1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved. 4 */ 5 6 #include <linux/bitfield.h> 7 #include <linux/clk.h> 8 #include <linux/clk/tegra.h> 9 #include <linux/debugfs.h> 10 #include <linux/delay.h> 11 #include <linux/kernel.h> 12 #include <linux/mod_devicetable.h> 13 #include <linux/module.h> 14 #include <linux/of_reserved_mem.h> 15 #include <linux/platform_device.h> 16 #include <linux/slab.h> 17 #include <linux/thermal.h> 18 #include <soc/tegra/fuse.h> 19 #include <soc/tegra/mc.h> 20 21 #include "tegra210-emc.h" 22 #include "tegra210-mc.h" 23 24 /* CLK_RST_CONTROLLER_CLK_SOURCE_EMC */ 25 #define EMC_CLK_EMC_2X_CLK_SRC_SHIFT 29 26 #define EMC_CLK_EMC_2X_CLK_SRC_MASK \ 27 (0x7 << EMC_CLK_EMC_2X_CLK_SRC_SHIFT) 28 #define EMC_CLK_SOURCE_PLLM_LJ 0x4 29 #define EMC_CLK_SOURCE_PLLMB_LJ 0x5 30 #define EMC_CLK_FORCE_CC_TRIGGER BIT(27) 31 #define EMC_CLK_MC_EMC_SAME_FREQ BIT(16) 32 #define EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT 0 33 #define EMC_CLK_EMC_2X_CLK_DIVISOR_MASK \ 34 (0xff << EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT) 35 36 /* CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL */ 37 #define DLL_CLK_EMC_DLL_CLK_SRC_SHIFT 29 38 #define DLL_CLK_EMC_DLL_CLK_SRC_MASK \ 39 (0x7 << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT) 40 #define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT 10 41 #define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK \ 42 (0x3 << DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT) 43 #define PLLM_VCOA 0 44 #define PLLM_VCOB 1 45 #define EMC_DLL_SWITCH_OUT 2 46 #define DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT 0 47 #define DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK \ 48 (0xff << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT) 49 50 /* MC_EMEM_ARB_MISC0 */ 51 #define MC_EMEM_ARB_MISC0_EMC_SAME_FREQ BIT(27) 52 53 /* EMC_DATA_BRLSHFT_X */ 54 #define EMC0_EMC_DATA_BRLSHFT_0_INDEX 2 55 #define EMC1_EMC_DATA_BRLSHFT_0_INDEX 3 56 #define EMC0_EMC_DATA_BRLSHFT_1_INDEX 4 57 #define EMC1_EMC_DATA_BRLSHFT_1_INDEX 5 58 59 #define TRIM_REG(chan, rank, reg, byte) \ 60 (((EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \ 61 _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _MASK & \ 62 next->trim_regs[EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## \ 63 rank ## _ ## reg ## _INDEX]) >> \ 64 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \ 65 _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _SHIFT) \ 66 + \ 67 (((EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ## \ 68 byte ## _DATA_BRLSHFT_MASK & \ 69 next->trim_perch_regs[EMC ## chan ## \ 70 _EMC_DATA_BRLSHFT_ ## rank ## _INDEX]) >> \ 71 EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ## \ 72 byte ## _DATA_BRLSHFT_SHIFT) * 64)) 73 74 #define CALC_TEMP(rank, reg, byte1, byte2, n) \ 75 (((new[n] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## \ 76 reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _SHIFT) & \ 77 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \ 78 _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _MASK) \ 79 | \ 80 ((new[n + 1] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ##\ 81 reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _SHIFT) & \ 82 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \ 83 _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _MASK)) 84 85 #define REFRESH_SPEEDUP(value, speedup) \ 86 (((value) & 0xffff0000) | ((value) & 0xffff) * (speedup)) 87 88 #define LPDDR2_MR4_SRR GENMASK(2, 0) 89 90 static const struct tegra210_emc_sequence *tegra210_emc_sequences[] = { 91 &tegra210_emc_r21021, 92 }; 93 94 static const struct tegra210_emc_table_register_offsets 95 tegra210_emc_table_register_offsets = { 96 .burst = { 97 EMC_RC, 98 EMC_RFC, 99 EMC_RFCPB, 100 EMC_REFCTRL2, 101 EMC_RFC_SLR, 102 EMC_RAS, 103 EMC_RP, 104 EMC_R2W, 105 EMC_W2R, 106 EMC_R2P, 107 EMC_W2P, 108 EMC_R2R, 109 EMC_TPPD, 110 EMC_CCDMW, 111 EMC_RD_RCD, 112 EMC_WR_RCD, 113 EMC_RRD, 114 EMC_REXT, 115 EMC_WEXT, 116 EMC_WDV_CHK, 117 EMC_WDV, 118 EMC_WSV, 119 EMC_WEV, 120 EMC_WDV_MASK, 121 EMC_WS_DURATION, 122 EMC_WE_DURATION, 123 EMC_QUSE, 124 EMC_QUSE_WIDTH, 125 EMC_IBDLY, 126 EMC_OBDLY, 127 EMC_EINPUT, 128 EMC_MRW6, 129 EMC_EINPUT_DURATION, 130 EMC_PUTERM_EXTRA, 131 EMC_PUTERM_WIDTH, 132 EMC_QRST, 133 EMC_QSAFE, 134 EMC_RDV, 135 EMC_RDV_MASK, 136 EMC_RDV_EARLY, 137 EMC_RDV_EARLY_MASK, 138 EMC_REFRESH, 139 EMC_BURST_REFRESH_NUM, 140 EMC_PRE_REFRESH_REQ_CNT, 141 EMC_PDEX2WR, 142 EMC_PDEX2RD, 143 EMC_PCHG2PDEN, 144 EMC_ACT2PDEN, 145 EMC_AR2PDEN, 146 EMC_RW2PDEN, 147 EMC_CKE2PDEN, 148 EMC_PDEX2CKE, 149 EMC_PDEX2MRR, 150 EMC_TXSR, 151 EMC_TXSRDLL, 152 EMC_TCKE, 153 EMC_TCKESR, 154 EMC_TPD, 155 EMC_TFAW, 156 EMC_TRPAB, 157 EMC_TCLKSTABLE, 158 EMC_TCLKSTOP, 159 EMC_MRW7, 160 EMC_TREFBW, 161 EMC_ODT_WRITE, 162 EMC_FBIO_CFG5, 163 EMC_FBIO_CFG7, 164 EMC_CFG_DIG_DLL, 165 EMC_CFG_DIG_DLL_PERIOD, 166 EMC_PMACRO_IB_RXRT, 167 EMC_CFG_PIPE_1, 168 EMC_CFG_PIPE_2, 169 EMC_PMACRO_QUSE_DDLL_RANK0_4, 170 EMC_PMACRO_QUSE_DDLL_RANK0_5, 171 EMC_PMACRO_QUSE_DDLL_RANK1_4, 172 EMC_PMACRO_QUSE_DDLL_RANK1_5, 173 EMC_MRW8, 174 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_4, 175 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_5, 176 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_0, 177 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_1, 178 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_2, 179 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_3, 180 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_4, 181 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_5, 182 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_0, 183 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_1, 184 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_2, 185 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_3, 186 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_4, 187 EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_5, 188 EMC_PMACRO_DDLL_LONG_CMD_0, 189 EMC_PMACRO_DDLL_LONG_CMD_1, 190 EMC_PMACRO_DDLL_LONG_CMD_2, 191 EMC_PMACRO_DDLL_LONG_CMD_3, 192 EMC_PMACRO_DDLL_LONG_CMD_4, 193 EMC_PMACRO_DDLL_SHORT_CMD_0, 194 EMC_PMACRO_DDLL_SHORT_CMD_1, 195 EMC_PMACRO_DDLL_SHORT_CMD_2, 196 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_3, 197 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_3, 198 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_3, 199 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_3, 200 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_3, 201 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_3, 202 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_3, 203 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_3, 204 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_3, 205 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_3, 206 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_3, 207 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_3, 208 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_3, 209 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_3, 210 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_3, 211 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_3, 212 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_3, 213 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_3, 214 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_3, 215 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_3, 216 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_0, 217 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_1, 218 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_2, 219 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_3, 220 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_0, 221 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_1, 222 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_2, 223 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_3, 224 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_0, 225 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_1, 226 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_2, 227 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_3, 228 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_0, 229 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_1, 230 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_2, 231 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_3, 232 EMC_TXDSRVTTGEN, 233 EMC_FDPD_CTRL_DQ, 234 EMC_FDPD_CTRL_CMD, 235 EMC_FBIO_SPARE, 236 