xref: /linux/drivers/mfd/db8500-prcmu.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/cpufreq.h>
37 #include <linux/platform_data/ux500_wdt.h>
38 #include <linux/platform_data/db8500_thermal.h>
39 #include "dbx500-prcmu-regs.h"
40 
41 /* Index of different voltages to be used when accessing AVSData */
42 #define PRCM_AVS_BASE		0x2FC
43 #define PRCM_AVS_VBB_RET	(PRCM_AVS_BASE + 0x0)
44 #define PRCM_AVS_VBB_MAX_OPP	(PRCM_AVS_BASE + 0x1)
45 #define PRCM_AVS_VBB_100_OPP	(PRCM_AVS_BASE + 0x2)
46 #define PRCM_AVS_VBB_50_OPP	(PRCM_AVS_BASE + 0x3)
47 #define PRCM_AVS_VARM_MAX_OPP	(PRCM_AVS_BASE + 0x4)
48 #define PRCM_AVS_VARM_100_OPP	(PRCM_AVS_BASE + 0x5)
49 #define PRCM_AVS_VARM_50_OPP	(PRCM_AVS_BASE + 0x6)
50 #define PRCM_AVS_VARM_RET	(PRCM_AVS_BASE + 0x7)
51 #define PRCM_AVS_VAPE_100_OPP	(PRCM_AVS_BASE + 0x8)
52 #define PRCM_AVS_VAPE_50_OPP	(PRCM_AVS_BASE + 0x9)
53 #define PRCM_AVS_VMOD_100_OPP	(PRCM_AVS_BASE + 0xA)
54 #define PRCM_AVS_VMOD_50_OPP	(PRCM_AVS_BASE + 0xB)
55 #define PRCM_AVS_VSAFE		(PRCM_AVS_BASE + 0xC)
56 
57 #define PRCM_AVS_VOLTAGE		0
58 #define PRCM_AVS_VOLTAGE_MASK		0x3f
59 #define PRCM_AVS_ISSLOWSTARTUP		6
60 #define PRCM_AVS_ISSLOWSTARTUP_MASK	(1 << PRCM_AVS_ISSLOWSTARTUP)
61 #define PRCM_AVS_ISMODEENABLE		7
62 #define PRCM_AVS_ISMODEENABLE_MASK	(1 << PRCM_AVS_ISMODEENABLE)
63 
64 #define PRCM_BOOT_STATUS	0xFFF
65 #define PRCM_ROMCODE_A2P	0xFFE
66 #define PRCM_ROMCODE_P2A	0xFFD
67 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
68 
69 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70 
71 #define _PRCM_MBOX_HEADER		0xFE8 /* 16 bytes */
72 #define PRCM_MBOX_HEADER_REQ_MB0	(_PRCM_MBOX_HEADER + 0x0)
73 #define PRCM_MBOX_HEADER_REQ_MB1	(_PRCM_MBOX_HEADER + 0x1)
74 #define PRCM_MBOX_HEADER_REQ_MB2	(_PRCM_MBOX_HEADER + 0x2)
75 #define PRCM_MBOX_HEADER_REQ_MB3	(_PRCM_MBOX_HEADER + 0x3)
76 #define PRCM_MBOX_HEADER_REQ_MB4	(_PRCM_MBOX_HEADER + 0x4)
77 #define PRCM_MBOX_HEADER_REQ_MB5	(_PRCM_MBOX_HEADER + 0x5)
78 #define PRCM_MBOX_HEADER_ACK_MB0	(_PRCM_MBOX_HEADER + 0x8)
79 
80 /* Req Mailboxes */
81 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
82 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
83 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
84 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
85 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
86 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
87 
88 /* Ack Mailboxes */
89 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
90 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
91 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
92 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
93 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
94 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95 
96 /* Mailbox 0 headers */
97 #define MB0H_POWER_STATE_TRANS		0
98 #define MB0H_CONFIG_WAKEUPS_EXE		1
99 #define MB0H_READ_WAKEUP_ACK		3
100 #define MB0H_CONFIG_WAKEUPS_SLEEP	4
101 
102 #define MB0H_WAKEUP_EXE 2
103 #define MB0H_WAKEUP_SLEEP 5
104 
105 /* Mailbox 0 REQs */
106 #define PRCM_REQ_MB0_AP_POWER_STATE	(PRCM_REQ_MB0 + 0x0)
107 #define PRCM_REQ_MB0_AP_PLL_STATE	(PRCM_REQ_MB0 + 0x1)
108 #define PRCM_REQ_MB0_ULP_CLOCK_STATE	(PRCM_REQ_MB0 + 0x2)
109 #define PRCM_REQ_MB0_DO_NOT_WFI		(PRCM_REQ_MB0 + 0x3)
110 #define PRCM_REQ_MB0_WAKEUP_8500	(PRCM_REQ_MB0 + 0x4)
111 #define PRCM_REQ_MB0_WAKEUP_4500	(PRCM_REQ_MB0 + 0x8)
112 
113 /* Mailbox 0 ACKs */
114 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS	(PRCM_ACK_MB0 + 0x0)
115 #define PRCM_ACK_MB0_READ_POINTER	(PRCM_ACK_MB0 + 0x1)
116 #define PRCM_ACK_MB0_WAKEUP_0_8500	(PRCM_ACK_MB0 + 0x4)
117 #define PRCM_ACK_MB0_WAKEUP_0_4500	(PRCM_ACK_MB0 + 0x8)
118 #define PRCM_ACK_MB0_WAKEUP_1_8500	(PRCM_ACK_MB0 + 0x1C)
119 #define PRCM_ACK_MB0_WAKEUP_1_4500	(PRCM_ACK_MB0 + 0x20)
120 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS	20
121 
122 /* Mailbox 1 headers */
123 #define MB1H_ARM_APE_OPP 0x0
124 #define MB1H_RESET_MODEM 0x2
125 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
126 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
127 #define MB1H_RELEASE_USB_WAKEUP 0x5
128 #define MB1H_PLL_ON_OFF 0x6
129 
130 /* Mailbox 1 Requests */
131 #define PRCM_REQ_MB1_ARM_OPP			(PRCM_REQ_MB1 + 0x0)
132 #define PRCM_REQ_MB1_APE_OPP			(PRCM_REQ_MB1 + 0x1)
133 #define PRCM_REQ_MB1_PLL_ON_OFF			(PRCM_REQ_MB1 + 0x4)
134 #define PLL_SOC0_OFF	0x1
135 #define PLL_SOC0_ON	0x2
136 #define PLL_SOC1_OFF	0x4
137 #define PLL_SOC1_ON	0x8
138 
139 /* Mailbox 1 ACKs */
140 #define PRCM_ACK_MB1_CURRENT_ARM_OPP	(PRCM_ACK_MB1 + 0x0)
141 #define PRCM_ACK_MB1_CURRENT_APE_OPP	(PRCM_ACK_MB1 + 0x1)
142 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS	(PRCM_ACK_MB1 + 0x2)
143 #define PRCM_ACK_MB1_DVFS_STATUS	(PRCM_ACK_MB1 + 0x3)
144 
145 /* Mailbox 2 headers */
146 #define MB2H_DPS	0x0
147 #define MB2H_AUTO_PWR	0x1
148 
149 /* Mailbox 2 REQs */
150 #define PRCM_REQ_MB2_SVA_MMDSP		(PRCM_REQ_MB2 + 0x0)
151 #define PRCM_REQ_MB2_SVA_PIPE		(PRCM_REQ_MB2 + 0x1)
152 #define PRCM_REQ_MB2_SIA_MMDSP		(PRCM_REQ_MB2 + 0x2)
153 #define PRCM_REQ_MB2_SIA_PIPE		(PRCM_REQ_MB2 + 0x3)
154 #define PRCM_REQ_MB2_SGA		(PRCM_REQ_MB2 + 0x4)
155 #define PRCM_REQ_MB2_B2R2_MCDE		(PRCM_REQ_MB2 + 0x5)
156 #define PRCM_REQ_MB2_ESRAM12		(PRCM_REQ_MB2 + 0x6)
157 #define PRCM_REQ_MB2_ESRAM34		(PRCM_REQ_MB2 + 0x7)
158 #define PRCM_REQ_MB2_AUTO_PM_SLEEP	(PRCM_REQ_MB2 + 0x8)
159 #define PRCM_REQ_MB2_AUTO_PM_IDLE	(PRCM_REQ_MB2 + 0xC)
160 
161 /* Mailbox 2 ACKs */
162 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
163 #define HWACC_PWR_ST_OK 0xFE
164 
165 /* Mailbox 3 headers */
166 #define MB3H_ANC	0x0
167 #define MB3H_SIDETONE	0x1
168 #define MB3H_SYSCLK	0xE
169 
170 /* Mailbox 3 Requests */
171 #define PRCM_REQ_MB3_ANC_FIR_COEFF	(PRCM_REQ_MB3 + 0x0)
172 #define PRCM_REQ_MB3_ANC_IIR_COEFF	(PRCM_REQ_MB3 + 0x20)
173 #define PRCM_REQ_MB3_ANC_SHIFTER	(PRCM_REQ_MB3 + 0x60)
174 #define PRCM_REQ_MB3_ANC_WARP		(PRCM_REQ_MB3 + 0x64)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN	(PRCM_REQ_MB3 + 0x68)
176 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF	(PRCM_REQ_MB3 + 0x6C)
177 #define PRCM_REQ_MB3_SYSCLK_MGT		(PRCM_REQ_MB3 + 0x16C)
178 
179 /* Mailbox 4 headers */
180 #define MB4H_DDR_INIT	0x0
181 #define MB4H_MEM_ST	0x1
182 #define MB4H_HOTDOG	0x12
183 #define MB4H_HOTMON	0x13
184 #define MB4H_HOT_PERIOD	0x14
185 #define MB4H_A9WDOG_CONF 0x16
186 #define MB4H_A9WDOG_EN   0x17
187 #define MB4H_A9WDOG_DIS  0x18
188 #define MB4H_A9WDOG_LOAD 0x19
189 #define MB4H_A9WDOG_KICK 0x20
190 
191 /* Mailbox 4 Requests */
192 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE	(PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE	(PRCM_REQ_MB4 + 0x1)
194 #define PRCM_REQ_MB4_ESRAM0_ST			(PRCM_REQ_MB4 + 0x3)
195 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD		(PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_LOW			(PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_HOTMON_HIGH		(PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_HOTMON_CONFIG		(PRCM_REQ_MB4 + 0x2)
199 #define PRCM_REQ_MB4_HOT_PERIOD			(PRCM_REQ_MB4 + 0x0)
200 #define HOTMON_CONFIG_LOW			BIT(0)
201 #define HOTMON_CONFIG_HIGH			BIT(1)
202 #define PRCM_REQ_MB4_A9WDOG_0			(PRCM_REQ_MB4 + 0x0)
203 #define PRCM_REQ_MB4_A9WDOG_1			(PRCM_REQ_MB4 + 0x1)
204 #define PRCM_REQ_MB4_A9WDOG_2			(PRCM_REQ_MB4 + 0x2)
205 #define PRCM_REQ_MB4_A9WDOG_3			(PRCM_REQ_MB4 + 0x3)
206 #define A9WDOG_AUTO_OFF_EN			BIT(7)
207 #define A9WDOG_AUTO_OFF_DIS			0
208 #define A9WDOG_ID_MASK				0xf
209 
210 /* Mailbox 5 Requests */
211 #define PRCM_REQ_MB5_I2C_SLAVE_OP	(PRCM_REQ_MB5 + 0x0)
212 #define PRCM_REQ_MB5_I2C_HW_BITS	(PRCM_REQ_MB5 + 0x1)
213 #define PRCM_REQ_MB5_I2C_REG		(PRCM_REQ_MB5 + 0x2)
214 #define PRCM_REQ_MB5_I2C_VAL		(PRCM_REQ_MB5 + 0x3)
215 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
216 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
217 #define PRCMU_I2C_STOP_EN		BIT(3)
218 
219 /* Mailbox 5 ACKs */
220 #define PRCM_ACK_MB5_I2C_STATUS	(PRCM_ACK_MB5 + 0x1)
221 #define PRCM_ACK_MB5_I2C_VAL	(PRCM_ACK_MB5 + 0x3)
222 #define I2C_WR_OK 0x1
223 #define I2C_RD_OK 0x2
224 
225 #define NUM_MB 8
226 #define MBOX_BIT BIT
227 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
228 
229 /*
230  * Wakeups/IRQs
231  */
232 
233 #define WAKEUP_BIT_RTC BIT(0)
234 #define WAKEUP_BIT_RTT0 BIT(1)
235 #define WAKEUP_BIT_RTT1 BIT(2)
236 #define WAKEUP_BIT_HSI0 BIT(3)
237 #define WAKEUP_BIT_HSI1 BIT(4)
238 #define WAKEUP_BIT_CA_WAKE BIT(5)
239 #define WAKEUP_BIT_USB BIT(6)
240 #define WAKEUP_BIT_ABB BIT(7)
241 #define WAKEUP_BIT_ABB_FIFO BIT(8)
242 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
243 #define WAKEUP_BIT_CA_SLEEP BIT(10)
244 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
245 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
246 #define WAKEUP_BIT_ANC_OK BIT(13)
247 #define WAKEUP_BIT_SW_ERROR BIT(14)
248 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
249 #define WAKEUP_BIT_ARM BIT(17)
250 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
251 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
252 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
253 #define WAKEUP_BIT_GPIO0 BIT(23)
254 #define WAKEUP_BIT_GPIO1 BIT(24)
255 #define WAKEUP_BIT_GPIO2 BIT(25)
256 #define WAKEUP_BIT_GPIO3 BIT(26)
257 #define WAKEUP_BIT_GPIO4 BIT(27)
258 #define WAKEUP_BIT_GPIO5 BIT(28)
259 #define WAKEUP_BIT_GPIO6 BIT(29)
260 #define WAKEUP_BIT_GPIO7 BIT(30)
261 #define WAKEUP_BIT_GPIO8 BIT(31)
262 
263 static struct {
264 	bool valid;
265 	struct prcmu_fw_version version;
266 } fw_info;
267 
268 static struct irq_domain *db8500_irq_domain;
269 
270 /*
271  * This vector maps irq numbers to the bits in the bit field used in
272  * communication with the PRCMU firmware.
