xref: /linux/drivers/memory/tegra/mc.c (revision 8137a49e1567726eb10fcf55ad141ac19804ca6b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014 NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/export.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/slab.h>
17 #include <linux/sort.h>
18 
19 #include <soc/tegra/fuse.h>
20 
21 #include "mc.h"
22 
23 static const struct of_device_id tegra_mc_of_match[] = {
24 #ifdef CONFIG_ARCH_TEGRA_2x_SOC
25 	{ .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
26 #endif
27 #ifdef CONFIG_ARCH_TEGRA_3x_SOC
28 	{ .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
29 #endif
30 #ifdef CONFIG_ARCH_TEGRA_114_SOC
31 	{ .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
32 #endif
33 #ifdef CONFIG_ARCH_TEGRA_124_SOC
34 	{ .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
35 #endif
36 #ifdef CONFIG_ARCH_TEGRA_132_SOC
37 	{ .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
38 #endif
39 #ifdef CONFIG_ARCH_TEGRA_210_SOC
40 	{ .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
41 #endif
42 #ifdef CONFIG_ARCH_TEGRA_186_SOC
43 	{ .compatible = "nvidia,tegra186-mc", .data = &tegra186_mc_soc },
44 #endif
45 #ifdef CONFIG_ARCH_TEGRA_194_SOC
46 	{ .compatible = "nvidia,tegra194-mc", .data = &tegra194_mc_soc },
47 #endif
48 	{ /* sentinel */ }
49 };
50 MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
51 
52 static void tegra_mc_devm_action_put_device(void *data)
53 {
54 	struct tegra_mc *mc = data;
55 
56 	put_device(mc->dev);
57 }
58 
59 /**
60  * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle
61  * @dev: device pointer for the consumer device
62  *
63  * This function will search for the Memory Controller node in a device-tree
64  * and retrieve the Memory Controller handle.
65  *
66  * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc.
67  */
68 struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev)
69 {
70 	struct platform_device *pdev;
71 	struct device_node *np;
72 	struct tegra_mc *mc;
73 	int err;
74 
75 	np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0);
76 	if (!np)
77 		return ERR_PTR(-ENOENT);
78 
79 	pdev = of_find_device_by_node(np);
80 	of_node_put(np);
81 	if (!pdev)
82 		return ERR_PTR(-ENODEV);
83 
84 	mc = platform_get_drvdata(pdev);
85 	if (!mc) {
86 		put_device(&pdev->dev);
87 		return ERR_PTR(-EPROBE_DEFER);
88 	}
89 
90 	err = devm_add_action(dev, tegra_mc_devm_action_put_device, mc);
91 	if (err) {
92 		put_device(mc->dev);
93 		return ERR_PTR(err);
94 	}
95 
96 	return mc;
97 }
98 EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get);
99 
100 int tegra_mc_probe_device(struct tegra_mc *mc, struct device *dev)
101 {
102 	if (mc->soc->ops && mc->soc->ops->probe_device)
103 		return mc->soc->ops->probe_device(mc, dev);
104 
105 	return 0;
106 }
107 EXPORT_SYMBOL_GPL(tegra_mc_probe_device);
108 
109 static int tegra_mc_block_dma_common(struct tegra_mc *mc,
110 				     const struct tegra_mc_reset *rst)
111 {
112 	unsigned long flags;
113 	u32 value;
114 
115 	spin_lock_irqsave(&mc->lock, flags);
116 
117 	value = mc_readl(mc, rst->control) | BIT(rst->bit);
118 	mc_writel(mc, value, rst->control);
119 
120 	spin_unlock_irqrestore(&mc->lock, flags);
121 
122 	return 0;
123 }
124 
125 static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
126 				       const struct tegra_mc_reset *rst)
127 {
128 	return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
129 }
130 
