1 /* 2 * GPMC support functions 3 * 4 * Copyright (C) 2005-2006 Nokia Corporation 5 * 6 * Author: Juha Yrjola 7 * 8 * Copyright (C) 2009 Texas Instruments 9 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License version 2 as 13 * published by the Free Software Foundation. 14 */ 15 #include <linux/irq.h> 16 #include <linux/kernel.h> 17 #include <linux/init.h> 18 #include <linux/err.h> 19 #include <linux/clk.h> 20 #include <linux/ioport.h> 21 #include <linux/spinlock.h> 22 #include <linux/io.h> 23 #include <linux/module.h> 24 #include <linux/interrupt.h> 25 #include <linux/platform_device.h> 26 #include <linux/of.h> 27 #include <linux/of_address.h> 28 #include <linux/of_mtd.h> 29 #include <linux/of_device.h> 30 #include <linux/of_platform.h> 31 #include <linux/omap-gpmc.h> 32 #include <linux/mtd/nand.h> 33 #include <linux/pm_runtime.h> 34 35 #include <linux/platform_data/mtd-nand-omap2.h> 36 #include <linux/platform_data/mtd-onenand-omap2.h> 37 38 #include <asm/mach-types.h> 39 40 #define DEVICE_NAME "omap-gpmc" 41 42 /* GPMC register offsets */ 43 #define GPMC_REVISION 0x00 44 #define GPMC_SYSCONFIG 0x10 45 #define GPMC_SYSSTATUS 0x14 46 #define GPMC_IRQSTATUS 0x18 47 #define GPMC_IRQENABLE 0x1c 48 #define GPMC_TIMEOUT_CONTROL 0x40 49 #define GPMC_ERR_ADDRESS 0x44 50 #define GPMC_ERR_TYPE 0x48 51 #define GPMC_CONFIG 0x50 52 #define GPMC_STATUS 0x54 53 #define GPMC_PREFETCH_CONFIG1 0x1e0 54 #define GPMC_PREFETCH_CONFIG2 0x1e4 55 #define GPMC_PREFETCH_CONTROL 0x1ec 56 #define GPMC_PREFETCH_STATUS 0x1f0 57 #define GPMC_ECC_CONFIG 0x1f4 58 #define GPMC_ECC_CONTROL 0x1f8 59 #define GPMC_ECC_SIZE_CONFIG 0x1fc 60 #define GPMC_ECC1_RESULT 0x200 61 #define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */ 62 #define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */ 63 #define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */ 64 #define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */ 65 #define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */ 66 #define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */ 67 #define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */ 68 69 /* GPMC ECC control settings */ 70 #define GPMC_ECC_CTRL_ECCCLEAR 0x100 71 #define GPMC_ECC_CTRL_ECCDISABLE 0x000 72 #define GPMC_ECC_CTRL_ECCREG1 0x001 73 #define GPMC_ECC_CTRL_ECCREG2 0x002 74 #define GPMC_ECC_CTRL_ECCREG3 0x003 75 #define GPMC_ECC_CTRL_ECCREG4 0x004 76 #define GPMC_ECC_CTRL_ECCREG5 0x005 77 #define GPMC_ECC_CTRL_ECCREG6 0x006 78 #define GPMC_ECC_CTRL_ECCREG7 0x007 79 #define GPMC_ECC_CTRL_ECCREG8 0x008 80 #define GPMC_ECC_CTRL_ECCREG9 0x009 81 82 #define GPMC_CONFIG_LIMITEDADDRESS BIT(1) 83 84 #define GPMC_CONFIG2_CSEXTRADELAY BIT(7) 85 #define GPMC_CONFIG3_ADVEXTRADELAY BIT(7) 86 #define GPMC_CONFIG4_OEEXTRADELAY BIT(7) 87 #define GPMC_CONFIG4_WEEXTRADELAY BIT(23) 88 #define GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN BIT(6) 89 #define GPMC_CONFIG6_CYCLE2CYCLESAMECSEN BIT(7) 90 91 #define GPMC_CS0_OFFSET 0x60 92 #define GPMC_CS_SIZE 0x30 93 #define GPMC_BCH_SIZE 0x10 94 95 #define GPMC_MEM_END 0x3FFFFFFF 96 97 #define GPMC_CHUNK_SHIFT 24 /* 16 MB */ 98 #define GPMC_SECTION_SHIFT 28 /* 128 MB */ 99 100 #define CS_NUM_SHIFT 24 101 #define ENABLE_PREFETCH (0x1 << 7) 102 #define DMA_MPU_MODE 2 103 104 #define GPMC_REVISION_MAJOR(l) ((l >> 4) & 0xf) 105 #define GPMC_REVISION_MINOR(l) (l & 0xf) 106 107 #define GPMC_HAS_WR_ACCESS 0x1 108 #define GPMC_HAS_WR_DATA_MUX_BUS 0x2 109 #define GPMC_HAS_MUX_AAD 0x4 110 111 #define GPMC_NR_WAITPINS 4 112 113 #define GPMC_CS_CONFIG1 0x00 114 #define GPMC_CS_CONFIG2 0x04 115 #define GPMC_CS_CONFIG3 0x08 116 #define GPMC_CS_CONFIG4 0x0c 117 #define GPMC_CS_CONFIG5 0x10 118 #define GPMC_CS_CONFIG6 0x14 119 #define GPMC_CS_CONFIG7 0x18 120 #define GPMC_CS_NAND_COMMAND 0x1c 121 #define GPMC_CS_NAND_ADDRESS 0x20 122 #define GPMC_CS_NAND_DATA 0x24 