xref: /linux/drivers/mfd/da9150-core.c (revision 7dd900ea0e1b9a2000270c9c0f4deab0cfa359b1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DA9150 Core MFD Driver
4  *
5  * Copyright (c) 2014 Dialog Semiconductor
6  *
7  * Author: Adam Thomson <Adam.Thomson.Opensource@diasemi.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/i2c.h>
14 #include <linux/regmap.h>
15 #include <linux/slab.h>
16 #include <linux/irq.h>
17 #include <linux/interrupt.h>
18 #include <linux/mfd/core.h>
19 #include <linux/mfd/da9150/core.h>
20 #include <linux/mfd/da9150/registers.h>
21 
22 /* Raw device access, used for QIF */
23 static int da9150_i2c_read_device(struct i2c_client *client, u8 addr, int count,
24 				  u8 *buf)
25 {
26 	struct i2c_msg xfer;
27 	int ret;
28 
29 	/*
30 	 * Read is split into two transfers as device expects STOP/START rather
31 	 * than repeated start to carry out this kind of access.
32 	 */
33 
34 	/* Write address */
35 	xfer.addr = client->addr;
36 	xfer.flags = 0;
37 	xfer.len = 1;
38 	xfer.buf = &addr;
39 
40 	ret = i2c_transfer(client->adapter, &xfer, 1);
41 	if (ret != 1) {
42 		if (ret < 0)
43 			return ret;
44 		else
45 			return -EIO;
46 	}
47 
48 	/* Read data */
49 	xfer.addr = client->addr;
50 	xfer.flags = I2C_M_RD;
51 	xfer.len = count;
52 	xfer.buf = buf;
53 
54 	ret = i2c_transfer(client->adapter, &xfer, 1);
55 	if (ret == 1)
56 		return 0;
57 	else if (ret < 0)
58 		return ret;
59 	else
60 		return -EIO;
61 }
62 
63 static int da9150_i2c_write_device(struct i2c_client *client, u8 addr,
64 				   int count, const u8 *buf)
65 {
66 	struct i2c_msg xfer;
67 	u8 *reg_data;
68 	int ret;
69 
70 	reg_data = kzalloc(1 + count, GFP_KERNEL);
71 	if (!reg_data)
72 		return -ENOMEM;
73 
74 	reg_data[0] = addr;
75 	memcpy(&reg_data[1], buf, count);
76 
77 	/* Write address & data */
78 	xfer.addr = client->addr;
79 	xfer.flags = 0;
80 	xfer.len = 1 + count;
81 	xfer.buf = reg_data;
82 
83 	ret = i2c_transfer(client->adapter, &xfer, 1);
84 	kfree(reg_data);
85 	if (ret == 1)
86 		return 0;
87 	else if (ret < 0)
88 		return ret;
89 	else
90 		return -EIO;
91 }
92 
93 static bool da9150_volatile_reg(struct device *dev, unsigned int reg)
94 {
95 	switch (reg) {
96 	case DA9150_PAGE_CON:
97 	case DA9150_STATUS_A:
98 	case DA9150_STATUS_B:
99 	case DA9150_STATUS_C:
100 	case DA9150_STATUS_D:
101 	case DA9150_STATUS_E:
102 	case DA9150_STATUS_F:
103 	case DA9150_STATUS_G:
104 	case DA9150_STATUS_H:
105 	case DA9150_STATUS_I:
106 	case DA9150_STATUS_J:
107 	case DA9150_STATUS_K:
108 	case DA9150_STATUS_L:
109 	case DA9150_STATUS_N:
110 	case DA9150_FAULT_LOG_A:
111 	case DA9150_FAULT_LOG_B:
112 	case DA9150_EVENT_E:
113 	case DA9150_EVENT_F:
114 	case DA9150_EVENT_G:
115 	case DA9150_EVENT_H:
116 	case DA9150_CONTROL_B:
117 	case DA9150_CONTROL_C:
118 	case DA9150_GPADC_MAN:
119 	case DA9150_GPADC_RES_A:
120 	case DA9150_GPADC_RES_B:
121 	case DA9150_ADETVB_CFG_C:
122 	case DA9150_ADETD_STAT:
123 	case DA9150_ADET_CMPSTAT:
124 	case DA9150_ADET_CTRL_A:
125 	case DA9150_PPR_TCTR_B:
126 	case DA9150_COREBTLD_STAT_A:
127 	case DA9150_CORE_DATA_A:
128 	case DA9150_CORE_DATA_B:
129 	case DA9150_CORE_DATA_C:
130 	case DA9150_CORE_DATA_D:
131 	case DA9150_CORE2WIRE_STAT_A:
132 	case DA9150_FW_CTRL_C:
133 	case DA9150_FG_CTRL_B:
134 	case DA9150_FW_CTRL_B:
135 	case DA9150_GPADC_CMAN:
136 	case DA9150_GPADC_CRES_A:
137 	case DA9150_GPADC_CRES_B:
138 	case DA9150_CC_ICHG_RES_A:
139 	case DA9150_CC_ICHG_RES_B:
140 	case DA9150_CC_IAVG_RES_A:
141 	case DA9150_CC_IAVG_RES_B:
142 	case DA9150_TAUX_CTRL_A:
143 	case DA9150_TAUX_VALUE_H:
144 	case DA9150_TAUX_VALUE_L:
145 	case DA9150_TBAT_RES_A:
146 	case DA9150_TBAT_RES_B:
147 		return true;
148 	default:
149 		return false;
150 	}
151 }
152 
153 static const struct regmap_range_cfg da9150_range_cfg[] = {
154 	{
155 		.range_min = DA9150_PAGE_CON,
156 		.range_max = DA9150_TBAT_RES_B,
157 		.selector_reg = DA9150_PAGE_CON,
158 		.selector_mask = DA9150_I2C_PAGE_MASK,
159 		.selector_shift = DA9150_I2C_PAGE_SHIFT,
160 		.window_start = 0,
161 		.window_len = 256,
162 	},
163 };
164 
165 static const struct regmap_config da9150_regmap_config = {
166 	.reg_bits = 8,
167 	.val_bits = 8,
168 	.ranges = da9150_range_cfg,
169 	.num_ranges = ARRAY_SIZE(da9150_range_cfg),
170 	.max_register = DA9150_TBAT_RES_B,
171 
172 	.cache_type = REGCACHE_RBTREE,
173 
174 	.volatile_reg = da9150_volatile_reg,
175 };
176 
177 void da9150_read_qif(struct da9150 *da9150, u8 addr, int count, u8 *buf)
178 {
179 	int ret;
180 
181 	ret = da9150_i2c_read_device(da9150->core_qif, addr, count, buf);
182 	if (ret < 0)
183 		dev_err(da9150->dev, "Failed to read from QIF 0x%x: %d\n",
184 			addr, ret);
185 }
186 EXPORT_SYMBOL_GPL(da9150_read_qif);
187 
188 void da9150_write_qif(struct da9150 *da9150, u8 addr, int count, const u8 *buf)
189 {
190 	int ret;
191 
192 	ret = da9150_i2c_write_device(da9150->core_qif, addr, count, buf);
193 	if (ret < 0)
194 		dev_err(da9150->dev, "Failed to write to QIF 0x%x: %d\n",
195 			addr, ret);
196 }
197 EXPORT_SYMBOL_GPL(da9150_write_qif);
198 
199 u8 da9150_reg_read(struct da9150 *da9150, u16 reg)
200 {
201 	int val, ret;
202 
203 	ret = regmap_read(da9150->regmap, reg, &val);
204 	if (ret)
205 		dev_err(da9150->dev, "Failed to read from reg 0x%x: %d\n",
206 			reg, ret);
207 
208 	return (u8) val;
209 }
210 EXPORT_SYMBOL_GPL(da9150_reg_read);
211 
212 void da9150_reg_write(struct da9150 *da9150, u16 reg, u8 val)
213 {
214 	int ret;
215 
216 	ret = regmap_write(da9150->regmap, reg, val);
217 	if (ret)
218 		dev_err(da9150->dev, "Failed to write to reg 0x%x: %d\n",
219 			reg, ret);
220 }
221 EXPORT_SYMBOL_GPL(da9150_reg_write);
222 
223 void da9150_set_bits(struct da9150 *da9150, u16 reg, u8 mask, u8 val)