EMC_ZCAL_INTERVAL, 237 EMC_ZCAL_WAIT_CNT, 238 EMC_MRS_WAIT_CNT, 239 EMC_MRS_WAIT_CNT2, 240 EMC_AUTO_CAL_CHANNEL, 241 EMC_DLL_CFG_0, 242 EMC_DLL_CFG_1, 243 EMC_PMACRO_AUTOCAL_CFG_COMMON, 244 EMC_PMACRO_ZCTRL, 245 EMC_CFG, 246 EMC_CFG_PIPE, 247 EMC_DYN_SELF_REF_CONTROL, 248 EMC_QPOP, 249 EMC_DQS_BRLSHFT_0, 250 EMC_DQS_BRLSHFT_1, 251 EMC_CMD_BRLSHFT_2, 252 EMC_CMD_BRLSHFT_3, 253 EMC_PMACRO_PAD_CFG_CTRL, 254 EMC_PMACRO_DATA_PAD_RX_CTRL, 255 EMC_PMACRO_CMD_PAD_RX_CTRL, 256 EMC_PMACRO_DATA_RX_TERM_MODE, 257 EMC_PMACRO_CMD_RX_TERM_MODE, 258 EMC_PMACRO_CMD_PAD_TX_CTRL, 259 EMC_PMACRO_DATA_PAD_TX_CTRL, 260 EMC_PMACRO_COMMON_PAD_TX_CTRL, 261 EMC_PMACRO_VTTGEN_CTRL_0, 262 EMC_PMACRO_VTTGEN_CTRL_1, 263 EMC_PMACRO_VTTGEN_CTRL_2, 264 EMC_PMACRO_BRICK_CTRL_RFU1, 265 EMC_PMACRO_CMD_BRICK_CTRL_FDPD, 266 EMC_PMACRO_BRICK_CTRL_RFU2, 267 EMC_PMACRO_DATA_BRICK_CTRL_FDPD, 268 EMC_PMACRO_BG_BIAS_CTRL_0, 269 EMC_CFG_3, 270 EMC_PMACRO_TX_PWRD_0, 271 EMC_PMACRO_TX_PWRD_1, 272 EMC_PMACRO_TX_PWRD_2, 273 EMC_PMACRO_TX_PWRD_3, 274 EMC_PMACRO_TX_PWRD_4, 275 EMC_PMACRO_TX_PWRD_5, 276 EMC_CONFIG_SAMPLE_DELAY, 277 EMC_PMACRO_TX_SEL_CLK_SRC_0, 278 EMC_PMACRO_TX_SEL_CLK_SRC_1, 279 EMC_PMACRO_TX_SEL_CLK_SRC_2, 280 EMC_PMACRO_TX_SEL_CLK_SRC_3, 281 EMC_PMACRO_TX_SEL_CLK_SRC_4, 282 EMC_PMACRO_TX_SEL_CLK_SRC_5, 283 EMC_PMACRO_DDLL_BYPASS, 284 EMC_PMACRO_DDLL_PWRD_0, 285 EMC_PMACRO_DDLL_PWRD_1, 286 EMC_PMACRO_DDLL_PWRD_2, 287 EMC_PMACRO_CMD_CTRL_0, 288 EMC_PMACRO_CMD_CTRL_1, 289 EMC_PMACRO_CMD_CTRL_2, 290 EMC_TR_TIMING_0, 291 EMC_TR_DVFS, 292 EMC_TR_CTRL_1, 293 EMC_TR_RDV, 294 EMC_TR_QPOP, 295 EMC_TR_RDV_MASK, 296 EMC_MRW14, 297 EMC_TR_QSAFE, 298 EMC_TR_QRST, 299 EMC_TRAINING_CTRL, 300 EMC_TRAINING_SETTLE, 301 EMC_TRAINING_VREF_SETTLE, 302 EMC_TRAINING_CA_FINE_CTRL, 303 EMC_TRAINING_CA_CTRL_MISC, 304 EMC_TRAINING_CA_CTRL_MISC1, 305 EMC_TRAINING_CA_VREF_CTRL, 306 EMC_TRAINING_QUSE_CORS_CTRL, 307 EMC_TRAINING_QUSE_FINE_CTRL, 308 EMC_TRAINING_QUSE_CTRL_MISC, 309 EMC_TRAINING_QUSE_VREF_CTRL, 310 EMC_TRAINING_READ_FINE_CTRL, 311 EMC_TRAINING_READ_CTRL_MISC, 312 EMC_TRAINING_READ_VREF_CTRL, 313 EMC_TRAINING_WRITE_FINE_CTRL, 314 EMC_TRAINING_WRITE_CTRL_MISC, 315 EMC_TRAINING_WRITE_VREF_CTRL, 316 EMC_TRAINING_MPC, 317 EMC_MRW15, 318 }, 319 .trim = { 320 EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_0, 321 EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_1, 322 EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_2, 323 EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_3, 324 EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_0, 325 EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_1, 326 EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_2, 327 EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_3, 328 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_0, 329 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_1, 330 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_2, 331 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_0, 332 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_1, 333 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_2, 334 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_0, 335 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_1, 336 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_2, 337 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_0, 338 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_1, 339 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_2, 340 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_0, 341 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_1, 342 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_2, 343 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_0, 344 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_1, 345 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_2, 346 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_0, 347 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_1, 348 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_2, 349 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_0, 350 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_1, 351 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_2, 352 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_0, 353 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_1, 354 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_2, 355 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_0, 356 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_1, 357 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_2, 358 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_0, 359 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_1, 360 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_2, 361 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_0, 362 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_1, 363 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_2, 364 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_0, 365 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_1, 366 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_2, 367 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_0, 368 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_1, 369 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_2, 370 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_0, 371 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_1, 372 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_2, 373 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_0, 374 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_1, 375 EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_2, 376 EMC_PMACRO_IB_VREF_DQS_0, 377 EMC_PMACRO_IB_VREF_DQS_1, 378 EMC_PMACRO_IB_VREF_DQ_0, 379 EMC_PMACRO_IB_VREF_DQ_1, 380 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0, 381 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1, 382 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2, 383 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3, 384 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_4, 385 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_5, 386 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0, 387 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1, 388 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2, 389 EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3, 390 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0, 391 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1, 392 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2, 393 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0, 394 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1, 395 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2, 396 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0, 397 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1, 398 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2, 399 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0, 400 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1, 401 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2, 402 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0, 403 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1, 404 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2, 405 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0, 406 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1, 407 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2, 408 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0, 409 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1, 410 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2, 411 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0, 412 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1, 413 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2, 414 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_0, 415 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_1, 416 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_2, 417 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_0, 418 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_1, 419 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_2, 420 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_0, 421 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_1, 422 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_2, 423 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_0, 424 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_1, 425 