273  *
274  * The reason for having this is to keep the irq numbers contiguous even though
275  * the bits in the bit field are not. (The bits also have a tendency to move
276  * around, to further complicate matters.)
277  */
278 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
279 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280 
281 #define IRQ_PRCMU_RTC 0
282 #define IRQ_PRCMU_RTT0 1
283 #define IRQ_PRCMU_RTT1 2
284 #define IRQ_PRCMU_HSI0 3
285 #define IRQ_PRCMU_HSI1 4
286 #define IRQ_PRCMU_CA_WAKE 5
287 #define IRQ_PRCMU_USB 6
288 #define IRQ_PRCMU_ABB 7
289 #define IRQ_PRCMU_ABB_FIFO 8
290 #define IRQ_PRCMU_ARM 9
291 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
292 #define IRQ_PRCMU_GPIO0 11
293 #define IRQ_PRCMU_GPIO1 12
294 #define IRQ_PRCMU_GPIO2 13
295 #define IRQ_PRCMU_GPIO3 14
296 #define IRQ_PRCMU_GPIO4 15
297 #define IRQ_PRCMU_GPIO5 16
298 #define IRQ_PRCMU_GPIO6 17
299 #define IRQ_PRCMU_GPIO7 18
300 #define IRQ_PRCMU_GPIO8 19
301 #define IRQ_PRCMU_CA_SLEEP 20
302 #define IRQ_PRCMU_HOTMON_LOW 21
303 #define IRQ_PRCMU_HOTMON_HIGH 22
304 #define NUM_PRCMU_WAKEUPS 23
305 
306 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
307 	IRQ_ENTRY(RTC),
308 	IRQ_ENTRY(RTT0),
309 	IRQ_ENTRY(RTT1),
310 	IRQ_ENTRY(HSI0),
311 	IRQ_ENTRY(HSI1),
312 	IRQ_ENTRY(CA_WAKE),
313 	IRQ_ENTRY(USB),
314 	IRQ_ENTRY(ABB),
315 	IRQ_ENTRY(ABB_FIFO),
316 	IRQ_ENTRY(CA_SLEEP),
317 	IRQ_ENTRY(ARM),
318 	IRQ_ENTRY(HOTMON_LOW),
319 	IRQ_ENTRY(HOTMON_HIGH),
320 	IRQ_ENTRY(MODEM_SW_RESET_REQ),
321 	IRQ_ENTRY(GPIO0),
322 	IRQ_ENTRY(GPIO1),
323 	IRQ_ENTRY(GPIO2),
324 	IRQ_ENTRY(GPIO3),
325 	IRQ_ENTRY(GPIO4),
326 	IRQ_ENTRY(GPIO5),
327 	IRQ_ENTRY(GPIO6),
328 	IRQ_ENTRY(GPIO7),
329 	IRQ_ENTRY(GPIO8)
330 };
331 
332 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
333 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
334 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
335 	WAKEUP_ENTRY(RTC),
336 	WAKEUP_ENTRY(RTT0),
337 	WAKEUP_ENTRY(RTT1),
338 	WAKEUP_ENTRY(HSI0),
339 	WAKEUP_ENTRY(HSI1),
340 	WAKEUP_ENTRY(USB),
341 	WAKEUP_ENTRY(ABB),
342 	WAKEUP_ENTRY(ABB_FIFO),
343 	WAKEUP_ENTRY(ARM)
344 };
345 
346 /*
347  * mb0_transfer - state needed for mailbox 0 communication.
348  * @lock:		The transaction lock.
349  * @dbb_events_lock:	A lock used to handle concurrent access to (parts of)
350  *			the request data.
351  * @mask_work:		Work structure used for (un)masking wakeup interrupts.
352  * @req:		Request data that need to persist between requests.
353  */
354 static struct {
355 	spinlock_t lock;
356 	spinlock_t dbb_irqs_lock;
357 	struct work_struct mask_work;
358 	struct mutex ac_wake_lock;
359 	struct completion ac_wake_work;
360 	struct {
361 		u32 dbb_irqs;
362 		u32 dbb_wakeups;
363 		u32 abb_events;
364 	} req;
365 } mb0_transfer;
366 
367 /*
368  * mb1_transfer - state needed for mailbox 1 communication.
369  * @lock:	The transaction lock.
370  * @work:	The transaction completion structure.
371  * @ape_opp:	The current APE OPP.
372  * @ack:	Reply ("acknowledge") data.
373  */
374 static struct {
375 	struct mutex lock;
376 	struct completion work;
377 	u8 ape_opp;
378 	struct {
379 		u8 header;
380 		u8 arm_opp;
381 		u8 ape_opp;
382 		u8 ape_voltage_status;
383 	} ack;
384 } mb1_transfer;
385 
386 /*
387  * mb2_transfer - state needed for mailbox 2 communication.
388  * @lock:            The transaction lock.
389  * @work:            The transaction completion structure.
390  * @auto_pm_lock:    The autonomous power management configuration lock.
391  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
392  * @req:             Request data that need to persist between requests.
393  * @ack:             Reply ("acknowledge") data.
394  */
395 static struct {
396 	struct mutex lock;
397 	struct completion work;
398 	spinlock_t auto_pm_lock;
399 	bool auto_pm_enabled;
400 	struct {
401 		u8 status;
402 	} ack;
403 } mb2_transfer;
404 
405 /*
406  * mb3_transfer - state needed for mailbox 3 communication.
407  * @lock:		The request lock.
408  * @sysclk_lock:	A lock used to handle concurrent sysclk requests.
409  * @sysclk_work:	Work structure used for sysclk requests.
410  */
411 static struct {
412 	spinlock_t lock;
413 	struct mutex sysclk_lock;
414 	struct completion sysclk_work;
415 } mb3_transfer;
416 
417 /*
418  * mb4_transfer - state needed for mailbox 4 communication.
419  * @lock:	The transaction lock.
420  * @work:	The transaction completion structure.
421  */
422 static struct {
423 	struct mutex lock;
424 	struct completion work;
425 } mb4_transfer;
426 
427 /*
428  * mb5_transfer - state needed for mailbox 5 communication.
429  * @lock:	The transaction lock.
430  * @work:	The transaction completion structure.
431  * @ack:	Reply ("acknowledge") data.
432  */
433 static struct {
434 	struct mutex lock;
435 	struct completion work;
436 	struct {
437 		u8 status;
438 		u8 value;
439 	} ack;
440 } mb5_transfer;
441 
442 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
443 
444 /* Spinlocks */
445 static DEFINE_SPINLOCK(prcmu_lock);
446 static DEFINE_SPINLOCK(clkout_lock);
447 
448 /* Global var to runtime determine TCDM base for v2 or v1 */
449 static __iomem void *tcdm_base;
450 static __iomem void *prcmu_base;
451 
452 struct clk_mgt {
453 	u32 offset;
454 	u32 pllsw;
455 	int branch;
456 	bool clk38div;
457 };
458 
459 enum {
460 	PLL_RAW,
461 	PLL_FIX,
462 	PLL_DIV
463 };
464 
465 static DEFINE_SPINLOCK(clk_mgt_lock);
466 
467 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
468 	{ (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
469 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
470 	CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
471 	CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
472 	CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
473 	CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
474 	CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
475 	CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
476 	CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
477 	CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
478 	CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
479 	CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
480 	CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
481 	CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
482 	CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
483 	CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
484 	CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
485 	CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
486 	CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
487 	CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
488 	CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
489 	CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
490 	CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
491 	CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
492 	CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
493 	CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
494 	CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
495 	CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
496 	CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
497 	CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
498 	CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
499 };
500 
501 struct dsiclk {
502 	u32 divsel_mask;
503 	u32 divsel_shift;
504 	u32 divsel;
505 };
506 
507 static struct dsiclk dsiclk[2] = {
508 	{
509 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
510 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
511 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
512 	},
513 	{
514 		.divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
515 		.divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
516 		.divsel = PRCM_DSI_PLLOUT_SEL_PHI,
517 	}
518 };
519 
520 struct dsiescclk {
521 	u32 en;
522 	u32 div_mask;
523 	u32 div_shift;
524 };
525 
526 static struct dsiescclk dsiescclk[3] = {
527 	{
528 		.en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
529 		.div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
530 		.div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
531 	},
532 	{
533 		.en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
534 		.div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
535 		.div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
536 	},
537 	{
538 		.en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
539 		.div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
540 		.div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
541 	}
542 };
543 
544 
545 /*
546 * Used by MCDE to setup all necessary PRCMU registers
547 */
548 #define PRCMU_RESET_DSIPLL		0x00004000
549 #define PRCMU_UNCLAMP_DSIPLL		0x00400800
550 
551 #define PRCMU_CLK_PLL_DIV_SHIFT		0
552 #define PRCMU_CLK_PLL_SW_SHIFT		5
553 #define PRCMU_CLK_38			(1 << 9)
554 #define PRCMU_CLK_38_SRC		(1 << 10)
555 #define PRCMU_CLK_38_DIV		(1 << 11)
556 
557 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
558 #define PRCMU_DSI_CLOCK_SETTING		0x0000008C
559 
560 /* DPI 50000000 Hz */
561 #define PRCMU_DPI_CLOCK_SETTING		((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
562 					  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
563 #define PRCMU_DSI_LP_CLOCK_SETTING	0x00000E00
564 
565 /* D=101, N=1, R=4, SELDIV2=0 */
566 #define PRCMU_PLLDSI_FREQ_SETTING	0x00040165
567 
568 #define PRCMU_ENABLE_PLLDSI		0x00000001
569 #define PRCMU_DISABLE_PLLDSI		0x00000000
570 #define PRCMU_RELEASE_RESET_DSS		0x0000400C
571 #define PRCMU_DSI_PLLOUT_SEL_SETTING	0x00000202
572 /* ESC clk, div0=1, div1=1, div2=3 */
573 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV	0x07030101
574 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV	0x00030101
575 #define PRCMU_DSI_RESET_SW		0x00000007
576 
577 #define PRCMU_PLLDSI_LOCKP_LOCKED	0x3
578 
579 int db8500_prcmu_enable_dsipll(void)
580 {
581 	int i;
582 
583 	/* Clear DSIPLL_RESETN */
584 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
585 	/* Unclamp DSIPLL in/out */
586 	writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
587 
588 	/* Set DSI PLL FREQ */
589 	writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
590 	writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
591 	/* Enable Escape clocks */
592 	writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
593 
594 	/* Start DSI PLL */
595 	writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
596 	/* Reset DSI PLL */
597 	writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
598 	for (i = 0; i < 10; i++) {
599 		if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
600 					== PRCMU_PLLDSI_LOCKP_LOCKED)
601 			break;
602 		udelay(100);
603 	}
604 	/* Set DSIPLL_RESETN */
605 	writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
606 	return 0;
607 }
608 
609 int db8500_prcmu_disable_dsipll(void)
610 {
611 	/* Disable dsi pll */
612 	writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
613 	/* Disable  escapeclock */
614 	writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
615 	return 0;
616 }
617 
618 int db8500_prcmu_set_display_clocks(void)
619 {
620 	unsigned long flags;
621 
622 	spin_lock_irqsave(&clk_mgt_lock, flags);
623 
624 	/* Grab the HW semaphore. */
625 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
626 		cpu_relax();
627 
628 	writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
629 	writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
630 	writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
631 
632 	/* Release the HW semaphore. */
633 	writel(0, PRCM_SEM);
634 
635 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
636 
637 	return 0;
638 }
639 
640 u32 db8500_prcmu_read(unsigned int reg)
641 {
642 	return readl(prcmu_base + reg);
643 }
644 
645 void db8500_prcmu_write(unsigned int reg, u32 value)
646 {
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&prcmu_lock, flags);
650 	writel(value, (prcmu_base + reg));
651 	spin_unlock_irqrestore(&prcmu_lock, flags);
652 }
653 
654 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
655 {
656 	u32 val;
657 	unsigned long flags;
658 
659 	spin_lock_irqsave(&prcmu_lock, flags);
660 	val = readl(prcmu_base + reg);
661 	val = ((val & ~mask) | (value & mask));
662 	writel(val, (prcmu_base + reg));
663 	spin_unlock_irqrestore(&prcmu_lock, flags);
664 }
665 
666 struct prcmu_fw_version *prcmu_get_fw_version(void)
667 {
668 	return fw_info.valid ? &fw_info.version : NULL;
669 }
670 
671 bool prcmu_has_arm_maxopp(void)
672 {
673 	return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
674 		PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
675 }
676 
677 /**
678  * prcmu_set_rc_a2p - This function is used to run few power state sequences
679  * @val: Value to be set, i.e. transition requested
680  * Returns: 0 on success, -EINVAL on invalid argument
681  *
682  * This function is used to run the following power state sequences -
683  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684  */
685 int prcmu_set_rc_a2p(enum romcode_write val)
686 {
687 	if (val < RDY_2_DS || val > RDY_2_XP70_RST)
688 		return -EINVAL;
689 	writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
690 	return 0;
691 }
692 
693 /**
694  * prcmu_get_rc_p2a - This function is used to get power state sequences
695  * Returns: the power transition that has last happened
696  *
697  * This function can return the following transitions-
698  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699  */
700 enum romcode_read prcmu_get_rc_p2a(void)
701 {
702 	return readb(tcdm_base + PRCM_ROMCODE_P2A);
703 }
704 
705 /**
706  * prcmu_get_current_mode - Return the current XP70 power mode
707  * Returns: Returns the current AP(ARM) power mode: init,
708  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709  */
710 enum ap_pwrst prcmu_get_xp70_current_state(void)
711 {
712 	return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
713 }
714 
715 /**
716  * prcmu_config_clkout - Configure one of the programmable clock outputs.