224 {
225 	int ret;
226 
227 	ret = regmap_update_bits(da9150->regmap, reg, mask, val);
228 	if (ret)
229 		dev_err(da9150->dev, "Failed to set bits in reg 0x%x: %d\n",
230 			reg, ret);
231 }
232 EXPORT_SYMBOL_GPL(da9150_set_bits);
233 
234 void da9150_bulk_read(struct da9150 *da9150, u16 reg, int count, u8 *buf)
235 {
236 	int ret;
237 
238 	ret = regmap_bulk_read(da9150->regmap, reg, buf, count);
239 	if (ret)
240 		dev_err(da9150->dev, "Failed to bulk read from reg 0x%x: %d\n",
241 			reg, ret);
242 }
243 EXPORT_SYMBOL_GPL(da9150_bulk_read);
244 
245 void da9150_bulk_write(struct da9150 *da9150, u16 reg, int count, const u8 *buf)
246 {
247 	int ret;
248 
249 	ret = regmap_raw_write(da9150->regmap, reg, buf, count);
250 	if (ret)
251 		dev_err(da9150->dev, "Failed to bulk write to reg 0x%x %d\n",
252 			reg, ret);
253 }
254 EXPORT_SYMBOL_GPL(da9150_bulk_write);
255 
256 static const struct regmap_irq da9150_irqs[] = {
257 	[DA9150_IRQ_VBUS] = {
258 		.reg_offset = 0,
259 		.mask = DA9150_E_VBUS_MASK,
260 	},
261 	[DA9150_IRQ_CHG] = {
262 		.reg_offset = 0,
263 		.mask = DA9150_E_CHG_MASK,
264 	},
265 	[DA9150_IRQ_TCLASS] = {
266 		.reg_offset = 0,
267 		.mask = DA9150_E_TCLASS_MASK,
268 	},
269 	[DA9150_IRQ_TJUNC] = {
270 		.reg_offset = 0,
271 		.mask = DA9150_E_TJUNC_MASK,
272 	},
273 	[DA9150_IRQ_VFAULT] = {
274 		.reg_offset = 0,
275 		.mask = DA9150_E_VFAULT_MASK,
276 	},
277 	[DA9150_IRQ_CONF] = {
278 		.reg_offset = 1,
279 		.mask = DA9150_E_CONF_MASK,
280 	},
281 	[DA9150_IRQ_DAT] = {
282 		.reg_offset = 1,
283 		.mask = DA9150_E_DAT_MASK,
284 	},
285 	[DA9150_IRQ_DTYPE] = {
286 		.reg_offset = 1,
287 		.mask = DA9150_E_DTYPE_MASK,
288 	},
289 	[DA9150_IRQ_ID] = {
290 		.reg_offset = 1,
291 		.mask = DA9150_E_ID_MASK,
292 	},
293 	[DA9150_IRQ_ADP] = {
294 		.reg_offset = 1,
295 		.mask = DA9150_E_ADP_MASK,
296 	},
297 	[DA9150_IRQ_SESS_END] = {
298 		.reg_offset = 1,
299 		.mask = DA9150_E_SESS_END_MASK,
300 	},
301 	[DA9150_IRQ_SESS_VLD] = {
302 		.reg_offset = 1,
303 		.mask = DA9150_E_SESS_VLD_MASK,
304 	},
305 	[DA9150_IRQ_FG] = {
306 		.reg_offset = 2,
307 		.mask = DA9150_E_FG_MASK,
308 	},
309 	[DA9150_IRQ_GP] = {
310 		.reg_offset = 2,
311 		.mask = DA9150_E_GP_MASK,
312 	},
313 	[DA9150_IRQ_TBAT] = {
314 		.reg_offset = 2,
315 		.mask = DA9150_E_TBAT_MASK,
316 	},
317 	[DA9150_IRQ_GPIOA] = {
318 		.reg_offset = 2,
319 		.mask = DA9150_E_GPIOA_MASK,
320 	},
321 	[DA9150_IRQ_GPIOB] = {
322 		.reg_offset = 2,
323 		.mask = DA9150_E_GPIOB_MASK,
324 	},
325 	[DA9150_IRQ_GPIOC] = {
326 		.reg_offset = 2,
327 		.mask = DA9150_E_GPIOC_MASK,
328 	},
329 	[DA9150_IRQ_GPIOD] = {
330 		.reg_offset = 2,
331 		.mask = DA9150_E_GPIOD_MASK,
332 	},
333 	[DA9150_IRQ_GPADC] = {
334 		.reg_offset = 2,
335 		.mask = DA9150_E_GPADC_MASK,
336 	},
337 	[DA9150_IRQ_WKUP] = {
338 		.reg_offset = 3,
