xref: /linux/drivers/memory/tegra/tegra20-emc.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Tegra20 External Memory Controller driver
4  *
5  * Author: Dmitry Osipenko <digetx@gmail.com>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/clk/tegra.h>
10 #include <linux/debugfs.h>
11 #include <linux/devfreq.h>
12 #include <linux/err.h>
13 #include <linux/interconnect-provider.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_opp.h>
23 #include <linux/slab.h>
24 #include <linux/sort.h>
25 #include <linux/types.h>
26 
27 #include <soc/tegra/common.h>
28 #include <soc/tegra/fuse.h>
29 
30 #include "mc.h"
31 
32 #define EMC_INTSTATUS				0x000
33 #define EMC_INTMASK				0x004
34 #define EMC_DBG					0x008
35 #define EMC_TIMING_CONTROL			0x028
36 #define EMC_RC					0x02c
37 #define EMC_RFC					0x030
38 #define EMC_RAS					0x034
39 #define EMC_RP					0x038
40 #define EMC_R2W					0x03c
41 #define EMC_W2R					0x040
42 #define EMC_R2P					0x044
43 #define EMC_W2P					0x048
44 #define EMC_RD_RCD				0x04c
45 #define EMC_WR_RCD				0x050
46 #define EMC_RRD					0x054
47 #define EMC_REXT				0x058
48 #define EMC_WDV					0x05c
49 #define EMC_QUSE				0x060
50 #define EMC_QRST				0x064
51 #define EMC_QSAFE				0x068
52 #define EMC_RDV					0x06c
53 #define EMC_REFRESH				0x070
54 #define EMC_BURST_REFRESH_NUM			0x074
55 #define EMC_PDEX2WR				0x078
56 #define EMC_PDEX2RD				0x07c
57 #define EMC_PCHG2PDEN				0x080
58 #define EMC_ACT2PDEN				0x084
59 #define EMC_AR2PDEN				0x088
60 #define EMC_RW2PDEN				0x08c
61 #define EMC_TXSR				0x090
62 #define EMC_TCKE				0x094
63 #define EMC_TFAW				0x098
64 #define EMC_TRPAB				0x09c
65 #define EMC_TCLKSTABLE				0x0a0
66 #define EMC_TCLKSTOP				0x0a4
67 #define EMC_TREFBW				0x0a8
68 #define EMC_QUSE_EXTRA				0x0ac
69 #define EMC_ODT_WRITE				0x0b0
70 #define EMC_ODT_READ				0x0b4
71 #define EMC_FBIO_CFG5				0x104
72 #define EMC_FBIO_CFG6				0x114
73 #define EMC_STAT_CONTROL			0x160
74 #define EMC_STAT_LLMC_CONTROL			0x178
75 #define EMC_STAT_PWR_CLOCK_LIMIT		0x198
76 #define EMC_STAT_PWR_CLOCKS			0x19c
77 #define EMC_STAT_PWR_COUNT			0x1a0
78 #define EMC_AUTO_CAL_INTERVAL			0x2a8
79 #define EMC_CFG_2				0x2b8
80 #define EMC_CFG_DIG_DLL				0x2bc
81 #define EMC_DLL_XFORM_DQS			0x2c0
82 #define EMC_DLL_XFORM_QUSE			0x2c4
83 #define EMC_ZCAL_REF_CNT			0x2e0
84 #define EMC_ZCAL_WAIT_CNT			0x2e4
85 #define EMC_CFG_CLKTRIM_0			0x2d0
86 #define EMC_CFG_CLKTRIM_1			0x2d4
87 #define EMC_CFG_CLKTRIM_2			0x2d8
88 
89 #define EMC_CLKCHANGE_REQ_ENABLE		BIT(0)
90 #define EMC_CLKCHANGE_PD_ENABLE			BIT(1)
91 #define EMC_CLKCHANGE_SR_ENABLE			BIT(2)
92 
93 #define EMC_TIMING_UPDATE			BIT(0)
94 
95 #define EMC_REFRESH_OVERFLOW_INT		BIT(3)
96 #define EMC_CLKCHANGE_COMPLETE_INT		BIT(4)
97 
98 #define EMC_DBG_READ_MUX_ASSEMBLY		BIT(0)
99 #define EMC_DBG_WRITE_MUX_ACTIVE		BIT(1)
100 #define EMC_DBG_FORCE_UPDATE			BIT(2)
101 #define EMC_DBG_READ_DQM_CTRL			BIT(9)
102 #define EMC_DBG_CFG_PRIORITY			BIT(24)
103 
104 #define EMC_FBIO_CFG5_DRAM_WIDTH_X16		BIT(4)
105 
106 #define EMC_PWR_GATHER_CLEAR			(1 << 8)
107 #define EMC_PWR_GATHER_DISABLE			(2 << 8)
108 #define EMC_PWR_GATHER_ENABLE			(3 << 8)
109 
110 static const u16 emc_timing_registers[] = {
111 	EMC_RC,
112 	EMC_RFC,
113 	EMC_RAS,
114 	EMC_RP,
115 	EMC_R2W,
116 	EMC_W2R,
117 	EMC_R2P,
118 	EMC_W2P,
119 	EMC_RD_RCD,
120 	EMC_WR_RCD,
121 	EMC_RRD,
122 	EMC_REXT,
123 	EMC_WDV,
124 	EMC_QUSE,
125 	EMC_QRST,
126 	EMC_QSAFE,
127 	EMC_RDV,
128 	EMC_REFRESH,
129 	EMC_BURST_REFRESH_NUM,
130 	EMC_PDEX2WR,
131 	EMC_PDEX2RD,
132 	EMC_PCHG2PDEN,
133 	EMC_ACT2PDEN,
134 	EMC_AR2PDEN,
135 	EMC_RW2PDEN,
136 	EMC_TXSR,
137 	EMC_TCKE,
138 	EMC_TFAW,
139 	EMC_TRPAB,
140 	EMC_TCLKSTABLE,
141 	EMC_TCLKSTOP,
142 	EMC_TREFBW,
143 	EMC_QUSE_EXTRA,
144 	EMC_FBIO_CFG6,
145 	EMC_ODT_WRITE,
146 	EMC_ODT_READ,
147 	EMC_FBIO_CFG5,
148 	EMC_CFG_DIG_DLL,
149 	EMC_DLL_XFORM_DQS,
150 	EMC_DLL_XFORM_QUSE,
151 	EMC_ZCAL_REF_CNT,
152 	EMC_ZCAL_WAIT_CNT,
153 	EMC_AUTO_CAL_INTERVAL,
154 	EMC_CFG_CLKTRIM_0,
