=1, R=4, SELDIV2=0 */ 547 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165 548 549 #define PRCMU_ENABLE_PLLDSI 0x00000001 550 #define PRCMU_DISABLE_PLLDSI 0x00000000 551 #define PRCMU_RELEASE_RESET_DSS 0x0000400C 552 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202 553 /* ESC clk, div0=1, div1=1, div2=3 */ 554 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101 555 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101 556 #define PRCMU_DSI_RESET_SW 0x00000007 557 558 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3 559 560 int db8500_prcmu_enable_dsipll(void) 561 { 562 int i; 563 564 /* Clear DSIPLL_RESETN */ 565 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR); 566 /* Unclamp DSIPLL in/out */ 567 writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR); 568 569 /* Set DSI PLL FREQ */ 570 writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ); 571 writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL); 572 /* Enable Escape clocks */ 573 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 574 575 /* Start DSI PLL */ 576 writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 577 /* Reset DSI PLL */ 578 writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET); 579 for (i = 0; i < 10; i++) { 580 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED) 581 == PRCMU_PLLDSI_LOCKP_LOCKED) 582 break; 583 udelay(100); 584 } 585 /* Set DSIPLL_RESETN */ 586 writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET); 587 return 0; 588 } 589 590 int db8500_prcmu_disable_dsipll(void) 591 { 592 /* Disable dsi pll */ 593 writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE); 594 /* Disable escapeclock */ 595 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV); 596 return 0; 597 } 598 599 int db8500_prcmu_set_display_clocks(void) 600 { 601 unsigned long flags; 602 603 spin_lock_irqsave(&clk_mgt_lock, flags); 604 605 /* Grab the HW semaphore. */ 606 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 607 cpu_relax(); 608 609 writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT); 610 writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT); 611 writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT); 612 613 /* Release the HW semaphore. */ 614 writel(0, PRCM_SEM); 615 616 spin_unlock_irqrestore(&clk_mgt_lock, flags); 617 618 return 0; 619 } 620 621 u32 db8500_prcmu_read(unsigned int reg) 622 { 623 return readl(_PRCMU_BASE + reg); 624 } 625 626 void db8500_prcmu_write(unsigned int reg, u32 value) 627 { 628 unsigned long flags; 629 630 spin_lock_irqsave(&prcmu_lock, flags); 631 writel(value, (_PRCMU_BASE + reg)); 632 spin_unlock_irqrestore(&prcmu_lock, flags); 633 } 634 635 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value) 636 { 637 u32 val; 638 unsigned long flags; 639 640 spin_lock_irqsave(&prcmu_lock, flags); 641 val = readl(_PRCMU_BASE + reg); 642 val = ((val & ~mask) | (value & mask)); 643 writel(val, (_PRCMU_BASE + reg)); 644 spin_unlock_irqrestore(&prcmu_lock, flags); 645 } 646 647 struct prcmu_fw_version *prcmu_get_fw_version(void) 648 { 649 return fw_info.valid ? &fw_info.version : NULL; 650 } 651 652 bool prcmu_has_arm_maxopp(void) 653 { 654 return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) & 655 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK; 656 } 657 658 /** 659 * prcmu_get_boot_status - PRCMU boot status checking 660 * Returns: the current PRCMU boot status 661 */ 662 int prcmu_get_boot_status(void) 663 { 664 return readb(tcdm_base + PRCM_BOOT_STATUS); 665 } 666 667 /** 668 * prcmu_set_rc_a2p - This function is used to run few power state sequences 669 * @val: Value to be set, i.e. transition requested 670 * Returns: 0 on success, -EINVAL on invalid argument 671 * 672 * This function is used to run the following power state sequences - 673 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 674 */ 675 int prcmu_set_rc_a2p(enum romcode_write val) 676 { 677 if (val < RDY_2_DS || val > RDY_2_XP70_RST) 678 return -EINVAL; 679 writeb(val, (tcdm_base + PRCM_ROMCODE_A2P)); 680 return 0; 681 } 682 683 /** 684 * prcmu_get_rc_p2a - This function is used to get power state sequences 685 * Returns: the power transition that has last happened 686 * 687 * This function can return the following transitions- 688 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep 689 */ 690 enum romcode_read prcmu_get_rc_p2a(void) 691 { 692 return readb(tcdm_base + PRCM_ROMCODE_P2A); 693 } 694 695 /** 696 * prcmu_get_current_mode - Return the current XP70 power mode 697 * Returns: Returns the current AP(ARM) power mode: init, 698 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset 699 */ 700 enum ap_pwrst prcmu_get_xp70_current_state(void) 701 { 702 return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE); 703 } 704 705 /** 706 * prcmu_config_clkout - Configure one of the programmable clock outputs. 707 * @clkout: The CLKOUT number (0 or 1). 708 * @source: The clock to be used (one of the PRCMU_CLKSRC_*). 709 * @div: The divider to be applied. 710 * 711 * Configures one of the programmable clock outputs (CLKOUTs). 712 * @div should be in the range [1,63] to request a configuration, or 0 to 713 * inform that the configuration is no longer requested. 714 */ 715 int prcmu_config_clkout(u8 clkout, u8 source, u8 div) 716 { 717 static int requests[2]; 718 int r = 0; 719 unsigned long flags; 720 u32 val; 721 u32 bits; 722 u32 mask; 723 u32 div_mask; 724 725 BUG_ON(clkout > 1); 726 BUG_ON(div > 63); 727 BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009)); 728 729 if (!div && !requests[clkout]) 730 return -EINVAL; 731 732 switch (clkout) { 733 case 0: 734 div_mask = PRCM_CLKOCR_CLKODIV0_MASK; 735 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK); 736 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) | 737 (div << PRCM_CLKOCR_CLKODIV0_SHIFT)); 738 break; 739 case 1: 740 div_mask = PRCM_CLKOCR_CLKODIV1_MASK; 741 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK | 742 PRCM_CLKOCR_CLK1TYPE); 743 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) | 744 (div << PRCM_CLKOCR_CLKODIV1_SHIFT)); 745 break; 746 } 747 bits &= mask; 748 749 spin_lock_irqsave(&clkout_lock, flags); 750 751 val = readl(PRCM_CLKOCR); 752 if (val & div_mask) { 753 if (div) { 754 if ((val & mask) != bits) { 755 r = -EBUSY; 756 goto unlock_and_return; 757 } 758 } else { 759 if ((val & mask & ~div_mask) != bits) { 760 r = -EINVAL; 761 goto unlock_and_return; 762 } 763 } 764 } 765 writel((bits | (val & ~mask)), PRCM_CLKOCR); 766 requests[clkout] += (div ? 1 : -1); 767 768 unlock_and_return: 769 spin_unlock_irqrestore(&clkout_lock, flags); 770 771 return r; 772 } 773 774 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll) 775 { 776 unsigned long flags; 777 778 BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state)); 779 780 spin_lock_irqsave(&mb0_transfer.lock, flags); 781 782 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 783 cpu_relax(); 784 785 writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 786 writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE)); 787 writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE)); 788 writeb((keep_ulp_clk ? 1 : 0), 789 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE)); 790 writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI)); 791 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 792 793 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 794 795 return 0; 796 } 797 798 u8 db8500_prcmu_get_power_state_result(void) 799 { 800 return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS); 801 } 802 803 /* This function decouple the gic from the prcmu */ 804 int db8500_prcmu_gic_decouple(void) 805 { 806 u32 val = readl(PRCM_A9_MASK_REQ); 807 808 /* Set bit 0 register value to 1 */ 809 writel(val | PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, 810 PRCM_A9_MASK_REQ); 811 812 /* Make sure the register is updated */ 813 readl(PRCM_A9_MASK_REQ); 814 815 /* Wait a few cycles for the gic mask completion */ 816 udelay(1); 817 818 return 0; 819 } 820 821 /* This function recouple the gic with the prcmu */ 822 int db8500_prcmu_gic_recouple(void) 823 { 824 u32 val = readl(PRCM_A9_MASK_REQ); 825 826 /* Set bit 0 register value to 0 */ 827 writel(val & ~PRCM_A9_MASK_REQ_PRCM_A9_MASK_REQ, PRCM_A9_MASK_REQ); 828 829 return 0; 830 } 831 832 #define PRCMU_GIC_NUMBER_REGS 5 833 834 /* 835 * This function checks if there are pending irq on the gic. It only 836 * makes sense if the gic has been decoupled before with the 837 * db8500_prcmu_gic_decouple function. Disabling an interrupt only 838 * disables the forwarding of the interrupt to any CPU interface. It 839 * does not prevent the interrupt from changing state, for example 840 * becoming pending, or active and pending if it is already 841 * active. Hence, we have to check the interrupt is pending *and* is 842 * active. 843 */ 844 bool db8500_prcmu_gic_pending_irq(void) 845 { 846 u32 pr; /* Pending register */ 847 u32 er; /* Enable register */ 848 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE); 849 int i; 850 851 /* 5 registers. STI & PPI not skipped */ 852 for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) { 853 854 pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4); 855 er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4); 856 857 if (pr & er) 858 return true; /* There is a pending interrupt */ 859 } 860 861 return false; 862 } 863 864 /* 865 * This function checks if there are pending interrupt on the 866 * prcmu which has been delegated to monitor the irqs with the 867 * db8500_prcmu_copy_gic_settings function. 