717  * @clkout:	The CLKOUT number (0 or 1).
718  * @source:	The clock to be used (one of the PRCMU_CLKSRC_*).
719  * @div:	The divider to be applied.
720  *
721  * Configures one of the programmable clock outputs (CLKOUTs).
722  * @div should be in the range [1,63] to request a configuration, or 0 to
723  * inform that the configuration is no longer requested.
724  */
725 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
726 {
727 	static int requests[2];
728 	int r = 0;
729 	unsigned long flags;
730 	u32 val;
731 	u32 bits;
732 	u32 mask;
733 	u32 div_mask;
734 
735 	BUG_ON(clkout > 1);
736 	BUG_ON(div > 63);
737 	BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
738 
739 	if (!div && !requests[clkout])
740 		return -EINVAL;
741 
742 	if (clkout == 0) {
743 		div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
744 		mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
745 		bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
746 			(div << PRCM_CLKOCR_CLKODIV0_SHIFT));
747 	} else {
748 		div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
749 		mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
750 			PRCM_CLKOCR_CLK1TYPE);
751 		bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
752 			(div << PRCM_CLKOCR_CLKODIV1_SHIFT));
753 	}
754 	bits &= mask;
755 
756 	spin_lock_irqsave(&clkout_lock, flags);
757 
758 	val = readl(PRCM_CLKOCR);
759 	if (val & div_mask) {
760 		if (div) {
761 			if ((val & mask) != bits) {
762 				r = -EBUSY;
763 				goto unlock_and_return;
764 			}
765 		} else {
766 			if ((val & mask & ~div_mask) != bits) {
767 				r = -EINVAL;
768 				goto unlock_and_return;
769 			}
770 		}
771 	}
772 	writel((bits | (val & ~mask)), PRCM_CLKOCR);
773 	requests[clkout] += (div ? 1 : -1);
774 
775 unlock_and_return:
776 	spin_unlock_irqrestore(&clkout_lock, flags);
777 
778 	return r;
779 }
780 
781 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
782 {
783 	unsigned long flags;
784 
785 	BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
786 
787 	spin_lock_irqsave(&mb0_transfer.lock, flags);
788 
789 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
790 		cpu_relax();
791 
792 	writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
793 	writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
794 	writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
795 	writeb((keep_ulp_clk ? 1 : 0),
796 		(tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
797 	writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
798 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
799 
800 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
801 
802 	return 0;
803 }
804 
805 u8 db8500_prcmu_get_power_state_result(void)
806 {
807 	return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
808 }
809 
810 /* This function should only be called while mb0_transfer.lock is held. */
811 static void config_wakeups(void)
812 {
813 	const u8 header[2] = {
814 		MB0H_CONFIG_WAKEUPS_EXE,
815 		MB0H_CONFIG_WAKEUPS_SLEEP
816 	};
817 	static u32 last_dbb_events;
818 	static u32 last_abb_events;
819 	u32 dbb_events;
820 	u32 abb_events;
821 	unsigned int i;
822 
823 	dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
824 	dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
825 
826 	abb_events = mb0_transfer.req.abb_events;
827 
828 	if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
829 		return;
830 
831 	for (i = 0; i < 2; i++) {
832 		while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
833 			cpu_relax();
834 		writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
835 		writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
836 		writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
837 		writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
838 	}
839 	last_dbb_events = dbb_events;
840 	last_abb_events = abb_events;
841 }
842 
843 void db8500_prcmu_enable_wakeups(u32 wakeups)
844 {
845 	unsigned long flags;
846 	u32 bits;
847 	int i;
848 
849 	BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
850 
851 	for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
852 		if (wakeups & BIT(i))
853 			bits |= prcmu_wakeup_bit[i];
854 	}
855 
856 	spin_lock_irqsave(&mb0_transfer.lock, flags);
857 
858 	mb0_transfer.req.dbb_wakeups = bits;
859 	config_wakeups();
860 
861 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
862 }
863 
864 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
865 {
866 	unsigned long flags;
867 
868 	spin_lock_irqsave(&mb0_transfer.lock, flags);
869 
870 	mb0_transfer.req.abb_events = abb_events;
871 	config_wakeups();
872 
873 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
874 }
875 
876 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
877 {
878 	if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
879 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
880 	else
881 		*buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
882 }
883 
884 /**
885  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
886  * @opp: The new ARM operating point to which transition is to be made
887  * Returns: 0 on success, non-zero on failure
888  *
889  * This function sets the the operating point of the ARM.
890  */
891 int db8500_prcmu_set_arm_opp(u8 opp)
892 {
893 	int r;
894 
895 	if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
896 		return -EINVAL;
897 
898 	r = 0;
899 
900 	mutex_lock(&mb1_transfer.lock);
901 
902 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
903 		cpu_relax();
904 
905 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
906 	writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
907 	writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
908 
909 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
910 	wait_for_completion(&mb1_transfer.work);
911 
912 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
913 		(mb1_transfer.ack.arm_opp != opp))
914 		r = -EIO;
915 
916 	mutex_unlock(&mb1_transfer.lock);
917 
918 	return r;
919 }
920 
921 /**
922  * db8500_prcmu_get_arm_opp - get the current ARM OPP
923  *
924  * Returns: the current ARM OPP
925  */
926 int db8500_prcmu_get_arm_opp(void)
927 {
928 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
929 }
930 
931 /**
932  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
933  *
934  * Returns: the current DDR OPP
935  */
936 int db8500_prcmu_get_ddr_opp(void)
937 {
938 	return readb(PRCM_DDR_SUBSYS_APE_MINBW);
939 }
940 
941 /**
942  * db8500_set_ddr_opp - set the appropriate DDR OPP
943  * @opp: The new DDR operating point to which transition is to be made
944  * Returns: 0 on success, non-zero on failure
945  *
946  * This function sets the operating point of the DDR.
947  */
948 static bool enable_set_ddr_opp;
949 int db8500_prcmu_set_ddr_opp(u8 opp)
950 {
951 	if (opp < DDR_100_OPP || opp > DDR_25_OPP)
952 		return -EINVAL;
953 	/* Changing the DDR OPP can hang the hardware pre-v21 */
954 	if (enable_set_ddr_opp)
955 		writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
956 
957 	return 0;
958 }
959 
960 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
961 static void request_even_slower_clocks(bool enable)
962 {
963 	u32 clock_reg[] = {
964 		PRCM_ACLK_MGT,
965 		PRCM_DMACLK_MGT
966 	};
967 	unsigned long flags;
968 	unsigned int i;
969 
970 	spin_lock_irqsave(&clk_mgt_lock, flags);
971 
972 	/* Grab the HW semaphore. */
973 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
974 		cpu_relax();
975 
976 	for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
977 		u32 val;
978 		u32 div;
979 
980 		val = readl(prcmu_base + clock_reg[i]);
981 		div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
982 		if (enable) {
983 			if ((div <= 1) || (div > 15)) {
984 				pr_err("prcmu: Bad clock divider %d in %s\n",
985 					div, __func__);
986 				goto unlock_and_return;
987 			}
988 			div <<= 1;
989 		} else {
990 			if (div <= 2)
991 				goto unlock_and_return;
992 			div >>= 1;
993 		}
994 		val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
995 			(div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
996 		writel(val, prcmu_base + clock_reg[i]);
997 	}
998 
999 unlock_and_return:
1000 	/* Release the HW semaphore. */
1001 	writel(0, PRCM_SEM);
1002 
1003 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1004 }
1005 
1006 /**
1007  * db8500_set_ape_opp - set the appropriate APE OPP
1008  * @opp: The new APE operating point to which transition is to be made
1009  * Returns: 0 on success, non-zero on failure
1010  *
1011  * This function sets the operating point of the APE.
1012  */
1013 int db8500_prcmu_set_ape_opp(u8 opp)
1014 {
1015 	int r = 0;
1016 
1017 	if (opp == mb1_transfer.ape_opp)
1018 		return 0;
1019 
1020 	mutex_lock(&mb1_transfer.lock);
1021 
1022 	if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1023 		request_even_slower_clocks(false);
1024 
1025 	if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1026 		goto skip_message;
1027 
1028 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1029 		cpu_relax();
1030 
1031 	writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1032 	writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1033 	writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1034 		(tcdm_base + PRCM_REQ_MB1_APE_OPP));
1035 
1036 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1037 	wait_for_completion(&mb1_transfer.work);
1038 
1039 	if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1040 		(mb1_transfer.ack.ape_opp != opp))
1041 		r = -EIO;
1042 
1043 skip_message:
1044 	if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1045 		(r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1046 		request_even_slower_clocks(true);
1047 	if (!r)
1048 		mb1_transfer.ape_opp = opp;
1049 
1050 	mutex_unlock(&mb1_transfer.lock);
1051 
1052 	return r;
1053 }
1054 
1055 /**
1056  * db8500_prcmu_get_ape_opp - get the current APE OPP
1057  *
1058  * Returns: the current APE OPP
1059  */
1060 int db8500_prcmu_get_ape_opp(void)
1061 {
1062 	return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1063 }
1064 
1065 /**
1066  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1067  * @enable: true to request the higher voltage, false to drop a request.
1068  *
1069  * Calls to this function to enable and disable requests must be balanced.