131 static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
132 				       const struct tegra_mc_reset *rst)
133 {
134 	unsigned long flags;
135 	u32 value;
136 
137 	spin_lock_irqsave(&mc->lock, flags);
138 
139 	value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
140 	mc_writel(mc, value, rst->control);
141 
142 	spin_unlock_irqrestore(&mc->lock, flags);
143 
144 	return 0;
145 }
146 
147 static int tegra_mc_reset_status_common(struct tegra_mc *mc,
148 					const struct tegra_mc_reset *rst)
149 {
150 	return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
151 }
152 
153 const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
154 	.block_dma = tegra_mc_block_dma_common,
155 	.dma_idling = tegra_mc_dma_idling_common,
156 	.unblock_dma = tegra_mc_unblock_dma_common,
157 	.reset_status = tegra_mc_reset_status_common,
158 };
159 
160 static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
161 {
162 	return container_of(rcdev, struct tegra_mc, reset);
163 }
164 
165 static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
166 							unsigned long id)
167 {
168 	unsigned int i;
169 
170 	for (i = 0; i < mc->soc->num_resets; i++)
171 		if (mc->soc->resets[i].id == id)
172 			return &mc->soc->resets[i];
173 
174 	return NULL;
175 }
176 
177 static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
178 				    unsigned long id)
179 {
180 	struct tegra_mc *mc = reset_to_mc(rcdev);
181 	const struct tegra_mc_reset_ops *rst_ops;
182 	const struct tegra_mc_reset *rst;
183 	int retries = 500;
184 	int err;
185 
186 	rst = tegra_mc_reset_find(mc, id);
187 	if (!rst)
188 		return -ENODEV;
189 
190 	rst_ops = mc->soc->reset_ops;
191 	if (!rst_ops)
192 		return -ENODEV;
193 
194 	/* DMA flushing will fail if reset is already asserted */
195 	if (rst_ops->reset_status) {
196 		/* check whether reset is asserted */
197 		if (rst_ops->reset_status(mc, rst))
198 			return 0;
199 	}
200 
201 	if (rst_ops->block_dma) {
202 		/* block clients DMA requests */
203 		err = rst_ops->block_dma(mc, rst);
204 		if (err) {
205 			dev_err(mc->dev, "failed to block %s DMA: %d\n",
206 				rst->name, err);
207 			return err;
208 		}
209 	}
210 
211 	if (rst_ops->dma_idling) {
212 		/* wait for completion of the outstanding DMA requests */
213 		while (!rst_ops->dma_idling(mc, rst)) {
214 			if (!retries--) {
215 				dev_err(mc->dev, "failed to flush %s DMA\n",
216 					rst->name);
217 				return -EBUSY;
218 			}
219 
220 			usleep_range(10, 100);
221 		}
222 	}
223 
224 	if (rst_ops->hotreset_assert) {
225 		/* clear clients DMA requests sitting before arbitration */
226 		err = rst_ops->hotreset_assert(mc, rst);
227 		if (err) {
228 			dev_err(mc->dev, "failed to hot reset %s: %d\n",
229 				rst->name, err);
230 			return err;
231 		}
232 	}
233 
234 	return 0;
235 }
236 
237 static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
238 				      unsigned long id)
239 {
240 	struct tegra_mc *mc = reset_to_mc(rcdev);
241 	const struct tegra_mc_reset_ops *rst_ops;
242 	const struct tegra_mc_reset *rst;
243 	int err;
244 
245 	rst = tegra_mc_reset_find(mc, id);
246 	if (!rst)
247 		return -ENODEV;
248 
249 	rst_ops = mc->soc->reset_ops;
250 	if (!rst_ops)
251 		return -ENODEV;
252 
253 	if (rst_ops->hotreset_deassert) {
254 		/* take out client from hot reset */
255 		err = rst_ops->hotreset_deassert(mc, rst);
256 		if (err) {
257 			dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