123 124 /* Control Commands */ 125 #define GPMC_CONFIG_RDY_BSY 0x00000001 126 #define GPMC_CONFIG_DEV_SIZE 0x00000002 127 #define GPMC_CONFIG_DEV_TYPE 0x00000003 128 #define GPMC_SET_IRQ_STATUS 0x00000004 129 130 #define GPMC_CONFIG1_WRAPBURST_SUPP (1 << 31) 131 #define GPMC_CONFIG1_READMULTIPLE_SUPP (1 << 30) 132 #define GPMC_CONFIG1_READTYPE_ASYNC (0 << 29) 133 #define GPMC_CONFIG1_READTYPE_SYNC (1 << 29) 134 #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28) 135 #define GPMC_CONFIG1_WRITETYPE_ASYNC (0 << 27) 136 #define GPMC_CONFIG1_WRITETYPE_SYNC (1 << 27) 137 #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) ((val & 3) << 25) 138 /** CLKACTIVATIONTIME Max Ticks */ 139 #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2 140 #define GPMC_CONFIG1_PAGE_LEN(val) ((val & 3) << 23) 141 /** ATTACHEDDEVICEPAGELENGTH Max Value */ 142 #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2 143 #define GPMC_CONFIG1_WAIT_READ_MON (1 << 22) 144 #define GPMC_CONFIG1_WAIT_WRITE_MON (1 << 21) 145 #define GPMC_CONFIG1_WAIT_MON_TIME(val) ((val & 3) << 18) 146 /** WAITMONITORINGTIME Max Ticks */ 147 #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX 2 148 #define GPMC_CONFIG1_WAIT_PIN_SEL(val) ((val & 3) << 16) 149 #define GPMC_CONFIG1_DEVICESIZE(val) ((val & 3) << 12) 150 #define GPMC_CONFIG1_DEVICESIZE_16 GPMC_CONFIG1_DEVICESIZE(1) 151 /** DEVICESIZE Max Value */ 152 #define GPMC_CONFIG1_DEVICESIZE_MAX 1 153 #define GPMC_CONFIG1_DEVICETYPE(val) ((val & 3) << 10) 154 #define GPMC_CONFIG1_DEVICETYPE_NOR GPMC_CONFIG1_DEVICETYPE(0) 155 #define GPMC_CONFIG1_MUXTYPE(val) ((val & 3) << 8) 156 #define GPMC_CONFIG1_TIME_PARA_GRAN (1 << 4) 157 #define GPMC_CONFIG1_FCLK_DIV(val) (val & 3) 158 #define GPMC_CONFIG1_FCLK_DIV2 (GPMC_CONFIG1_FCLK_DIV(1)) 159 #define GPMC_CONFIG1_FCLK_DIV3 (GPMC_CONFIG1_FCLK_DIV(2)) 160 #define GPMC_CONFIG1_FCLK_DIV4 (GPMC_CONFIG1_FCLK_DIV(3)) 161 #define GPMC_CONFIG7_CSVALID (1 << 6) 162 163 #define GPMC_CONFIG7_BASEADDRESS_MASK 0x3f 164 #define GPMC_CONFIG7_CSVALID_MASK BIT(6) 165 #define GPMC_CONFIG7_MASKADDRESS_OFFSET 8 166 #define GPMC_CONFIG7_MASKADDRESS_MASK (0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET) 167 /* All CONFIG7 bits except reserved bits */ 168 #define GPMC_CONFIG7_MASK (GPMC_CONFIG7_BASEADDRESS_MASK | \ 169 GPMC_CONFIG7_CSVALID_MASK | \ 170 GPMC_CONFIG7_MASKADDRESS_MASK) 171 172 #define GPMC_DEVICETYPE_NOR 0 173 #define GPMC_DEVICETYPE_NAND 2 174 #define GPMC_CONFIG_WRITEPROTECT 0x00000010 175 #define WR_RD_PIN_MONITORING 0x00600000 176 177 #define GPMC_ENABLE_IRQ 0x0000000d 178 179 /* ECC commands */ 180 #define GPMC_ECC_READ 0 /* Reset Hardware ECC for read */ 181 #define GPMC_ECC_WRITE 1 /* Reset Hardware ECC for write */ 182 #define GPMC_ECC_READSYN 2 /* Reset before syndrom is read back */ 183 184 /* XXX: Only NAND irq has been considered,currently these are the only ones used 185 */ 186 #define GPMC_NR_IRQ 2 187 188 enum gpmc_clk_domain { 189 GPMC_CD_FCLK, 190 GPMC_CD_CLK 191 }; 192 193 struct gpmc_cs_data { 194 const char *name; 195 196 #define GPMC_CS_RESERVED (1 << 0) 197 u32 flags; 198 199 struct resource mem; 200 }; 201 202 struct gpmc_client_irq { 203 unsigned irq; 204 u32 bitmask; 205 }; 206 207 /* Structure to save gpmc cs context */ 208 struct gpmc_cs_config { 209 u32 config1; 210 u32 config2; 211 u32 config3; 212 u32 config4; 213 u32 config5; 214 u32 config6; 215 u32 config7; 216 int is_valid; 217 }; 218 219 /* 220 * Structure to save/restore gpmc context 221 * to support core off on OMAP3 222 */ 223 struct omap3_gpmc_regs { 224 u32 sysconfig; 225 u32 irqenable; 226 u32 timeout_ctrl; 227 u32 config; 228 u32 prefetch_config1; 229 u32 prefetch_config2; 230 u32 prefetch_control; 231 struct gpmc_cs_config cs_context[GPMC_CS_NUM]; 232 }; 233 234 static struct gpmc_client_irq gpmc_client_irq[GPMC_NR_IRQ]; 235 static struct irq_chip