339 		.mask = DA9150_E_WKUP_MASK,
340 	},
341 };
342 
343 static const struct regmap_irq_chip da9150_regmap_irq_chip = {
344 	.name = "da9150_irq",
345 	.status_base = DA9150_EVENT_E,
346 	.mask_base = DA9150_IRQ_MASK_E,
347 	.ack_base = DA9150_EVENT_E,
348 	.num_regs = DA9150_NUM_IRQ_REGS,
349 	.irqs = da9150_irqs,
350 	.num_irqs = ARRAY_SIZE(da9150_irqs),
351 };
352 
353 static const struct resource da9150_gpadc_resources[] = {
354 	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_GPADC, "GPADC"),
355 };
356 
357 static const struct resource da9150_charger_resources[] = {
358 	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_CHG, "CHG_STATUS"),
359 	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_TJUNC, "CHG_TJUNC"),
360 	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VFAULT, "CHG_VFAULT"),
361 	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VBUS, "CHG_VBUS"),
362 };
363 
364 static const struct resource da9150_fg_resources[] = {
365 	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_FG, "FG"),
366 };
367 
368 enum da9150_dev_idx {
369 	DA9150_GPADC_IDX = 0,
370 	DA9150_CHARGER_IDX,
371 	DA9150_FG_IDX,
372 };
373 
374 static struct mfd_cell da9150_devs[] = {
375 	[DA9150_GPADC_IDX] = {
376 		.name = "da9150-gpadc",
377 		.of_compatible = "dlg,da9150-gpadc",
378 		.resources = da9150_gpadc_resources,
379 		.num_resources = ARRAY_SIZE(da9150_gpadc_resources),
380 	},
381 	[DA9150_CHARGER_IDX] = {
382 		.name = "da9150-charger",
383 		.of_compatible = "dlg,da9150-charger",
384 		.resources = da9150_charger_resources,
385 		.num_resources = ARRAY_SIZE(da9150_charger_resources),
386 	},
387 	[DA9150_FG_IDX] = {
388 		.name = "da9150-fuel-gauge",
389 		.of_compatible = "dlg,da9150-fuel-gauge",
390 		.resources = da9150_fg_resources,
391 		.num_resources = ARRAY_SIZE(da9150_fg_resources),
392 	},
393 };
394 
395 static int da9150_probe(struct i2c_client *client)
396 {
397 	struct da9150 *da9150;
398 	struct da9150_pdata *pdata = dev_get_platdata(&client->dev);
399 	int qif_addr;
400 	int ret;
401 
402 	da9150 = devm_kzalloc(&client->dev, sizeof(*da9150), GFP_KERNEL);
403 	if (!da9150)
404 		return -ENOMEM;
405 
406 	da9150->dev = &client->dev;
407 	da9150->irq = client->irq;
408 	i2c_set_clientdata(client, da9150);
409 
410 	da9150->regmap = devm_regmap_init_i2c(client, &da9150_regmap_config);
411 	if (IS_ERR(da9150->regmap)) {
412 		ret = PTR_ERR(da9150->regmap);
413 		dev_err(da9150->dev, "Failed to allocate register map: %d\n",
414 			ret);
415 		return ret;
416 	}
417 
418 	/* Setup secondary I2C interface for QIF access */
419 	qif_addr = da9150_reg_read(da9150, DA9150_CORE2WIRE_CTRL_A);
420 	qif_addr = (qif_addr & DA9150_CORE_BASE_ADDR_MASK) >> 1;
421 	qif_addr |= DA9150_QIF_I2C_ADDR_LSB;
422 	da9150->core_qif = i2c_new_dummy_device(client->adapter, qif_addr);
423 	if (IS_ERR(da9150->core_qif)) {