868 */ 869 bool db8500_prcmu_pending_irq(void) 870 { 871 u32 it, im; 872 int i; 873 874 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) { 875 it = readl(PRCM_ARMITVAL31TO0 + i * 4); 876 im = readl(PRCM_ARMITMSK31TO0 + i * 4); 877 if (it & im) 878 return true; /* There is a pending interrupt */ 879 } 880 881 return false; 882 } 883 884 /* 885 * This function checks if the specified cpu is in in WFI. It's usage 886 * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple 887 * function. Of course passing smp_processor_id() to this function will 888 * always return false... 889 */ 890 bool db8500_prcmu_is_cpu_in_wfi(int cpu) 891 { 892 return readl(PRCM_ARM_WFI_STANDBY) & cpu ? PRCM_ARM_WFI_STANDBY_WFI1 : 893 PRCM_ARM_WFI_STANDBY_WFI0; 894 } 895 896 /* 897 * This function copies the gic SPI settings to the prcmu in order to 898 * monitor them and abort/finish the retention/off sequence or state. 899 */ 900 int db8500_prcmu_copy_gic_settings(void) 901 { 902 u32 er; /* Enable register */ 903 void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE); 904 int i; 905 906 /* We skip the STI and PPI */ 907 for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) { 908 er = readl_relaxed(dist_base + 909 GIC_DIST_ENABLE_SET + (i + 1) * 4); 910 writel(er, PRCM_ARMITMSK31TO0 + i * 4); 911 } 912 913 return 0; 914 } 915 916 /* This function should only be called while mb0_transfer.lock is held. */ 917 static void config_wakeups(void) 918 { 919 const u8 header[2] = { 920 MB0H_CONFIG_WAKEUPS_EXE, 921 MB0H_CONFIG_WAKEUPS_SLEEP 922 }; 923 static u32 last_dbb_events; 924 static u32 last_abb_events; 925 u32 dbb_events; 926 u32 abb_events; 927 unsigned int i; 928 929 dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups; 930 dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK); 931 932 abb_events = mb0_transfer.req.abb_events; 933 934 if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events)) 935 return; 936 937 for (i = 0; i < 2; i++) { 938 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 939 cpu_relax(); 940 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500)); 941 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500)); 942 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 943 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 944 } 945 last_dbb_events = dbb_events; 946 last_abb_events = abb_events; 947 } 948 949 void db8500_prcmu_enable_wakeups(u32 wakeups) 950 { 951 unsigned long flags; 952 u32 bits; 953 int i; 954 955 BUG_ON(wakeups != (wakeups & VALID_WAKEUPS)); 956 957 for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) { 958 if (wakeups & BIT(i)) 959 bits |= prcmu_wakeup_bit[i]; 960 } 961 962 spin_lock_irqsave(&mb0_transfer.lock, flags); 963 964 mb0_transfer.req.dbb_wakeups = bits; 965 config_wakeups(); 966 967 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 968 } 969 970 void db8500_prcmu_config_abb_event_readout(u32 abb_events) 971 { 972 unsigned long flags; 973 974 spin_lock_irqsave(&mb0_transfer.lock, flags); 975 976 mb0_transfer.req.abb_events = abb_events; 977 config_wakeups(); 978 979 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 980 } 981 982 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf) 983 { 984 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 985 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500); 986 else 987 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500); 988 } 989 990 /** 991 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP 992 * @opp: The new ARM operating point to which transition is to be made 993 * Returns: 0 on success, non-zero on failure 994 * 995 * This function sets the the operating point of the ARM. 996 */ 997 int db8500_prcmu_set_arm_opp(u8 opp) 998 { 999 int r; 1000 1001 if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK) 1002 return -EINVAL; 1003 1004 r = 0; 1005 1006 mutex_lock(&mb1_transfer.lock); 1007 1008 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1009 cpu_relax(); 1010 1011 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1012 writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1013 writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1014 1015 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1016 wait_for_completion(&mb1_transfer.work); 1017 1018 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1019 (mb1_transfer.ack.arm_opp != opp)) 1020 r = -EIO; 1021 1022 compute_armss_rate(); 1023 mutex_unlock(&mb1_transfer.lock); 1024 1025 return r; 1026 } 1027 1028 /** 1029 * db8500_prcmu_get_arm_opp - get the current ARM OPP 1030 * 1031 * Returns: the current ARM OPP 1032 */ 1033 int db8500_prcmu_get_arm_opp(void) 1034 { 1035 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP); 1036 } 1037 1038 /** 1039 * db8500_prcmu_get_ddr_opp - get the current DDR OPP 1040 * 1041 * Returns: the current DDR OPP 1042 */ 1043 int db8500_prcmu_get_ddr_opp(void) 1044 { 1045 return readb(PRCM_DDR_SUBSYS_APE_MINBW); 1046 } 1047 1048 /** 1049 * db8500_set_ddr_opp - set the appropriate DDR OPP 1050 * @opp: The new DDR operating point to which transition is to be made 1051 * Returns: 0 on success, non-zero on failure 1052 * 1053 * This function sets the operating point of the DDR. 1054 */ 1055 int db8500_prcmu_set_ddr_opp(u8 opp) 1056 { 1057 if (opp < DDR_100_OPP || opp > DDR_25_OPP) 1058 return -EINVAL; 1059 /* Changing the DDR OPP can hang the hardware pre-v21 */ 1060 if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20()) 1061 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW); 1062 1063 return 0; 1064 } 1065 1066 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */ 1067 static void request_even_slower_clocks(bool enable) 1068 { 1069 void __iomem *clock_reg[] = { 1070 PRCM_ACLK_MGT, 1071 PRCM_DMACLK_MGT 1072 }; 1073 unsigned long flags; 1074 unsigned int i; 1075 1076 spin_lock_irqsave(&clk_mgt_lock, flags); 1077 1078 /* Grab the HW semaphore. */ 1079 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1080 cpu_relax(); 1081 1082 for (i = 0; i < ARRAY_SIZE(clock_reg); i++) { 1083 u32 val; 1084 u32 div; 1085 1086 val = readl(clock_reg[i]); 1087 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK); 1088 if (enable) { 1089 if ((div <= 1) || (div > 15)) { 1090 pr_err("prcmu: Bad clock divider %d in %s\n", 1091 div, __func__); 1092 goto unlock_and_return; 1093 } 1094 div <<= 1; 1095 } else { 1096 if (div <= 2) 1097 goto unlock_and_return; 1098 div >>= 1; 1099 } 1100 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) | 1101 (div & PRCM_CLK_MGT_CLKPLLDIV_MASK)); 1102 writel(val, clock_reg[i]); 1103 } 1104 1105 unlock_and_return: 1106 /* Release the HW semaphore. */ 1107 writel(0, PRCM_SEM); 1108 1109 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1110 } 1111 1112 /** 1113 * db8500_set_ape_opp - set the appropriate APE OPP 1114 * @opp: The new APE operating point to which transition is to be made 1115 * Returns: 0 on success, non-zero on failure 1116 * 1117 * This function sets the operating point of the APE. 1118 */ 1119 int db8500_prcmu_set_ape_opp(u8 opp) 1120 { 1121 int r = 0; 1122 1123 if (opp == mb1_transfer.ape_opp) 1124 return 0; 1125 1126 mutex_lock(&mb1_transfer.lock); 1127 1128 if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP) 1129 request_even_slower_clocks(false); 1130 1131 if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP)) 1132 goto skip_message; 1133 1134 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1135 cpu_relax(); 1136 1137 writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1138 writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP)); 1139 writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp), 1140 (tcdm_base + PRCM_REQ_MB1_APE_OPP)); 1141 1142 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1143 wait_for_completion(&mb1_transfer.work); 1144 1145 if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) || 1146 (mb1_transfer.ack.ape_opp != opp)) 1147 r = -EIO; 1148 1149 skip_message: 1150 if ((!r && (opp == APE_50_PARTLY_25_OPP)) || 1151 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP))) 1152 request_even_slower_clocks(true); 1153 if (!r) 1154 mb1_transfer.ape_opp = opp; 1155 1156 mutex_unlock(&mb1_transfer.lock); 1157 1158 return r; 1159 } 1160 1161 /** 1162 * db8500_prcmu_get_ape_opp - get the current APE OPP 1163 * 1164 * Returns: the current APE OPP 1165 */ 1166 int db8500_prcmu_get_ape_opp(void) 1167 { 1168 return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP); 1169 } 1170 1171 /** 1172 * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage 1173 * @enable: true to request the higher voltage, false to drop a request. 1174 * 1175 * Calls to this function to enable and disable requests must be balanced. 