gpmc_irq_chip; 236 static int gpmc_irq_start; 237 238 static struct resource gpmc_mem_root; 239 static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM]; 240 static DEFINE_SPINLOCK(gpmc_mem_lock); 241 /* Define chip-selects as reserved by default until probe completes */ 242 static unsigned int gpmc_cs_num = GPMC_CS_NUM; 243 static unsigned int gpmc_nr_waitpins; 244 static struct device *gpmc_dev; 245 static int gpmc_irq; 246 static resource_size_t phys_base, mem_size; 247 static unsigned gpmc_capability; 248 static void __iomem *gpmc_base; 249 250 static struct clk *gpmc_l3_clk; 251 252 static irqreturn_t gpmc_handle_irq(int irq, void *dev); 253 254 static void gpmc_write_reg(int idx, u32 val) 255 { 256 writel_relaxed(val, gpmc_base + idx); 257 } 258 259 static u32 gpmc_read_reg(int idx) 260 { 261 return readl_relaxed(gpmc_base + idx); 262 } 263 264 void gpmc_cs_write_reg(int cs, int idx, u32 val) 265 { 266 void __iomem *reg_addr; 267 268 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx; 269 writel_relaxed(val, reg_addr); 270 } 271 272 static u32 gpmc_cs_read_reg(int cs, int idx) 273 { 274 void __iomem *reg_addr; 275 276 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx; 277 return readl_relaxed(reg_addr); 278 } 279 280 /* TODO: Add support for gpmc_fck to clock framework and use it */ 281 static unsigned long gpmc_get_fclk_period(void) 282 { 283 unsigned long rate = clk_get_rate(gpmc_l3_clk); 284 285 rate /= 1000; 286 rate = 1000000000 / rate; /* In picoseconds */ 287 288 return rate; 289 } 290 291 /** 292 * gpmc_get_clk_period - get period of selected clock domain in ps 293 * @cs Chip Select Region. 294 * @cd Clock Domain. 295 * 296 * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup 297 * prior to calling this function with GPMC_CD_CLK. 298 */ 299 static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd) 300 { 301 302 unsigned long tick_ps = gpmc_get_fclk_period(); 303 u32 l; 304 int div; 305 306 switch (cd) { 307 case GPMC_CD_CLK: 308 /* get current clk divider */ 309 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1); 310 div = (l & 0x03) + 1; 311 /* get GPMC_CLK period */ 312 tick_ps *= div; 313 break; 314 case GPMC_CD_FCLK: 315 /* FALL-THROUGH */ 316 default: 317 break; 318 } 319 320 return tick_ps; 321 322 } 323 324 static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs, 325 enum gpmc_clk_domain cd) 326 { 327 unsigned long tick_ps; 328 329 /* Calculate in picosecs to yield more exact results */ 330 tick_ps = gpmc_get_clk_period(cs, cd); 331 332 return (time_ns * 1000 + tick_ps - 1) / tick_ps; 333 } 334 335 static unsigned int gpmc_ns_to_ticks(unsigned int time_ns) 336 { 337 return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK); 338 } 339 340 static unsigned int gpmc_ps_to_ticks(unsigned int time_ps) 341 { 342 unsigned long tick_ps; 343 344 /* Calculate in picosecs to yield more exact results */ 345 tick_ps = gpmc_get_fclk_period(); 346 347 return (time_ps + tick_ps - 1) / tick_ps; 348 } 349 350 unsigned int gpmc_clk_ticks_to_ns(unsigned ticks, int cs, 351 enum gpmc_clk_domain cd) 352 { 353 return ticks * gpmc_get_clk_period(cs, cd) / 1000; 354 } 355 356 unsigned int gpmc_ticks_to_ns(unsigned int ticks) 357 { 358 return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK); 359 } 360 361 static unsigned int gpmc_ticks_to_ps(unsigned int ticks) 362 { 363 return ticks * gpmc_get_fclk_period(); 364 } 365 366 static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps) 367 { 368 unsigned long ticks = gpmc_ps_to_ticks(time_ps); 369 370 return ticks * gpmc_get_fclk_period(); 371 } 372 373 static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value) 374 { 375 u32 l; 376 377 l = gpmc_cs_read_reg(cs, reg); 378 if (value) 379 l |= mask; 380 else 381 l &= ~mask; 382 gpmc_cs_write_reg(cs, reg, l); 383 } 384 385 static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p) 