155 	EMC_CFG_CLKTRIM_1,
156 	EMC_CFG_CLKTRIM_2,
157 };
158 
159 struct emc_timing {
160 	unsigned long rate;
161 	u32 data[ARRAY_SIZE(emc_timing_registers)];
162 };
163 
164 enum emc_rate_request_type {
165 	EMC_RATE_DEVFREQ,
166 	EMC_RATE_DEBUG,
167 	EMC_RATE_ICC,
168 	EMC_RATE_TYPE_MAX,
169 };
170 
171 struct emc_rate_request {
172 	unsigned long min_rate;
173 	unsigned long max_rate;
174 };
175 
176 struct tegra_emc {
177 	struct device *dev;
178 	struct tegra_mc *mc;
179 	struct icc_provider provider;
180 	struct notifier_block clk_nb;
181 	struct clk *clk;
182 	void __iomem *regs;
183 	unsigned int dram_bus_width;
184 
185 	struct emc_timing *timings;
186 	unsigned int num_timings;
187 
188 	struct {
189 		struct dentry *root;
190 		unsigned long min_rate;
191 		unsigned long max_rate;
192 	} debugfs;
193 
194 	/*
195 	 * There are multiple sources in the EMC driver which could request
196 	 * a min/max clock rate, these rates are contained in this array.
197 	 */
198 	struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
199 
200 	/* protect shared rate-change code path */
201 	struct mutex rate_lock;
202 
203 	struct devfreq_simple_ondemand_data ondemand_data;
204 };
205 
206 static irqreturn_t tegra_emc_isr(int irq, void *data)
207 {
208 	struct tegra_emc *emc = data;
209 	u32 intmask = EMC_REFRESH_OVERFLOW_INT;
210 	u32 status;
211 
212 	status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask;
213 	if (!status)
214 		return IRQ_NONE;
215 
216 	/* notify about HW problem */
217 	if (status & EMC_REFRESH_OVERFLOW_INT)
218 		dev_err_ratelimited(emc->dev,
219 				    "refresh request overflow timeout\n");
220 
221 	/* clear interrupts */
222 	writel_relaxed(status, emc->regs + EMC_INTSTATUS);
223 
224 	return IRQ_HANDLED;
225 }
226 
227 static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc,
228 						unsigned long rate)
229 {
230 	struct emc_timing *timing = NULL;
231 	unsigned int i;
232 
233 	for (i = 0; i < emc->num_timings; i++) {
234 		if (emc->timings[i].rate >= rate) {
235 			timing = &emc->timings[i];
236 			break;
237 		}
238 	}
239 
240 	if (!timing) {
241 		dev_err(emc->dev, "no timing for rate %lu\n", rate);
242 		return NULL;
243 	}
244 
245 	return timing;
246 }
247 
248 static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate)
249 {
250 	struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
251 	unsigned int i;
252 
253 	if (!timing)
254 		return -EINVAL;
255 
256 	dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n",
257 		__func__, timing->rate, rate);
258 
259 	/* program shadow registers */
260 	for (i = 0; i < ARRAY_SIZE(timing->data); i++)
261 		writel_relaxed(timing->data[i],
262 			       emc->regs + emc_timing_registers[i]);
263 
264 	/* wait until programming has settled */
265 	readl_relaxed(emc->regs + emc_timing_registers[i - 1]);
266 
267 	return 0;
268 }
269 
270 static int emc_complete_timing_change(struct tegra_emc *emc, bool flush)
271 {
272 	int err;
273 	u32 v;
274 
275 	dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush);
276 
277 	if (flush) {
278 		/* manually initiate memory timing update */
279 		writel_relaxed(EMC_TIMING_UPDATE,
280 			       emc->regs + EMC_TIMING_CONTROL);
281 		return 0;
282 	}
283 
284 	err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v,
285 						v & EMC_CLKCHANGE_COMPLETE_INT,
286 						1, 100);
287 	if (err) {
288 		dev_err(emc->dev, "emc-car handshake timeout: %d\n", err);
289 		return err;
290 	}
291 
292 	return 0;
293 }
294 
295 static int tegra_emc_clk_change_notify(struct notifier_block *nb,
296 				       unsigned long msg, void *data)
297 {
298 	struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb);
299 	struct clk_notifier_data *cnd = data;
300 	int err;
301 
302 	switch (msg) {
303 	case PRE_RATE_CHANGE:
304 		err = emc_prepare_timing_change(emc, cnd->new_rate);
305 		break;
306 
307 	case ABORT_RATE_CHANGE:
308 		err = emc_prepare_timing_change(emc, cnd->old_rate);
309 		if (err)
310 			break;
311 