1176 */ 1177 int prcmu_request_ape_opp_100_voltage(bool enable) 1178 { 1179 int r = 0; 1180 u8 header; 1181 static unsigned int requests; 1182 1183 mutex_lock(&mb1_transfer.lock); 1184 1185 if (enable) { 1186 if (0 != requests++) 1187 goto unlock_and_return; 1188 header = MB1H_REQUEST_APE_OPP_100_VOLT; 1189 } else { 1190 if (requests == 0) { 1191 r = -EIO; 1192 goto unlock_and_return; 1193 } else if (1 != requests--) { 1194 goto unlock_and_return; 1195 } 1196 header = MB1H_RELEASE_APE_OPP_100_VOLT; 1197 } 1198 1199 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1200 cpu_relax(); 1201 1202 writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1203 1204 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1205 wait_for_completion(&mb1_transfer.work); 1206 1207 if ((mb1_transfer.ack.header != header) || 1208 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1209 r = -EIO; 1210 1211 unlock_and_return: 1212 mutex_unlock(&mb1_transfer.lock); 1213 1214 return r; 1215 } 1216 1217 /** 1218 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup 1219 * 1220 * This function releases the power state requirements of a USB wakeup. 1221 */ 1222 int prcmu_release_usb_wakeup_state(void) 1223 { 1224 int r = 0; 1225 1226 mutex_lock(&mb1_transfer.lock); 1227 1228 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1229 cpu_relax(); 1230 1231 writeb(MB1H_RELEASE_USB_WAKEUP, 1232 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1233 1234 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1235 wait_for_completion(&mb1_transfer.work); 1236 1237 if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) || 1238 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0)) 1239 r = -EIO; 1240 1241 mutex_unlock(&mb1_transfer.lock); 1242 1243 return r; 1244 } 1245 1246 static int request_pll(u8 clock, bool enable) 1247 { 1248 int r = 0; 1249 1250 if (clock == PRCMU_PLLSOC0) 1251 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF); 1252 else if (clock == PRCMU_PLLSOC1) 1253 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF); 1254 else 1255 return -EINVAL; 1256 1257 mutex_lock(&mb1_transfer.lock); 1258 1259 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 1260 cpu_relax(); 1261 1262 writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 1263 writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF)); 1264 1265 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 1266 wait_for_completion(&mb1_transfer.work); 1267 1268 if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF) 1269 r = -EIO; 1270 1271 mutex_unlock(&mb1_transfer.lock); 1272 1273 return r; 1274 } 1275 1276 /** 1277 * db8500_prcmu_set_epod - set the state of a EPOD (power domain) 1278 * @epod_id: The EPOD to set 1279 * @epod_state: The new EPOD state 1280 * 1281 * This function sets the state of a EPOD (power domain). It may not be called 1282 * from interrupt context. 1283 */ 1284 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state) 1285 { 1286 int r = 0; 1287 bool ram_retention = false; 1288 int i; 1289 1290 /* check argument */ 1291 BUG_ON(epod_id >= NUM_EPOD_ID); 1292 1293 /* set flag if retention is possible */ 1294 switch (epod_id) { 1295 case EPOD_ID_SVAMMDSP: 1296 case EPOD_ID_SIAMMDSP: 1297 case EPOD_ID_ESRAM12: 1298 case EPOD_ID_ESRAM34: 1299 ram_retention = true; 1300 break; 1301 } 1302 1303 /* check argument */ 1304 BUG_ON(epod_state > EPOD_STATE_ON); 1305 BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention); 1306 1307 /* get lock */ 1308 mutex_lock(&mb2_transfer.lock); 1309 1310 /* wait for mailbox */ 1311 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2)) 1312 cpu_relax(); 1313 1314 /* fill in mailbox */ 1315 for (i = 0; i < NUM_EPOD_ID; i++) 1316 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i)); 1317 writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id)); 1318 1319 writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2)); 1320 1321 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET); 1322 1323 /* 1324 * The current firmware version does not handle errors correctly, 1325 * and we cannot recover if there is an error. 1326 * This is expected to change when the firmware is updated. 1327 */ 1328 if (!wait_for_completion_timeout(&mb2_transfer.work, 1329 msecs_to_jiffies(20000))) { 1330 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1331 __func__); 1332 r = -EIO; 1333 goto unlock_and_return; 1334 } 1335 1336 if (mb2_transfer.ack.status != HWACC_PWR_ST_OK) 1337 r = -EIO; 1338 1339 unlock_and_return: 1340 mutex_unlock(&mb2_transfer.lock); 1341 return r; 1342 } 1343 1344 /** 1345 * prcmu_configure_auto_pm - Configure autonomous power management. 1346 * @sleep: Configuration for ApSleep. 1347 * @idle: Configuration for ApIdle. 1348 */ 1349 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep, 1350 struct prcmu_auto_pm_config *idle) 1351 { 1352 u32 sleep_cfg; 1353 u32 idle_cfg; 1354 unsigned long flags; 1355 1356 BUG_ON((sleep == NULL) || (idle == NULL)); 1357 1358 sleep_cfg = (sleep->sva_auto_pm_enable & 0xF); 1359 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF)); 1360 sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF)); 1361 sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF)); 1362 sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF)); 1363 sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF)); 1364 1365 idle_cfg = (idle->sva_auto_pm_enable & 0xF); 1366 idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF)); 1367 idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF)); 1368 idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF)); 1369 idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF)); 1370 idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF)); 1371 1372 spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags); 1373 1374 /* 1375 * The autonomous power management configuration is done through 1376 * fields in mailbox 2, but these fields are only used as shared 1377 * variables - i.e. there is no need to send a message. 1378 */ 1379 writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP)); 1380 writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE)); 1381 1382 mb2_transfer.auto_pm_enabled = 1383 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1384 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1385 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) || 1386 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON)); 1387 1388 spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags); 1389 } 1390 EXPORT_SYMBOL(prcmu_configure_auto_pm); 1391 1392 bool prcmu_is_auto_pm_enabled(void) 1393 { 1394 return mb2_transfer.auto_pm_enabled; 1395 } 1396 1397 static int request_sysclk(bool enable) 1398 { 1399 int r; 1400 unsigned long flags; 1401 1402 r = 0; 1403 1404 mutex_lock(&mb3_transfer.sysclk_lock); 1405 1406 spin_lock_irqsave(&mb3_transfer.lock, flags); 1407 1408 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3)) 1409 cpu_relax(); 1410 1411 writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT)); 1412 1413 writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3)); 1414 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET); 1415 1416 spin_unlock_irqrestore(&mb3_transfer.lock, flags); 1417 1418 /* 1419 * The firmware only sends an ACK if we want to enable the 1420 * SysClk, and it succeeds. 1421 */ 1422 if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work, 1423 msecs_to_jiffies(20000))) { 1424 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 1425 __func__); 1426 r = -EIO; 1427 } 1428 1429 mutex_unlock(&mb3_transfer.sysclk_lock); 1430 1431 return r; 1432 } 1433 1434 static int request_timclk(bool enable) 1435 { 1436 u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK); 1437 1438 if (!enable) 1439 val |= PRCM_TCR_STOP_TIMERS; 1440 writel(val, PRCM_TCR); 1441 1442 return 0; 1443 } 1444 1445 static int request_clock(u8 clock, bool enable) 1446 { 1447 u32 val; 1448 unsigned long flags; 1449 1450 spin_lock_irqsave(&clk_mgt_lock, flags); 1451 1452 /* Grab the HW semaphore. */ 1453 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1454 cpu_relax(); 1455 1456 val = readl(clk_mgt[clock].reg); 1457 if (enable) { 1458 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw); 1459 } else { 1460 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1461 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK); 1462 } 1463 writel(val, clk_mgt[clock].reg); 1464 1465 /* Release the HW semaphore. */ 1466 writel(0, PRCM_SEM); 1467 1468 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1469 1470 return 0; 1471 } 1472 1473 static int request_sga_clock(u8 clock, bool enable) 1474 { 1475 u32 val; 1476 int ret; 1477 1478 if (enable) { 1479 val = readl(PRCM_CGATING_BYPASS); 1480 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1481 } 1482 1483 ret = request_clock(clock, enable); 1484 1485 if (!ret && !enable) { 1486 val = readl(PRCM_CGATING_BYPASS); 1487 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS); 1488 } 1489 1490 return ret; 1491 } 1492 1493 static inline bool plldsi_locked(void) 1494 { 1495 return (readl(PRCM_PLLDSI_LOCKP) & 1496 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1497 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) == 1498 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 | 1499 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3); 1500 } 1501 1502 static int request_plldsi(bool enable) 1503 { 1504 int r = 0; 1505 u32 val; 1506 1507 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1508 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ? 