386 { 387 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1, 388 GPMC_CONFIG1_TIME_PARA_GRAN, 389 p->time_para_granularity); 390 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2, 391 GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay); 392 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3, 393 GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay); 394 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4, 395 GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay); 396 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4, 397 GPMC_CONFIG4_OEEXTRADELAY, p->we_extra_delay); 398 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6, 399 GPMC_CONFIG6_CYCLE2CYCLESAMECSEN, 400 p->cycle2cyclesamecsen); 401 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6, 402 GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN, 403 p->cycle2cyclediffcsen); 404 } 405 406 #ifdef CONFIG_OMAP_GPMC_DEBUG 407 /** 408 * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it. 409 * @cs: Chip Select Region 410 * @reg: GPMC_CS_CONFIGn register offset. 411 * @st_bit: Start Bit 412 * @end_bit: End Bit. Must be >= @st_bit. 413 * @ma:x Maximum parameter value (before optional @shift). 414 * If 0, maximum is as high as @st_bit and @end_bit allow. 415 * @name: DTS node name, w/o "gpmc," 416 * @cd: Clock Domain of timing parameter. 417 * @shift: Parameter value left shifts @shift, which is then printed instead of value. 418 * @raw: Raw Format Option. 419 * raw format: gpmc,name = <value> 420 * tick format: gpmc,name = <value> /‍* x ns -- y ns; x ticks *‍/ 421 * Where x ns -- y ns result in the same tick value. 422 * When @max is exceeded, "invalid" is printed inside comment. 423 * @noval: Parameter values equal to 0 are not printed. 424 * @return: Specified timing parameter (after optional @shift). 425 * 426 */ 427 static int get_gpmc_timing_reg( 428 /* timing specifiers */ 429 int cs, int reg, int st_bit, int end_bit, int max, 430 const char *name, const enum gpmc_clk_domain cd, 431 /* value transform */ 432 int shift, 433 /* format specifiers */ 434 bool raw, bool noval) 435 { 436 u32 l; 437 int nr_bits; 438 int mask; 439 bool invalid; 440 441 l = gpmc_cs_read_reg(cs, reg); 442 nr_bits = end_bit - st_bit + 1; 443 mask = (1 << nr_bits) - 1; 444 l = (l >> st_bit) & mask; 445 if (!max) 446 max = mask; 447 invalid = l > max; 448 if (shift) 449 l = (shift << l); 450 if (noval && (l == 0)) 451 return 0; 452 if (!raw) { 453 /* DTS tick format for timings in ns */ 454 unsigned int time_ns; 455 unsigned int time_ns_min = 0; 456 457 if (l) 458 time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1; 459 time_ns = gpmc_clk_ticks_to_ns(l, cs, cd); 460 pr_info("gpmc,%s = <%u> /* %u ns - %u ns; %i ticks%s*/\n", 461 name, time_ns, time_ns_min, time_ns, l, 462 invalid ? "; invalid " : " "); 463 } else { 464 /* raw format */ 465 pr_info("gpmc,%s = <%u>%s\n", name, l, 466 invalid ? " /* invalid */" : ""); 467 } 468 469 return l; 470 } 471 472 #define GPMC_PRINT_CONFIG(cs, config) \ 473 pr_info("cs%i %s: 0x%08x\n", cs, #config, \ 474 gpmc_cs_read_reg(cs, config)) 475 #define GPMC_GET_RAW(reg, st, end, field) \ 476 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0) 477 #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \ 478 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0) 479 #define GPMC_GET_RAW_BOOL(reg, st, end, field) \ 480 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1) 481 #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \ 482 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1) 483 #define GPMC_GET_TICKS(reg, st, end, field) \ 484 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0) 485 #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \ 486 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0) 487 #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \ 488 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0) 489 490 static void gpmc_show_regs(int cs, const char *desc) 491 { 492 pr_info("gpmc cs%i %s:\n", cs, desc); 493 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1); 494 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2); 495 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3); 496 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4); 497 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5); 498 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6); 499 } 500 501 /* 502 * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available, 503 * see commit c9fb809. 504 */ 505 static void gpmc_cs_show_timings(int cs, const char *desc) 506 { 507 gpmc_show_regs(cs, desc); 508 509 pr_info("gpmc cs%i access configuration:\n", cs); 510 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 4, 4, "time-para-granularity"); 511 GPMC_GET_RAW(GPMC_CS_CONFIG1, 8, 9, "mux-add-data"); 512 GPMC_GET_RAW_MAX(GPMC_CS_CONFIG1, 12, 13, 513 GPMC_CONFIG1_DEVICESIZE_MAX, "device-width"); 514 GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin"); 515 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write"); 516 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read"); 517 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4, 518 GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX, 519 "burst-length"); 520 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write"); 521 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write"); 522 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read"); 523 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read"); 524 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap"); 525 526 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2, 7, 7, "cs-extra-delay"); 527 528 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3, 7, 7, "adv-extra-delay"); 529 530 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay"); 531 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 7, 7, "oe-extra-delay"); 532 533 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 7, 7, "cycle2cycle-samecsen"); 534 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 6, 6, "cycle2cycle-diffcsen"); 535 536 pr_info("gpmc cs%i timings configuration:\n", cs); 537 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 0, 3, "cs-on-ns"); 538 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 8, 12, "cs-rd-off-ns"); 539 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns"); 540 541 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 0, 3, "adv-on-ns"); 542 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 8, 12, "adv-rd-off-ns"); 543 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns"); 544 545 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 0, 3, "oe-on-ns"); 546 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 8, 12, "oe-off-ns"); 547 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns"); 548 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns"); 549 550 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 0, 4, "rd-cycle-ns"); 551 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 8, 12, "wr-cycle-ns"); 552 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns"); 553 554 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns"); 555 556 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns"); 557 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns"); 558 559 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19, 560 GPMC_CONFIG1_WAITMONITORINGTIME_MAX, 561 "wait-monitoring-ns", GPMC_CD_CLK); 562 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26, 563 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX, 564 "clk-activation-ns", GPMC_CD_FCLK); 565 566 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns"); 567 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns"); 568 } 569 #else 570 static inline void gpmc_cs_show_timings(int cs, const char *desc) 571 { 572 } 573 #endif 574 575 /** 576 * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region. 