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_2, 426 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0, 427 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1, 428 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2, 429 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0, 430 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1, 431 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2, 432 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0, 433 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1, 434 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2, 435 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0, 436 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1, 437 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2, 438 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0, 439 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1, 440 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2, 441 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0, 442 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1, 443 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2, 444 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0, 445 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1, 446 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2, 447 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0, 448 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1, 449 EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2, 450 EMC_PMACRO_QUSE_DDLL_RANK0_0, 451 EMC_PMACRO_QUSE_DDLL_RANK0_1, 452 EMC_PMACRO_QUSE_DDLL_RANK0_2, 453 EMC_PMACRO_QUSE_DDLL_RANK0_3, 454 EMC_PMACRO_QUSE_DDLL_RANK1_0, 455 EMC_PMACRO_QUSE_DDLL_RANK1_1, 456 EMC_PMACRO_QUSE_DDLL_RANK1_2, 457 EMC_PMACRO_QUSE_DDLL_RANK1_3 458 }, 459 .burst_mc = { 460 MC_EMEM_ARB_CFG, 461 MC_EMEM_ARB_OUTSTANDING_REQ, 462 MC_EMEM_ARB_REFPB_HP_CTRL, 463 MC_EMEM_ARB_REFPB_BANK_CTRL, 464 MC_EMEM_ARB_TIMING_RCD, 465 MC_EMEM_ARB_TIMING_RP, 466 MC_EMEM_ARB_TIMING_RC, 467 MC_EMEM_ARB_TIMING_RAS, 468 MC_EMEM_ARB_TIMING_FAW, 469 MC_EMEM_ARB_TIMING_RRD, 470 MC_EMEM_ARB_TIMING_RAP2PRE, 471 MC_EMEM_ARB_TIMING_WAP2PRE, 472 MC_EMEM_ARB_TIMING_R2R, 473 MC_EMEM_ARB_TIMING_W2W, 474 MC_EMEM_ARB_TIMING_R2W, 475 MC_EMEM_ARB_TIMING_CCDMW, 476 MC_EMEM_ARB_TIMING_W2R, 477 MC_EMEM_ARB_TIMING_RFCPB, 478 MC_EMEM_ARB_DA_TURNS, 479 MC_EMEM_ARB_DA_COVERS, 480 MC_EMEM_ARB_MISC0, 481 MC_EMEM_ARB_MISC1, 482 MC_EMEM_ARB_MISC2, 483 MC_EMEM_ARB_RING1_THROTTLE, 484 MC_EMEM_ARB_DHYST_CTRL, 485 MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_0, 486 MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_1, 487 MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_2, 488 MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_3, 489 MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_4, 490 MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_5, 491 MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_6, 492 MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_7, 493 }, 494 .la_scale = { 495 MC_MLL_MPCORER_PTSA_RATE, 496 MC_FTOP_PTSA_RATE, 497 MC_PTSA_GRANT_DECREMENT, 498 MC_LATENCY_ALLOWANCE_XUSB_0, 499 MC_LATENCY_ALLOWANCE_XUSB_1, 500 MC_LATENCY_ALLOWANCE_TSEC_0, 501 MC_LATENCY_ALLOWANCE_SDMMCA_0, 502 MC_LATENCY_ALLOWANCE_SDMMCAA_0, 503 MC_LATENCY_ALLOWANCE_SDMMC_0, 504 MC_LATENCY_ALLOWANCE_SDMMCAB_0, 505 MC_LATENCY_ALLOWANCE_PPCS_0, 506 MC_LATENCY_ALLOWANCE_PPCS_1, 507 MC_LATENCY_ALLOWANCE_MPCORE_0, 508 MC_LATENCY_ALLOWANCE_HC_0, 509 MC_LATENCY_ALLOWANCE_HC_1, 510 MC_LATENCY_ALLOWANCE_AVPC_0, 511 MC_LATENCY_ALLOWANCE_GPU_0, 512 MC_LATENCY_ALLOWANCE_GPU2_0, 513 MC_LATENCY_ALLOWANCE_NVENC_0, 514 MC_LATENCY_ALLOWANCE_NVDEC_0, 515 MC_LATENCY_ALLOWANCE_VIC_0, 516 MC_LATENCY_ALLOWANCE_VI2_0, 517 MC_LATENCY_ALLOWANCE_ISP2_0, 518 MC_LATENCY_ALLOWANCE_ISP2_1, 519 }, 520 .burst_per_channel = { 521 { .bank = 0, .offset = EMC_MRW10, }, 522 { .bank = 1, .offset = EMC_MRW10, }, 523 { .bank = 0, .offset = EMC_MRW11, }, 524 { .bank = 1, .offset = EMC_MRW11, }, 525 { .bank = 0, .offset = EMC_MRW12, }, 526 { .bank = 1, .offset = EMC_MRW12, }, 527 { .bank = 0, .offset = EMC_MRW13, }, 528 { .bank = 1, .offset = EMC_MRW13, }, 529 }, 530 .trim_per_channel = { 531 { .bank = 0, .offset = EMC_CMD_BRLSHFT_0, }, 532 { .bank = 1, .offset = EMC_CMD_BRLSHFT_1, }, 533 { .bank = 0, .offset = EMC_DATA_BRLSHFT_0, }, 534 { .bank = 1, .offset = EMC_DATA_BRLSHFT_0, }, 535 { .bank = 0, .offset = EMC_DATA_BRLSHFT_1, }, 536 { .bank = 1, .offset = EMC_DATA_BRLSHFT_1, }, 537 { .bank = 0, .offset = EMC_QUSE_BRLSHFT_0, }, 538 { .bank = 1, .offset = EMC_QUSE_BRLSHFT_1, }, 539 { .bank = 0, .offset = EMC_QUSE_BRLSHFT_2, }, 540 { .bank = 1, .offset = EMC_QUSE_BRLSHFT_3, }, 541 }, 542 .vref_per_channel = { 543 { 544 .bank = 0, 545 .offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0, 546 }, { 547 .bank = 1, 548 .offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0, 549 }, { 550 .bank = 0, 551 .offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1, 552 }, { 553 .bank = 1, 554 .offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1, 555 }, 556 }, 557 }; 558 559 static void tegra210_emc_train(struct timer_list *timer) 560 { 561 struct tegra210_emc *emc = timer_container_of(emc, timer, training); 562 unsigned long flags; 563 564 if (!emc->last) 565 return; 566 567 spin_lock_irqsave(&emc->lock, flags); 568 569 if (emc->sequence->periodic_compensation) 570 emc->sequence->periodic_compensation(emc); 571 572 spin_unlock_irqrestore(&emc->lock, flags); 573 574 mod_timer(&emc->training, 575 jiffies + msecs_to_jiffies(emc->training_interval)); 576 } 577 578 static void tegra210_emc_training_start(struct tegra210_emc *emc) 579 { 580 mod_timer(&emc->training, 581 jiffies + msecs_to_jiffies(emc->training_interval)); 582 } 583 584 static void tegra210_emc_training_stop(struct tegra210_emc *emc) 585 { 586 timer_delete(&emc->training); 587 } 588 589 static unsigned int tegra210_emc_get_temperature(struct tegra210_emc *emc) 590 { 591 unsigned long flags; 592 u32 value, max = 0; 593 unsigned int i; 594 595 spin_lock_irqsave(&emc->lock, flags); 596 597 for (i = 0; i < emc->num_devices; i++) { 598 value = tegra210_emc_mrr_read(emc, i, 4); 599 600 if (value & BIT(7)) 601 dev_dbg(emc->dev, 602 "sensor reading changed for device %u: %08x\n", 603 i, value); 604 605 value = FIELD_GET(LPDDR2_MR4_SRR, value); 606 if (value > max) 607 max = value; 608 } 609 610 spin_unlock_irqrestore(&emc->lock, flags); 611 612 return max; 613 } 614 615 static void tegra210_emc_poll_refresh(struct timer_list *timer) 616 { 617 struct tegra210_emc *emc = timer_container_of(emc, timer, 618 refresh_timer); 619 unsigned int temperature; 620 621 if (!emc->debugfs.temperature) 622 temperature = tegra210_emc_get_temperature(emc); 623 else 624 temperature = emc->debugfs.temperature; 625 626 if (temperature == emc->temperature) 627 goto reset; 628 629 switch (temperature) { 630 case 0 ... 3: 631 /* temperature is fine, using regular refresh */ 632 dev_dbg(emc->dev, "switching to nominal refresh...\n"); 633 tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_NOMINAL); 634 break; 635 636 case 4: 637 dev_dbg(emc->dev, "switching to 2x refresh...\n"); 638 tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_2X); 639 break; 640 641 case 5: 642 dev_dbg(emc->dev, "switching to 4x refresh...\n"); 643 tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_4X); 644 break; 645 646 case 6 ... 7: 647 dev_dbg(emc->dev, "switching to throttle refresh...