1509 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET)); 1510 1511 val = readl(PRCM_PLLDSI_ENABLE); 1512 if (enable) 1513 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1514 else 1515 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1516 writel(val, PRCM_PLLDSI_ENABLE); 1517 1518 if (enable) { 1519 unsigned int i; 1520 bool locked = plldsi_locked(); 1521 1522 for (i = 10; !locked && (i > 0); --i) { 1523 udelay(100); 1524 locked = plldsi_locked(); 1525 } 1526 if (locked) { 1527 writel(PRCM_APE_RESETN_DSIPLL_RESETN, 1528 PRCM_APE_RESETN_SET); 1529 } else { 1530 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP | 1531 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), 1532 PRCM_MMIP_LS_CLAMP_SET); 1533 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE; 1534 writel(val, PRCM_PLLDSI_ENABLE); 1535 r = -EAGAIN; 1536 } 1537 } else { 1538 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR); 1539 } 1540 return r; 1541 } 1542 1543 static int request_dsiclk(u8 n, bool enable) 1544 { 1545 u32 val; 1546 1547 val = readl(PRCM_DSI_PLLOUT_SEL); 1548 val &= ~dsiclk[n].divsel_mask; 1549 val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) << 1550 dsiclk[n].divsel_shift); 1551 writel(val, PRCM_DSI_PLLOUT_SEL); 1552 return 0; 1553 } 1554 1555 static int request_dsiescclk(u8 n, bool enable) 1556 { 1557 u32 val; 1558 1559 val = readl(PRCM_DSITVCLK_DIV); 1560 enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en); 1561 writel(val, PRCM_DSITVCLK_DIV); 1562 return 0; 1563 } 1564 1565 /** 1566 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled. 1567 * @clock: The clock for which the request is made. 1568 * @enable: Whether the clock should be enabled (true) or disabled (false). 1569 * 1570 * This function should only be used by the clock implementation. 1571 * Do not use it from any other place! 1572 */ 1573 int db8500_prcmu_request_clock(u8 clock, bool enable) 1574 { 1575 if (clock == PRCMU_SGACLK) 1576 return request_sga_clock(clock, enable); 1577 else if (clock < PRCMU_NUM_REG_CLOCKS) 1578 return request_clock(clock, enable); 1579 else if (clock == PRCMU_TIMCLK) 1580 return request_timclk(enable); 1581 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1582 return request_dsiclk((clock - PRCMU_DSI0CLK), enable); 1583 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1584 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable); 1585 else if (clock == PRCMU_PLLDSI) 1586 return request_plldsi(enable); 1587 else if (clock == PRCMU_SYSCLK) 1588 return request_sysclk(enable); 1589 else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1)) 1590 return request_pll(clock, enable); 1591 else 1592 return -EINVAL; 1593 } 1594 1595 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate, 1596 int branch) 1597 { 1598 u64 rate; 1599 u32 val; 1600 u32 d; 1601 u32 div = 1; 1602 1603 val = readl(reg); 1604 1605 rate = src_rate; 1606 rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT); 1607 1608 d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT); 1609 if (d > 1) 1610 div *= d; 1611 1612 d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT); 1613 if (d > 1) 1614 div *= d; 1615 1616 if (val & PRCM_PLL_FREQ_SELDIV2) 1617 div *= 2; 1618 1619 if ((branch == PLL_FIX) || ((branch == PLL_DIV) && 1620 (val & PRCM_PLL_FREQ_DIV2EN) && 1621 ((reg == PRCM_PLLSOC0_FREQ) || 1622 (reg == PRCM_PLLARM_FREQ) || 1623 (reg == PRCM_PLLDDR_FREQ)))) 1624 div *= 2; 1625 1626 (void)do_div(rate, div); 1627 1628 return (unsigned long)rate; 1629 } 1630 1631 #define ROOT_CLOCK_RATE 38400000 1632 1633 static unsigned long clock_rate(u8 clock) 1634 { 1635 u32 val; 1636 u32 pllsw; 1637 unsigned long rate = ROOT_CLOCK_RATE; 1638 1639 val = readl(clk_mgt[clock].reg); 1640 1641 if (val & PRCM_CLK_MGT_CLK38) { 1642 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV)) 1643 rate /= 2; 1644 return rate; 1645 } 1646 1647 val |= clk_mgt[clock].pllsw; 1648 pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK); 1649 1650 if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1651 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch); 1652 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1653 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch); 1654 else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR) 1655 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch); 1656 else 1657 return 0; 1658 1659 if ((clock == PRCMU_SGACLK) && 1660 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) { 1661 u64 r = (rate * 10); 1662 1663 (void)do_div(r, 25); 1664 return (unsigned long)r; 1665 } 1666 val &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1667 if (val) 1668 return rate / val; 1669 else 1670 return 0; 1671 } 1672 static unsigned long latest_armss_rate; 1673 static unsigned long armss_rate(void) 1674 { 1675 return latest_armss_rate; 1676 } 1677 1678 static void compute_armss_rate(void) 1679 { 1680 u32 r; 1681 unsigned long rate; 1682 1683 r = readl(PRCM_ARM_CHGCLKREQ); 1684 1685 if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) { 1686 /* External ARMCLKFIX clock */ 1687 1688 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX); 1689 1690 /* Check PRCM_ARM_CHGCLKREQ divider */ 1691 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL)) 1692 rate /= 2; 1693 1694 /* Check PRCM_ARMCLKFIX_MGT divider */ 1695 r = readl(PRCM_ARMCLKFIX_MGT); 1696 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK; 1697 rate /= r; 1698 1699 } else {/* ARM PLL */ 1700 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV); 1701 } 1702 1703 latest_armss_rate = rate; 1704 } 1705 1706 static unsigned long dsiclk_rate(u8 n) 1707 { 1708 u32 divsel; 1709 u32 div = 1; 1710 1711 divsel = readl(PRCM_DSI_PLLOUT_SEL); 1712 divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift); 1713 1714 if (divsel == PRCM_DSI_PLLOUT_SEL_OFF) 1715 divsel = dsiclk[n].divsel; 1716 1717 switch (divsel) { 1718 case PRCM_DSI_PLLOUT_SEL_PHI_4: 1719 div *= 2; 1720 case PRCM_DSI_PLLOUT_SEL_PHI_2: 1721 div *= 2; 1722 case PRCM_DSI_PLLOUT_SEL_PHI: 1723 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1724 PLL_RAW) / div; 1725 default: 1726 return 0; 1727 } 1728 } 1729 1730 static unsigned long dsiescclk_rate(u8 n) 1731 { 1732 u32 div; 1733 1734 div = readl(PRCM_DSITVCLK_DIV); 1735 div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift)); 1736 return clock_rate(PRCMU_TVCLK) / max((u32)1, div); 1737 } 1738 1739 unsigned long prcmu_clock_rate(u8 clock) 1740 { 1741 if (clock < PRCMU_NUM_REG_CLOCKS) 1742 return clock_rate(clock); 1743 else if (clock == PRCMU_TIMCLK) 1744 return ROOT_CLOCK_RATE / 16; 1745 else if (clock == PRCMU_SYSCLK) 1746 return ROOT_CLOCK_RATE; 1747 else if (clock == PRCMU_PLLSOC0) 1748 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1749 else if (clock == PRCMU_PLLSOC1) 1750 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1751 else if (clock == PRCMU_ARMSS) 1752 return armss_rate(); 1753 else if (clock == PRCMU_PLLDDR) 1754 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW); 1755 else if (clock == PRCMU_PLLDSI) 1756 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1757 PLL_RAW); 1758 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1759 return dsiclk_rate(clock - PRCMU_DSI0CLK); 1760 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1761 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK); 1762 else 1763 return 0; 1764 } 1765 1766 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch) 1767 { 1768 if (clk_mgt_val & PRCM_CLK_MGT_CLK38) 1769 return ROOT_CLOCK_RATE; 1770 clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK; 1771 if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0) 1772 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch); 1773 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1) 1774 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch); 1775 else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR) 1776 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch); 1777 else 1778 return 0; 1779 } 1780 1781 static u32 clock_divider(unsigned long src_rate, unsigned long rate) 1782 { 1783 u32 div; 1784 1785 div = (src_rate / rate); 1786 if (div == 0) 1787 return 1; 1788 if (rate < (src_rate / div)) 1789 div++; 1790 return div; 1791 } 1792 1793 static long round_clock_rate(u8 clock, unsigned long rate) 1794 { 1795 u32 val; 1796 u32 div; 1797 unsigned long src_rate; 1798 long rounded_rate; 1799 1800 val = readl(clk_mgt[clock].reg); 1801 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1802 clk_mgt[clock].branch); 1803 div = clock_divider(src_rate, rate); 1804 if (val & PRCM_CLK_MGT_CLK38) { 1805 if (clk_mgt[clock].clk38div) { 1806 if (div > 2) 1807 div = 2; 1808 } else { 1809 div = 1; 1810 } 1811 } else if ((clock == PRCMU_SGACLK) && (div == 3)) { 1812 u64 r = (src_rate * 10); 1813 1814 (void)do_div(r, 25); 1815 if (r <= rate) 1816 return (unsigned long)r; 1817 } 1818 rounded_rate = (src_rate / min(div, (u32)31)); 1819 1820 return rounded_rate; 1821 } 1822 1823 #define MIN_PLL_VCO_RATE 600000000ULL 1824 #define MAX_PLL_VCO_RATE 1680640000ULL 1825 1826 static long round_plldsi_rate(unsigned long rate) 1827 { 1828 long rounded_rate = 0; 1829 unsigned long src_rate; 1830 unsigned long rem; 1831 u32 r; 1832 1833 src_rate = clock_rate(PRCMU_HDMICLK); 1834 rem = rate; 1835 1836 for (r = 7; (rem > 0) && (r > 0); r--) { 1837 u64 d; 1838 1839 d = (r * rate); 1840 (void)do_div(d, src_rate); 1841 if (d < 6) 1842 d = 6; 1843 else if (d > 255) 1844 d = 255; 1845 d *= src_rate; 1846 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) || 1847 ((r * MAX_PLL_VCO_RATE) < (2 * d))) 1848 continue; 1849 (void)do_div(d, r); 1850 if (rate < d) { 1851 if (rounded_rate == 0) 1852 rounded_rate = (long)d; 1853 break; 1854 } 1855 if ((rate - d) < rem) { 1856 rem = (rate - d); 1857 rounded_rate = (long)d; 1858 } 1859 } 1860 return rounded_rate; 1861 } 1862 1863 static long round_dsiclk_rate(unsigned long rate) 1864 { 1865 u32 div; 1866 unsigned long src_rate; 1867 long rounded_rate; 1868 1869 src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK), 1870 PLL_RAW); 1871 div = clock_divider(src_rate, rate); 1872 rounded_rate = (src_rate / ((div > 2) ? 