1070  */
1071 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1072 {
1073 	int r = 0;
1074 	u8 header;
1075 	static unsigned int requests;
1076 
1077 	mutex_lock(&mb1_transfer.lock);
1078 
1079 	if (enable) {
1080 		if (0 != requests++)
1081 			goto unlock_and_return;
1082 		header = MB1H_REQUEST_APE_OPP_100_VOLT;
1083 	} else {
1084 		if (requests == 0) {
1085 			r = -EIO;
1086 			goto unlock_and_return;
1087 		} else if (1 != requests--) {
1088 			goto unlock_and_return;
1089 		}
1090 		header = MB1H_RELEASE_APE_OPP_100_VOLT;
1091 	}
1092 
1093 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1094 		cpu_relax();
1095 
1096 	writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1097 
1098 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1099 	wait_for_completion(&mb1_transfer.work);
1100 
1101 	if ((mb1_transfer.ack.header != header) ||
1102 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1103 		r = -EIO;
1104 
1105 unlock_and_return:
1106 	mutex_unlock(&mb1_transfer.lock);
1107 
1108 	return r;
1109 }
1110 
1111 /**
1112  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1113  *
1114  * This function releases the power state requirements of a USB wakeup.
1115  */
1116 int prcmu_release_usb_wakeup_state(void)
1117 {
1118 	int r = 0;
1119 
1120 	mutex_lock(&mb1_transfer.lock);
1121 
1122 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1123 		cpu_relax();
1124 
1125 	writeb(MB1H_RELEASE_USB_WAKEUP,
1126 		(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1127 
1128 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1129 	wait_for_completion(&mb1_transfer.work);
1130 
1131 	if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1132 		((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1133 		r = -EIO;
1134 
1135 	mutex_unlock(&mb1_transfer.lock);
1136 
1137 	return r;
1138 }
1139 
1140 static int request_pll(u8 clock, bool enable)
1141 {
1142 	int r = 0;
1143 
1144 	if (clock == PRCMU_PLLSOC0)
1145 		clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1146 	else if (clock == PRCMU_PLLSOC1)
1147 		clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1148 	else
1149 		return -EINVAL;
1150 
1151 	mutex_lock(&mb1_transfer.lock);
1152 
1153 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1154 		cpu_relax();
1155 
1156 	writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1157 	writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1158 
1159 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1160 	wait_for_completion(&mb1_transfer.work);
1161 
1162 	if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1163 		r = -EIO;
1164 
1165 	mutex_unlock(&mb1_transfer.lock);
1166 
1167 	return r;
1168 }
1169 
1170 /**
1171  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1172  * @epod_id: The EPOD to set
1173  * @epod_state: The new EPOD state
1174  *
1175  * This function sets the state of a EPOD (power domain). It may not be called
1176  * from interrupt context.
1177  */
1178 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1179 {
1180 	int r = 0;
1181 	bool ram_retention = false;
1182 	int i;
1183 
1184 	/* check argument */
1185 	BUG_ON(epod_id >= NUM_EPOD_ID);
1186 
1187 	/* set flag if retention is possible */
1188 	switch (epod_id) {
1189 	case EPOD_ID_SVAMMDSP:
1190 	case EPOD_ID_SIAMMDSP:
1191 	case EPOD_ID_ESRAM12:
1192 	case EPOD_ID_ESRAM34:
1193 		ram_retention = true;
1194 		break;
1195 	}
1196 
1197 	/* check argument */
1198 	BUG_ON(epod_state > EPOD_STATE_ON);
1199 	BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1200 
1201 	/* get lock */
1202 	mutex_lock(&mb2_transfer.lock);
1203 
1204 	/* wait for mailbox */
1205 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1206 		cpu_relax();
1207 
1208 	/* fill in mailbox */
1209 	for (i = 0; i < NUM_EPOD_ID; i++)
1210 		writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1211 	writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1212 
1213 	writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1214 
1215 	writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1216 
1217 	/*
1218 	 * The current firmware version does not handle errors correctly,
1219 	 * and we cannot recover if there is an error.
1220 	 * This is expected to change when the firmware is updated.
1221 	 */
1222 	if (!wait_for_completion_timeout(&mb2_transfer.work,
1223 			msecs_to_jiffies(20000))) {
1224 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1225 			__func__);
1226 		r = -EIO;
1227 		goto unlock_and_return;
1228 	}
1229 
1230 	if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1231 		r = -EIO;
1232 
1233 unlock_and_return:
1234 	mutex_unlock(&mb2_transfer.lock);
1235 	return r;
1236 }
1237 
1238 /**
1239  * prcmu_configure_auto_pm - Configure autonomous power management.
1240  * @sleep: Configuration for ApSleep.
1241  * @idle:  Configuration for ApIdle.
1242  */
1243 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1244 	struct prcmu_auto_pm_config *idle)
1245 {
1246 	u32 sleep_cfg;
1247 	u32 idle_cfg;
1248 	unsigned long flags;
1249 
1250 	BUG_ON((sleep == NULL) || (idle == NULL));
1251 
1252 	sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1253 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1254 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1255 	sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1256 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1257 	sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1258 
1259 	idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1260 	idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1261 	idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1262 	idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1263 	idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1264 	idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1265 
1266 	spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1267 
1268 	/*
1269 	 * The autonomous power management configuration is done through
1270 	 * fields in mailbox 2, but these fields are only used as shared
1271 	 * variables - i.e. there is no need to send a message.
1272 	 */
1273 	writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1274 	writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1275 
1276 	mb2_transfer.auto_pm_enabled =
1277 		((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1278 		 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1279 		 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1280 		 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1281 
1282 	spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1283 }
1284 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1285 
1286 bool prcmu_is_auto_pm_enabled(void)
1287 {
1288 	return mb2_transfer.auto_pm_enabled;
1289 }
1290 
1291 static int request_sysclk(bool enable)
1292 {
1293 	int r;
1294 	unsigned long flags;
1295 
1296 	r = 0;
1297 
1298 	mutex_lock(&mb3_transfer.sysclk_lock);
1299 
1300 	spin_lock_irqsave(&mb3_transfer.lock, flags);
1301 
1302 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1303 		cpu_relax();
1304 
1305 	writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1306 
1307 	writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1308 	writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1309 
1310 	spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1311 
1312 	/*
1313 	 * The firmware only sends an ACK if we want to enable the
1314 	 * SysClk, and it succeeds.
1315 	 */
1316 	if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1317 			msecs_to_jiffies(20000))) {
1318 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1319 			__func__);
1320 		r = -EIO;
1321 	}
1322 
1323 	mutex_unlock(&mb3_transfer.sysclk_lock);
1324 
1325 	return r;
1326 }
1327 
1328 static int request_timclk(bool enable)
1329 {
1330 	u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1331 
1332 	if (!enable)
1333 		val |= PRCM_TCR_STOP_TIMERS;
1334 	writel(val, PRCM_TCR);
1335 
1336 	return 0;
1337 }
1338 
1339 static int request_clock(u8 clock, bool enable)
1340 {
1341 	u32 val;
1342 	unsigned long flags;
1343 
1344 	spin_lock_irqsave(&clk_mgt_lock, flags);
1345 
1346 	/* Grab the HW semaphore. */
1347 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1348 		cpu_relax();
1349 
1350 	val = readl(prcmu_base + clk_mgt[clock].offset);
1351 	if (enable) {
1352 		val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1353 	} else {
1354 		clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1355 		val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1356 	}
1357 	writel(val, prcmu_base + clk_mgt[clock].offset);
1358 
1359 	/* Release the HW semaphore. */
1360 	writel(0, PRCM_SEM);
1361 
1362 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1363 
1364 	return 0;
1365 }
1366 
1367 static int request_sga_clock(u8 clock, bool enable)
1368 {
1369 	u32 val;
1370 	int ret;
1371 
1372 	if (enable) {
1373 		val = readl(PRCM_CGATING_BYPASS);
1374 		writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1375 	}
1376 
1377 	ret = request_clock(clock, enable);
1378 
1379 	if (!ret && !enable) {
1380 		val = readl(PRCM_CGATING_BYPASS);
1381 		writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1382 	}
1383 
1384 	return ret;
1385 }
1386 
1387 static inline bool plldsi_locked(void)
1388 {
1389 	return (readl(PRCM_PLLDSI_LOCKP) &
1390 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1391 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1392 		(PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1393 		 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1394 }
1395 
1396 static int request_plldsi(bool enable)
1397 {
1398 	int r = 0;
1399 	u32 val;
1400 
1401 	writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1402 		PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1403 		PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1404 
1405 	val = readl(PRCM_PLLDSI_ENABLE);
1406 	if (enable)
1407 		val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1408 	else
1409 		val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1410 	writel(val, PRCM_PLLDSI_ENABLE);
1411 
1412 	if (enable) {
1413 		unsigned int i;
1414 		bool locked = plldsi_locked();
1415 
1416 		for (i = 10; !locked && (i > 0); --i) {
1417 			udelay(100);
1418 			locked = plldsi_locked();
1419 		}
1420 		if (locked) {
1421 			writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1422 				PRCM_APE_RESETN_SET);
1423 		} else {
1424 			writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1425 				PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1426 				PRCM_MMIP_LS_CLAMP_SET);
1427 			val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1428 			writel(val, PRCM_PLLDSI_ENABLE);
1429 			r = -EAGAIN;
1430 		}
1431 	} else {
1432 		writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1433 	}
1434 	return r;
1435 }
1436 
1437 static int request_dsiclk(u8 n, bool enable)
1438 {
1439 	u32 val;
1440 
1441 	val = readl(PRCM_DSI_PLLOUT_SEL);
1442 	val &= ~dsiclk[n].divsel_mask;
1443 	val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1444 		dsiclk[n].divsel_shift);
1445 	writel(val, PRCM_DSI_PLLOUT_SEL);
1446 	return 0;
1447 }
1448 
1449 static int request_dsiescclk(u8 n, bool enable)
1450 {
1451 	u32 val;
1452 
1453 	val = readl(PRCM_DSITVCLK_DIV);
1454 	enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1455 	writel(val, PRCM_DSITVCLK_DIV);
1456 	return 0;
1457 }
1458 
1459 /**
1460  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1461  * @clock:      The clock for which the request is made.
1462  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1463  *
1464  * This function should only be used by the clock implementation.
1465  * Do not use it from any other place!