\n"); 648 tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_THROTTLE); 649 break; 650 651 default: 652 WARN(1, "invalid DRAM temperature state %u\n", temperature); 653 return; 654 } 655 656 emc->temperature = temperature; 657 658 reset: 659 if (atomic_read(&emc->refresh_poll) > 0) { 660 unsigned int interval = emc->refresh_poll_interval; 661 unsigned int timeout = msecs_to_jiffies(interval); 662 663 mod_timer(&emc->refresh_timer, jiffies + timeout); 664 } 665 } 666 667 static void tegra210_emc_poll_refresh_stop(struct tegra210_emc *emc) 668 { 669 atomic_set(&emc->refresh_poll, 0); 670 timer_delete_sync(&emc->refresh_timer); 671 } 672 673 static void tegra210_emc_poll_refresh_start(struct tegra210_emc *emc) 674 { 675 atomic_set(&emc->refresh_poll, 1); 676 677 mod_timer(&emc->refresh_timer, 678 jiffies + msecs_to_jiffies(emc->refresh_poll_interval)); 679 } 680 681 static int tegra210_emc_cd_max_state(struct thermal_cooling_device *cd, 682 unsigned long *state) 683 { 684 *state = 1; 685 686 return 0; 687 } 688 689 static int tegra210_emc_cd_get_state(struct thermal_cooling_device *cd, 690 unsigned long *state) 691 { 692 struct tegra210_emc *emc = cd->devdata; 693 694 *state = atomic_read(&emc->refresh_poll); 695 696 return 0; 697 } 698 699 static int tegra210_emc_cd_set_state(struct thermal_cooling_device *cd, 700 unsigned long state) 701 { 702 struct tegra210_emc *emc = cd->devdata; 703 704 if (state == atomic_read(&emc->refresh_poll)) 705 return 0; 706 707 if (state) 708 tegra210_emc_poll_refresh_start(emc); 709 else 710 tegra210_emc_poll_refresh_stop(emc); 711 712 return 0; 713 } 714 715 static const struct thermal_cooling_device_ops tegra210_emc_cd_ops = { 716 .get_max_state = tegra210_emc_cd_max_state, 717 .get_cur_state = tegra210_emc_cd_get_state, 718 .set_cur_state = tegra210_emc_cd_set_state, 719 }; 720 721 static void tegra210_emc_set_clock(struct tegra210_emc *emc, u32 clksrc) 722 { 723 emc->sequence->set_clock(emc, clksrc); 724 725 if (emc->next->periodic_training) 726 tegra210_emc_training_start(emc); 727 else 728 tegra210_emc_training_stop(emc); 729 } 730 731 static void tegra210_change_dll_src(struct tegra210_emc *emc, 732 u32 clksrc) 733 { 734 u32 dll_setting = emc->next->dll_clk_src; 735 u32 emc_clk_src; 736 u32 emc_clk_div; 737 738 emc_clk_src = (clksrc & EMC_CLK_EMC_2X_CLK_SRC_MASK) >> 739 EMC_CLK_EMC_2X_CLK_SRC_SHIFT; 740 emc_clk_div = (clksrc & EMC_CLK_EMC_2X_CLK_DIVISOR_MASK) >> 741 EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT; 742 743 dll_setting &= ~(DLL_CLK_EMC_DLL_CLK_SRC_MASK | 744 DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK); 745 dll_setting |= emc_clk_src << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT; 746 dll_setting |= emc_clk_div << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT; 747 748 dll_setting &= ~DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK; 749 if (emc_clk_src == EMC_CLK_SOURCE_PLLMB_LJ) 750 dll_setting |= (PLLM_VCOB << 751 DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT); 752 else if (emc_clk_src == EMC_CLK_SOURCE_PLLM_LJ) 753 dll_setting |= (PLLM_VCOA << 754 DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT); 755 else 756 dll_setting |= (EMC_DLL_SWITCH_OUT << 757 DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT); 758 759 tegra210_clk_emc_dll_update_setting(dll_setting); 760 761 if (emc->next->clk_out_enb_x_0_clk_enb_emc_dll) 762 tegra210_clk_emc_dll_enable(true); 763 else 764 tegra210_clk_emc_dll_enable(false); 765 } 766 767 int tegra210_emc_set_refresh(struct tegra210_emc *emc, 768 enum tegra210_emc_refresh refresh) 769 { 770 struct tegra210_emc_timing *timings; 771 unsigned long flags; 772 773 if ((emc->dram_type != DRAM_TYPE_LPDDR2 && 774 emc->dram_type != DRAM_TYPE_LPDDR4) || 775 !emc->last) 776 return -ENODEV; 777 778 if (refresh > TEGRA210_EMC_REFRESH_THROTTLE) 779 return -EINVAL; 780 781 if (refresh == emc->refresh) 782 return 0; 783 784 spin_lock_irqsave(&emc->lock, flags); 785 786 if (refresh == TEGRA210_EMC_REFRESH_THROTTLE && emc->derated) 787 timings = emc->derated; 788 else 789 timings = emc->nominal; 790 791 if (timings != emc->timings) { 792 unsigned int index = emc->last - emc->timings; 793 u32 clksrc; 794 795 clksrc = emc->provider.configs[index].value | 796 EMC_CLK_FORCE_CC_TRIGGER; 797 798 emc->next = &timings[index]; 799 emc->timings = timings; 800 801 tegra210_emc_set_clock(emc, clksrc); 802 } else { 803 tegra210_emc_adjust_timing(emc, emc->last); 804 tegra210_emc_timing_update(emc); 805 806 if (refresh != TEGRA210_EMC_REFRESH_NOMINAL) 807 emc_writel(emc, EMC_REF_REF_CMD, EMC_REF); 808 } 809 810 spin_unlock_irqrestore(&emc->lock, flags); 811 812 return 0; 813 } 814 815 u32 tegra210_emc_mrr_read(struct tegra210_emc *emc, unsigned int chip, 816 unsigned int address) 817 { 818 u32 value, ret = 0; 819 unsigned int i; 820 821 value = (chip & EMC_MRR_DEV_SEL_MASK) << EMC_MRR_DEV_SEL_SHIFT | 822 (address & EMC_MRR_MA_MASK) << EMC_MRR_MA_SHIFT; 823 emc_writel(emc, value, EMC_MRR); 824 825 for (i = 0; i < emc->num_channels; i++) 826 WARN(tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, 827 EMC_EMC_STATUS_MRR_DIVLD, 1), 828 "Timed out waiting for MRR %u (ch=%u)\n", address, i); 829 830 for (i = 0; i < emc->num_channels; i++) { 831 value = emc_channel_readl(emc, i, EMC_MRR); 832 value &= EMC_MRR_DATA_MASK; 833 834 ret = (ret << 16) | value; 835 } 836 837 return ret; 838 } 839 840 void tegra210_emc_do_clock_change(struct tegra210_emc *emc, u32 clksrc) 841 { 842 int err; 843 844 mc_readl(emc->mc, MC_EMEM_ADR_CFG); 845 emc_readl(emc, EMC_INTSTATUS); 846 847 tegra210_clk_emc_update_setting(clksrc); 848 849 err = tegra210_emc_wait_for_update(emc, 0, EMC_INTSTATUS, 850 EMC_INTSTATUS_CLKCHANGE_COMPLETE, 851 true); 852 if (err) 853 dev_warn(emc->dev, "clock change completion error: %d\n", err); 854 } 855 856 struct tegra210_emc_timing *tegra210_emc_find_timing(struct tegra210_emc *emc, 857 unsigned long rate) 858 { 859 unsigned int i; 860 861 for (i = 0; i < emc->num_timings; i++) 862 if (emc->timings[i].rate * 1000UL == rate) 863 return &emc->timings[i]; 864 865 return NULL; 866 } 867 868 int tegra210_emc_wait_for_update(struct tegra210_emc *emc, unsigned int channel, 869 unsigned int offset, u32 bit_mask, bool state) 870 { 871 unsigned int i; 872 u32 value; 873 874 for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; i++) { 875 value = emc_channel_readl(emc, channel, offset); 876 if (!!(value & bit_mask) == state) 877 return 0; 878 879 udelay(1); 880 } 881 882 return -ETIMEDOUT; 883 } 884 885 void tegra210_emc_set_shadow_bypass(struct tegra210_emc *emc, int set) 886 { 887 u32 emc_dbg = emc_readl(emc, EMC_DBG); 888 889 if (set) 890 emc_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG); 891 else 892 emc_writel(emc, emc_dbg & ~EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG); 893 } 894 895 u32 tegra210_emc_get_dll_state(struct tegra210_emc_timing *next) 896 { 897 if (next->emc_emrs & 0x1) 898 return 0; 899 900 return 1; 901 } 902 903 void tegra210_emc_timing_update(struct tegra210_emc *emc) 904 { 905 unsigned int i; 906 int err = 0; 907 908 emc_writel(emc, 0x1, EMC_TIMING_CONTROL); 909 910 for (i = 0; i < emc->num_channels; i++) { 911 err |= tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, 912 EMC_EMC_STATUS_TIMING_UPDATE_STALLED, 913 false); 914 } 915 916 if (err) 917 dev_warn(emc->dev, "timing update error: %d\n", err); 918 } 919 920 unsigned long tegra210_emc_actual_osc_clocks(u32 in) 921 { 922 if (in < 0x40) 923 return in * 16; 924 else if (in < 0x80) 925 return 2048; 926 else if (in < 0xc0) 927 return 4096; 928 else 929 return 8192; 930 } 931 932 void tegra210_emc_start_periodic_compensation(struct tegra210_emc *emc) 933 { 934 u32 mpc_req = 0x4b; 935 936 emc_writel(emc, mpc_req, EMC_MPC); 937 mpc_req = emc_readl(emc, EMC_MPC); 938 } 939 940 u32 tegra210_emc_compensate(struct tegra210_emc_timing *next, u32 offset) 941 { 942 u32 temp = 0, rate = next->rate / 1000; 943 s32 delta[4], delta_taps[4]; 944 s32 new[] = { 945 TRIM_REG(0, 0, 0, 0), 946 TRIM_REG(0, 0, 0, 1), 947 TRIM_REG(0, 0, 1, 2), 948 TRIM_REG(0, 0, 1, 3), 949 950 TRIM_REG(1, 0, 2, 4), 951 TRIM_REG(1, 0, 2, 5), 952 TRIM_REG(1, 0, 3, 6), 953 TRIM_REG(1, 0, 3, 7), 954 955 TRIM_REG(0, 1, 0, 0), 956 TRIM_REG(0, 1, 0, 1), 957 TRIM_REG(0, 1, 1, 2), 958 TRIM_REG(0, 1, 1, 3), 959 960 TRIM_REG(1, 1, 2, 4), 961 TRIM_REG(1, 1, 2, 5), 962 TRIM_REG(1, 1, 3, 6), 963 TRIM_REG(1, 1, 3, 7) 964 }; 965 unsigned i; 966 967 switch (offset) { 968 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0: 969 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1: 970 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2: 971 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3: 972 case EMC_DATA_BRLSHFT_0: 973 delta[0] = 128 * (next->current_dram_clktree[C0D0U0] - 974 next->trained_dram_clktree[C0D0U0]); 975 delta[1] = 128 * (next->current_dram_clktree[C0D0U1] - 976 next->trained_dram_clktree[C0D0U1]); 977 delta[2] = 128 * (next->current_dram_clktree[C1D0U0] - 978 next->trained_dram_clktree[C1D0U0]); 979 delta[3] = 128 * (next->current_dram_clktree[C1D0U1] - 980 next->trained_dram_clktree[C1D0U1]); 981 982 delta_taps[0] = (delta[0] * (s32)rate) / 1000000; 983 delta_taps[1] = (delta[1] * (s32)rate) / 1000000; 984 delta_taps[2] = (delta[2] * (s32)rate) / 1000000; 985 delta_taps[3] = (delta[3] * (s32)rate) / 1000000; 986 987 for (i = 0; i < 4; i++) { 988 if ((delta_taps[i] > next->tree_margin) || 989 (delta_taps[i] < (-1 * next->tree_margin))) { 990 new[i * 2] = new[i * 2] + delta_taps[i]; 991 new[i * 2 + 