4 : div)); 1873 1874 return rounded_rate; 1875 } 1876 1877 static long round_dsiescclk_rate(unsigned long rate) 1878 { 1879 u32 div; 1880 unsigned long src_rate; 1881 long rounded_rate; 1882 1883 src_rate = clock_rate(PRCMU_TVCLK); 1884 div = clock_divider(src_rate, rate); 1885 rounded_rate = (src_rate / min(div, (u32)255)); 1886 1887 return rounded_rate; 1888 } 1889 1890 long prcmu_round_clock_rate(u8 clock, unsigned long rate) 1891 { 1892 if (clock < PRCMU_NUM_REG_CLOCKS) 1893 return round_clock_rate(clock, rate); 1894 else if (clock == PRCMU_PLLDSI) 1895 return round_plldsi_rate(rate); 1896 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 1897 return round_dsiclk_rate(rate); 1898 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 1899 return round_dsiescclk_rate(rate); 1900 else 1901 return (long)prcmu_clock_rate(clock); 1902 } 1903 1904 static void set_clock_rate(u8 clock, unsigned long rate) 1905 { 1906 u32 val; 1907 u32 div; 1908 unsigned long src_rate; 1909 unsigned long flags; 1910 1911 spin_lock_irqsave(&clk_mgt_lock, flags); 1912 1913 /* Grab the HW semaphore. */ 1914 while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0) 1915 cpu_relax(); 1916 1917 val = readl(clk_mgt[clock].reg); 1918 src_rate = clock_source_rate((val | clk_mgt[clock].pllsw), 1919 clk_mgt[clock].branch); 1920 div = clock_divider(src_rate, rate); 1921 if (val & PRCM_CLK_MGT_CLK38) { 1922 if (clk_mgt[clock].clk38div) { 1923 if (div > 1) 1924 val |= PRCM_CLK_MGT_CLK38DIV; 1925 else 1926 val &= ~PRCM_CLK_MGT_CLK38DIV; 1927 } 1928 } else if (clock == PRCMU_SGACLK) { 1929 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK | 1930 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN); 1931 if (div == 3) { 1932 u64 r = (src_rate * 10); 1933 1934 (void)do_div(r, 25); 1935 if (r <= rate) { 1936 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN; 1937 div = 0; 1938 } 1939 } 1940 val |= min(div, (u32)31); 1941 } else { 1942 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK; 1943 val |= min(div, (u32)31); 1944 } 1945 writel(val, clk_mgt[clock].reg); 1946 1947 /* Release the HW semaphore. */ 1948 writel(0, PRCM_SEM); 1949 1950 spin_unlock_irqrestore(&clk_mgt_lock, flags); 1951 } 1952 1953 static int set_plldsi_rate(unsigned long rate) 1954 { 1955 unsigned long src_rate; 1956 unsigned long rem; 1957 u32 pll_freq = 0; 1958 u32 r; 1959 1960 src_rate = clock_rate(PRCMU_HDMICLK); 1961 rem = rate; 1962 1963 for (r = 7; (rem > 0) && (r > 0); r--) { 1964 u64 d; 1965 u64 hwrate; 1966 1967 d = (r * rate); 1968 (void)do_div(d, src_rate); 1969 if (d < 6) 1970 d = 6; 1971 else if (d > 255) 1972 d = 255; 1973 hwrate = (d * src_rate); 1974 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) || 1975 ((r * MAX_PLL_VCO_RATE) < (2 * hwrate))) 1976 continue; 1977 (void)do_div(hwrate, r); 1978 if (rate < hwrate) { 1979 if (pll_freq == 0) 1980 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1981 (r << PRCM_PLL_FREQ_R_SHIFT)); 1982 break; 1983 } 1984 if ((rate - hwrate) < rem) { 1985 rem = (rate - hwrate); 1986 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) | 1987 (r << PRCM_PLL_FREQ_R_SHIFT)); 1988 } 1989 } 1990 if (pll_freq == 0) 1991 return -EINVAL; 1992 1993 pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT); 1994 writel(pll_freq, PRCM_PLLDSI_FREQ); 1995 1996 return 0; 1997 } 1998 1999 static void set_dsiclk_rate(u8 n, unsigned long rate) 2000 { 2001 u32 val; 2002 u32 div; 2003 2004 div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ, 2005 clock_rate(PRCMU_HDMICLK), PLL_RAW), rate); 2006 2007 dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI : 2008 (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 : 2009 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4; 2010 2011 val = readl(PRCM_DSI_PLLOUT_SEL); 2012 val &= ~dsiclk[n].divsel_mask; 2013 val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift); 2014 writel(val, PRCM_DSI_PLLOUT_SEL); 2015 } 2016 2017 static void set_dsiescclk_rate(u8 n, unsigned long rate) 2018 { 2019 u32 val; 2020 u32 div; 2021 2022 div = clock_divider(clock_rate(PRCMU_TVCLK), rate); 2023 val = readl(PRCM_DSITVCLK_DIV); 2024 val &= ~dsiescclk[n].div_mask; 2025 val |= (min(div, (u32)255) << dsiescclk[n].div_shift); 2026 writel(val, PRCM_DSITVCLK_DIV); 2027 } 2028 2029 int prcmu_set_clock_rate(u8 clock, unsigned long rate) 2030 { 2031 if (clock < PRCMU_NUM_REG_CLOCKS) 2032 set_clock_rate(clock, rate); 2033 else if (clock == PRCMU_PLLDSI) 2034 return set_plldsi_rate(rate); 2035 else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK)) 2036 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate); 2037 else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK)) 2038 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate); 2039 return 0; 2040 } 2041 2042 int db8500_prcmu_config_esram0_deep_sleep(u8 state) 2043 { 2044 if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) || 2045 (state < ESRAM0_DEEP_SLEEP_STATE_OFF)) 2046 return -EINVAL; 2047 2048 mutex_lock(&mb4_transfer.lock); 2049 2050 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2051 cpu_relax(); 2052 2053 writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2054 writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON), 2055 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE)); 2056 writeb(DDR_PWR_STATE_ON, 2057 (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE)); 2058 writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST)); 2059 2060 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2061 wait_for_completion(&mb4_transfer.work); 2062 2063 mutex_unlock(&mb4_transfer.lock); 2064 2065 return 0; 2066 } 2067 2068 int db8500_prcmu_config_hotdog(u8 threshold) 2069 { 2070 mutex_lock(&mb4_transfer.lock); 2071 2072 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2073 cpu_relax(); 2074 2075 writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD)); 2076 writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2077 2078 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2079 wait_for_completion(&mb4_transfer.work); 2080 2081 mutex_unlock(&mb4_transfer.lock); 2082 2083 return 0; 2084 } 2085 2086 int db8500_prcmu_config_hotmon(u8 low, u8 high) 2087 { 2088 mutex_lock(&mb4_transfer.lock); 2089 2090 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2091 cpu_relax(); 2092 2093 writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW)); 2094 writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH)); 2095 writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH), 2096 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG)); 2097 writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2098 2099 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2100 wait_for_completion(&mb4_transfer.work); 2101 2102 mutex_unlock(&mb4_transfer.lock); 2103 2104 return 0; 2105 } 2106 2107 static int config_hot_period(u16 val) 2108 { 2109 mutex_lock(&mb4_transfer.lock); 2110 2111 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2112 cpu_relax(); 2113 2114 writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD)); 2115 writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2116 2117 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2118 wait_for_completion(&mb4_transfer.work); 2119 2120 mutex_unlock(&mb4_transfer.lock); 2121 2122 return 0; 2123 } 2124 2125 int db8500_prcmu_start_temp_sense(u16 cycles32k) 2126 { 2127 if (cycles32k == 0xFFFF) 2128 return -EINVAL; 2129 2130 return config_hot_period(cycles32k); 2131 } 2132 2133 int db8500_prcmu_stop_temp_sense(void) 2134 { 2135 return config_hot_period(0xFFFF); 2136 } 2137 2138 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3) 2139 { 2140 2141 mutex_lock(&mb4_transfer.lock); 2142 2143 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4)) 2144 cpu_relax(); 2145 2146 writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0)); 2147 writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1)); 2148 writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2)); 2149 writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3)); 2150 2151 writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4)); 2152 2153 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET); 2154 wait_for_completion(&mb4_transfer.work); 2155 2156 mutex_unlock(&mb4_transfer.lock); 2157 2158 return 0; 2159 2160 } 2161 2162 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off) 2163 { 2164 BUG_ON(num == 0 || num > 0xf); 2165 return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0, 2166 sleep_auto_off ? A9WDOG_AUTO_OFF_EN : 2167 A9WDOG_AUTO_OFF_DIS); 2168 } 2169 2170 int db8500_prcmu_enable_a9wdog(u8 id) 2171 { 2172 return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0); 2173 } 2174 2175 int db8500_prcmu_disable_a9wdog(u8 id) 2176 { 2177 return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0); 2178 } 2179 2180 int db8500_prcmu_kick_a9wdog(u8 id) 2181 { 2182 return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0); 2183 } 2184 2185 /* 2186 * timeout is 28 bit, in ms. 2187 */ 2188 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout) 2189 { 2190 return prcmu_a9wdog(MB4H_A9WDOG_LOAD, 2191 (id & A9WDOG_ID_MASK) | 2192 /* 2193 * Put the lowest 28 bits of timeout at 2194 * offset 4. Four first bits are used for id. 2195 */ 2196 (u8)((timeout << 4) & 0xf0), 2197 (u8)((timeout >> 4) & 0xff), 2198 (u8)((timeout >> 12) & 0xff), 2199 (u8)((timeout >> 20) & 0xff)); 2200 } 2201 2202 /** 2203 * prcmu_abb_read() - Read register value(s) from the ABB. 2204 * @slave: The I2C slave address. 