577 * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER 578 * prior to calling this function with @cd equal to GPMC_CD_CLK. 579 * 580 * @cs: Chip Select Region. 581 * @reg: GPMC_CS_CONFIGn register offset. 582 * @st_bit: Start Bit 583 * @end_bit: End Bit. Must be >= @st_bit. 584 * @max: Maximum parameter value. 585 * If 0, maximum is as high as @st_bit and @end_bit allow. 586 * @time: Timing parameter in ns. 587 * @cd: Timing parameter clock domain. 588 * @name: Timing parameter name. 589 * @return: 0 on success, -1 on error. 590 */ 591 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max, 592 int time, enum gpmc_clk_domain cd, const char *name) 593 { 594 u32 l; 595 int ticks, mask, nr_bits; 596 597 if (time == 0) 598 ticks = 0; 599 else 600 ticks = gpmc_ns_to_clk_ticks(time, cs, cd); 601 nr_bits = end_bit - st_bit + 1; 602 mask = (1 << nr_bits) - 1; 603 604 if (!max) 605 max = mask; 606 607 if (ticks > max) { 608 pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n", 609 __func__, cs, name, time, ticks, max); 610 611 return -1; 612 } 613 614 l = gpmc_cs_read_reg(cs, reg); 615 #ifdef CONFIG_OMAP_GPMC_DEBUG 616 pr_info( 617 "GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n", 618 cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000, 619 (l >> st_bit) & mask, time); 620 #endif 621 l &= ~(mask << st_bit); 622 l |= ticks << st_bit; 623 gpmc_cs_write_reg(cs, reg, l); 624 625 return 0; 626 } 627 628 #define GPMC_SET_ONE_CD_MAX(reg, st, end, max, field, cd) \ 629 if (set_gpmc_timing_reg(cs, (reg), (st), (end), (max), \ 630 t->field, (cd), #field) < 0) \ 631 return -1 632 633 #define GPMC_SET_ONE(reg, st, end, field) \ 634 GPMC_SET_ONE_CD_MAX(reg, st, end, 0, field, GPMC_CD_FCLK) 635 636 /** 637 * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME 638 * WAITMONITORINGTIME will be _at least_ as long as desired, i.e. 639 * read --> don't sample bus too early 640 * write --> data is longer on bus 641 * 642 * Formula: 643 * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns) 644 * / waitmonitoring_ticks) 645 * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by 646 * div <= 0 check. 647 * 648 * @wait_monitoring: WAITMONITORINGTIME in ns. 649 * @return: -1 on failure to scale, else proper divider > 0. 650 */ 651 static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring) 652 { 653 654 int div = gpmc_ns_to_ticks(wait_monitoring); 655 656 div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1; 657 div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX; 658 659 if (div > 4) 660 return -1; 661 if (div <= 0) 662 div = 1; 663 664 return div; 665 666 } 667 668 /** 669 * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period. 670 * @sync_clk: GPMC_CLK period in ps. 671 * @return: Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK. 672 * Else, returns -1. 673 */ 674 int gpmc_calc_divider(unsigned int sync_clk) 675 { 676 int div = gpmc_ps_to_ticks(sync_clk); 677 678 if (div > 4) 679 return -1; 680 if (div <= 0) 681 div = 1; 682 683 return div; 684 } 685 686 /** 687 * gpmc_cs_set_timings - program timing parameters for Chip Select Region. 688 * @cs: Chip Select Region. 689 * @t: GPMC timing parameters. 690 * @s: GPMC timing settings. 691 * @return: 0 on success, -1 on error. 692 */ 693 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t, 694 const struct gpmc_settings *s) 695 { 696 int div; 697 u32 l; 698 699 gpmc_cs_show_timings(cs, "before gpmc_cs_set_timings"); 700 div = gpmc_calc_divider(t->sync_clk); 701 if (div < 0) 702 return div; 703 704 /* 705 * See if we need to change the divider for waitmonitoringtime. 