1466  */
1467 int db8500_prcmu_request_clock(u8 clock, bool enable)
1468 {
1469 	if (clock == PRCMU_SGACLK)
1470 		return request_sga_clock(clock, enable);
1471 	else if (clock < PRCMU_NUM_REG_CLOCKS)
1472 		return request_clock(clock, enable);
1473 	else if (clock == PRCMU_TIMCLK)
1474 		return request_timclk(enable);
1475 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1476 		return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1477 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1478 		return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1479 	else if (clock == PRCMU_PLLDSI)
1480 		return request_plldsi(enable);
1481 	else if (clock == PRCMU_SYSCLK)
1482 		return request_sysclk(enable);
1483 	else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1484 		return request_pll(clock, enable);
1485 	else
1486 		return -EINVAL;
1487 }
1488 
1489 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1490 	int branch)
1491 {
1492 	u64 rate;
1493 	u32 val;
1494 	u32 d;
1495 	u32 div = 1;
1496 
1497 	val = readl(reg);
1498 
1499 	rate = src_rate;
1500 	rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1501 
1502 	d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1503 	if (d > 1)
1504 		div *= d;
1505 
1506 	d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1507 	if (d > 1)
1508 		div *= d;
1509 
1510 	if (val & PRCM_PLL_FREQ_SELDIV2)
1511 		div *= 2;
1512 
1513 	if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1514 		(val & PRCM_PLL_FREQ_DIV2EN) &&
1515 		((reg == PRCM_PLLSOC0_FREQ) ||
1516 		 (reg == PRCM_PLLARM_FREQ) ||
1517 		 (reg == PRCM_PLLDDR_FREQ))))
1518 		div *= 2;
1519 
1520 	(void)do_div(rate, div);
1521 
1522 	return (unsigned long)rate;
1523 }
1524 
1525 #define ROOT_CLOCK_RATE 38400000
1526 
1527 static unsigned long clock_rate(u8 clock)
1528 {
1529 	u32 val;
1530 	u32 pllsw;
1531 	unsigned long rate = ROOT_CLOCK_RATE;
1532 
1533 	val = readl(prcmu_base + clk_mgt[clock].offset);
1534 
1535 	if (val & PRCM_CLK_MGT_CLK38) {
1536 		if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1537 			rate /= 2;
1538 		return rate;
1539 	}
1540 
1541 	val |= clk_mgt[clock].pllsw;
1542 	pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1543 
1544 	if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1545 		rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1546 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1547 		rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1548 	else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1549 		rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1550 	else
1551 		return 0;
1552 
1553 	if ((clock == PRCMU_SGACLK) &&
1554 		(val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1555 		u64 r = (rate * 10);
1556 
1557 		(void)do_div(r, 25);
1558 		return (unsigned long)r;
1559 	}
1560 	val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1561 	if (val)
1562 		return rate / val;
1563 	else
1564 		return 0;
1565 }
1566 
1567 static unsigned long armss_rate(void)
1568 {
1569 	u32 r;
1570 	unsigned long rate;
1571 
1572 	r = readl(PRCM_ARM_CHGCLKREQ);
1573 
1574 	if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1575 		/* External ARMCLKFIX clock */
1576 
1577 		rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1578 
1579 		/* Check PRCM_ARM_CHGCLKREQ divider */
1580 		if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1581 			rate /= 2;
1582 
1583 		/* Check PRCM_ARMCLKFIX_MGT divider */
1584 		r = readl(PRCM_ARMCLKFIX_MGT);
1585 		r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1586 		rate /= r;
1587 
1588 	} else {/* ARM PLL */
1589 		rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1590 	}
1591 
1592 	return rate;
1593 }
1594 
1595 static unsigned long dsiclk_rate(u8 n)
1596 {
1597 	u32 divsel;
1598 	u32 div = 1;
1599 
1600 	divsel = readl(PRCM_DSI_PLLOUT_SEL);
1601 	divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1602 
1603 	if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1604 		divsel = dsiclk[n].divsel;
1605 	else
1606 		dsiclk[n].divsel = divsel;
1607 
1608 	switch (divsel) {
1609 	case PRCM_DSI_PLLOUT_SEL_PHI_4:
1610 		div *= 2;
1611 	case PRCM_DSI_PLLOUT_SEL_PHI_2:
1612 		div *= 2;
1613 	case PRCM_DSI_PLLOUT_SEL_PHI:
1614 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1615 			PLL_RAW) / div;
1616 	default:
1617 		return 0;
1618 	}
1619 }
1620 
1621 static unsigned long dsiescclk_rate(u8 n)
1622 {
1623 	u32 div;
1624 
1625 	div = readl(PRCM_DSITVCLK_DIV);
1626 	div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1627 	return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1628 }
1629 
1630 unsigned long prcmu_clock_rate(u8 clock)
1631 {
1632 	if (clock < PRCMU_NUM_REG_CLOCKS)
1633 		return clock_rate(clock);
1634 	else if (clock == PRCMU_TIMCLK)
1635 		return ROOT_CLOCK_RATE / 16;
1636 	else if (clock == PRCMU_SYSCLK)
1637 		return ROOT_CLOCK_RATE;
1638 	else if (clock == PRCMU_PLLSOC0)
1639 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1640 	else if (clock == PRCMU_PLLSOC1)
1641 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1642 	else if (clock == PRCMU_ARMSS)
1643 		return armss_rate();
1644 	else if (clock == PRCMU_PLLDDR)
1645 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1646 	else if (clock == PRCMU_PLLDSI)
1647 		return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1648 			PLL_RAW);
1649 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1650 		return dsiclk_rate(clock - PRCMU_DSI0CLK);
1651 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1652 		return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1653 	else
1654 		return 0;
1655 }
1656 
1657 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1658 {
1659 	if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1660 		return ROOT_CLOCK_RATE;
1661 	clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1662 	if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1663 		return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1664 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1665 		return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1666 	else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1667 		return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1668 	else
1669 		return 0;
1670 }
1671 
1672 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1673 {
1674 	u32 div;
1675 
1676 	div = (src_rate / rate);
1677 	if (div == 0)
1678 		return 1;
1679 	if (rate < (src_rate / div))
1680 		div++;
1681 	return div;
1682 }
1683 
1684 static long round_clock_rate(u8 clock, unsigned long rate)
1685 {
1686 	u32 val;
1687 	u32 div;
1688 	unsigned long src_rate;
1689 	long rounded_rate;
1690 
1691 	val = readl(prcmu_base + clk_mgt[clock].offset);
1692 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1693 		clk_mgt[clock].branch);
1694 	div = clock_divider(src_rate, rate);
1695 	if (val & PRCM_CLK_MGT_CLK38) {
1696 		if (clk_mgt[clock].clk38div) {
1697 			if (div > 2)
1698 				div = 2;
1699 		} else {
1700 			div = 1;
1701 		}
1702 	} else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1703 		u64 r = (src_rate * 10);
1704 
1705 		(void)do_div(r, 25);
1706 		if (r <= rate)
1707 			return (unsigned long)r;
1708 	}
1709 	rounded_rate = (src_rate / min(div, (u32)31));
1710 
1711 	return rounded_rate;
1712 }
1713 
1714 /* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1715 static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1716 	{ .frequency = 200000, .driver_data = ARM_EXTCLK,},
1717 	{ .frequency = 400000, .driver_data = ARM_50_OPP,},
1718 	{ .frequency = 800000, .driver_data = ARM_100_OPP,},
1719 	{ .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1720 	{ .frequency = CPUFREQ_TABLE_END,},
1721 };
1722 
1723 static long round_armss_rate(unsigned long rate)
1724 {
1725 	struct cpufreq_frequency_table *pos;
1726 	long freq = 0;
1727 
1728 	/* cpufreq table frequencies is in KHz. */
1729 	rate = rate / 1000;
1730 
1731 	/* Find the corresponding arm opp from the cpufreq table. */
1732 	cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1733 		freq = pos->frequency;
1734 		if (freq == rate)
1735 			break;
1736 	}
1737 
1738 	/* Return the last valid value, even if a match was not found. */
1739 	return freq * 1000;
1740 }
1741 
1742 #define MIN_PLL_VCO_RATE 600000000ULL
1743 #define MAX_PLL_VCO_RATE 1680640000ULL
1744 
1745 static long round_plldsi_rate(unsigned long rate)
1746 {
1747 	long rounded_rate = 0;
1748 	unsigned long src_rate;
1749 	unsigned long rem;
1750 	u32 r;
1751 
1752 	src_rate = clock_rate(PRCMU_HDMICLK);
1753 	rem = rate;
1754 
1755 	for (r = 7; (rem > 0) && (r > 0); r--) {
1756 		u64 d;
1757 
1758 		d = (r * rate);
1759 		(void)do_div(d, src_rate);
1760 		if (d < 6)
1761 			d = 6;
1762 		else if (d > 255)
1763 			d = 255;
1764 		d *= src_rate;
1765 		if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1766 			((r * MAX_PLL_VCO_RATE) < (2 * d)))
1767 			continue;
1768 		(void)do_div(d, r);
1769 		if (rate < d) {
1770 			if (rounded_rate == 0)
1771 				rounded_rate = (long)d;
1772 			break;
1773 		}
1774 		if ((rate - d) < rem) {
1775 			rem = (rate - d);
1776 			rounded_rate = (long)d;
1777 		}
1778 	}
1779 	return rounded_rate;
1780 }
1781 
1782 static long round_dsiclk_rate(unsigned long rate)
1783 {
1784 	u32 div;
1785 	unsigned long src_rate;
1786 	long rounded_rate;
1787 
1788 	src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1789 		PLL_RAW);
1790 	div = clock_divider(src_rate, rate);
1791 	rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1792 
1793 	return rounded_rate;
1794 }
1795 
1796 static long round_dsiescclk_rate(unsigned long rate)
1797 {
1798 	u32 div;
1799 	unsigned long src_rate;
1800 	long rounded_rate;
1801 
1802 	src_rate = clock_rate(PRCMU_TVCLK);
1803 	div = clock_divider(src_rate, rate);
1804 	rounded_rate = (src_rate / min(div, (u32)255));
1805 
1806 	return rounded_rate;
1807 }
1808 
1809 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1810 {
1811 	if (clock < PRCMU_NUM_REG_CLOCKS)
1812 		return round_clock_rate(clock, rate);
1813 	else if (clock == PRCMU_ARMSS)
1814 		return round_armss_rate(rate);
1815 	else if (clock == PRCMU_PLLDSI)
1816 		return round_plldsi_rate(rate);
1817 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1818 		return round_dsiclk_rate(rate);
1819 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1820 		return round_dsiescclk_rate(rate);
1821 	else
1822 		return (long)prcmu_clock_rate(clock);
1823 }
1824 
1825 static void set_clock_rate(u8 clock, unsigned long rate)
1826 {
1827 	u32 val;
1828 	u32 div;
1829 	unsigned long src_rate;
1830 	unsigned long flags;
1831 
1832 	spin_lock_irqsave(&clk_mgt_lock, flags);
1833 
1834 	/* Grab the HW semaphore. */
1835 	while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1836 		cpu_relax();
1837 
1838 	val = readl(prcmu_base + clk_mgt[clock].offset);
1839 	src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1840 		clk_mgt[clock].branch);
1841 	div = clock_divider(src_rate, rate);
1842 	if (val & PRCM_CLK_MGT_CLK38) {
1843 		if (clk_mgt[clock].clk38div) {
1844 			if (div > 1)
1845 				val |= PRCM_CLK_MGT_CLK38DIV;
1846 			else
1847 				val &= ~PRCM_CLK_MGT_CLK38DIV;
1848 		}
1849 	} else if (clock == PRCMU_SGACLK) {
1850 		val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1851 			PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1852 		if (div == 3) {
1853 			u64 r = (src_rate * 10);
1854 
1855 			(void)do_div(r, 25);
1856 			if (r <= rate) {
1857 				val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1858 				div = 0;
1859 			}
1860 		}
1861 		val |= min(div, (u32)31);
1862 	} else {
1863 		val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1864 		val |= min(div, (u32)31);
1865 	}
1866 	writel(val, prcmu_base + clk_mgt[clock].offset);
1867 
1868 	/* Release the HW semaphore. */
1869 	writel(0, PRCM_SEM);
1870 
1871 	spin_unlock_irqrestore(&clk_mgt_lock, flags);
1872 }
1873 
1874 static int set_armss_rate(unsigned long rate)
1875 {
1876 	struct cpufreq_frequency_table *pos;
1877 
1878 	/* cpufreq table frequencies is in KHz. */
1879 	rate = rate / 1000;
1880 
1881 	/* Find the corresponding arm opp from the cpufreq table. */
1882 	cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1883 		if (pos->frequency == rate)
1884 			break;
1885 
1886 	if (pos->frequency != rate)
1887 		return -EINVAL;
1888 
1889 	/* Set the new arm opp. */
1890 	return db8500_prcmu_set_arm_opp(pos->driver_data);
1891 }
1892 
1893 static int set_plldsi_rate(unsigned long rate)
1894 {
1895 	unsigned long src_rate;
1896 	unsigned long rem;
1897 	u32 pll_freq = 0;
1898 	u32 r;
1899 
1900 	src_rate = clock_rate(PRCMU_HDMICLK);
1901 	rem = rate;
1902 
1903 	for (r = 7; (rem > 0) && (r > 0); r--) {
1904 		u64 d;
1905 		u64 hwrate;
1906 
1907 		d = (r * rate);
1908 		(void)do_div(d, src_rate);
1909 		if (d < 6)
1910 			d = 6;
1911 		else if (d > 255)
1912 			d = 255;
1913 		hwrate = (d * src_rate);
1914 		if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1915 			((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1916 			continue;
1917 		(void)do_div(hwrate, r);
1918 		if (rate < hwrate) {
1919 			if (pll_freq == 0)
1920 				pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1921 					(r << PRCM_PLL_FREQ_R_SHIFT));