2205 * @reg: The (start) register address. 2206 * @value: The read out value(s). 2207 * @size: The number of registers to read. 2208 * 2209 * Reads register value(s) from the ABB. 2210 * @size has to be 1 for the current firmware version. 2211 */ 2212 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size) 2213 { 2214 int r; 2215 2216 if (size != 1) 2217 return -EINVAL; 2218 2219 mutex_lock(&mb5_transfer.lock); 2220 2221 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2222 cpu_relax(); 2223 2224 writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2225 writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2226 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2227 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2228 writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2229 2230 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2231 2232 if (!wait_for_completion_timeout(&mb5_transfer.work, 2233 msecs_to_jiffies(20000))) { 2234 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2235 __func__); 2236 r = -EIO; 2237 } else { 2238 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO); 2239 } 2240 2241 if (!r) 2242 *value = mb5_transfer.ack.value; 2243 2244 mutex_unlock(&mb5_transfer.lock); 2245 2246 return r; 2247 } 2248 2249 /** 2250 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB. 2251 * @slave: The I2C slave address. 2252 * @reg: The (start) register address. 2253 * @value: The value(s) to write. 2254 * @mask: The mask(s) to use. 2255 * @size: The number of registers to write. 2256 * 2257 * Writes masked register value(s) to the ABB. 2258 * For each @value, only the bits set to 1 in the corresponding @mask 2259 * will be written. The other bits are not changed. 2260 * @size has to be 1 for the current firmware version. 2261 */ 2262 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size) 2263 { 2264 int r; 2265 2266 if (size != 1) 2267 return -EINVAL; 2268 2269 mutex_lock(&mb5_transfer.lock); 2270 2271 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5)) 2272 cpu_relax(); 2273 2274 writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5)); 2275 writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP)); 2276 writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS)); 2277 writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG)); 2278 writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL)); 2279 2280 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET); 2281 2282 if (!wait_for_completion_timeout(&mb5_transfer.work, 2283 msecs_to_jiffies(20000))) { 2284 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n", 2285 __func__); 2286 r = -EIO; 2287 } else { 2288 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO); 2289 } 2290 2291 mutex_unlock(&mb5_transfer.lock); 2292 2293 return r; 2294 } 2295 2296 /** 2297 * prcmu_abb_write() - Write register value(s) to the ABB. 2298 * @slave: The I2C slave address. 2299 * @reg: The (start) register address. 2300 * @value: The value(s) to write. 2301 * @size: The number of registers to write. 2302 * 2303 * Writes register value(s) to the ABB. 2304 * @size has to be 1 for the current firmware version. 2305 */ 2306 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size) 2307 { 2308 u8 mask = ~0; 2309 2310 return prcmu_abb_write_masked(slave, reg, value, &mask, size); 2311 } 2312 2313 /** 2314 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem 2315 */ 2316 int prcmu_ac_wake_req(void) 2317 { 2318 u32 val; 2319 int ret = 0; 2320 2321 mutex_lock(&mb0_transfer.ac_wake_lock); 2322 2323 val = readl(PRCM_HOSTACCESS_REQ); 2324 if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ) 2325 goto unlock_and_return; 2326 2327 atomic_set(&ac_wake_req_state, 1); 2328 2329 /* 2330 * Force Modem Wake-up before hostaccess_req ping-pong. 2331 * It prevents Modem to enter in Sleep while acking the hostaccess 2332 * request. The 31us delay has been calculated by HWI. 2333 */ 2334 val |= PRCM_HOSTACCESS_REQ_WAKE_REQ; 2335 writel(val, PRCM_HOSTACCESS_REQ); 2336 2337 udelay(31); 2338 2339 val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ; 2340 writel(val, PRCM_HOSTACCESS_REQ); 2341 2342 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2343 msecs_to_jiffies(5000))) { 2344 #if defined(CONFIG_DBX500_PRCMU_DEBUG) 2345 db8500_prcmu_debug_dump(__func__, true, true); 2346 #endif 2347 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2348 __func__); 2349 ret = -EFAULT; 2350 } 2351 2352 unlock_and_return: 2353 mutex_unlock(&mb0_transfer.ac_wake_lock); 2354 return ret; 2355 } 2356 2357 /** 2358 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem 2359 */ 2360 void prcmu_ac_sleep_req() 2361 { 2362 u32 val; 2363 2364 mutex_lock(&mb0_transfer.ac_wake_lock); 2365 2366 val = readl(PRCM_HOSTACCESS_REQ); 2367 if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)) 2368 goto unlock_and_return; 2369 2370 writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), 2371 PRCM_HOSTACCESS_REQ); 2372 2373 if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work, 2374 msecs_to_jiffies(5000))) { 2375 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n", 2376 __func__); 2377 } 2378 2379 atomic_set(&ac_wake_req_state, 0); 2380 2381 unlock_and_return: 2382 mutex_unlock(&mb0_transfer.ac_wake_lock); 2383 } 2384 2385 bool db8500_prcmu_is_ac_wake_requested(void) 2386 { 2387 return (atomic_read(&ac_wake_req_state) != 0); 2388 } 2389 2390 /** 2391 * db8500_prcmu_system_reset - System reset 2392 * 2393 * Saves the reset reason code and then sets the APE_SOFTRST register which 2394 * fires interrupt to fw 2395 */ 2396 void db8500_prcmu_system_reset(u16 reset_code) 2397 { 2398 writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON)); 2399 writel(1, PRCM_APE_SOFTRST); 2400 } 2401 2402 /** 2403 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code 2404 * 2405 * Retrieves the reset reason code stored by prcmu_system_reset() before 2406 * last restart. 2407 */ 2408 u16 db8500_prcmu_get_reset_code(void) 2409 { 2410 return readw(tcdm_base + PRCM_SW_RST_REASON); 2411 } 2412 2413 /** 2414 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem 2415 */ 2416 void db8500_prcmu_modem_reset(void) 2417 { 2418 mutex_lock(&mb1_transfer.lock); 2419 2420 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1)) 2421 cpu_relax(); 2422 2423 writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1)); 2424 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET); 2425 wait_for_completion(&mb1_transfer.work); 2426 2427 /* 2428 * No need to check return from PRCMU as modem should go in reset state 2429 * This state is already managed by upper layer 2430 */ 2431 2432 mutex_unlock(&mb1_transfer.lock); 2433 } 2434 2435 static void ack_dbb_wakeup(void) 2436 { 2437 unsigned long flags; 2438 2439 spin_lock_irqsave(&mb0_transfer.lock, flags); 2440 2441 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0)) 2442 cpu_relax(); 2443 2444 writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0)); 2445 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET); 2446 2447 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2448 } 2449 2450 static inline void print_unknown_header_warning(u8 n, u8 header) 2451 { 2452 pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n", 2453 header, n); 2454 } 2455 2456 static bool read_mailbox_0(void) 2457 { 2458 bool r; 2459 u32 ev; 2460 unsigned int n; 2461 u8 header; 2462 2463 header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0); 2464 switch (header) { 2465 case MB0H_WAKEUP_EXE: 2466 case MB0H_WAKEUP_SLEEP: 2467 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1) 2468 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500); 2469 else 2470 ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500); 2471 2472 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK)) 2473 complete(&mb0_transfer.ac_wake_work); 2474 if (ev & WAKEUP_BIT_SYSCLK_OK) 2475 complete(&mb3_transfer.sysclk_work); 2476 2477 ev &= mb0_transfer.req.dbb_irqs; 2478 2479 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) { 2480 if (ev & prcmu_irq_bit[n]) 2481 generic_handle_irq(IRQ_PRCMU_BASE + n); 2482 } 2483 r = true; 2484 break; 2485 default: 2486 print_unknown_header_warning(0, header); 2487 r = false; 2488 break; 2489 } 2490 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR); 2491 return r; 2492 } 2493 2494 static bool read_mailbox_1(void) 2495 { 2496 mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1); 