258 				rst->name, err);
259 			return err;
260 		}
261 	}
262 
263 	if (rst_ops->unblock_dma) {
264 		/* allow new DMA requests to proceed to arbitration */
265 		err = rst_ops->unblock_dma(mc, rst);
266 		if (err) {
267 			dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
268 				rst->name, err);
269 			return err;
270 		}
271 	}
272 
273 	return 0;
274 }
275 
276 static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
277 				    unsigned long id)
278 {
279 	struct tegra_mc *mc = reset_to_mc(rcdev);
280 	const struct tegra_mc_reset_ops *rst_ops;
281 	const struct tegra_mc_reset *rst;
282 
283 	rst = tegra_mc_reset_find(mc, id);
284 	if (!rst)
285 		return -ENODEV;
286 
287 	rst_ops = mc->soc->reset_ops;
288 	if (!rst_ops)
289 		return -ENODEV;
290 
291 	return rst_ops->reset_status(mc, rst);
292 }
293 
294 static const struct reset_control_ops tegra_mc_reset_ops = {
295 	.assert = tegra_mc_hotreset_assert,
296 	.deassert = tegra_mc_hotreset_deassert,
297 	.status = tegra_mc_hotreset_status,
298 };
299 
300 static int tegra_mc_reset_setup(struct tegra_mc *mc)
301 {
302 	int err;
303 
304 	mc->reset.ops = &tegra_mc_reset_ops;
305 	mc->reset.owner = THIS_MODULE;
306 	mc->reset.of_node = mc->dev->of_node;
307 	mc->reset.of_reset_n_cells = 1;
308 	mc->reset.nr_resets = mc->soc->num_resets;
309 
310 	err = reset_controller_register(&mc->reset);
311 	if (err < 0)
312 		return err;
313 
314 	return 0;
315 }
316 
317 int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
318 {
319 	unsigned int i;
320 	struct tegra_mc_timing *timing = NULL;
321 
322 	for (i = 0; i < mc->num_timings; i++) {
323 		if (mc->timings[i].rate == rate) {
324 			timing = &mc->timings[i];
325 			break;
326 		}
327 	}
328 
329 	if (!timing) {
330 		dev_err(mc->dev, "no memory timing registered for rate %lu\n",
331 			rate);
332 		return -EINVAL;
333 	}
334 
335 	for (i = 0; i < mc->soc->num_emem_regs; ++i)
336 		mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
337 
338 	return 0;
339 }
340 EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration);
341 
342 unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
343 {
344 	u8 dram_count;
345 
346 	dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
347 	dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
348 	dram_count++;
349 
350 	return dram_count;
351 }
352 EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count);
353 
354 #if defined(CONFIG_ARCH_TEGRA_3x_SOC) || \
355     defined(CONFIG_ARCH_TEGRA_114_SOC) || \
356     defined(CONFIG_ARCH_TEGRA_124_SOC) || \
357     defined(CONFIG_ARCH_TEGRA_132_SOC) || \
358     defined(CONFIG_ARCH_TEGRA_210_SOC)
359 static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
360 {
361 	unsigned long long tick;
362 	unsigned int i;
363 	u32 value;
364 
365 	/* compute the number of MC clock cycles per tick */
366 	tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
367 	do_div(tick, NSEC_PER_SEC);
368 
369 	value = mc_readl(mc, MC_EMEM_ARB_CFG);
370 	value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
371 	value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
372 	mc_writel(mc, value, MC_EMEM_ARB_CFG);
373 
374 	/* write latency allowance defaults */
375 	for (i = 0; i < mc->soc->num_clients; i++) {
376 		const struct tegra_mc_client *client = &mc->soc->clients[i];
377 		u32 value;
378 
379 		value = mc_readl(mc, client->regs.la.reg);
380 		value &= ~(client->regs.la.mask << client->regs.la.shift);