312 		err = emc_complete_timing_change(emc, true);
313 		break;
314 
315 	case POST_RATE_CHANGE:
316 		err = emc_complete_timing_change(emc, false);
317 		break;
318 
319 	default:
320 		return NOTIFY_DONE;
321 	}
322 
323 	return notifier_from_errno(err);
324 }
325 
326 static int load_one_timing_from_dt(struct tegra_emc *emc,
327 				   struct emc_timing *timing,
328 				   struct device_node *node)
329 {
330 	u32 rate;
331 	int err;
332 
333 	if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) {
334 		dev_err(emc->dev, "incompatible DT node: %pOF\n", node);
335 		return -EINVAL;
336 	}
337 
338 	err = of_property_read_u32(node, "clock-frequency", &rate);
339 	if (err) {
340 		dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n",
341 			node, err);
342 		return err;
343 	}
344 
345 	err = of_property_read_u32_array(node, "nvidia,emc-registers",
346 					 timing->data,
347 					 ARRAY_SIZE(emc_timing_registers));
348 	if (err) {
349 		dev_err(emc->dev,
350 			"timing %pOF: failed to read emc timing data: %d\n",
351 			node, err);
352 		return err;
353 	}
354 
355 	/*
356 	 * The EMC clock rate is twice the bus rate, and the bus rate is
357 	 * measured in kHz.
358 	 */
359 	timing->rate = rate * 2 * 1000;
360 
361 	dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n",
362 		__func__, node, timing->rate);
363 
364 	return 0;
365 }
366 
367 static int cmp_timings(const void *_a, const void *_b)
368 {
369 	const struct emc_timing *a = _a;
370 	const struct emc_timing *b = _b;
371 
372 	if (a->rate < b->rate)
373 		return -1;
374 
375 	if (a->rate > b->rate)
376 		return 1;
377 
378 	return 0;
379 }
380 
381 static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc,
382 					  struct device_node *node)
383 {
384 	struct device_node *child;
385 	struct emc_timing *timing;
386 	int child_count;
387 	int err;
388 
389 	child_count = of_get_child_count(node);
390 	if (!child_count) {
391 		dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node);
392 		return -EINVAL;
393 	}
394 
395 	emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
396 				    GFP_KERNEL);
397 	if (!emc->timings)
398 		return -ENOMEM;
399 
400 	emc->num_timings = child_count;
401 	timing = emc->timings;
402 
403 	for_each_child_of_node(node, child) {
404 		err = load_one_timing_from_dt(emc, timing++, child);
405 		if (err) {
406 			of_node_put(child);
407 			return err;
408 		}
409 	}
410 
411 	sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
412 	     NULL);
413 
414 	dev_info(emc->dev,
415 		 "got %u timings for RAM code %u (min %luMHz max %luMHz)\n",
416 		 emc->num_timings,
417 		 tegra_read_ram_code(),
418 		 emc->timings[0].rate / 1000000,
419 		 emc->timings[emc->num_timings - 1].rate / 1000000);
420 
421 	return 0;
422 }
423 
424 static struct device_node *
425 tegra_emc_find_node_by_ram_code(struct device *dev)
426 {
427 	struct device_node *np;
428 	u32 value, ram_code;
429 	int err;
430 
431 	if (of_get_child_count(dev->of_node) == 0) {
432 		dev_info(dev, "device-tree doesn't have memory timings\n");
433 		return NULL;
434 	}
435 
436 	if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code"))
437 		return of_node_get(dev->of_node);
438 
439 	ram_code = tegra_read_ram_code();
440 
441 	for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np;
442 	     np = of_find_node_by_name(np, "emc-tables")) {
443 		err = of_property_read_u32(np, "nvidia,ram-code", &value);
444 		if (err || value != ram_code) {
445 			of_node_put(np);
446 			continue;
447 		}
448 
449 		return np;
450 	}
451 
452 	dev_err(dev, "no memory timings for RAM code %u found in device tree\n",
453 		ram_code);
454 
455 	return NULL;
456 }
457 
458 static int emc_setup_hw(struct tegra_emc *emc)
459 {
460 	u32 intmask = EMC_REFRESH_OVERFLOW_INT;
461 	u32 emc_cfg, emc_dbg, emc_fbio;
462 
463 	emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2);
464 
465 	/*
466 	 * Depending on a memory type, DRAM should enter either self-refresh
467 	 * or power-down state on EMC clock change.