1922 			break;
1923 		}
1924 		if ((rate - hwrate) < rem) {
1925 			rem = (rate - hwrate);
1926 			pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1927 				(r << PRCM_PLL_FREQ_R_SHIFT));
1928 		}
1929 	}
1930 	if (pll_freq == 0)
1931 		return -EINVAL;
1932 
1933 	pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1934 	writel(pll_freq, PRCM_PLLDSI_FREQ);
1935 
1936 	return 0;
1937 }
1938 
1939 static void set_dsiclk_rate(u8 n, unsigned long rate)
1940 {
1941 	u32 val;
1942 	u32 div;
1943 
1944 	div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1945 			clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1946 
1947 	dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1948 			   (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1949 			   /* else */	PRCM_DSI_PLLOUT_SEL_PHI_4;
1950 
1951 	val = readl(PRCM_DSI_PLLOUT_SEL);
1952 	val &= ~dsiclk[n].divsel_mask;
1953 	val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1954 	writel(val, PRCM_DSI_PLLOUT_SEL);
1955 }
1956 
1957 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1958 {
1959 	u32 val;
1960 	u32 div;
1961 
1962 	div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1963 	val = readl(PRCM_DSITVCLK_DIV);
1964 	val &= ~dsiescclk[n].div_mask;
1965 	val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1966 	writel(val, PRCM_DSITVCLK_DIV);
1967 }
1968 
1969 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1970 {
1971 	if (clock < PRCMU_NUM_REG_CLOCKS)
1972 		set_clock_rate(clock, rate);
1973 	else if (clock == PRCMU_ARMSS)
1974 		return set_armss_rate(rate);
1975 	else if (clock == PRCMU_PLLDSI)
1976 		return set_plldsi_rate(rate);
1977 	else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1978 		set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1979 	else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1980 		set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1981 	return 0;
1982 }
1983 
1984 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1985 {
1986 	if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1987 	    (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1988 		return -EINVAL;
1989 
1990 	mutex_lock(&mb4_transfer.lock);
1991 
1992 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1993 		cpu_relax();
1994 
1995 	writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1996 	writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1997 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1998 	writeb(DDR_PWR_STATE_ON,
1999 	       (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2000 	writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2001 
2002 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2003 	wait_for_completion(&mb4_transfer.work);
2004 
2005 	mutex_unlock(&mb4_transfer.lock);
2006 
2007 	return 0;
2008 }
2009 
2010 int db8500_prcmu_config_hotdog(u8 threshold)
2011 {
2012 	mutex_lock(&mb4_transfer.lock);
2013 
2014 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2015 		cpu_relax();
2016 
2017 	writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2018 	writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2019 
2020 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2021 	wait_for_completion(&mb4_transfer.work);
2022 
2023 	mutex_unlock(&mb4_transfer.lock);
2024 
2025 	return 0;
2026 }
2027 
2028 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2029 {
2030 	mutex_lock(&mb4_transfer.lock);
2031 
2032 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2033 		cpu_relax();
2034 
2035 	writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2036 	writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2037 	writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2038 		(tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2039 	writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2040 
2041 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2042 	wait_for_completion(&mb4_transfer.work);
2043 
2044 	mutex_unlock(&mb4_transfer.lock);
2045 
2046 	return 0;
2047 }
2048 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2049 
2050 static int config_hot_period(u16 val)
2051 {
2052 	mutex_lock(&mb4_transfer.lock);
2053 
2054 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2055 		cpu_relax();
2056 
2057 	writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2058 	writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2059 
2060 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2061 	wait_for_completion(&mb4_transfer.work);
2062 
2063 	mutex_unlock(&mb4_transfer.lock);
2064 
2065 	return 0;
2066 }
2067 
2068 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2069 {
2070 	if (cycles32k == 0xFFFF)
2071 		return -EINVAL;
2072 
2073 	return config_hot_period(cycles32k);
2074 }
2075 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2076 
2077 int db8500_prcmu_stop_temp_sense(void)
2078 {
2079 	return config_hot_period(0xFFFF);
2080 }
2081 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2082 
2083 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2084 {
2085 
2086 	mutex_lock(&mb4_transfer.lock);
2087 
2088 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2089 		cpu_relax();
2090 
2091 	writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2092 	writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2093 	writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2094 	writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2095 
2096 	writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2097 
2098 	writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2099 	wait_for_completion(&mb4_transfer.work);
2100 
2101 	mutex_unlock(&mb4_transfer.lock);
2102 
2103 	return 0;
2104 
2105 }
2106 
2107 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2108 {
2109 	BUG_ON(num == 0 || num > 0xf);
2110 	return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2111 			    sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2112 			    A9WDOG_AUTO_OFF_DIS);
2113 }
2114 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2115 
2116 int db8500_prcmu_enable_a9wdog(u8 id)
2117 {
2118 	return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2119 }
2120 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2121 
2122 int db8500_prcmu_disable_a9wdog(u8 id)
2123 {
2124 	return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2125 }
2126 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2127 
2128 int db8500_prcmu_kick_a9wdog(u8 id)
2129 {
2130 	return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2131 }
2132 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2133 
2134 /*
2135  * timeout is 28 bit, in ms.
2136  */
2137 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2138 {
2139 	return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2140 			    (id & A9WDOG_ID_MASK) |
2141 			    /*
2142 			     * Put the lowest 28 bits of timeout at
2143 			     * offset 4. Four first bits are used for id.
2144 			     */
2145 			    (u8)((timeout << 4) & 0xf0),
2146 			    (u8)((timeout >> 4) & 0xff),
2147 			    (u8)((timeout >> 12) & 0xff),
2148 			    (u8)((timeout >> 20) & 0xff));
2149 }
2150 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2151 
2152 /**
2153  * prcmu_abb_read() - Read register value(s) from the ABB.
2154  * @slave:	The I2C slave address.
2155  * @reg:	The (start) register address.
2156  * @value:	The read out value(s).
2157  * @size:	The number of registers to read.
2158  *
2159  * Reads register value(s) from the ABB.
2160  * @size has to be 1 for the current firmware version.
2161  */
2162 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2163 {
2164 	int r;
2165 
2166 	if (size != 1)
2167 		return -EINVAL;
2168 
2169 	mutex_lock(&mb5_transfer.lock);
2170 
2171 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2172 		cpu_relax();
2173 
2174 	writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2175 	writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2176 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2177 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2178 	writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2179 
2180 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2181 
2182 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2183 				msecs_to_jiffies(20000))) {
2184 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2185 			__func__);
2186 		r = -EIO;
2187 	} else {
2188 		r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2189 	}
2190 
2191 	if (!r)
2192 		*value = mb5_transfer.ack.value;
2193 
2194 	mutex_unlock(&mb5_transfer.lock);
2195 
2196 	return r;
2197 }
2198 
2199 /**
2200  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2201  * @slave:	The I2C slave address.
2202  * @reg:	The (start) register address.
2203  * @value:	The value(s) to write.
2204  * @mask:	The mask(s) to use.
2205  * @size:	The number of registers to write.
2206  *
2207  * Writes masked register value(s) to the ABB.
2208  * For each @value, only the bits set to 1 in the corresponding @mask
2209  * will be written. The other bits are not changed.
2210  * @size has to be 1 for the current firmware version.
2211  */
2212 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2213 {
2214 	int r;
2215 
2216 	if (size != 1)
2217 		return -EINVAL;
2218 
2219 	mutex_lock(&mb5_transfer.lock);
2220 
2221 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2222 		cpu_relax();
2223 
2224 	writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2225 	writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2226 	writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2227 	writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2228 	writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2229 
2230 	writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2231 
2232 	if (!wait_for_completion_timeout(&mb5_transfer.work,
2233 				msecs_to_jiffies(20000))) {
2234 		pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2235 			__func__);
2236 		r = -EIO;
2237 	} else {
2238 		r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2239 	}
2240 
2241 	mutex_unlock(&mb5_transfer.lock);
2242 
2243 	return r;
2244 }
2245 
2246 /**
2247  * prcmu_abb_write() - Write register value(s) to the ABB.
2248  * @slave:	The I2C slave address.
2249  * @reg:	The (start) register address.
2250  * @value:	The value(s) to write.
2251  * @size:	The number of registers to write.
2252  *
2253  * Writes register value(s) to the ABB.
2254  * @size has to be 1 for the current firmware version.
2255  */
2256 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2257 {
2258 	u8 mask = ~0;
2259 
2260 	return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2261 }
2262 
2263 /**
2264  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2265  */
2266 int prcmu_ac_wake_req(void)
2267 {
2268 	u32 val;
2269 	int ret = 0;
2270 
2271 	mutex_lock(&mb0_transfer.ac_wake_lock);
2272 
2273 	val = readl(PRCM_HOSTACCESS_REQ);
2274 	if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2275 		goto unlock_and_return;
2276 
2277 	atomic_set(&ac_wake_req_state, 1);
2278 
2279 	/*
2280 	 * Force Modem Wake-up before hostaccess_req ping-pong.
2281 	 * It prevents Modem to enter in Sleep while acking the hostaccess
2282 	 * request. The 31us delay has been calculated by HWI.
2283 	 */
2284 	val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2285 	writel(val, PRCM_HOSTACCESS_REQ);
2286 
2287 	udelay(31);
2288 
2289 	val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2290 	writel(val, PRCM_HOSTACCESS_REQ);
2291 
2292 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2293 			msecs_to_jiffies(5000))) {
2294 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2295 			__func__);
2296 		ret = -EFAULT;
2297 	}
2298 
2299 unlock_and_return:
2300 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2301 	return ret;
2302 }
2303 
2304 /**
2305  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2306  */
2307 void prcmu_ac_sleep_req(void)
2308 {
2309 	u32 val;
2310 
2311 	mutex_lock(&mb0_transfer.ac_wake_lock);
2312 
2313 	val = readl(PRCM_HOSTACCESS_REQ);
2314 	if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2315 		goto unlock_and_return;
2316 
2317 	writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2318 		PRCM_HOSTACCESS_REQ);
2319 
2320 	if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2321 			msecs_to_jiffies(5000))) {
2322 		pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2323 			__func__);
2324 	}
2325 
2326 	atomic_set(&ac_wake_req_state, 0);
2327 
2328 unlock_and_return:
2329 	mutex_unlock(&mb0_transfer.ac_wake_lock);
2330 }
2331 
2332 bool db8500_prcmu_is_ac_wake_requested(void)
2333 {
2334 	return (atomic_read(&ac_wake_req_state) != 0);
2335 }
2336 
2337 /**
2338  * db8500_prcmu_system_reset - System reset
2339  *
2340  * Saves the reset reason code and then sets the APE_SOFTRST register which
2341  * fires interrupt to fw
2342  */
2343 void db8500_prcmu_system_reset(u16 reset_code)
2344 {
2345 	writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2346 	writel(1, PRCM_APE_SOFTRST);
2347 }
2348 
2349 /**
2350  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2351  *
2352  * Retrieves the reset reason code stored by prcmu_system_reset() before
2353  * last restart.