706 * 707 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for 708 * pure asynchronous accesses, i.e. both read and write asynchronous. 709 * However, only do so if WAITMONITORINGTIME is actually used, i.e. 710 * either WAITREADMONITORING or WAITWRITEMONITORING is set. 711 * 712 * This statement must not change div to scale async WAITMONITORINGTIME 713 * to protect mixed synchronous and asynchronous accesses. 714 * 715 * We raise an error later if WAITMONITORINGTIME does not fit. 716 */ 717 if (!s->sync_read && !s->sync_write && 718 (s->wait_on_read || s->wait_on_write) 719 ) { 720 721 div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring); 722 if (div < 0) { 723 pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n", 724 __func__, 725 t->wait_monitoring 726 ); 727 return -1; 728 } 729 } 730 731 GPMC_SET_ONE(GPMC_CS_CONFIG2, 0, 3, cs_on); 732 GPMC_SET_ONE(GPMC_CS_CONFIG2, 8, 12, cs_rd_off); 733 GPMC_SET_ONE(GPMC_CS_CONFIG2, 16, 20, cs_wr_off); 734 735 GPMC_SET_ONE(GPMC_CS_CONFIG3, 0, 3, adv_on); 736 GPMC_SET_ONE(GPMC_CS_CONFIG3, 8, 12, adv_rd_off); 737 GPMC_SET_ONE(GPMC_CS_CONFIG3, 16, 20, adv_wr_off); 738 739 GPMC_SET_ONE(GPMC_CS_CONFIG4, 0, 3, oe_on); 740 GPMC_SET_ONE(GPMC_CS_CONFIG4, 8, 12, oe_off); 741 GPMC_SET_ONE(GPMC_CS_CONFIG4, 16, 19, we_on); 742 GPMC_SET_ONE(GPMC_CS_CONFIG4, 24, 28, we_off); 743 744 GPMC_SET_ONE(GPMC_CS_CONFIG5, 0, 4, rd_cycle); 745 GPMC_SET_ONE(GPMC_CS_CONFIG5, 8, 12, wr_cycle); 746 GPMC_SET_ONE(GPMC_CS_CONFIG5, 16, 20, access); 747 748 GPMC_SET_ONE(GPMC_CS_CONFIG5, 24, 27, page_burst_access); 749 750 GPMC_SET_ONE(GPMC_CS_CONFIG6, 0, 3, bus_turnaround); 751 GPMC_SET_ONE(GPMC_CS_CONFIG6, 8, 11, cycle2cycle_delay); 752 753 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) 754 GPMC_SET_ONE(GPMC_CS_CONFIG6, 16, 19, wr_data_mux_bus); 755 if (gpmc_capability & GPMC_HAS_WR_ACCESS) 756 GPMC_SET_ONE(GPMC_CS_CONFIG6, 24, 28, wr_access); 757 758 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1); 759 l &= ~0x03; 760 l |= (div - 1); 761 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l); 762 763 GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 18, 19, 764 GPMC_CONFIG1_WAITMONITORINGTIME_MAX, 765 wait_monitoring, GPMC_CD_CLK); 766 GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 25, 26, 767 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX, 768 clk_activation, GPMC_CD_FCLK); 769 770 #ifdef CONFIG_OMAP_GPMC_DEBUG 771 pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n", 772 cs, (div * gpmc_get_fclk_period()) / 1000, div); 773 #endif 774 775 gpmc_cs_bool_timings(cs, &t->bool_timings); 776 gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings"); 777 778 return 0; 779 } 780 781 static int gpmc_cs_set_memconf(int cs, u32 base, u32 size) 782 { 783 u32 l; 784 u32 mask; 785 786 /* 787 * Ensure that base address is aligned on a 788 * boundary equal to or greater than size. 789 */ 790 if (base & (size - 1)) 791 return -EINVAL; 792 793 base >>= GPMC_CHUNK_SHIFT; 794 mask = (1 << GPMC_SECTION_SHIFT) - size; 795 mask >>= GPMC_CHUNK_SHIFT; 796 mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET; 797 798 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 799 l &= ~GPMC_CONFIG7_MASK; 800 l |= base & GPMC_CONFIG7_BASEADDRESS_MASK; 801 l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK; 802 l |= GPMC_CONFIG7_CSVALID; 803 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l); 804 805 return 0; 806 } 807 808 static void gpmc_cs_enable_mem(int cs) 809 { 810 u32 l; 811 812 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 813 l |= GPMC_CONFIG7_CSVALID; 814 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l); 815 } 816 817 static void gpmc_cs_disable_mem(int cs) 818 { 819 u32 l; 820 821 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 822 l &= ~GPMC_CONFIG7_CSVALID; 823 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l); 824 } 825 826 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size) 