468 	 */
469 	if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) &&
470 	    !(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) {
471 		dev_err(emc->dev,
472 			"bootloader didn't specify DRAM auto-suspend mode\n");
473 		return -EINVAL;
474 	}
475 
476 	/* enable EMC and CAR to handshake on PLL divider/source changes */
477 	emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE;
478 	writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2);
479 
480 	/* initialize interrupt */
481 	writel_relaxed(intmask, emc->regs + EMC_INTMASK);
482 	writel_relaxed(intmask, emc->regs + EMC_INTSTATUS);
483 
484 	/* ensure that unwanted debug features are disabled */
485 	emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
486 	emc_dbg |= EMC_DBG_CFG_PRIORITY;
487 	emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY;
488 	emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE;
489 	emc_dbg &= ~EMC_DBG_FORCE_UPDATE;
490 	writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
491 
492 	emc_fbio = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
493 
494 	if (emc_fbio & EMC_FBIO_CFG5_DRAM_WIDTH_X16)
495 		emc->dram_bus_width = 16;
496 	else
497 		emc->dram_bus_width = 32;
498 
499 	dev_info(emc->dev, "%ubit DRAM bus\n", emc->dram_bus_width);
500 
501 	return 0;
502 }
503 
504 static long emc_round_rate(unsigned long rate,
505 			   unsigned long min_rate,
506 			   unsigned long max_rate,
507 			   void *arg)
508 {
509 	struct emc_timing *timing = NULL;
510 	struct tegra_emc *emc = arg;
511 	unsigned int i;
512 
513 	if (!emc->num_timings)
514 		return clk_get_rate(emc->clk);
515 
516 	min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate);
517 
518 	for (i = 0; i < emc->num_timings; i++) {
519 		if (emc->timings[i].rate < rate && i != emc->num_timings - 1)
520 			continue;
521 
522 		if (emc->timings[i].rate > max_rate) {
523 			i = max(i, 1u) - 1;
524 
525 			if (emc->timings[i].rate < min_rate)
526 				break;
527 		}
528 
529 		if (emc->timings[i].rate < min_rate)
530 			continue;
531 
532 		timing = &emc->timings[i];
533 		break;
534 	}
535 
536 	if (!timing) {
537 		dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n",
538 			rate, min_rate, max_rate);
539 		return -EINVAL;
540 	}
541 
542 	return timing->rate;
543 }
544 
545 static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
546 {
547 	unsigned int i;
548 
549 	for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
550 		emc->requested_rate[i].min_rate = 0;
551 		emc->requested_rate[i].max_rate = ULONG_MAX;
552 	}
553 }
554 
555 static int emc_request_rate(struct tegra_emc *emc,
556 			    unsigned long new_min_rate,
557 			    unsigned long new_max_rate,
558 			    enum emc_rate_request_type type)
559 {
560 	struct emc_rate_request *req = emc->requested_rate;
561 	unsigned long min_rate = 0, max_rate = ULONG_MAX;
562 	unsigned int i;
563 	int err;
564 
565 	/* select minimum and maximum rates among the requested rates */
566 	for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
567 		if (i == type) {
568 			min_rate = max(new_min_rate, min_rate);
569 			max_rate = min(new_max_rate, max_rate);
570 		} else {
571 			min_rate = max(req->min_rate, min_rate);
572 			max_rate = min(req->max_rate, max_rate);
573 		}
574 	}
575 
576 	if (min_rate > max_rate) {
577 		dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
578 				    __func__, type, min_rate, max_rate);
579 		return -ERANGE;
580 	}
581 
582 	/*
583 	 * EMC rate-changes should go via OPP API because it manages voltage
584 	 * changes.