424 		dev_err(da9150->dev, "Failed to attach QIF client\n");
425 		return PTR_ERR(da9150->core_qif);
426 	}
427 
428 	i2c_set_clientdata(da9150->core_qif, da9150);
429 
430 	if (pdata) {
431 		da9150->irq_base = pdata->irq_base;
432 
433 		da9150_devs[DA9150_FG_IDX].platform_data = pdata->fg_pdata;
434 		da9150_devs[DA9150_FG_IDX].pdata_size =
435 			sizeof(struct da9150_fg_pdata);
436 	} else {
437 		da9150->irq_base = -1;
438 	}
439 
440 	ret = regmap_add_irq_chip(da9150->regmap, da9150->irq,
441 				  IRQF_TRIGGER_LOW | IRQF_ONESHOT,
442 				  da9150->irq_base, &da9150_regmap_irq_chip,
443 				  &da9150->regmap_irq_data);
444 	if (ret) {
445 		dev_err(da9150->dev, "Failed to add regmap irq chip: %d\n",
446 			ret);
447 		goto regmap_irq_fail;
448 	}
449 
450 
451 	da9150->irq_base = regmap_irq_chip_get_base(da9150->regmap_irq_data);
452 
453 	enable_irq_wake(da9150->irq);
454 
455 	ret = mfd_add_devices(da9150->dev, -1, da9150_devs,
456 			      ARRAY_SIZE(da9150_devs), NULL,
457 			      da9150->irq_base, NULL);
458 	if (ret) {
459 		dev_err(da9150->dev, "Failed to add child devices: %d\n", ret);
460 		goto mfd_fail;
461 	}
462 
463 	return 0;
464 
465 mfd_fail:
466 	regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
467 regmap_irq_fail:
468 	i2c_unregister_device(da9150->core_qif);
469 
470 	return ret;
471 }
472 
473 static void da9150_remove(struct i2c_client *client)
474 {
475 	struct da9150 *da9150 = i2c_get_clientdata(client);
476 
477 	regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
478 	mfd_remove_devices(da9150->dev);
479 	i2c_unregister_device(da9150->core_qif);
480 }
481 
482 static void da9150_shutdown(struct i2c_client *client)
483 {
484 	struct da9150 *da9150 = i2c_get_clientdata(client);
485 
486 	/* Make sure we have a wakup source for the device */
487 	da9150_set_bits(da9150, DA9150_CONFIG_D,
488 			DA9150_WKUP_PM_EN_MASK,
489 			DA9150_WKUP_PM_EN_MASK);
490 
491 	/* Set device to DISABLED mode */
492 	da9150_set_bits(da9150, DA9150_CONTROL_C,
493 			DA9150_DISABLE_MASK, DA9150_DISABLE_MASK);
494 }
495 
496 static const struct i2c_device_id da9150_i2c_id[] = {
497 	{ "da9150", },
498 	{ }
499 };
500 MODULE_DEVICE_TABLE(i2c, da9150_i2c_id);
501 
502 static const struct of_device_id da9150_of_match[] = {
503 	{ .compatible = "dlg,da9150", },
504 	{ }
505 };
506 MODULE_DEVICE_TABLE(of, da9150_of_match);
507 
508 static struct i2c_driver da9150_driver = {
509 	.driver	= {
510 		.name	= "da9150",
511 		.of_match_table = da9150_of_match,
512 	},
513 	.probe		= da9150_probe,
514 	.remove		= da9150_remove,
515 	.shutdown	= da9150_shutdown,
516 	.id_table	= da9150_i2c_id,
517 };
518 
519 module_i2c_driver(da9150_driver);
520 
521 MODULE_DESCRIPTION("MFD Core Driver for DA9150");
522 MODULE_AUTHOR("Adam Thomson <Adam.Thomson.Opensource@diasemi.com>");
523 MODULE_LICENSE("GPL");
524