381 		value |= (client->regs.la.def & client->regs.la.mask) << client->regs.la.shift;
382 		mc_writel(mc, value, client->regs.la.reg);
383 	}
384 
385 	/* latch new values */
386 	mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
387 
388 	return 0;
389 }
390 
391 static int load_one_timing(struct tegra_mc *mc,
392 			   struct tegra_mc_timing *timing,
393 			   struct device_node *node)
394 {
395 	int err;
396 	u32 tmp;
397 
398 	err = of_property_read_u32(node, "clock-frequency", &tmp);
399 	if (err) {
400 		dev_err(mc->dev,
401 			"timing %pOFn: failed to read rate\n", node);
402 		return err;
403 	}
404 
405 	timing->rate = tmp;
406 	timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
407 					 sizeof(u32), GFP_KERNEL);
408 	if (!timing->emem_data)
409 		return -ENOMEM;
410 
411 	err = of_property_read_u32_array(node, "nvidia,emem-configuration",
412 					 timing->emem_data,
413 					 mc->soc->num_emem_regs);
414 	if (err) {
415 		dev_err(mc->dev,
416 			"timing %pOFn: failed to read EMEM configuration\n",
417 			node);
418 		return err;
419 	}
420 
421 	return 0;
422 }
423 
424 static int load_timings(struct tegra_mc *mc, struct device_node *node)
425 {
426 	struct device_node *child;
427 	struct tegra_mc_timing *timing;
428 	int child_count = of_get_child_count(node);
429 	int i = 0, err;
430 
431 	mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
432 				   GFP_KERNEL);
433 	if (!mc->timings)
434 		return -ENOMEM;
435 
436 	mc->num_timings = child_count;
437 
438 	for_each_child_of_node(node, child) {
439 		timing = &mc->timings[i++];
440 
441 		err = load_one_timing(mc, timing, child);
442 		if (err) {
443 			of_node_put(child);
444 			return err;
445 		}
446 	}
447 
448 	return 0;
449 }
450 
451 static int tegra_mc_setup_timings(struct tegra_mc *mc)
452 {
453 	struct device_node *node;
454 	u32 ram_code, node_ram_code;
455 	int err;
456 
457 	ram_code = tegra_read_ram_code();
458 
459 	mc->num_timings = 0;
460 
461 	for_each_child_of_node(mc->dev->of_node, node) {
462 		err = of_property_read_u32(node, "nvidia,ram-code",
463 					   &node_ram_code);
464 		if (err || (node_ram_code != ram_code))
465 			continue;
466 
467 		err = load_timings(mc, node);
468 		of_node_put(node);
469 		if (err)
470 			return err;
471 		break;
472 	}
473 
474 	if (mc->num_timings == 0)
475 		dev_warn(mc->dev,
476 			 "no memory timings for RAM code %u registered\n",
477 			 ram_code);
478 
479 	return 0;
480 }
481 
482 int tegra30_mc_probe(struct tegra_mc *mc)
483 {
484 	int err;
485 
486 	mc->clk = devm_clk_get_optional(mc->dev, "mc");
487 	if (IS_ERR(mc->clk)) {
488 		dev_err(mc->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk));
489 		return PTR_ERR(mc->clk);
490 	}
491 
492 	/* ensure that debug features are disabled */
493 	mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG);
494 
495 	err = tegra_mc_setup_latency_allowance(mc);
496 	if (err < 0) {
497 		dev_err(mc->dev, "failed to setup latency allowance: %d\n", err);
498 		return err;
499 	}
500 
501 	err = tegra_mc_setup_timings(mc);
502 	if (err < 0) {
503 		dev_err(mc->dev, "failed to setup timings: %d\n", err);
504 		return err;
505 	}
506 
507 	return 0;
508 }
509 
510 static irqreturn_t tegra30_mc_handle_irq(int irq, void *data)
511 {
512 	struct tegra_mc *mc = data;
513 	unsigned long status;
514 	unsigned int bit;
515 
516 	/* mask all interrupts to avoid flooding */