585 	 */
586 	err = dev_pm_opp_set_rate(emc->dev, min_rate);
587 	if (err)
588 		return err;
589 
590 	emc->requested_rate[type].min_rate = new_min_rate;
591 	emc->requested_rate[type].max_rate = new_max_rate;
592 
593 	return 0;
594 }
595 
596 static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
597 			    enum emc_rate_request_type type)
598 {
599 	struct emc_rate_request *req = &emc->requested_rate[type];
600 	int ret;
601 
602 	mutex_lock(&emc->rate_lock);
603 	ret = emc_request_rate(emc, rate, req->max_rate, type);
604 	mutex_unlock(&emc->rate_lock);
605 
606 	return ret;
607 }
608 
609 static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
610 			    enum emc_rate_request_type type)
611 {
612 	struct emc_rate_request *req = &emc->requested_rate[type];
613 	int ret;
614 
615 	mutex_lock(&emc->rate_lock);
616 	ret = emc_request_rate(emc, req->min_rate, rate, type);
617 	mutex_unlock(&emc->rate_lock);
618 
619 	return ret;
620 }
621 
622 /*
623  * debugfs interface
624  *
625  * The memory controller driver exposes some files in debugfs that can be used
626  * to control the EMC frequency. The top-level directory can be found here:
627  *
628  *   /sys/kernel/debug/emc
629  *
630  * It contains the following files:
631  *
632  *   - available_rates: This file contains a list of valid, space-separated
633  *     EMC frequencies.
634  *
635  *   - min_rate: Writing a value to this file sets the given frequency as the
636  *       floor of the permitted range. If this is higher than the currently
637  *       configured EMC frequency, this will cause the frequency to be
638  *       increased so that it stays within the valid range.
639  *
640  *   - max_rate: Similarily to the min_rate file, writing a value to this file
641  *       sets the given frequency as the ceiling of the permitted range. If
642  *       the value is lower than the currently configured EMC frequency, this
643  *       will cause the frequency to be decreased so that it stays within the
644  *       valid range.
645  */
646 
647 static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
648 {
649 	unsigned int i;
650 
651 	for (i = 0; i < emc->num_timings; i++)
652 		if (rate == emc->timings[i].rate)
653 			return true;
654 
655 	return false;
656 }
657 
658 static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data)
659 {
660 	struct tegra_emc *emc = s->private;
661 	const char *prefix = "";
662 	unsigned int i;
663 
664 	for (i = 0; i < emc->num_timings; i++) {
665 		seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
666 		prefix = " ";
667 	}
668 
669 	seq_puts(s, "\n");
670 
671 	return 0;
672 }
673 
674 static int tegra_emc_debug_available_rates_open(struct inode *inode,
675 						struct file *file)
676 {
677 	return single_open(file, tegra_emc_debug_available_rates_show,
678 			   inode->i_private);
679 }
680 
681 static const struct file_operations tegra_emc_debug_available_rates_fops = {
682 	.open = tegra_emc_debug_available_rates_open,
683 	.read = seq_read,
684 	.llseek = seq_lseek,
685 	.release = single_release,
686 };
687 
688 static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
689 {
690 	struct tegra_emc *emc = data;
691 
692 	*rate = emc->debugfs.min_rate;
693 
694 	return 0;
695 }
696 
697 static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
698 {
699 	struct tegra_emc *emc = data;
700 	int err;
701 
702 	if (!tegra_emc_validate_rate(emc, rate))
703 		return -EINVAL;
704 
705 	err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
706 	if (err < 0)
707 		return err;
708 
709 	emc->debugfs.min_rate = rate;
710 
711 	return 0;
712 }
713 
714 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
715 			tegra_emc_debug_min_rate_get,
716 			tegra_emc_debug_min_rate_set, "%llu\n");
717 
718 static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
719 {
720 	struct tegra_emc *emc = data;
721 
722 	*rate = emc->debugfs.max_rate;
723 
724 	return 0;
725 }
726 
727 static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
728 {
729 	struct tegra_emc *emc = data;
730 	int err;
731 
732 	if (!tegra_emc_validate_rate(emc, rate))
733 		return -EINVAL;
734 
735 	err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
736 	if (err < 0)
737 		return err;
738 
739 	emc->debugfs.max_rate = rate;
740 
741 	return 0;
742 }
743 
744 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
745 			tegra_emc_debug_max_rate_get,
746 			tegra_emc_debug_max_rate_set, "%llu\n");
747 
748 static void tegra_emc_debugfs_init(struct tegra_emc *emc)
749 {
750 	struct device *dev = emc->dev;
751 	unsigned int i;
752 	int err;
753 
754 	emc->debugfs.min_rate = ULONG_MAX;
755 	emc->debugfs.max_rate = 0;
756 
757 	for (i = 0; i < emc->num_timings; i++) {
758 		if (emc->timings[i].rate < emc->debugfs.min_rate)
759 			emc->debugfs.min_rate = emc->timings[i].rate;
760 
761 		if (emc->timings[i].rate > emc->debugfs.max_rate)
762 			emc->debugfs.max_rate = emc->timings[i].rate;
763 	}
764 
765 	if (!emc->num_timings) {
766 		emc->debugfs.min_rate = clk_get_rate(emc->clk);
767 		emc->debugfs.max_rate = emc->debugfs.min_rate;
768 	}
769 
770 	err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
771 				 emc->debugfs.max_rate);
772 	if (err < 0) {
773 		dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
774 			emc->debugfs.min_rate, emc->debugfs.max_rate,
775 			emc->clk);
776 	}
777 
778 	emc->debugfs.root = debugfs_create_dir("emc", NULL);
779 	if (!emc->debugfs.root) {
780 		dev_err(emc->dev, "failed to create debugfs directory\n");
781 		return;
782 	}
783 
784 	debugfs_create_file("available_rates", 0444, emc->debugfs.root,
785 			    emc, &tegra_emc_debug_available_rates_fops);
786 	debugfs_create_file("min_rate", 0644, emc->debugfs.root,
787 			    emc, &tegra_emc_debug_min_rate_fops);
788 	debugfs_create_file("max_rate", 0644, emc->debugfs.root,
789 			    emc, &tegra_emc_debug_max_rate_fops);
790 }
791 
792 static inline struct tegra_emc *
793 to_tegra_emc_provider(struct icc_provider *provider)
794 {
795 	return container_of(provider, struct tegra_emc, provider);
796 }
797 
798 static struct icc_node_data *
799 emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data)
800 {
801 	struct icc_provider *provider = data;
802 	struct icc_node_data *ndata;
803 	struct icc_node *node;
804 
805 	/* External Memory is the only possible ICC route */
806 	list_for_each_entry(node, &provider->nodes, node_list) {
807 		if (node->id != TEGRA_ICC_EMEM)
808 			continue;
809 
810 		ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
811 		if (!ndata)
812 			return ERR_PTR(-ENOMEM);
813 
814 		/*
815 		 * SRC and DST nodes should have matching TAG in order to have
816 		 * it set by default for a requested path.