1] = new[i * 2 + 1] + 992 delta_taps[i]; 993 } 994 } 995 996 if (offset == EMC_DATA_BRLSHFT_0) { 997 for (i = 0; i < 8; i++) 998 new[i] = new[i] / 64; 999 } else { 1000 for (i = 0; i < 8; i++) 1001 new[i] = new[i] % 64; 1002 } 1003 1004 break; 1005 1006 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0: 1007 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1: 1008 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2: 1009 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3: 1010 case EMC_DATA_BRLSHFT_1: 1011 delta[0] = 128 * (next->current_dram_clktree[C0D1U0] - 1012 next->trained_dram_clktree[C0D1U0]); 1013 delta[1] = 128 * (next->current_dram_clktree[C0D1U1] - 1014 next->trained_dram_clktree[C0D1U1]); 1015 delta[2] = 128 * (next->current_dram_clktree[C1D1U0] - 1016 next->trained_dram_clktree[C1D1U0]); 1017 delta[3] = 128 * (next->current_dram_clktree[C1D1U1] - 1018 next->trained_dram_clktree[C1D1U1]); 1019 1020 delta_taps[0] = (delta[0] * (s32)rate) / 1000000; 1021 delta_taps[1] = (delta[1] * (s32)rate) / 1000000; 1022 delta_taps[2] = (delta[2] * (s32)rate) / 1000000; 1023 delta_taps[3] = (delta[3] * (s32)rate) / 1000000; 1024 1025 for (i = 0; i < 4; i++) { 1026 if ((delta_taps[i] > next->tree_margin) || 1027 (delta_taps[i] < (-1 * next->tree_margin))) { 1028 new[8 + i * 2] = new[8 + i * 2] + 1029 delta_taps[i]; 1030 new[8 + i * 2 + 1] = new[8 + i * 2 + 1] + 1031 delta_taps[i]; 1032 } 1033 } 1034 1035 if (offset == EMC_DATA_BRLSHFT_1) { 1036 for (i = 0; i < 8; i++) 1037 new[i + 8] = new[i + 8] / 64; 1038 } else { 1039 for (i = 0; i < 8; i++) 1040 new[i + 8] = new[i + 8] % 64; 1041 } 1042 1043 break; 1044 } 1045 1046 switch (offset) { 1047 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0: 1048 temp = CALC_TEMP(0, 0, 0, 1, 0); 1049 break; 1050 1051 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1: 1052 temp = CALC_TEMP(0, 1, 2, 3, 2); 1053 break; 1054 1055 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2: 1056 temp = CALC_TEMP(0, 2, 4, 5, 4); 1057 break; 1058 1059 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3: 1060 temp = CALC_TEMP(0, 3, 6, 7, 6); 1061 break; 1062 1063 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0: 1064 temp = CALC_TEMP(1, 0, 0, 1, 8); 1065 break; 1066 1067 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1: 1068 temp = CALC_TEMP(1, 1, 2, 3, 10); 1069 break; 1070 1071 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2: 1072 temp = CALC_TEMP(1, 2, 4, 5, 12); 1073 break; 1074 1075 case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3: 1076 temp = CALC_TEMP(1, 3, 6, 7, 14); 1077 break; 1078 1079 case EMC_DATA_BRLSHFT_0: 1080 temp = ((new[0] << 1081 EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_SHIFT) & 1082 EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_MASK) | 1083 ((new[1] << 1084 EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_SHIFT) & 1085 EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_MASK) | 1086 ((new[2] << 1087 EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_SHIFT) & 1088 EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_MASK) | 1089 ((new[3] << 1090 EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_SHIFT) & 1091 EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_MASK) | 1092 ((new[4] << 1093 EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_SHIFT) & 1094 EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_MASK) | 1095 ((new[5] << 1096 EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_SHIFT) & 1097 EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_MASK) | 1098 ((new[6] << 1099 EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_SHIFT) & 1100 EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_MASK) | 1101 ((new[7] << 1102 EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_SHIFT) & 1103 EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_MASK); 1104 break; 1105 1106 case EMC_DATA_BRLSHFT_1: 1107 temp = ((new[8] << 1108 EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_SHIFT) & 1109 EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_MASK) | 1110 ((new[9] << 1111 EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_SHIFT) & 1112 EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_MASK) | 1113 ((new[10] << 1114 EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_SHIFT) & 1115 EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_MASK) | 1116 ((new[11] << 1117 EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_SHIFT) & 1118 EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_MASK) | 1119 ((new[12] << 1120 EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_SHIFT) & 1121 EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_MASK) | 1122 ((new[13] << 1123 EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_SHIFT) & 1124 EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_MASK) | 1125 ((new[14] << 1126 EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_SHIFT) & 1127 EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_MASK) | 1128 ((new[15] << 1129 EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_SHIFT) & 1130 EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_MASK); 1131 break; 1132 1133 default: 1134 break; 1135 } 1136 1137 return temp; 1138 } 1139 1140 u32 tegra210_emc_dll_prelock(struct tegra210_emc *emc, u32 clksrc) 1141 { 1142 unsigned int i; 1143 u32 value; 1144 1145 value = emc_readl(emc, EMC_CFG_DIG_DLL); 1146 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_MASK; 1147 value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_SHIFT); 1148 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; 1149 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK; 1150 value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); 1151 value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; 1152 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; 1153 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; 1154 emc_writel(emc, value, EMC_CFG_DIG_DLL); 1155 emc_writel(emc, 1, EMC_TIMING_CONTROL); 1156 1157 for (i = 0; i < emc->num_channels; i++) 1158 tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, 1159 EMC_EMC_STATUS_TIMING_UPDATE_STALLED, 1160 0); 1161 1162 for (i = 0; i < emc->num_channels; i++) { 1163 while (true) { 1164 value = emc_channel_readl(emc, i, EMC_CFG_DIG_DLL); 1165 if ((value & EMC_CFG_DIG_DLL_CFG_DLL_EN) == 0) 1166 break; 1167 } 1168 } 1169 1170 value = emc->next->burst_regs[EMC_DLL_CFG_0_INDEX]; 1171 emc_writel(emc, value, EMC_DLL_CFG_0); 1172 1173 value = emc_readl(emc, EMC_DLL_CFG_1); 1174 value &= EMC_DLL_CFG_1_DDLLCAL_CTRL_START_TRIM_MASK; 1175 1176 if (emc->next->rate >= 400000 && emc->next->rate < 600000) 1177 value |= 150; 1178 else if (emc->next->rate >= 600000 && emc->next->rate < 800000) 1179 value |= 100; 1180 else if (emc->next->rate >= 800000 && emc->next->rate < 1000000) 1181 value |= 70; 1182 else if (emc->next->rate >= 1000000 && emc->next->rate < 1200000) 1183 value |= 30; 1184 else 1185 value |= 20; 1186 1187 emc_writel(emc, value, EMC_DLL_CFG_1); 1188 1189 tegra210_change_dll_src(emc, clksrc); 1190 1191 value = emc_readl(emc, EMC_CFG_DIG_DLL); 1192 value |= EMC_CFG_DIG_DLL_CFG_DLL_EN; 1193 emc_writel(emc, value, EMC_CFG_DIG_DLL); 1194 1195 tegra210_emc_timing_update(emc); 1196 1197 for (i = 0; i < emc->num_channels; i++) { 1198 while (true) { 1199 value = emc_channel_readl(emc, 0, EMC_CFG_DIG_DLL); 1200 if (value & EMC_CFG_DIG_DLL_CFG_DLL_EN) 1201 break; 1202 } 1203 } 1204 1205 while (true) { 1206 value = emc_readl(emc, EMC_DIG_DLL_STATUS); 1207 1208 if ((value & EMC_DIG_DLL_STATUS_DLL_PRIV_UPDATED) == 0) 1209 continue; 1210 1211 if ((value & EMC_DIG_DLL_STATUS_DLL_LOCK) == 0) 1212 continue; 1213 1214 break; 1215 } 1216 1217 value = emc_readl(emc, EMC_DIG_DLL_STATUS); 1218 1219 return value & EMC_DIG_DLL_STATUS_DLL_OUT_MASK; 1220 } 1221 1222 u32 tegra210_emc_dvfs_power_ramp_up(struct tegra210_emc *emc, u32 clk, 1223 bool flip_backward) 1224 { 1225 u32 cmd_pad, dq_pad, rfu1, cfg5, common_tx, ramp_up_wait = 0; 1226 const struct tegra210_emc_timing *timing; 1227 1228 if (flip_backward) 1229 timing = emc->last; 1230 else 1231 timing = emc->next; 1232 1233 cmd_pad = timing->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX]; 1234 dq_pad = timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; 1235 rfu1 = timing->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX]; 1236 cfg5 = timing->burst_regs[EMC_FBIO_CFG5_INDEX]; 1237 common_tx = timing->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX]; 