2354  */
2355 u16 db8500_prcmu_get_reset_code(void)
2356 {
2357 	return readw(tcdm_base + PRCM_SW_RST_REASON);
2358 }
2359 
2360 /**
2361  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2362  */
2363 void db8500_prcmu_modem_reset(void)
2364 {
2365 	mutex_lock(&mb1_transfer.lock);
2366 
2367 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2368 		cpu_relax();
2369 
2370 	writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2371 	writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2372 	wait_for_completion(&mb1_transfer.work);
2373 
2374 	/*
2375 	 * No need to check return from PRCMU as modem should go in reset state
2376 	 * This state is already managed by upper layer
2377 	 */
2378 
2379 	mutex_unlock(&mb1_transfer.lock);
2380 }
2381 
2382 static void ack_dbb_wakeup(void)
2383 {
2384 	unsigned long flags;
2385 
2386 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2387 
2388 	while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2389 		cpu_relax();
2390 
2391 	writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2392 	writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2393 
2394 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2395 }
2396 
2397 static inline void print_unknown_header_warning(u8 n, u8 header)
2398 {
2399 	pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2400 		header, n);
2401 }
2402 
2403 static bool read_mailbox_0(void)
2404 {
2405 	bool r;
2406 	u32 ev;
2407 	unsigned int n;
2408 	u8 header;
2409 
2410 	header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2411 	switch (header) {
2412 	case MB0H_WAKEUP_EXE:
2413 	case MB0H_WAKEUP_SLEEP:
2414 		if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2415 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2416 		else
2417 			ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2418 
2419 		if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2420 			complete(&mb0_transfer.ac_wake_work);
2421 		if (ev & WAKEUP_BIT_SYSCLK_OK)
2422 			complete(&mb3_transfer.sysclk_work);
2423 
2424 		ev &= mb0_transfer.req.dbb_irqs;
2425 
2426 		for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2427 			if (ev & prcmu_irq_bit[n])
2428 				generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2429 		}
2430 		r = true;
2431 		break;
2432 	default:
2433 		print_unknown_header_warning(0, header);
2434 		r = false;
2435 		break;
2436 	}
2437 	writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2438 	return r;
2439 }
2440 
2441 static bool read_mailbox_1(void)
2442 {
2443 	mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2444 	mb1_transfer.ack.arm_opp = readb(tcdm_base +
2445 		PRCM_ACK_MB1_CURRENT_ARM_OPP);
2446 	mb1_transfer.ack.ape_opp = readb(tcdm_base +
2447 		PRCM_ACK_MB1_CURRENT_APE_OPP);
2448 	mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2449 		PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2450 	writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2451 	complete(&mb1_transfer.work);
2452 	return false;
2453 }
2454 
2455 static bool read_mailbox_2(void)
2456 {
2457 	mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2458 	writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2459 	complete(&mb2_transfer.work);
2460 	return false;
2461 }
2462 
2463 static bool read_mailbox_3(void)
2464 {
2465 	writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2466 	return false;
2467 }
2468 
2469 static bool read_mailbox_4(void)
2470 {
2471 	u8 header;
2472 	bool do_complete = true;
2473 
2474 	header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2475 	switch (header) {
2476 	case MB4H_MEM_ST:
2477 	case MB4H_HOTDOG:
2478 	case MB4H_HOTMON:
2479 	case MB4H_HOT_PERIOD:
2480 	case MB4H_A9WDOG_CONF:
2481 	case MB4H_A9WDOG_EN:
2482 	case MB4H_A9WDOG_DIS:
2483 	case MB4H_A9WDOG_LOAD:
2484 	case MB4H_A9WDOG_KICK:
2485 		break;
2486 	default:
2487 		print_unknown_header_warning(4, header);
2488 		do_complete = false;
2489 		break;
2490 	}
2491 
2492 	writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2493 
2494 	if (do_complete)
2495 		complete(&mb4_transfer.work);
2496 
2497 	return false;
2498 }
2499 
2500 static bool read_mailbox_5(void)
2501 {
2502 	mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2503 	mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2504 	writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2505 	complete(&mb5_transfer.work);
2506 	return false;
2507 }
2508 
2509 static bool read_mailbox_6(void)
2510 {
2511 	writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2512 	return false;
2513 }
2514 
2515 static bool read_mailbox_7(void)
2516 {
2517 	writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2518 	return false;
2519 }
2520 
2521 static bool (* const read_mailbox[NUM_MB])(void) = {
2522 	read_mailbox_0,
2523 	read_mailbox_1,
2524 	read_mailbox_2,
2525 	read_mailbox_3,
2526 	read_mailbox_4,
2527 	read_mailbox_5,
2528 	read_mailbox_6,
2529 	read_mailbox_7
2530 };
2531 
2532 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2533 {
2534 	u32 bits;
2535 	u8 n;
2536 	irqreturn_t r;
2537 
2538 	bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2539 	if (unlikely(!bits))
2540 		return IRQ_NONE;
2541 
2542 	r = IRQ_HANDLED;
2543 	for (n = 0; bits; n++) {
2544 		if (bits & MBOX_BIT(n)) {
2545 			bits -= MBOX_BIT(n);
2546 			if (read_mailbox[n]())
2547 				r = IRQ_WAKE_THREAD;
2548 		}
2549 	}
2550 	return r;
2551 }
2552 
2553 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2554 {
2555 	ack_dbb_wakeup();
2556 	return IRQ_HANDLED;
2557 }
2558 
2559 static void prcmu_mask_work(struct work_struct *work)
2560 {
2561 	unsigned long flags;
2562 
2563 	spin_lock_irqsave(&mb0_transfer.lock, flags);
2564 
2565 	config_wakeups();
2566 
2567 	spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2568 }
2569 
2570 static void prcmu_irq_mask(struct irq_data *d)
2571 {
2572 	unsigned long flags;
2573 
2574 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2575 
2576 	mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2577 
2578 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2579 
2580 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2581 		schedule_work(&mb0_transfer.mask_work);
2582 }
2583 
2584 static void prcmu_irq_unmask(struct irq_data *d)
2585 {
2586 	unsigned long flags;
2587 
2588 	spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2589 
2590 	mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2591 
2592 	spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2593 
2594 	if (d->irq != IRQ_PRCMU_CA_SLEEP)
2595 		schedule_work(&mb0_transfer.mask_work);
2596 }
2597 
2598 static void noop(struct irq_data *d)
2599 {
2600 }
2601 
2602 static struct irq_chip prcmu_irq_chip = {
2603 	.name		= "prcmu",
2604 	.irq_disable	= prcmu_irq_mask,
2605 	.irq_ack	= noop,
2606 	.irq_mask	= prcmu_irq_mask,
2607 	.irq_unmask	= prcmu_irq_unmask,
2608 };
2609 
2610 static __init char *fw_project_name(u32 project)
2611 {
2612 	switch (project) {
2613 	case PRCMU_FW_PROJECT_U8500:
2614 		return "U8500";
2615 	case PRCMU_FW_PROJECT_U8400:
2616 		return "U8400";
2617 	case PRCMU_FW_PROJECT_U9500:
2618 		return "U9500";
2619 	case PRCMU_FW_PROJECT_U8500_MBB:
2620 		return "U8500 MBB";
2621 	case PRCMU_FW_PROJECT_U8500_C1:
2622 		return "U8500 C1";
2623 	case PRCMU_FW_PROJECT_U8500_C2:
2624 		return "U8500 C2";
2625 	case PRCMU_FW_PROJECT_U8500_C3:
2626 		return "U8500 C3";
2627 	case PRCMU_FW_PROJECT_U8500_C4:
2628 		return "U8500 C4";
2629 	case PRCMU_FW_PROJECT_U9500_MBL:
2630 		return "U9500 MBL";
2631 	case PRCMU_FW_PROJECT_U8500_MBL:
2632 		return "U8500 MBL";
2633 	case PRCMU_FW_PROJECT_U8500_MBL2:
2634 		return "U8500 MBL2";
2635 	case PRCMU_FW_PROJECT_U8520:
2636 		return "U8520 MBL";
2637 	case PRCMU_FW_PROJECT_U8420:
2638 		return "U8420";
2639 	case PRCMU_FW_PROJECT_U9540:
2640 		return "U9540";
2641 	case PRCMU_FW_PROJECT_A9420:
2642 		return "A9420";
2643 	case PRCMU_FW_PROJECT_L8540:
2644 		return "L8540";
2645 	case PRCMU_FW_PROJECT_L8580:
2646 		return "L8580";
2647 	default:
2648 		return "Unknown";
2649 	}
2650 }
2651 
2652 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2653 				irq_hw_number_t hwirq)
2654 {
2655 	irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2656 				handle_simple_irq);
2657 
2658 	return 0;
2659 }
2660 
2661 static const struct irq_domain_ops db8500_irq_ops = {
2662 	.map    = db8500_irq_map,
2663 	.xlate  = irq_domain_xlate_twocell,
2664 };
2665 
2666 static int db8500_irq_init(struct device_node *np)
2667 {
2668 	int i;
2669 
2670 	db8500_irq_domain = irq_domain_add_simple(
2671 		np, NUM_PRCMU_WAKEUPS, 0,
2672 		&db8500_irq_ops, NULL);
2673 
2674 	if (!db8500_irq_domain) {
2675 		pr_err("Failed to create irqdomain\n");
2676 		return -ENOSYS;
2677 	}
2678 
2679 	/* All wakeups will be used, so create mappings for all */
2680 	for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2681 		irq_create_mapping(db8500_irq_domain, i);
2682 
2683 	return 0;
2684 }
2685 
2686 static void dbx500_fw_version_init(struct platform_device *pdev,
2687 			    u32 version_offset)
2688 {
2689 	struct resource *res;
2690 	void __iomem *tcpm_base;
2691 	u32 version;
2692 
2693 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2694 					   "prcmu-tcpm");
2695 	if (!res) {
2696 		dev_err(&pdev->dev,
2697 			"Error: no prcmu tcpm memory region provided\n");
2698 		return;
2699 	}
2700 	tcpm_base = ioremap(res->start, resource_size(res));
2701 	if (!tcpm_base) {
2702 		dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2703 		return;
2704 	}
2705 
2706 	version = readl(tcpm_base + version_offset);
2707 	fw_info.version.project = (version & 0xFF);
2708 	fw_info.version.api_version = (version >> 8) & 0xFF;
2709 	fw_info.version.func_version = (version >> 16) & 0xFF;
2710 	fw_info.version.errata = (version >> 24) & 0xFF;
2711 	strncpy(fw_info.version.project_name,
2712 		fw_project_name(fw_info.version.project),
2713 		PRCMU_FW_PROJECT_NAME_LEN);
2714 	fw_info.valid = true;
2715 	pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2716 		fw_info.version.project_name,
2717 		fw_info.version.project,
2718 		fw_info.version.api_version,
2719 		fw_info.version.func_version,
2720 		fw_info.version.errata);
2721 	iounmap(tcpm_base);
2722 }
2723 
2724 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2725 {
2726 	/*
2727 	 * This is a temporary remap to bring up the clocks. It is
2728 	 * subsequently replaces with a real remap. After the merge of
2729 	 * the mailbox subsystem all of this early code goes away, and the
2730 	 * clock driver can probe independently. An early initcall will
2731 	 * still be needed, but it can be diverted into drivers/clk/ux500.
2732 	 */
2733 	prcmu_base = ioremap(phy_base, size);
2734 	if (!prcmu_base)
2735 		pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2736 
2737 	spin_lock_init(&mb0_transfer.lock);
2738 	spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2739 	mutex_init(&mb0_transfer.ac_wake_lock);
2740 	init_completion(&mb0_transfer.ac_wake_work);
2741 	mutex_init(&mb1_transfer.lock);
2742 	init_completion(&mb1_transfer.work);
2743 	mb1_transfer.ape_opp = APE_NO_CHANGE;
2744 	mutex_init(&mb2_transfer.lock);
2745 	init_completion(&mb2_transfer.work);
2746 	spin_lock_init(&mb2_transfer.auto_pm_lock);
2747 	spin_lock_init(&mb3_transfer.lock);
2748 	mutex_init(&mb3_transfer.sysclk_lock);
2749 	init_completion(&mb3_transfer.sysclk_work);
2750 	mutex_init(&mb4_transfer.lock);
2751 	init_completion(&mb4_transfer.work);
2752 	mutex_init(&mb5_transfer.lock);
2753 	init_completion(&mb5_transfer.work);
2754 
2755 	INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2756 }
2757 
2758 static void __init init_prcm_registers(void)
2759 {
2760 	u32 val;
2761 
2762 	val = readl(PRCM_A9PL_FORCE_CLKEN);
2763 	val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2764 		PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2765 	writel(val, (PRCM_A9PL_FORCE_CLKEN));
2766 }
2767 
2768 /*
2769  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2770  */
2771 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2772 	REGULATOR_SUPPLY("v-ape", NULL),
2773 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2774 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2775 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2776 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2777 	REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2778 	/* "v-mmc" changed to "vcore" in the mainline kernel */
2779 	REGULATOR_SUPPLY("vcore", "sdi0"),
2780 	REGULATOR_SUPPLY("vcore", "sdi1"),
2781 	REGULATOR_SUPPLY("vcore", "sdi2"),
2782 	REGULATOR_SUPPLY("vcore", "sdi3"),
2783 	REGULATOR_SUPPLY("vcore", "sdi4"),
2784 	REGULATOR_SUPPLY("v-dma", "dma40.0"),
2785 	REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2786 	/* "v-uart" changed to "vcore" in the mainline kernel */
2787 	REGULATOR_SUPPLY("vcore", "uart0"),
2788 	REGULATOR_SUPPLY("vcore", "uart1"),
2789 	REGULATOR_SUPPLY("vcore", "uart2"),
2790 	REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2791 	REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2792 	REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2793 };
2794 
2795 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2796 	REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2797 	/* AV8100 regulator */
2798 	REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2799 };
2800 
2801 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2802 	REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2803 	REGULATOR_SUPPLY("vsupply", "mcde"),
2804 };
2805 
2806 /* SVA MMDSP regulator switch */
2807 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2808 	REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2809 };