817 		 */
818 		ndata->tag = TEGRA_MC_ICC_TAG_ISO;
819 		ndata->node = node;
820 
821 		return ndata;
822 	}
823 
824 	return ERR_PTR(-EPROBE_DEFER);
825 }
826 
827 static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
828 {
829 	struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
830 	unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
831 	unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
832 	unsigned long long rate = max(avg_bw, peak_bw);
833 	unsigned int dram_data_bus_width_bytes;
834 	int err;
835 
836 	/*
837 	 * Tegra20 EMC runs on x2 clock rate of SDRAM bus because DDR data
838 	 * is sampled on both clock edges.  This means that EMC clock rate
839 	 * equals to the peak data-rate.
840 	 */
841 	dram_data_bus_width_bytes = emc->dram_bus_width / 8;
842 	do_div(rate, dram_data_bus_width_bytes);
843 	rate = min_t(u64, rate, U32_MAX);
844 
845 	err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
846 	if (err)
847 		return err;
848 
849 	return 0;
850 }
851 
852 static int tegra_emc_interconnect_init(struct tegra_emc *emc)
853 {
854 	const struct tegra_mc_soc *soc;
855 	struct icc_node *node;
856 	int err;
857 
858 	emc->mc = devm_tegra_memory_controller_get(emc->dev);
859 	if (IS_ERR(emc->mc))
860 		return PTR_ERR(emc->mc);
861 
862 	soc = emc->mc->soc;
863 
864 	emc->provider.dev = emc->dev;
865 	emc->provider.set = emc_icc_set;
866 	emc->provider.data = &emc->provider;
867 	emc->provider.aggregate = soc->icc_ops->aggregate;
868 	emc->provider.xlate_extended = emc_of_icc_xlate_extended;
869 
870 	err = icc_provider_add(&emc->provider);
871 	if (err)
872 		goto err_msg;
873 
874 	/* create External Memory Controller node */
875 	node = icc_node_create(TEGRA_ICC_EMC);
876 	if (IS_ERR(node)) {
877 		err = PTR_ERR(node);
878 		goto del_provider;
879 	}
880 
881 	node->name = "External Memory Controller";
882 	icc_node_add(node, &emc->provider);
883 
884 	/* link External Memory Controller to External Memory (DRAM) */
885 	err = icc_link_create(node, TEGRA_ICC_EMEM);
886 	if (err)
887 		goto remove_nodes;
888 
889 	/* create External Memory node */
890 	node = icc_node_create(TEGRA_ICC_EMEM);
891 	if (IS_ERR(node)) {
892 		err = PTR_ERR(node);
893 		goto remove_nodes;
894 	}
895 
896 	node->name = "External Memory (DRAM)";
897 	icc_node_add(node, &emc->provider);
898 
899 	return 0;
900 
901 remove_nodes:
902 	icc_nodes_remove(&emc->provider);
903 del_provider:
904 	icc_provider_del(&emc->provider);
905 err_msg:
906 	dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
907 
908 	return err;
909 }
910 
911 static int tegra_emc_opp_table_init(struct tegra_emc *emc)
912 {
913 	u32 hw_version = BIT(tegra_sku_info.soc_process_id);
914 	struct opp_table *clk_opp_table, *hw_opp_table;
915 	int err;
916 
917 	clk_opp_table = dev_pm_opp_set_clkname(emc->dev, NULL);
918 	err = PTR_ERR_OR_ZERO(clk_opp_table);
919 	if (err) {
920 		dev_err(emc->dev, "failed to set OPP clk: %d\n", err);
921 		return err;
922 	}
923 
924 	hw_opp_table = dev_pm_opp_set_supported_hw(emc->dev, &hw_version, 1);
925 	err = PTR_ERR_OR_ZERO(hw_opp_table);
926 	if (err) {
927 		dev_err(emc->dev, "failed to set OPP supported HW: %d\n", err);
928 		goto put_clk_table;
929 	}
930 
931 	err = dev_pm_opp_of_add_table(emc->dev);
932 	if (err) {
933 		if (err == -ENODEV)
934 			dev_err(emc->dev, "OPP table not found, please update your device tree\n");
935 		else
936 			dev_err(emc->dev, "failed to add OPP table: %d\n", err);
937 
938 		goto put_hw_table;
939 	}
940 
941 	dev_info(emc->dev, "OPP HW ver. 0x%x, current clock rate %lu MHz\n",
942 		 hw_version, clk_get_rate(emc->clk) / 1000000);
943 
944 	/* first dummy rate-set initializes voltage state */