517 	status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
518 	if (!status)
519 		return IRQ_NONE;
520 
521 	for_each_set_bit(bit, &status, 32) {
522 		const char *error = tegra_mc_status_names[bit] ?: "unknown";
523 		const char *client = "unknown", *desc;
524 		const char *direction, *secure;
525 		phys_addr_t addr = 0;
526 		unsigned int i;
527 		char perm[7];
528 		u8 id, type;
529 		u32 value;
530 
531 		value = mc_readl(mc, MC_ERR_STATUS);
532 
533 #ifdef CONFIG_PHYS_ADDR_T_64BIT
534 		if (mc->soc->num_address_bits > 32) {
535 			addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
536 				MC_ERR_STATUS_ADR_HI_MASK);
537 			addr <<= 32;
538 		}
539 #endif
540 
541 		if (value & MC_ERR_STATUS_RW)
542 			direction = "write";
543 		else
544 			direction = "read";
545 
546 		if (value & MC_ERR_STATUS_SECURITY)
547 			secure = "secure ";
548 		else
549 			secure = "";
550 
551 		id = value & mc->soc->client_id_mask;
552 
553 		for (i = 0; i < mc->soc->num_clients; i++) {
554 			if (mc->soc->clients[i].id == id) {
555 				client = mc->soc->clients[i].name;
556 				break;
557 			}
558 		}
559 
560 		type = (value & MC_ERR_STATUS_TYPE_MASK) >>
561 		       MC_ERR_STATUS_TYPE_SHIFT;
562 		desc = tegra_mc_error_names[type];
563 
564 		switch (value & MC_ERR_STATUS_TYPE_MASK) {
565 		case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
566 			perm[0] = ' ';
567 			perm[1] = '[';
568 
569 			if (value & MC_ERR_STATUS_READABLE)
570 				perm[2] = 'R';
571 			else
572 				perm[2] = '-';
573 
574 			if (value & MC_ERR_STATUS_WRITABLE)
575 				perm[3] = 'W';
576 			else
577 				perm[3] = '-';
578 
579 			if (value & MC_ERR_STATUS_NONSECURE)
580 				perm[4] = '-';
581 			else
582 				perm[4] = 'S';
583 
584 			perm[5] = ']';
585 			perm[6] = '\0';
586 			break;
587 
588 		default:
589 			perm[0] = '\0';
590 			break;
591 		}
592 
593 		value = mc_readl(mc, MC_ERR_ADR);
594 		addr |= value;
595 
596 		dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
597 				    client, secure, direction, &addr, error,
598 				    desc, perm);
599 	}
600 
601 	/* clear interrupts */
602 	mc_writel(mc, status, MC_INTSTATUS);
603 
604 	return IRQ_HANDLED;
605 }
606 
607 const struct tegra_mc_ops tegra30_mc_ops = {
608 	.probe = tegra30_mc_probe,
609 	.handle_irq = tegra30_mc_handle_irq,
610 };
611 #endif
612 
613 const char *const tegra_mc_status_names[32] = {
614 	[ 1] = "External interrupt",
615 	[ 6] = "EMEM address decode error",
616 	[ 7] = "GART page fault",
617 	[ 8] = "Security violation",
618 	[ 9] = "EMEM arbitration error",
619 	[10] = "Page fault",
620 	[11] = "Invalid APB ASID update",
621 	[12] = "VPR violation",
622 	[13] = "Secure carveout violation",
623 	[16] = "MTS carveout violation",
624 };
625 
626 const char *const tegra_mc_error_names[8] = {
627 	[2] = "EMEM decode error",
628 	[3] = "TrustZone violation",
629 	[4] = "Carveout violation",
630 	[6] = "SMMU translation error",
631 };
632 
633 /*
634  * Memory Controller (MC) has few Memory Clients that are issuing memory
635  * bandwidth allocation requests to the MC interconnect provider. The MC
636  * provider aggregates the requests and then sends the aggregated request
637  * up to the External Memory Controller (EMC) interconnect provider which
638  * re-configures hardware interface to External Memory (EMEM) in accordance
639  * to the required bandwidth. Each MC interconnect node represents an
640  * individual Memory Client.