1238 1239 cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; 1240 1241 if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) { 1242 ccfifo_writel(emc, common_tx & 0xa, 1243 EMC_PMACRO_COMMON_PAD_TX_CTRL, 0); 1244 ccfifo_writel(emc, common_tx & 0xf, 1245 EMC_PMACRO_COMMON_PAD_TX_CTRL, 1246 (100000 / clk) + 1); 1247 ramp_up_wait += 100000; 1248 } else { 1249 ccfifo_writel(emc, common_tx | 0x8, 1250 EMC_PMACRO_COMMON_PAD_TX_CTRL, 0); 1251 } 1252 1253 if (clk < 1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD) { 1254 if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) { 1255 cmd_pad |= 1256 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | 1257 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC; 1258 cmd_pad &= 1259 ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | 1260 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC); 1261 ccfifo_writel(emc, cmd_pad, 1262 EMC_PMACRO_CMD_PAD_TX_CTRL, 1263 (100000 / clk) + 1); 1264 ramp_up_wait += 100000; 1265 1266 dq_pad |= 1267 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | 1268 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC; 1269 dq_pad &= 1270 ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | 1271 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC); 1272 ccfifo_writel(emc, dq_pad, 1273 EMC_PMACRO_DATA_PAD_TX_CTRL, 0); 1274 ccfifo_writel(emc, rfu1 & 0xfe40fe40, 1275 EMC_PMACRO_BRICK_CTRL_RFU1, 0); 1276 } else { 1277 ccfifo_writel(emc, rfu1 & 0xfe40fe40, 1278 EMC_PMACRO_BRICK_CTRL_RFU1, 1279 (100000 / clk) + 1); 1280 ramp_up_wait += 100000; 1281 } 1282 1283 ccfifo_writel(emc, rfu1 & 0xfeedfeed, 1284 EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1); 1285 ramp_up_wait += 100000; 1286 1287 if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) { 1288 cmd_pad |= 1289 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | 1290 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC | 1291 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | 1292 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC; 1293 ccfifo_writel(emc, cmd_pad, 1294 EMC_PMACRO_CMD_PAD_TX_CTRL, 1295 (100000 / clk) + 1); 1296 ramp_up_wait += 100000; 1297 1298 dq_pad |= 1299 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | 1300 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC | 1301 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | 1302 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC; 1303 ccfifo_writel(emc, dq_pad, 1304 EMC_PMACRO_DATA_PAD_TX_CTRL, 0); 1305 ccfifo_writel(emc, rfu1, 1306 EMC_PMACRO_BRICK_CTRL_RFU1, 0); 1307 } else { 1308 ccfifo_writel(emc, rfu1, 1309 EMC_PMACRO_BRICK_CTRL_RFU1, 1310 (100000 / clk) + 1); 1311 ramp_up_wait += 100000; 1312 } 1313 1314 ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS, 1315 EMC_FBIO_CFG5, (100000 / clk) + 10); 1316 ramp_up_wait += 100000 + (10 * clk); 1317 } else if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) { 1318 ccfifo_writel(emc, rfu1 | 0x06000600, 1319 EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1); 1320 ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS, 1321 EMC_FBIO_CFG5, (100000 / clk) + 10); 1322 ramp_up_wait += 100000 + 10 * clk; 1323 } else { 1324 ccfifo_writel(emc, rfu1 | 0x00000600, 1325 EMC_PMACRO_BRICK_CTRL_RFU1, 0); 1326 ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS, 1327 EMC_FBIO_CFG5, 12); 1328 ramp_up_wait += 12 * clk; 1329 } 1330 1331 cmd_pad &= ~EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; 1332 ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 5); 1333 1334 return ramp_up_wait; 1335 } 1336 1337 u32 tegra210_emc_dvfs_power_ramp_down(struct tegra210_emc *emc, u32 clk, 1338 bool flip_backward) 1339 { 1340 u32 ramp_down_wait = 0, cmd_pad, dq_pad, rfu1, cfg5, common_tx; 1341 const struct tegra210_emc_timing *entry; 1342 u32 seq_wait; 1343 1344 if (flip_backward) 1345 entry = emc->next; 1346 else 1347 entry = emc->last; 1348 1349 cmd_pad = entry->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX]; 1350 dq_pad = entry->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; 1351 rfu1 = entry->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX]; 1352 cfg5 = entry->burst_regs[EMC_FBIO_CFG5_INDEX]; 1353 common_tx = entry->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX]; 1354 1355 cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; 1356 1357 ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 0); 1358 ccfifo_writel(emc, cfg5 | EMC_FBIO_CFG5_CMD_TX_DIS, 1359 EMC_FBIO_CFG5, 12); 1360 ramp_down_wait = 12 * clk; 1361 1362 seq_wait = (100000 / clk) + 1; 1363 1364 if (clk < (1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD)) { 1365 if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) { 1366 cmd_pad &= 1367 ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | 1368 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC); 1369 cmd_pad |= 1370 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | 1371 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC; 1372 ccfifo_writel(emc, cmd_pad, 1373 EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait); 1374 ramp_down_wait += 100000; 1375 1376 dq_pad &= 1377 ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | 1378 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC); 1379 dq_pad |= 1380 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | 1381 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC; 1382 ccfifo_writel(emc, dq_pad, 1383 EMC_PMACRO_DATA_PAD_TX_CTRL, 0); 1384 ccfifo_writel(emc, rfu1 & ~0x01120112, 1385 EMC_PMACRO_BRICK_CTRL_RFU1, 0); 1386 } else { 1387 ccfifo_writel(emc, rfu1 & ~0x01120112, 1388 EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait); 1389 ramp_down_wait += 100000; 1390 } 1391 1392 ccfifo_writel(emc, rfu1 & ~0x01bf01bf, 1393 EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait); 1394 ramp_down_wait += 100000; 1395 1396 if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) { 1397 cmd_pad &= 1398 ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | 1399 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC | 1400 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | 1401 EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC); 1402 ccfifo_writel(emc, cmd_pad, 1403 EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait); 1404 ramp_down_wait += 100000; 1405 1406 dq_pad &= 1407 ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | 1408 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC | 1409 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | 1410 EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC); 1411 ccfifo_writel(emc, dq_pad, 1412 EMC_PMACRO_DATA_PAD_TX_CTRL, 0); 1413 ccfifo_writel(emc, rfu1 & ~0x07ff07ff, 1414 EMC_PMACRO_BRICK_CTRL_RFU1, 0); 1415 } else { 1416 ccfifo_writel(emc, rfu1 & ~0x07ff07ff, 1417 EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait); 1418 ramp_down_wait += 100000; 1419 } 1420 } else { 1421 ccfifo_writel(emc, rfu1 & ~0xffff07ff, 1422 EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait + 19); 1423 ramp_down_wait += 100000 + (20 * clk); 1424 } 1425 1426 if (clk < (1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD)) { 1427 ramp_down_wait += 100000; 1428 ccfifo_writel(emc, common_tx & ~0x5, 1429 EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait); 1430 ramp_down_wait += 100000; 1431 ccfifo_writel(emc, common_tx & ~0xf, 1432 EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait); 1433 ramp_down_wait += 100000; 1434 ccfifo_writel(emc, 0, 0, seq_wait); 1435 ramp_down_wait += 100000; 1436 } else { 1437 ccfifo_writel(emc, common_tx & ~0xf, 1438 EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait); 1439 } 1440 1441 return ramp_down_wait; 1442 } 1443 1444 void tegra210_emc_reset_dram_clktree_values(struct tegra210_emc_timing *timing) 1445 { 1446 timing->current_dram_clktree[C0D0U0] = 1447 timing->trained_dram_clktree[C0D0U0]; 1448 timing->current_dram_clktree[C0D0U1] = 1449 timing->trained_dram_clktree[C0D0U1]; 1450 timing->current_dram_clktree[C1D0U0] = 1451 timing->trained_dram_clktree[C1D0U0]; 1452 timing->current_dram_clktree[C1D0U1] = 1453 timing->trained_dram_clktree[C1D0U1]; 1454 timing->current_dram_clktree[C1D1U0] = 1455 timing->trained_dram_clktree[C1D1U0]; 1456 timing->current_dram_clktree[C1D1U1] = 1457 timing->trained_dram_clktree[C1D1U1]; 1458 } 1459 1460 static void update_dll_control(struct tegra210_emc *emc, u32 value, bool state) 1461 { 1462 unsigned int i; 1463 1464 emc_writel(emc, value, EMC_CFG_DIG_DLL); 1465 tegra210_emc_timing_update(emc); 