945 	err = dev_pm_opp_set_rate(emc->dev, clk_get_rate(emc->clk));
946 	if (err) {
947 		dev_err(emc->dev, "failed to initialize OPP clock: %d\n", err);
948 		goto remove_table;
949 	}
950 
951 	return 0;
952 
953 remove_table:
954 	dev_pm_opp_of_remove_table(emc->dev);
955 put_hw_table:
956 	dev_pm_opp_put_supported_hw(hw_opp_table);
957 put_clk_table:
958 	dev_pm_opp_put_clkname(clk_opp_table);
959 
960 	return err;
961 }
962 
963 static void devm_tegra_emc_unset_callback(void *data)
964 {
965 	tegra20_clk_set_emc_round_callback(NULL, NULL);
966 }
967 
968 static void devm_tegra_emc_unreg_clk_notifier(void *data)
969 {
970 	struct tegra_emc *emc = data;
971 
972 	clk_notifier_unregister(emc->clk, &emc->clk_nb);
973 }
974 
975 static int tegra_emc_init_clk(struct tegra_emc *emc)
976 {
977 	int err;
978 
979 	tegra20_clk_set_emc_round_callback(emc_round_rate, emc);
980 
981 	err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback,
982 				       NULL);
983 	if (err)
984 		return err;
985 
986 	emc->clk = devm_clk_get(emc->dev, NULL);
987 	if (IS_ERR(emc->clk)) {
988 		dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk);
989 		return PTR_ERR(emc->clk);
990 	}
991 
992 	err = clk_notifier_register(emc->clk, &emc->clk_nb);
993 	if (err) {
994 		dev_err(emc->dev, "failed to register clk notifier: %d\n", err);
995 		return err;
996 	}
997 
998 	err = devm_add_action_or_reset(emc->dev,
999 				       devm_tegra_emc_unreg_clk_notifier, emc);
1000 	if (err)
1001 		return err;
1002 
1003 	return 0;
1004 }
1005 
1006 static int tegra_emc_devfreq_target(struct device *dev, unsigned long *freq,
1007 				    u32 flags)
1008 {
1009 	struct tegra_emc *emc = dev_get_drvdata(dev);
1010 	struct dev_pm_opp *opp;
1011 	unsigned long rate;
1012 
1013 	opp = devfreq_recommended_opp(dev, freq, flags);
1014 	if (IS_ERR(opp)) {
1015 		dev_err(dev, "failed to find opp for %lu Hz\n", *freq);
1016 		return PTR_ERR(opp);
1017 	}
1018 
1019 	rate = dev_pm_opp_get_freq(opp);
1020 	dev_pm_opp_put(opp);
1021 
1022 	return emc_set_min_rate(emc, rate, EMC_RATE_DEVFREQ);
1023 }
1024 
1025 static int tegra_emc_devfreq_get_dev_status(struct device *dev,
1026 					    struct devfreq_dev_status *stat)
1027 {
1028 	struct tegra_emc *emc = dev_get_drvdata(dev);
1029 
1030 	/* freeze counters */
1031 	writel_relaxed(EMC_PWR_GATHER_DISABLE, emc->regs + EMC_STAT_CONTROL);
1032 
1033 	/*
1034 	 *  busy_time: number of clocks EMC request was accepted
1035 	 * total_time: number of clocks PWR_GATHER control was set to ENABLE
1036 	 */
1037 	stat->busy_time = readl_relaxed(emc->regs + EMC_STAT_PWR_COUNT);
1038 	stat->total_time = readl_relaxed(emc->regs + EMC_STAT_PWR_CLOCKS);
1039 	stat->current_frequency = clk_get_rate(emc->clk);
1040 
1041 	/* clear counters and restart */
1042 	writel_relaxed(EMC_PWR_GATHER_CLEAR, emc->regs + EMC_STAT_CONTROL);
1043 	writel_relaxed(EMC_PWR_GATHER_ENABLE, emc->regs + EMC_STAT_CONTROL);
1044 
1045 	return 0;
1046 }
1047 
1048 static struct devfreq_dev_profile tegra_emc_devfreq_profile = {
1049 	.polling_ms = 30,
1050 	.target = tegra_emc_devfreq_target,
1051 	.get_dev_status = tegra_emc_devfreq_get_dev_status,
1052 };
1053 
1054 static int tegra_emc_devfreq_init(struct tegra_emc *emc)
1055 {
1056 	struct devfreq *devfreq;
1057 
1058 	/*
1059 	 * PWR_COUNT is 1/2 of PWR_CLOCKS at max, and thus, the up-threshold
1060 	 * should be less than 50.  Secondly, multiple active memory clients
1061 	 * may cause over 20% of lost clock cycles due to stalls caused by
1062 	 * competing memory accesses.  This means that threshold should be
1063 	 * set to a less than 30 in order to have a properly working governor.