2497 mb1_transfer.ack.arm_opp = readb(tcdm_base + 2498 PRCM_ACK_MB1_CURRENT_ARM_OPP); 2499 mb1_transfer.ack.ape_opp = readb(tcdm_base + 2500 PRCM_ACK_MB1_CURRENT_APE_OPP); 2501 mb1_transfer.ack.ape_voltage_status = readb(tcdm_base + 2502 PRCM_ACK_MB1_APE_VOLTAGE_STATUS); 2503 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR); 2504 complete(&mb1_transfer.work); 2505 return false; 2506 } 2507 2508 static bool read_mailbox_2(void) 2509 { 2510 mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS); 2511 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR); 2512 complete(&mb2_transfer.work); 2513 return false; 2514 } 2515 2516 static bool read_mailbox_3(void) 2517 { 2518 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR); 2519 return false; 2520 } 2521 2522 static bool read_mailbox_4(void) 2523 { 2524 u8 header; 2525 bool do_complete = true; 2526 2527 header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4); 2528 switch (header) { 2529 case MB4H_MEM_ST: 2530 case MB4H_HOTDOG: 2531 case MB4H_HOTMON: 2532 case MB4H_HOT_PERIOD: 2533 case MB4H_A9WDOG_CONF: 2534 case MB4H_A9WDOG_EN: 2535 case MB4H_A9WDOG_DIS: 2536 case MB4H_A9WDOG_LOAD: 2537 case MB4H_A9WDOG_KICK: 2538 break; 2539 default: 2540 print_unknown_header_warning(4, header); 2541 do_complete = false; 2542 break; 2543 } 2544 2545 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR); 2546 2547 if (do_complete) 2548 complete(&mb4_transfer.work); 2549 2550 return false; 2551 } 2552 2553 static bool read_mailbox_5(void) 2554 { 2555 mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS); 2556 mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL); 2557 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR); 2558 complete(&mb5_transfer.work); 2559 return false; 2560 } 2561 2562 static bool read_mailbox_6(void) 2563 { 2564 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR); 2565 return false; 2566 } 2567 2568 static bool read_mailbox_7(void) 2569 { 2570 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR); 2571 return false; 2572 } 2573 2574 static bool (* const read_mailbox[NUM_MB])(void) = { 2575 read_mailbox_0, 2576 read_mailbox_1, 2577 read_mailbox_2, 2578 read_mailbox_3, 2579 read_mailbox_4, 2580 read_mailbox_5, 2581 read_mailbox_6, 2582 read_mailbox_7 2583 }; 2584 2585 static irqreturn_t prcmu_irq_handler(int irq, void *data) 2586 { 2587 u32 bits; 2588 u8 n; 2589 irqreturn_t r; 2590 2591 bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS); 2592 if (unlikely(!bits)) 2593 return IRQ_NONE; 2594 2595 r = IRQ_HANDLED; 2596 for (n = 0; bits; n++) { 2597 if (bits & MBOX_BIT(n)) { 2598 bits -= MBOX_BIT(n); 2599 if (read_mailbox[n]()) 2600 r = IRQ_WAKE_THREAD; 2601 } 2602 } 2603 return r; 2604 } 2605 2606 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data) 2607 { 2608 ack_dbb_wakeup(); 2609 return IRQ_HANDLED; 2610 } 2611 2612 static void prcmu_mask_work(struct work_struct *work) 2613 { 2614 unsigned long flags; 2615 2616 spin_lock_irqsave(&mb0_transfer.lock, flags); 2617 2618 config_wakeups(); 2619 2620 spin_unlock_irqrestore(&mb0_transfer.lock, flags); 2621 } 2622 2623 static void prcmu_irq_mask(struct irq_data *d) 2624 { 2625 unsigned long flags; 2626 2627 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2628 2629 mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq]; 2630 2631 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2632 2633 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2634 schedule_work(&mb0_transfer.mask_work); 2635 } 2636 2637 static void prcmu_irq_unmask(struct irq_data *d) 2638 { 2639 unsigned long flags; 2640 2641 spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags); 2642 2643 mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq]; 2644 2645 spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags); 2646 2647 if (d->irq != IRQ_PRCMU_CA_SLEEP) 2648 schedule_work(&mb0_transfer.mask_work); 2649 } 2650 2651 static void noop(struct irq_data *d) 2652 { 2653 } 2654 2655 static struct irq_chip prcmu_irq_chip = { 2656 .name = "prcmu", 2657 .irq_disable = prcmu_irq_mask, 2658 .irq_ack = noop, 2659 .irq_mask = prcmu_irq_mask, 2660 .irq_unmask = prcmu_irq_unmask, 2661 }; 2662 2663 static char *fw_project_name(u8 project) 2664 { 2665 switch (project) { 2666 case PRCMU_FW_PROJECT_U8500: 2667 return "U8500"; 2668 case PRCMU_FW_PROJECT_U8500_C2: 2669 return "U8500 C2"; 2670 case PRCMU_FW_PROJECT_U9500: 2671 return "U9500"; 2672 case PRCMU_FW_PROJECT_U9500_C2: 2673 return "U9500 C2"; 2674 case PRCMU_FW_PROJECT_U8520: 2675 return "U8520"; 2676 case PRCMU_FW_PROJECT_U8420: 2677 return "U8420"; 2678 default: 2679 return "Unknown"; 2680 } 2681 } 2682 2683 static int db8500_irq_map(struct irq_domain *d, unsigned int virq, 2684 irq_hw_number_t hwirq) 2685 { 2686 irq_set_chip_and_handler(virq, &prcmu_irq_chip, 2687 handle_simple_irq); 2688 set_irq_flags(virq, IRQF_VALID); 2689 2690 return 0; 2691 } 2692 2693 static struct irq_domain_ops db8500_irq_ops = { 2694 .map = db8500_irq_map, 2695 .xlate = irq_domain_xlate_twocell, 2696 }; 2697 2698 static int db8500_irq_init(struct device_node *np) 2699 { 2700 db8500_irq_domain = irq_domain_add_legacy( 2701 np, NUM_PRCMU_WAKEUPS, IRQ_PRCMU_BASE, 2702 0, &db8500_irq_ops, NULL); 2703 2704 if (!db8500_irq_domain) { 2705 pr_err("Failed to create irqdomain\n"); 2706 return -ENOSYS; 2707 } 2708 2709 return 0; 2710 } 2711 2712 void __init db8500_prcmu_early_init(void) 2713 { 2714 if (cpu_is_u8500v2()) { 2715 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K); 2716 2717 if (tcpm_base != NULL) { 2718 u32 version; 2719 version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET); 2720 fw_info.version.project = version & 0xFF; 2721 fw_info.version.api_version = (version >> 8) & 0xFF; 2722 fw_info.version.func_version = (version >> 16) & 0xFF; 2723 fw_info.version.errata = (version >> 24) & 0xFF; 2724 fw_info.valid = true; 2725 pr_info("PRCMU firmware: %s, version %d.%d.%d\n", 2726 fw_project_name(fw_info.version.project), 2727 (version >> 8) & 0xFF, (version >> 16) & 0xFF, 2728 (version >> 24) & 0xFF); 2729 iounmap(tcpm_base); 2730 } 2731 2732 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE); 2733 } else { 2734 pr_err("prcmu: Unsupported chip version\n"); 2735 BUG(); 2736 } 2737 2738 spin_lock_init(&mb0_transfer.lock); 2739 spin_lock_init(&mb0_transfer.dbb_irqs_lock); 2740 mutex_init(&mb0_transfer.ac_wake_lock); 2741 init_completion(&mb0_transfer.ac_wake_work); 2742 mutex_init(&mb1_transfer.lock); 2743 init_completion(&mb1_transfer.work); 2744 mb1_transfer.ape_opp = APE_NO_CHANGE; 2745 mutex_init(&mb2_transfer.lock); 2746 init_completion(&mb2_transfer.work); 2747 spin_lock_init(&mb2_transfer.auto_pm_lock); 2748 spin_lock_init(&mb3_transfer.lock); 2749 mutex_init(&mb3_transfer.sysclk_lock); 2750 init_completion(&mb3_transfer.sysclk_work); 2751 mutex_init(&mb4_transfer.lock); 2752 init_completion(&mb4_transfer.work); 2753 mutex_init(&mb5_transfer.lock); 2754 init_completion(&mb5_transfer.work); 2755 2756 INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work); 2757 2758 compute_armss_rate(); 2759 } 2760 2761 static void __init init_prcm_registers(void) 2762 { 2763 u32 val; 2764 2765 val = readl(PRCM_A9PL_FORCE_CLKEN); 2766 val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN | 2767 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN); 2768 writel(val, (PRCM_A9PL_FORCE_CLKEN)); 2769 } 2770 2771 /* 2772 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC 2773 */ 2774 static struct regulator_consumer_supply db8500_vape_consumers[] = { 2775 REGULATOR_SUPPLY("v-ape", NULL), 2776 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"), 2777 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"), 2778 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"), 2779 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"), 2780 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"), 2781 /* "v-mmc" changed to "vcore" in the mainline kernel */ 2782 REGULATOR_SUPPLY("vcore", "sdi0"), 2783 REGULATOR_SUPPLY("vcore", "sdi1"), 2784 REGULATOR_SUPPLY("vcore", "sdi2"), 2785 REGULATOR_SUPPLY("vcore", "sdi3"), 2786 REGULATOR_SUPPLY("vcore", "sdi4"), 2787 REGULATOR_SUPPLY("v-dma", "dma40.0"), 2788 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"), 2789 /* "v-uart" changed to "vcore" in the mainline kernel */ 2790 REGULATOR_SUPPLY("vcore", "uart0"), 2791 REGULATOR_SUPPLY("vcore", "uart1"), 2792 REGULATOR_SUPPLY("vcore", "uart2"), 2793 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"), 2794 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"), 2795 REGULATOR_SUPPLY("vddvario", "smsc911x.0"), 2796 }; 2797 2798 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = { 2799 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"), 2800 /* AV8100 regulator */ 2801 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"), 2802 }; 2803 2804 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = { 2805 REGULATOR_SUPPLY("vsupply", "b2r2_bus"), 2806 REGULATOR_SUPPLY("vsupply", "mcde"), 2807 }; 2808 2809 /* SVA MMDSP regulator switch */ 2810 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = { 2811 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"), 2812 }; 2813 2814 /* SVA pipe regulator switch */ 2815 static struct regulator_consumer_supply db8500_svapipe_consumers[] = { 2816 