2810 
2811 /* SVA pipe regulator switch */
2812 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2813 	REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2814 };
2815 
2816 /* SIA MMDSP regulator switch */
2817 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2818 	REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2819 };
2820 
2821 /* SIA pipe regulator switch */
2822 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2823 	REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2824 };
2825 
2826 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2827 	REGULATOR_SUPPLY("v-mali", NULL),
2828 };
2829 
2830 /* ESRAM1 and 2 regulator switch */
2831 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2832 	REGULATOR_SUPPLY("esram12", "cm_control"),
2833 };
2834 
2835 /* ESRAM3 and 4 regulator switch */
2836 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2837 	REGULATOR_SUPPLY("v-esram34", "mcde"),
2838 	REGULATOR_SUPPLY("esram34", "cm_control"),
2839 	REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2840 };
2841 
2842 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2843 	[DB8500_REGULATOR_VAPE] = {
2844 		.constraints = {
2845 			.name = "db8500-vape",
2846 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2847 			.always_on = true,
2848 		},
2849 		.consumer_supplies = db8500_vape_consumers,
2850 		.num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2851 	},
2852 	[DB8500_REGULATOR_VARM] = {
2853 		.constraints = {
2854 			.name = "db8500-varm",
2855 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2856 		},
2857 	},
2858 	[DB8500_REGULATOR_VMODEM] = {
2859 		.constraints = {
2860 			.name = "db8500-vmodem",
2861 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2862 		},
2863 	},
2864 	[DB8500_REGULATOR_VPLL] = {
2865 		.constraints = {
2866 			.name = "db8500-vpll",
2867 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2868 		},
2869 	},
2870 	[DB8500_REGULATOR_VSMPS1] = {
2871 		.constraints = {
2872 			.name = "db8500-vsmps1",
2873 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2874 		},
2875 	},
2876 	[DB8500_REGULATOR_VSMPS2] = {
2877 		.constraints = {
2878 			.name = "db8500-vsmps2",
2879 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2880 		},
2881 		.consumer_supplies = db8500_vsmps2_consumers,
2882 		.num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2883 	},
2884 	[DB8500_REGULATOR_VSMPS3] = {
2885 		.constraints = {
2886 			.name = "db8500-vsmps3",
2887 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2888 		},
2889 	},
2890 	[DB8500_REGULATOR_VRF1] = {
2891 		.constraints = {
2892 			.name = "db8500-vrf1",
2893 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894 		},
2895 	},
2896 	[DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2897 		/* dependency to u8500-vape is handled outside regulator framework */
2898 		.constraints = {
2899 			.name = "db8500-sva-mmdsp",
2900 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2901 		},
2902 		.consumer_supplies = db8500_svammdsp_consumers,
2903 		.num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2904 	},
2905 	[DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2906 		.constraints = {
2907 			/* "ret" means "retention" */
2908 			.name = "db8500-sva-mmdsp-ret",
2909 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2910 		},
2911 	},
2912 	[DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2913 		/* dependency to u8500-vape is handled outside regulator framework */
2914 		.constraints = {
2915 			.name = "db8500-sva-pipe",
2916 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2917 		},
2918 		.consumer_supplies = db8500_svapipe_consumers,
2919 		.num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2920 	},
2921 	[DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2922 		/* dependency to u8500-vape is handled outside regulator framework */
2923 		.constraints = {
2924 			.name = "db8500-sia-mmdsp",
2925 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2926 		},
2927 		.consumer_supplies = db8500_siammdsp_consumers,
2928 		.num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2929 	},
2930 	[DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2931 		.constraints = {
2932 			.name = "db8500-sia-mmdsp-ret",
2933 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2934 		},
2935 	},
2936 	[DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2937 		/* dependency to u8500-vape is handled outside regulator framework */
2938 		.constraints = {
2939 			.name = "db8500-sia-pipe",
2940 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2941 		},
2942 		.consumer_supplies = db8500_siapipe_consumers,
2943 		.num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2944 	},
2945 	[DB8500_REGULATOR_SWITCH_SGA] = {
2946 		.supply_regulator = "db8500-vape",
2947 		.constraints = {
2948 			.name = "db8500-sga",
2949 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2950 		},
2951 		.consumer_supplies = db8500_sga_consumers,
2952 		.num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2953 
2954 	},
2955 	[DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2956 		.supply_regulator = "db8500-vape",
2957 		.constraints = {
2958 			.name = "db8500-b2r2-mcde",
2959 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2960 		},
2961 		.consumer_supplies = db8500_b2r2_mcde_consumers,
2962 		.num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2963 	},
2964 	[DB8500_REGULATOR_SWITCH_ESRAM12] = {
2965 		/*
2966 		 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2967 		 * no need to hold Vape
2968 		 */
2969 		.constraints = {
2970 			.name = "db8500-esram12",
2971 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2972 		},
2973 		.consumer_supplies = db8500_esram12_consumers,
2974 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2975 	},
2976 	[DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2977 		.constraints = {
2978 			.name = "db8500-esram12-ret",
2979 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2980 		},
2981 	},
2982 	[DB8500_REGULATOR_SWITCH_ESRAM34] = {
2983 		/*
2984 		 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2985 		 * no need to hold Vape
2986 		 */
2987 		.constraints = {
2988 			.name = "db8500-esram34",
2989 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2990 		},
2991 		.consumer_supplies = db8500_esram34_consumers,
2992 		.num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2993 	},
2994 	[DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2995 		.constraints = {
2996 			.name = "db8500-esram34-ret",
2997 			.valid_ops_mask = REGULATOR_CHANGE_STATUS,
2998 		},
2999 	},
3000 };
3001 
3002 static struct ux500_wdt_data db8500_wdt_pdata = {
3003 	.timeout = 600, /* 10 minutes */
3004 	.has_28_bits_resolution = true,
3005 };
3006 /*
3007  * Thermal Sensor
3008  */
3009 
3010 static struct resource db8500_thsens_resources[] = {
3011 	{
3012 		.name = "IRQ_HOTMON_LOW",
3013 		.start  = IRQ_PRCMU_HOTMON_LOW,
3014 		.end    = IRQ_PRCMU_HOTMON_LOW,
3015 		.flags  = IORESOURCE_IRQ,
3016 	},
3017 	{
3018 		.name = "IRQ_HOTMON_HIGH",
3019 		.start  = IRQ_PRCMU_HOTMON_HIGH,
3020 		.end    = IRQ_PRCMU_HOTMON_HIGH,
3021 		.flags  = IORESOURCE_IRQ,
3022 	},
3023 };
3024 
3025 static struct db8500_thsens_platform_data db8500_thsens_data = {
3026 	.trip_points[0] = {
3027 		.temp = 70000,
3028 		.type = THERMAL_TRIP_ACTIVE,
3029 		.cdev_name = {
3030 			[0] = "thermal-cpufreq-0",
3031 		},
3032 	},
3033 	.trip_points[1] = {
3034 		.temp = 75000,
3035 		.type = THERMAL_TRIP_ACTIVE,
3036 		.cdev_name = {
3037 			[0] = "thermal-cpufreq-0",
3038 		},
3039 	},
3040 	.trip_points[2] = {
3041 		.temp = 80000,
3042 		.type = THERMAL_TRIP_ACTIVE,
3043 		.cdev_name = {
3044 			[0] = "thermal-cpufreq-0",
3045 		},
3046 	},
3047 	.trip_points[3] = {
3048 		.temp = 85000,
3049 		.type = THERMAL_TRIP_CRITICAL,
3050 	},
3051 	.num_trips = 4,
3052 };
3053 
3054 static const struct mfd_cell common_prcmu_devs[] = {
3055 	{
3056 		.name = "ux500_wdt",
3057 		.platform_data = &db8500_wdt_pdata,
3058 		.pdata_size = sizeof(db8500_wdt_pdata),
3059 		.id = -1,
3060 	},
3061 };
3062 
3063 static const struct mfd_cell db8500_prcmu_devs[] = {
3064 	{
3065 		.name = "db8500-prcmu-regulators",
3066 		.of_compatible = "stericsson,db8500-prcmu-regulator",
3067 		.platform_data = &db8500_regulators,
3068 		.pdata_size = sizeof(db8500_regulators),
3069 	},
3070 	{
3071 		.name = "cpufreq-ux500",
3072 		.of_compatible = "stericsson,cpufreq-ux500",
3073 		.platform_data = &db8500_cpufreq_table,
3074 		.pdata_size = sizeof(db8500_cpufreq_table),
3075 	},
3076 	{
3077 		.name = "cpuidle-dbx500",
3078 		.of_compatible = "stericsson,cpuidle-dbx500",
3079 	},
3080 	{
3081 		.name = "db8500-thermal",
3082 		.num_resources = ARRAY_SIZE(db8500_thsens_resources),
3083 		.resources = db8500_thsens_resources,
3084 		.platform_data = &db8500_thsens_data,
3085 		.pdata_size = sizeof(db8500_thsens_data),
3086 	},
3087 };
3088 
3089 static void db8500_prcmu_update_cpufreq(void)
3090 {
3091 	if (prcmu_has_arm_maxopp()) {
3092 		db8500_cpufreq_table[3].frequency = 1000000;
3093 		db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3094 	}
3095 }
3096 
3097 static int db8500_prcmu_register_ab8500(struct device *parent,
3098 					struct ab8500_platform_data *pdata)
3099 {
3100 	struct device_node *np;
3101 	struct resource ab8500_resource;
3102 	const struct mfd_cell ab8500_cell = {
3103 		.name = "ab8500-core",
3104 		.of_compatible = "stericsson,ab8500",
3105 		.id = AB8500_VERSION_AB8500,
3106 		.platform_data = pdata,
3107 		.pdata_size = sizeof(struct ab8500_platform_data),
3108 		.resources = &ab8500_resource,
3109 		.num_resources = 1,
3110 	};
3111 
3112 	if (!parent->of_node)
3113 		return -ENODEV;
3114 
3115 	/* Look up the device node, sneak the IRQ out of it */
3116 	for_each_child_of_node(parent->of_node, np) {
3117 		if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3118 			break;
3119 	}
3120 	if (!np) {
3121 		dev_info(parent, "could not find AB8500 node in the device tree\n");
3122 		return -ENODEV;
3123 	}
3124 	of_irq_to_resource_table(np, &ab8500_resource, 1);
3125 
3126 	return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3127 }
3128 
3129 /**
3130  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3131  *
3132  */
3133 static int db8500_prcmu_probe(struct platform_device *pdev)
3134 {
3135 	struct device_node *np = pdev->dev.of_node;
3136 	struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3137 	int irq = 0, err = 0;
3138 	struct resource *res;
3139 
3140 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3141 	if (!res) {
3142 		dev_err(&pdev->dev, "no prcmu memory region provided\n");
3143 		return -EINVAL;
3144 	}
3145 	prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3146 	if (!prcmu_base) {
3147 		dev_err(&pdev->dev,
3148 			"failed to ioremap prcmu register memory\n");
3149 		return -ENOMEM;
3150 	}
3151 	init_prcm_registers();
3152 	dbx500_fw_version_init(pdev, pdata->version_offset);
3153 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3154 	if (!res) {
3155 		dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3156 		return -EINVAL;
3157 	}
3158 	tcdm_base = devm_ioremap(&pdev->dev, res->start,
3159 			resource_size(res));
3160 	if (!tcdm_base) {
3161 		dev_err(&pdev->dev,
3162 			"failed to ioremap prcmu-tcdm register memory\n");
3163 		return -ENOMEM;
3164 	}
3165 
3166 	/* Clean up the mailbox interrupts after pre-kernel code. */
3167 	writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3168 
3169 	irq = platform_get_irq(pdev, 0);
3170 	if (irq <= 0) {
3171 		dev_err(&pdev->dev, "no prcmu irq provided\n");
3172 		return irq;
3173 	}
3174 
3175 	err = request_threaded_irq(irq, prcmu_irq_handler,
3176 	        prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3177 	if (err < 0) {
3178 		pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3179 		return err;
3180 	}
3181 
3182 	db8500_irq_init(np);
3183 
3184 	prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3185 
3186 	db8500_prcmu_update_cpufreq();
3187 
3188 	err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3189 			      ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3190 	if (err) {
3191 		pr_err("prcmu: Failed to add subdevices\n");
3192 		return err;
3193 	}
3194 
3195 	/* TODO: Remove restriction when clk definitions are available. */
3196 	if (!of_machine_is_compatible("st-ericsson,u8540")) {
3197 		err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3198 				      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3199 				      db8500_irq_domain);
3200 		if (err) {
3201 			mfd_remove_devices(&pdev->dev);
3202 			pr_err("prcmu: Failed to add subdevices\n");
3203 			return err;
3204 		}
3205 	}
3206 
3207 	err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata);
3208 	if (err) {
3209 		mfd_remove_devices(&pdev->dev);
3210 		pr_err("prcmu: Failed to add ab8500 subdevice\n");
3211 		return err;
3212 	}
3213 
3214 	pr_info("DB8500 PRCMU initialized\n");
3215 	return err;
3216 }
3217 static const struct of_device_id db8500_prcmu_match[] = {
3218 	{ .compatible = "stericsson,db8500-prcmu"},
3219 	{ },
3220 };
3221 
3222 static struct platform_driver db8500_prcmu_driver = {
3223 	.driver = {
3224 		.name = "db8500-prcmu",
3225 		.of_match_table = db8500_prcmu_match,
3226 	},
3227 	.probe = db8500_prcmu_probe,
3228 };
3229 
3230 static int __init db8500_prcmu_init(void)
3231 {
3232 	return platform_driver_register(&db8500_prcmu_driver);
3233 }
3234 
3235 core_initcall(db8500_prcmu_init);
3236 
3237 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3238 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3239 MODULE_LICENSE("GPL v2");
3240