1064 	 */
1065 	emc->ondemand_data.upthreshold = 20;
1066 
1067 	/*
1068 	 * Reset statistic gathers state, select global bandwidth for the
1069 	 * statistics collection mode and set clocks counter saturation
1070 	 * limit to maximum.
1071 	 */
1072 	writel_relaxed(0x00000000, emc->regs + EMC_STAT_CONTROL);
1073 	writel_relaxed(0x00000000, emc->regs + EMC_STAT_LLMC_CONTROL);
1074 	writel_relaxed(0xffffffff, emc->regs + EMC_STAT_PWR_CLOCK_LIMIT);
1075 
1076 	devfreq = devm_devfreq_add_device(emc->dev, &tegra_emc_devfreq_profile,
1077 					  DEVFREQ_GOV_SIMPLE_ONDEMAND,
1078 					  &emc->ondemand_data);
1079 	if (IS_ERR(devfreq)) {
1080 		dev_err(emc->dev, "failed to initialize devfreq: %pe", devfreq);
1081 		return PTR_ERR(devfreq);
1082 	}
1083 
1084 	return 0;
1085 }
1086 
1087 static int tegra_emc_probe(struct platform_device *pdev)
1088 {
1089 	struct device_node *np;
1090 	struct tegra_emc *emc;
1091 	int irq, err;
1092 
1093 	irq = platform_get_irq(pdev, 0);
1094 	if (irq < 0) {
1095 		dev_err(&pdev->dev, "please update your device tree\n");
1096 		return irq;
1097 	}
1098 
1099 	emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
1100 	if (!emc)
1101 		return -ENOMEM;
1102 
1103 	mutex_init(&emc->rate_lock);
1104 	emc->clk_nb.notifier_call = tegra_emc_clk_change_notify;
1105 	emc->dev = &pdev->dev;
1106 
1107 	np = tegra_emc_find_node_by_ram_code(&pdev->dev);
1108 	if (np) {
1109 		err = tegra_emc_load_timings_from_dt(emc, np);
1110 		of_node_put(np);
1111 		if (err)
1112 			return err;
1113 	}
1114 
1115 	emc->regs = devm_platform_ioremap_resource(pdev, 0);
1116 	if (IS_ERR(emc->regs))
1117 		return PTR_ERR(emc->regs);
1118 
1119 	err = emc_setup_hw(emc);
1120 	if (err)
1121 		return err;
1122 
1123 	err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0,
1124 			       dev_name(&pdev->dev), emc);
1125 	if (err) {
1126 		dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
1127 		return err;
1128 	}
1129 
1130 	err = tegra_emc_init_clk(emc);
1131 	if (err)
1132 		return err;
1133 
1134 	err = tegra_emc_opp_table_init(emc);
1135 	if (err)
1136 		return err;
1137 
1138 	platform_set_drvdata(pdev, emc);
1139 	tegra_emc_rate_requests_init(emc);
1140 	tegra_emc_debugfs_init(emc);
1141 	tegra_emc_interconnect_init(emc);
1142 	tegra_emc_devfreq_init(emc);
1143 
1144 	/*
1145 	 * Don't allow the kernel module to be unloaded. Unloading adds some
1146 	 * extra complexity which doesn't really worth the effort in a case of
1147 	 * this driver.
1148 	 */
1149 	try_module_get(THIS_MODULE);
1150 
1151 	return 0;
1152 }
1153 
1154 static const struct of_device_id tegra_emc_of_match[] = {
1155 	{ .compatible = "nvidia,tegra20-emc", },
1156 	{},
1157 };
1158 MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
1159 
1160 static struct platform_driver tegra_emc_driver = {
1161 	.probe = tegra_emc_probe,
1162 	.driver = {
1163 		.name = "tegra20-emc",
1164 		.of_match_table = tegra_emc_of_match,
1165 		.suppress_bind_attrs = true,
1166 		.sync_state = icc_sync_state,
1167 	},
1168 };
1169 module_platform_driver(tegra_emc_driver);
1170 
1171 MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
1172 MODULE_DESCRIPTION("NVIDIA Tegra20 EMC driver");
1173 MODULE_LICENSE("GPL v2");
1174