641  *
642  * Memory interconnect topology:
643  *
644  *               +----+
645  * +--------+    |    |
646  * | TEXSRD +--->+    |
647  * +--------+    |    |
648  *               |    |    +-----+    +------+
649  *    ...        | MC +--->+ EMC +--->+ EMEM |
650  *               |    |    +-----+    +------+
651  * +--------+    |    |
652  * | DISP.. +--->+    |
653  * +--------+    |    |
654  *               +----+
655  */
656 static int tegra_mc_interconnect_setup(struct tegra_mc *mc)
657 {
658 	struct icc_node *node;
659 	unsigned int i;
660 	int err;
661 
662 	/* older device-trees don't have interconnect properties */
663 	if (!device_property_present(mc->dev, "#interconnect-cells") ||
664 	    !mc->soc->icc_ops)
665 		return 0;
666 
667 	mc->provider.dev = mc->dev;
668 	mc->provider.data = &mc->provider;
669 	mc->provider.set = mc->soc->icc_ops->set;
670 	mc->provider.aggregate = mc->soc->icc_ops->aggregate;
671 	mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended;
672 
673 	err = icc_provider_add(&mc->provider);
674 	if (err)
675 		return err;
676 
677 	/* create Memory Controller node */
678 	node = icc_node_create(TEGRA_ICC_MC);
679 	if (IS_ERR(node)) {
680 		err = PTR_ERR(node);
681 		goto del_provider;
682 	}
683 
684 	node->name = "Memory Controller";
685 	icc_node_add(node, &mc->provider);
686 
687 	/* link Memory Controller to External Memory Controller */
688 	err = icc_link_create(node, TEGRA_ICC_EMC);
689 	if (err)
690 		goto remove_nodes;
691 
692 	for (i = 0; i < mc->soc->num_clients; i++) {
693 		/* create MC client node */
694 		node = icc_node_create(mc->soc->clients[i].id);
695 		if (IS_ERR(node)) {
696 			err = PTR_ERR(node);
697 			goto remove_nodes;
698 		}
699 
700 		node->name = mc->soc->clients[i].name;
701 		icc_node_add(node, &mc->provider);
702 
703 		/* link Memory Client to Memory Controller */
704 		err = icc_link_create(node, TEGRA_ICC_MC);
705 		if (err)
706 			goto remove_nodes;
707 	}
708 
709 	/*
710 	 * MC driver is registered too early, so early that generic driver
711 	 * syncing doesn't work for the MC. But it doesn't really matter
712 	 * since syncing works for the EMC drivers, hence we can sync the
713 	 * MC driver by ourselves and then EMC will complete syncing of
714 	 * the whole ICC state.