1466 1467 for (i = 0; i < emc->num_channels; i++) 1468 tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL, 1469 EMC_CFG_DIG_DLL_CFG_DLL_EN, 1470 state); 1471 } 1472 1473 void tegra210_emc_dll_disable(struct tegra210_emc *emc) 1474 { 1475 u32 value; 1476 1477 value = emc_readl(emc, EMC_CFG_DIG_DLL); 1478 value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; 1479 1480 update_dll_control(emc, value, false); 1481 } 1482 1483 void tegra210_emc_dll_enable(struct tegra210_emc *emc) 1484 { 1485 u32 value; 1486 1487 value = emc_readl(emc, EMC_CFG_DIG_DLL); 1488 value |= EMC_CFG_DIG_DLL_CFG_DLL_EN; 1489 1490 update_dll_control(emc, value, true); 1491 } 1492 1493 void tegra210_emc_adjust_timing(struct tegra210_emc *emc, 1494 struct tegra210_emc_timing *timing) 1495 { 1496 u32 dsr_cntrl = timing->burst_regs[EMC_DYN_SELF_REF_CONTROL_INDEX]; 1497 u32 pre_ref = timing->burst_regs[EMC_PRE_REFRESH_REQ_CNT_INDEX]; 1498 u32 ref = timing->burst_regs[EMC_REFRESH_INDEX]; 1499 1500 switch (emc->refresh) { 1501 case TEGRA210_EMC_REFRESH_NOMINAL: 1502 case TEGRA210_EMC_REFRESH_THROTTLE: 1503 break; 1504 1505 case TEGRA210_EMC_REFRESH_2X: 1506 ref = REFRESH_SPEEDUP(ref, 2); 1507 pre_ref = REFRESH_SPEEDUP(pre_ref, 2); 1508 dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 2); 1509 break; 1510 1511 case TEGRA210_EMC_REFRESH_4X: 1512 ref = REFRESH_SPEEDUP(ref, 4); 1513 pre_ref = REFRESH_SPEEDUP(pre_ref, 4); 1514 dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 4); 1515 break; 1516 1517 default: 1518 dev_warn(emc->dev, "failed to set refresh: %d\n", emc->refresh); 1519 return; 1520 } 1521 1522 emc_writel(emc, ref, emc->offsets->burst[EMC_REFRESH_INDEX]); 1523 emc_writel(emc, pre_ref, 1524 emc->offsets->burst[EMC_PRE_REFRESH_REQ_CNT_INDEX]); 1525 emc_writel(emc, dsr_cntrl, 1526 emc->offsets->burst[EMC_DYN_SELF_REF_CONTROL_INDEX]); 1527 } 1528 1529 static int tegra210_emc_set_rate(struct device *dev, 1530 const struct tegra210_clk_emc_config *config) 1531 { 1532 struct tegra210_emc *emc = dev_get_drvdata(dev); 1533 struct tegra210_emc_timing *timing = NULL; 1534 unsigned long rate = config->rate; 1535 s64 last_change_delay; 1536 unsigned long flags; 1537 unsigned int i; 1538 1539 if (rate == emc->last->rate * 1000UL) 1540 return 0; 1541 1542 for (i = 0; i < emc->num_timings; i++) { 1543 if (emc->timings[i].rate * 1000UL == rate) { 1544 timing = &emc->timings[i]; 1545 break; 1546 } 1547 } 1548 1549 if (!timing) 1550 return -EINVAL; 1551 1552 if (rate > 204000000 && !timing->trained) 1553 return -EINVAL; 1554 1555 emc->next = timing; 1556 last_change_delay = ktime_us_delta(ktime_get(), emc->clkchange_time); 1557 1558 /* XXX use non-busy-looping sleep? */ 1559 if ((last_change_delay >= 0) && 1560 (last_change_delay < emc->clkchange_delay)) 1561 udelay(emc->clkchange_delay - (int)last_change_delay); 1562 1563 spin_lock_irqsave(&emc->lock, flags); 1564 tegra210_emc_set_clock(emc, config->value); 1565 emc->clkchange_time = ktime_get(); 1566 emc->last = timing; 1567 spin_unlock_irqrestore(&emc->lock, flags); 1568 1569 return 0; 1570 } 1571 1572 /* 1573 * debugfs interface 1574 * 1575 * The memory controller driver exposes some files in debugfs that can be used 1576 * to control the EMC frequency. The top-level directory can be found here: 1577 * 1578 * /sys/kernel/debug/emc 1579 * 1580 * It contains the following files: 1581 * 1582 * - available_rates: This file contains a list of valid, space-separated 1583 * EMC frequencies. 1584 * 1585 * - min_rate: Writing a value to this file sets the given frequency as the 1586 * floor of the permitted range. If this is higher than the currently 1587 * configured EMC frequency, this will cause the frequency to be 1588 * increased so that it stays within the valid range. 1589 * 1590 * - max_rate: Similarily to the min_rate file, writing a value to this file 1591 * sets the given frequency as the ceiling of the permitted range. If 1592 * the value is lower than the currently configured EMC frequency, this 1593 * will cause the frequency to be decreased so that it stays within the 1594 * valid range. 1595 */ 1596 1597 static bool tegra210_emc_validate_rate(struct tegra210_emc *emc, 1598 unsigned long rate) 1599 { 1600 unsigned int i; 1601 1602 for (i = 0; i < emc->num_timings; i++) 1603 if (rate == emc->timings[i].rate * 1000UL) 1604 return true; 1605 1606 return false; 1607 } 1608 1609 static int tegra210_emc_debug_available_rates_show(struct seq_file *s, 1610 void *data) 1611 { 1612 struct tegra210_emc *emc = s->private; 1613 const char *prefix = ""; 1614 unsigned int i; 1615 1616 for (i = 0; i < emc->num_timings; i++) { 1617 seq_printf(s, "%s%u", prefix, emc->timings[i].rate * 1000); 1618 prefix = " "; 1619 } 1620 1621 seq_puts(s, "\n"); 1622 1623 return 0; 1624 } 1625 DEFINE_SHOW_ATTRIBUTE(tegra210_emc_debug_available_rates); 1626 1627 static int tegra210_emc_debug_min_rate_get(void *data, u64 *rate) 1628 { 1629 struct tegra210_emc *emc = data; 1630 1631 *rate = emc->debugfs.min_rate; 1632 1633 return 0; 1634 } 1635 1636 static int tegra210_emc_debug_min_rate_set(void *data, u64 rate) 1637 { 1638 struct tegra210_emc *emc = data; 1639 int err; 1640 1641 if (!tegra210_emc_validate_rate(emc, rate)) 1642 return -EINVAL; 1643 1644 err = clk_set_min_rate(emc->clk, rate); 1645 if (err < 0) 1646 return err; 1647 1648 emc->debugfs.min_rate = rate; 1649 1650 return 0; 1651 } 1652 1653 DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_min_rate_fops, 1654 tegra210_emc_debug_min_rate_get, 1655 tegra210_emc_debug_min_rate_set, "%llu\n"); 1656 1657 static int tegra210_emc_debug_max_rate_get(void *data, u64 *rate) 1658 { 1659 struct tegra210_emc *emc = data; 1660 1661 *rate = emc->debugfs.max_rate; 1662 1663 return 0; 1664 } 1665 1666 static int tegra210_emc_debug_max_rate_set(void *data, u64 rate) 1667 { 1668 struct tegra210_emc *emc = data; 1669 int err; 1670 1671 if (!tegra210_emc_validate_rate(emc, rate)) 1672 return -EINVAL; 1673 1674 err = clk_set_max_rate(emc->clk, rate); 1675 if (err < 0) 1676 return err; 1677 1678 emc->debugfs.max_rate = rate; 1679 1680 return 0; 1681 } 1682 1683 DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_max_rate_fops, 1684 tegra210_emc_debug_max_rate_get, 1685 tegra210_emc_debug_max_rate_set, "%llu\n"); 1686 1687 static int tegra210_emc_debug_temperature_get(void *data, u64 *temperature) 1688 { 1689 struct tegra210_emc *emc = data; 1690 unsigned int value; 1691 1692 if (!emc->debugfs.temperature) 1693 value = tegra210_emc_get_temperature(emc); 1694 else 1695 value = emc->debugfs.temperature; 1696 1697 *temperature = value; 1698 1699 return 0; 1700 } 1701 1702 static int tegra210_emc_debug_temperature_set(void *data, u64 temperature) 1703 { 1704 struct tegra210_emc *emc = data; 1705 1706 if (temperature > 7) 1707 return -EINVAL; 1708 1709 emc->debugfs.temperature = temperature; 1710 1711 return 0; 1712 } 1713 1714 DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_temperature_fops, 1715 tegra210_emc_debug_temperature_get, 1716 tegra210_emc_debug_temperature_set, "%llu\n"); 1717 1718 static void tegra210_emc_debugfs_init(struct tegra210_emc *emc) 1719 { 1720 struct device *dev = emc->dev; 1721 unsigned int i; 1722 int err; 1723 1724 emc->debugfs.min_rate = ULONG_MAX; 1725 emc->debugfs.max_rate = 0; 1726 1727 for (i = 0; i < emc->num_timings; i++) { 1728 if (emc->timings[i].rate * 1000UL < emc->debugfs.min_rate) 1729 emc->debugfs.min_rate = emc->timings[i].rate * 1000UL; 1730 1731 if (emc->timings[i].rate * 1000UL > emc->debugfs.max_rate) 1732 emc->debugfs.max_rate = emc->timings[i].rate * 1000UL; 1733 } 1734 1735 if (!emc->num_timings) { 1736 emc->debugfs.min_rate = clk_get_rate(emc->clk); 1737 emc->debugfs.max_rate = emc->debugfs.min_rate; 1738 } 1739 1740 err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate, 1741 emc->debugfs.max_rate); 1742 if (err < 0) { 1743 dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n", 1744 emc->debugfs.min_rate, emc->debugfs.max_rate, 1745 emc->clk); 1746 return; 1747 } 1748 1749 emc->debugfs.root = debugfs_create_dir("emc", NULL); 1750 1751 debugfs_create_file("available_rates", 0444, emc->debugfs.root, emc, 1752 &tegra210_emc_debug_available_rates_fops); 1753 debugfs_create_file("min_rate", 0644, emc->debugfs.root, emc, 1754 &tegra210_emc_debug_min_rate_fops); 1755 debugfs_create_file("max_rate", 0644, emc->debugfs.root, emc, 1756 &tegra210_emc_debug_max_rate_fops); 1757 debugfs_create_file("temperature", 0644, emc->debugfs.root, emc, 1758 &tegra210_emc_debug_temperature_fops); 1759 } 1760 1761 static void tegra210_emc_detect(struct tegra210_emc *emc) 1762 { 1763 u32 value; 1764 1765 /* probe the number of connected DRAM devices */ 1766 value = mc_readl(emc->mc, MC_EMEM_ADR_CFG); 1767 1768 if (value & MC_EMEM_ADR_CFG_EMEM_NUMDEV) 1769 emc->num_devices = 2; 1770 else 1771 emc->num_devices = 1; 1772 1773 /* probe the type of DRAM */ 1774 value = emc_readl(emc, EMC_FBIO_CFG5); 1775 emc->dram_type = value & 0x3; 1776 1777 /* probe the number of channels */ 1778 value = emc_readl(emc, EMC_FBIO_CFG7); 1779 1780 if ((value & EMC_FBIO_CFG7_CH1_ENABLE) && 1781 (value & EMC_FBIO_CFG7_CH0_ENABLE)) 1782 emc->num_channels = 2; 1783 else 1784 emc->num_channels = 1; 1785 } 1786 1787 static int tegra210_emc_validate_timings(struct tegra210_emc *emc, 1788 struct tegra210_emc_timing *timings, 1789 unsigned int num_timings) 1790 { 1791 unsigned int i; 1792 1793 for (i = 0; i < num_timings; i++) { 1794 u32 min_volt = timings[i].min_volt; 1795 u32 rate = timings[i].rate; 1796 1797 if (!rate) 1798 return -EINVAL; 1799 1800 if ((i > 0) && ((rate <= timings[i - 1].rate) || 1801 (min_volt < timings[i - 1].min_volt))) 1802 return -EINVAL; 1803 1804 if (timings[i].revision != timings[0].revision) 1805 continue; 1806 } 1807 1808 return 0; 1809 } 1810 1811 static int tegra210_emc_probe(struct platform_device *pdev) 1812 { 1813 struct thermal_cooling_device *cd; 1814 unsigned long current_rate; 1815 struct tegra210_emc *emc; 1816 struct device_node *np; 1817 unsigned int i; 1818 int err; 1819 1820 emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL); 1821 if (!emc) 1822 return -ENOMEM; 1823 1824 emc->clk = devm_clk_get(&pdev->dev, "emc"); 1825 if (IS_ERR(emc->clk)) 1826 return PTR_ERR(emc->clk); 1827 1828 platform_set_drvdata(pdev, emc); 1829 spin_lock_init(&emc->lock); 1830 emc->dev = &pdev->dev; 1831 1832 emc->mc = devm_tegra_memory_controller_get(&pdev->dev); 1833 if (IS_ERR(emc->mc)) 1834 return PTR_ERR(emc->mc); 1835 1836 emc->regs = devm_platform_ioremap_resource(pdev, 0); 1837 if (IS_ERR(emc->regs)) 1838 return PTR_ERR(emc->regs); 1839 1840 for (i = 0; i < 2; i++) { 1841 emc->channel[i] = devm_platform_ioremap_resource(pdev, 1 + i); 1842 if (IS_ERR(emc->channel[i])) 1843 return PTR_ERR(emc->channel[i]); 1844 1845 } 1846 1847 tegra210_emc_detect(emc); 1848 np = pdev->dev.of_node; 1849 1850 /* attach to the nominal and (optional) derated tables */ 1851 err = of_reserved_mem_device_init_by_name(emc->dev, np, "nominal"); 1852 if (err < 0) { 1853 dev_err(emc->dev, "failed to get nominal EMC table: %d\n", err); 1854 return err; 1855 } 1856 1857 err = of_reserved_mem_device_init_by_name(emc->dev, np, "derated"); 1858 if (err < 0 && err != -ENODEV) { 1859 dev_err(emc->dev, "failed to get derated EMC table: %d\n", err); 1860 goto release; 1861 } 1862 1863 /* validate the tables */ 1864 if (emc->nominal) { 1865 err = tegra210_emc_validate_timings(emc, emc->nominal, 1866 emc->num_timings); 1867 if (err < 0) 1868 goto release; 1869 } 1870 1871 if (emc->derated) { 1872 err = tegra210_emc_validate_timings(emc, emc->derated, 1873 emc->num_timings); 1874 if (err < 0) 1875 goto release; 1876 } 1877 1878 /* default to the nominal table */ 1879 emc->timings = emc->nominal; 1880 1881 /* pick the current timing based on the current EMC clock rate */ 1882 current_rate = clk_get_rate(emc->clk) / 1000; 1883 1884 for (i = 0; i < emc->num_timings; i++) { 1885 if (emc->timings[i].rate == current_rate) { 1886 emc->last = &emc->timings[i]; 1887 break; 1888 } 1889 } 1890 1891 if (i == emc->num_timings) { 1892 dev_err(emc->dev, "no EMC table entry found for %lu kHz\n", 1893 current_rate); 1894 err = -ENOENT; 1895 goto release; 1896 } 1897 1898 /* pick a compatible clock change sequence for the EMC table */ 1899 for (i = 0; i < ARRAY_SIZE(tegra210_emc_sequences); i++) { 1900 const struct tegra210_emc_sequence *sequence = 1901 tegra210_emc_sequences[i]; 1902 1903 if (emc->timings[0].revision == sequence->revision) { 1904 emc->sequence = sequence; 1905 break; 1906 } 1907 } 1908 1909 if (!emc->sequence) { 1910 dev_err(&pdev->dev, "sequence %u not supported\n", 1911 emc->timings[0].revision); 1912 err = -ENOTSUPP; 1913 goto release; 1914 } 1915 1916 emc->offsets = &tegra210_emc_table_register_offsets; 1917 emc->refresh = TEGRA210_EMC_REFRESH_NOMINAL; 1918 1919 emc->provider.owner = THIS_MODULE; 1920 emc->provider.dev = &pdev->dev; 1921 emc->provider.set_rate = tegra210_emc_set_rate; 1922 1923 emc->provider.configs = devm_kcalloc(&pdev->dev, emc->num_timings, 1924 sizeof(*emc->provider.configs), 1925 GFP_KERNEL); 1926 if (!emc->provider.configs) { 1927 err = -ENOMEM; 1928 goto release; 1929 } 1930 1931 emc->provider.num_configs = emc->num_timings; 1932 1933 for (i = 0; i < emc->provider.num_configs; i++) { 1934 struct tegra210_emc_timing *timing = &emc->timings[i]; 1935 struct tegra210_clk_emc_config *config = 1936 &emc->provider.configs[i]; 1937 u32 value; 1938 1939 config->rate = timing->rate * 1000UL; 1940 config->value = timing->clk_src_emc; 1941 1942 value = timing->burst_mc_regs[MC_EMEM_ARB_MISC0_INDEX]; 1943 1944 if ((value & MC_EMEM_ARB_MISC0_EMC_SAME_FREQ) == 0) 1945 config->same_freq = false; 1946 else 1947 config->same_freq = true; 1948 } 1949 1950 err = tegra210_clk_emc_attach(emc->clk, &emc->provider); 1951 if (err < 0) { 1952 dev_err(&pdev->dev, "failed to attach to EMC clock: %d\n", err); 1953 goto release; 1954 } 1955 1956 emc->clkchange_delay = 100; 1957 emc->training_interval = 100; 1958 dev_set_drvdata(emc->dev, emc); 1959 1960 timer_setup(&emc->refresh_timer, tegra210_emc_poll_refresh, 1961 TIMER_DEFERRABLE); 1962 atomic_set(&emc->refresh_poll, 0); 1963 emc->refresh_poll_interval = 1000; 1964 1965 timer_setup(&emc->training, tegra210_emc_train, 0); 1966 1967 tegra210_emc_debugfs_init(emc); 1968 1969 cd = devm_thermal_of_cooling_device_register(emc->dev, np, "emc", emc, 1970 &tegra210_emc_cd_ops); 1971 if (IS_ERR(cd)) { 1972 err = PTR_ERR(cd); 1973 dev_err(emc->dev, "failed to register cooling device: %d\n", 1974 err); 1975 goto detach; 1976 } 1977 1978 return 0; 1979 1980 detach: 1981 debugfs_remove_recursive(emc->debugfs.root); 1982 tegra210_clk_emc_detach(emc->clk); 1983 release: 1984 of_reserved_mem_device_release(emc->dev); 1985 1986 return err; 1987 } 1988 1989 static void tegra210_emc_remove(struct platform_device *pdev) 1990 { 1991 struct tegra210_emc *emc = platform_get_drvdata(pdev); 1992 1993 debugfs_remove_recursive(emc->debugfs.root); 1994 tegra210_clk_emc_detach(emc->clk); 1995 of_reserved_mem_device_release(emc->dev); 1996 } 1997 1998 static int __maybe_unused tegra210_emc_suspend(struct device *dev) 1999 { 2000 struct tegra210_emc *emc = dev_get_drvdata(dev); 2001 int err; 2002 2003 err = clk_rate_exclusive_get(emc->clk); 2004 if (err < 0) { 2005 dev_err(emc->dev, "failed to acquire clock: %d\n", err); 2006 return err; 2007 } 2008 2009 emc->resume_rate = clk_get_rate(emc->clk); 2010 2011 clk_set_rate(emc->clk, 204000000); 2012 tegra210_clk_emc_detach(emc->clk); 2013 2014 dev_dbg(dev, "suspending at %lu Hz\n", clk_get_rate(emc->clk)); 2015 2016 return 0; 2017 } 2018 2019 static int __maybe_unused tegra210_emc_resume(struct device *dev) 2020 { 2021 struct tegra210_emc *emc = dev_get_drvdata(dev); 2022 int err; 2023 2024 err = tegra210_clk_emc_attach(emc->clk, &emc->provider); 2025 if (err < 0) { 2026 dev_err(dev, "failed to attach to EMC clock: %d\n", err); 2027 return err; 2028 } 2029 2030 clk_set_rate(emc->clk, emc->resume_rate); 2031 clk_rate_exclusive_put(emc->clk); 2032 2033 dev_dbg(dev, "resuming at %lu Hz\n", clk_get_rate(emc->clk)); 2034 2035 return 0; 2036 } 2037 2038 static const struct dev_pm_ops tegra210_emc_pm_ops = { 2039 SET_SYSTEM_SLEEP_PM_OPS(tegra210_emc_suspend, tegra210_emc_resume) 2040 }; 2041 2042 static const struct of_device_id tegra210_emc_of_match[] = { 2043 { .compatible = "nvidia,tegra210-emc", }, 2044 { }, 2045 }; 2046 MODULE_DEVICE_TABLE(of, tegra210_emc_of_match); 2047 2048 static struct platform_driver tegra210_emc_driver = { 2049 .driver = { 2050 .name = "tegra210-emc", 2051 .of_match_table = tegra210_emc_of_match, 2052 .pm = &tegra210_emc_pm_ops, 2053 }, 2054 .probe = tegra210_emc_probe, 2055 .remove = tegra210_emc_remove, 2056 }; 2057 2058 module_platform_driver(tegra210_emc_driver); 2059 2060 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>"); 2061 MODULE_AUTHOR("Joseph Lo <josephl@nvidia.com>"); 2062 MODULE_DESCRIPTION("NVIDIA Tegra210 EMC driver"); 2063 MODULE_LICENSE("GPL v2"); 2064