REGULATOR_SUPPLY("sva-pipe", "cm_control"), 2817 }; 2818 2819 /* SIA MMDSP regulator switch */ 2820 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = { 2821 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"), 2822 }; 2823 2824 /* SIA pipe regulator switch */ 2825 static struct regulator_consumer_supply db8500_siapipe_consumers[] = { 2826 REGULATOR_SUPPLY("sia-pipe", "cm_control"), 2827 }; 2828 2829 static struct regulator_consumer_supply db8500_sga_consumers[] = { 2830 REGULATOR_SUPPLY("v-mali", NULL), 2831 }; 2832 2833 /* ESRAM1 and 2 regulator switch */ 2834 static struct regulator_consumer_supply db8500_esram12_consumers[] = { 2835 REGULATOR_SUPPLY("esram12", "cm_control"), 2836 }; 2837 2838 /* ESRAM3 and 4 regulator switch */ 2839 static struct regulator_consumer_supply db8500_esram34_consumers[] = { 2840 REGULATOR_SUPPLY("v-esram34", "mcde"), 2841 REGULATOR_SUPPLY("esram34", "cm_control"), 2842 REGULATOR_SUPPLY("lcla_esram", "dma40.0"), 2843 }; 2844 2845 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = { 2846 [DB8500_REGULATOR_VAPE] = { 2847 .constraints = { 2848 .name = "db8500-vape", 2849 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2850 .always_on = true, 2851 }, 2852 .consumer_supplies = db8500_vape_consumers, 2853 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers), 2854 }, 2855 [DB8500_REGULATOR_VARM] = { 2856 .constraints = { 2857 .name = "db8500-varm", 2858 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2859 }, 2860 }, 2861 [DB8500_REGULATOR_VMODEM] = { 2862 .constraints = { 2863 .name = "db8500-vmodem", 2864 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2865 }, 2866 }, 2867 [DB8500_REGULATOR_VPLL] = { 2868 .constraints = { 2869 .name = "db8500-vpll", 2870 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2871 }, 2872 }, 2873 [DB8500_REGULATOR_VSMPS1] = { 2874 .constraints = { 2875 .name = "db8500-vsmps1", 2876 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2877 }, 2878 }, 2879 [DB8500_REGULATOR_VSMPS2] = { 2880 .constraints = { 2881 .name = "db8500-vsmps2", 2882 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2883 }, 2884 .consumer_supplies = db8500_vsmps2_consumers, 2885 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers), 2886 }, 2887 [DB8500_REGULATOR_VSMPS3] = { 2888 .constraints = { 2889 .name = "db8500-vsmps3", 2890 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2891 }, 2892 }, 2893 [DB8500_REGULATOR_VRF1] = { 2894 .constraints = { 2895 .name = "db8500-vrf1", 2896 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2897 }, 2898 }, 2899 [DB8500_REGULATOR_SWITCH_SVAMMDSP] = { 2900 /* dependency to u8500-vape is handled outside regulator framework */ 2901 .constraints = { 2902 .name = "db8500-sva-mmdsp", 2903 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2904 }, 2905 .consumer_supplies = db8500_svammdsp_consumers, 2906 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers), 2907 }, 2908 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = { 2909 .constraints = { 2910 /* "ret" means "retention" */ 2911 .name = "db8500-sva-mmdsp-ret", 2912 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2913 }, 2914 }, 2915 [DB8500_REGULATOR_SWITCH_SVAPIPE] = { 2916 /* dependency to u8500-vape is handled outside regulator framework */ 2917 .constraints = { 2918 .name = "db8500-sva-pipe", 2919 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2920 }, 2921 .consumer_supplies = db8500_svapipe_consumers, 2922 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers), 2923 }, 2924 [DB8500_REGULATOR_SWITCH_SIAMMDSP] = { 2925 /* dependency to u8500-vape is handled outside regulator framework */ 2926 .constraints = { 2927 .name = "db8500-sia-mmdsp", 2928 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2929 }, 2930 .consumer_supplies = db8500_siammdsp_consumers, 2931 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers), 2932 }, 2933 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = { 2934 .constraints = { 2935 .name = "db8500-sia-mmdsp-ret", 2936 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2937 }, 2938 }, 2939 [DB8500_REGULATOR_SWITCH_SIAPIPE] = { 2940 /* dependency to u8500-vape is handled outside regulator framework */ 2941 .constraints = { 2942 .name = "db8500-sia-pipe", 2943 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2944 }, 2945 .consumer_supplies = db8500_siapipe_consumers, 2946 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers), 2947 }, 2948 [DB8500_REGULATOR_SWITCH_SGA] = { 2949 .supply_regulator = "db8500-vape", 2950 .constraints = { 2951 .name = "db8500-sga", 2952 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2953 }, 2954 .consumer_supplies = db8500_sga_consumers, 2955 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers), 2956 2957 }, 2958 [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = { 2959 .supply_regulator = "db8500-vape", 2960 .constraints = { 2961 .name = "db8500-b2r2-mcde", 2962 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2963 }, 2964 .consumer_supplies = db8500_b2r2_mcde_consumers, 2965 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers), 2966 }, 2967 [DB8500_REGULATOR_SWITCH_ESRAM12] = { 2968 /* 2969 * esram12 is set in retention and supplied by Vsafe when Vape is off, 2970 * no need to hold Vape 2971 */ 2972 .constraints = { 2973 .name = "db8500-esram12", 2974 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2975 }, 2976 .consumer_supplies = db8500_esram12_consumers, 2977 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers), 2978 }, 2979 [DB8500_REGULATOR_SWITCH_ESRAM12RET] = { 2980 .constraints = { 2981 .name = "db8500-esram12-ret", 2982 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2983 }, 2984 }, 2985 [DB8500_REGULATOR_SWITCH_ESRAM34] = { 2986 /* 2987 * esram34 is set in retention and supplied by Vsafe when Vape is off, 2988 * no need to hold Vape 2989 */ 2990 .constraints = { 2991 .name = "db8500-esram34", 2992 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 2993 }, 2994 .consumer_supplies = db8500_esram34_consumers, 2995 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers), 2996 }, 2997 [DB8500_REGULATOR_SWITCH_ESRAM34RET] = { 2998 .constraints = { 2999 .name = "db8500-esram34-ret", 3000 .valid_ops_mask = REGULATOR_CHANGE_STATUS, 3001 }, 3002 }, 3003 }; 3004 3005 static struct resource ab8500_resources[] = { 3006 [0] = { 3007 .start = IRQ_DB8500_AB8500, 3008 .end = IRQ_DB8500_AB8500, 3009 .flags = IORESOURCE_IRQ 3010 } 3011 }; 3012 3013 static struct mfd_cell db8500_prcmu_devs[] = { 3014 { 3015 .name = "db8500-prcmu-regulators", 3016 .of_compatible = "stericsson,db8500-prcmu-regulator", 3017 .platform_data = &db8500_regulators, 3018 .pdata_size = sizeof(db8500_regulators), 3019 }, 3020 { 3021 .name = "cpufreq-u8500", 3022 .of_compatible = "stericsson,cpufreq-u8500", 3023 }, 3024 { 3025 .name = "ab8500-core", 3026 .of_compatible = "stericsson,ab8500", 3027 .num_resources = ARRAY_SIZE(ab8500_resources), 3028 .resources = ab8500_resources, 3029 .id = AB8500_VERSION_AB8500, 3030 }, 3031 }; 3032 3033 /** 3034 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic 3035 * 3036 */ 3037 static int __devinit db8500_prcmu_probe(struct platform_device *pdev) 3038 { 3039 struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data; 3040 struct device_node *np = pdev->dev.of_node; 3041 int irq = 0, err = 0, i; 3042 3043 if (ux500_is_svp()) 3044 return -ENODEV; 3045 3046 init_prcm_registers(); 3047 3048 /* Clean up the mailbox interrupts after pre-kernel code. */ 3049 writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR); 3050 3051 if (np) 3052 irq = platform_get_irq(pdev, 0); 3053 3054 if (!np || irq <= 0) 3055 irq = IRQ_DB8500_PRCMU1; 3056 3057 err = request_threaded_irq(irq, prcmu_irq_handler, 3058 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL); 3059 if (err < 0) { 3060 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n"); 3061 err = -EBUSY; 3062 goto no_irq_return; 3063 } 3064 3065 db8500_irq_init(np); 3066 3067 for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) { 3068 if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) { 3069 db8500_prcmu_devs[i].platform_data = ab8500_platdata; 3070 db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data); 3071 } 3072 } 3073 3074 if (cpu_is_u8500v20_or_later()) 3075 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET); 3076 3077 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs, 3078 ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL); 3079 if (err) { 3080 pr_err("prcmu: Failed to add subdevices\n"); 3081 return err; 3082 } 3083 3084 pr_info("DB8500 PRCMU initialized\n"); 3085 3086 no_irq_return: 3087 return err; 3088 } 3089 static const struct of_device_id db8500_prcmu_match[] = { 3090 { .compatible = "stericsson,db8500-prcmu"}, 3091 { }, 3092 }; 3093 3094 static struct platform_driver db8500_prcmu_driver = { 3095 .driver = { 3096 .name = "db8500-prcmu", 3097 .owner = THIS_MODULE, 3098 .of_match_table = db8500_prcmu_match, 3099 }, 3100 .probe = db8500_prcmu_probe, 3101 }; 3102 3103 static int __init db8500_prcmu_init(void) 3104 { 3105 return platform_driver_register(&db8500_prcmu_driver); 3106 } 3107 3108 core_initcall(db8500_prcmu_init); 3109 3110 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>"); 3111 MODULE_DESCRIPTION("DB8500 PRCM Unit driver"); 3112 MODULE_LICENSE("GPL v2"); 3113