715 	 */
716 	icc_sync_state(mc->dev);
717 
718 	return 0;
719 
720 remove_nodes:
721 	icc_nodes_remove(&mc->provider);
722 del_provider:
723 	icc_provider_del(&mc->provider);
724 
725 	return err;
726 }
727 
728 static int tegra_mc_probe(struct platform_device *pdev)
729 {
730 	struct resource *res;
731 	struct tegra_mc *mc;
732 	u64 mask;
733 	int err;
734 
735 	mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
736 	if (!mc)
737 		return -ENOMEM;
738 
739 	platform_set_drvdata(pdev, mc);
740 	spin_lock_init(&mc->lock);
741 	mc->soc = of_device_get_match_data(&pdev->dev);
742 	mc->dev = &pdev->dev;
743 
744 	mask = DMA_BIT_MASK(mc->soc->num_address_bits);
745 
746 	err = dma_coerce_mask_and_coherent(&pdev->dev, mask);
747 	if (err < 0) {
748 		dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
749 		return err;
750 	}
751 
752 	/* length of MC tick in nanoseconds */
753 	mc->tick = 30;
754 
755 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
756 	mc->regs = devm_ioremap_resource(&pdev->dev, res);
757 	if (IS_ERR(mc->regs))
758 		return PTR_ERR(mc->regs);
759 
760 	mc->debugfs.root = debugfs_create_dir("mc", NULL);
761 
762 	if (mc->soc->ops && mc->soc->ops->probe) {
763 		err = mc->soc->ops->probe(mc);
764 		if (err < 0)
765 			return err;
766 	}
767 
768 	if (mc->soc->ops && mc->soc->ops->handle_irq) {
769 		mc->irq = platform_get_irq(pdev, 0);
770 		if (mc->irq < 0)
771 			return mc->irq;
772 
773 		WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
774 
775 		mc_writel(mc, mc->soc->intmask, MC_INTMASK);
776 
777 		err = devm_request_irq(&pdev->dev, mc->irq, mc->soc->ops->handle_irq, 0,
778 				       dev_name(&pdev->dev), mc);
779 		if (err < 0) {
780 			dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
781 				err);
782 			return err;
783 		}
784 	}
785 
786 	if (mc->soc->reset_ops) {
787 		err = tegra_mc_reset_setup(mc);
788 		if (err < 0)
789 			dev_err(&pdev->dev, "failed to register reset controller: %d\n", err);
790 	}
791 
792 	err = tegra_mc_interconnect_setup(mc);
793 	if (err < 0)
794 		dev_err(&pdev->dev, "failed to initialize interconnect: %d\n",
795 			err);
796 
797 	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
798 		mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
799 		if (IS_ERR(mc->smmu)) {
800 			dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
801 				PTR_ERR(mc->smmu));
802 			mc->smmu = NULL;
803 		}
804 	}
805 
806 	if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
807 		mc->gart = tegra_gart_probe(&pdev->dev, mc);
808 		if (IS_ERR(mc->gart)) {
809 			dev_err(&pdev->dev, "failed to probe GART: %ld\n",
810 				PTR_ERR(mc->gart));
811 			mc->gart = NULL;
812 		}
813 	}
814 
815 	return 0;
816 }
817 
818 static int __maybe_unused tegra_mc_suspend(struct device *dev)
819 {
820 	struct tegra_mc *mc = dev_get_drvdata(dev);
821 
822 	if (mc->soc->ops && mc->soc->ops->suspend)
823 		return mc->soc->ops->suspend(mc);
824 
825 	return 0;
826 }
827 
828 static int __maybe_unused tegra_mc_resume(struct device *dev)
829 {
830 	struct tegra_mc *mc = dev_get_drvdata(dev);
831 
832 	if (mc->soc->ops && mc->soc->ops->resume)
833 		return mc->soc->ops->resume(mc);
834 
835 	return 0;
836 }
837 
838 static const struct dev_pm_ops tegra_mc_pm_ops = {
839 	SET_SYSTEM_SLEEP_PM_OPS(tegra_mc_suspend, tegra_mc_resume)
840 };
841 
842 static struct platform_driver tegra_mc_driver = {
843 	.driver = {
844 		.name = "tegra-mc",
845 		.of_match_table = tegra_mc_of_match,
846 		.pm = &tegra_mc_pm_ops,
847 		.suppress_bind_attrs = true,
848 	},
849 	.prevent_deferred_probe = true,
850 	.probe = tegra_mc_probe,
851 };
852 
853 static int tegra_mc_init(void)
854 {
855 	return platform_driver_register(&tegra_mc_driver);
856 }
857 arch_initcall(tegra_mc_init);
858 
859 MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
860 MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
861 MODULE_LICENSE("GPL v2");
862