827 { 828 u32 l; 829 u32 mask; 830 831 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 832 *base = (l & 0x3f) << GPMC_CHUNK_SHIFT; 833 mask = (l >> 8) & 0x0f; 834 *size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT); 835 } 836 837 static int gpmc_cs_mem_enabled(int cs) 838 { 839 u32 l; 840 841 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 842 return l & GPMC_CONFIG7_CSVALID; 843 } 844 845 static void gpmc_cs_set_reserved(int cs, int reserved) 846 { 847 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 848 849 gpmc->flags |= GPMC_CS_RESERVED; 850 } 851 852 static bool gpmc_cs_reserved(int cs) 853 { 854 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 855 856 return gpmc->flags & GPMC_CS_RESERVED; 857 } 858 859 static void gpmc_cs_set_name(int cs, const char *name) 860 { 861 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 862 863 gpmc->name = name; 864 } 865 866 static const char *gpmc_cs_get_name(int cs) 867 { 868 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 869 870 return gpmc->name; 871 } 872 873 static unsigned long gpmc_mem_align(unsigned long size) 874 { 875 int order; 876 877 size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1); 878 order = GPMC_CHUNK_SHIFT - 1; 879 do { 880 size >>= 1; 881 order++; 882 } while (size); 883 size = 1 << order; 884 return size; 885 } 886 887 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size) 888 { 889 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 890 struct resource *res = &gpmc->mem; 891 int r; 892 893 size = gpmc_mem_align(size); 894 spin_lock(&gpmc_mem_lock); 895 res->start = base; 896 res->end = base + size - 1; 897 r = request_resource(&gpmc_mem_root, res); 898 spin_unlock(&gpmc_mem_lock); 899 900 return r; 901 } 902 903 static int gpmc_cs_delete_mem(int cs) 904 { 905 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 906 struct resource *res = &gpmc->mem; 907 int r; 908 909 spin_lock(&gpmc_mem_lock); 910 r = release_resource(res); 911 res->start = 0; 912 res->end = 0; 913 spin_unlock(&gpmc_mem_lock); 914 915 return r; 916 } 917 918 /** 919 * gpmc_cs_remap - remaps a chip-select physical base address 920 * @cs: chip-select to remap 921 * @base: physical base address to re-map chip-select to 922 * 923 * Re-maps a chip-select to a new physical base address specified by 924 * "base". Returns 0 on success and appropriate negative error code 925 * on failure. 926 */ 927 static int gpmc_cs_remap(int cs, u32 base) 928 { 929 int ret; 930 u32 old_base, size; 931 932 if (cs > gpmc_cs_num) { 933 pr_err("%s: requested chip-select is disabled\n", __func__); 934 return -ENODEV; 935 } 936 937 /* 938 * Make sure we ignore any device offsets from the GPMC partition 939 * allocated for the chip select and that the new base confirms 940 * to the GPMC 16MB minimum granularity. 941 */ 942 base &= ~(SZ_16M - 1); 943 944 gpmc_cs_get_memconf(cs, &old_base, &size); 945 if (base == old_base) 946 return 0; 947 948 ret = gpmc_cs_delete_mem(cs); 949 if (ret < 0) 950 return ret; 951 952 ret = gpmc_cs_insert_mem(cs, base, size); 953 if (ret < 0) 954 return ret; 955 956 ret = gpmc_cs_set_memconf(cs, base, size); 957 958 return ret; 959 } 960 961 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base) 962 { 963 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 964 struct resource *res = &gpmc->mem; 965 int r = -1; 966 967 if (cs > gpmc_cs_num) { 968 pr_err("%s: requested chip-select is disabled\n", __func__); 969 return -ENODEV; 970 } 971 size = gpmc_mem_align(size); 972 if (size > (1 << GPMC_SECTION_SHIFT)) 973 return -ENOMEM; 974 975 spin_lock(&gpmc_mem_lock); 976 if (gpmc_cs_reserved(cs)) { 977 r = -EBUSY; 978 goto out; 979 } 980 if (gpmc_cs_mem_enabled(cs)) 981 r = adjust_resource(res, res->start & ~(size - 1), size); 982 if (r < 0) 983 r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0, 984 size, NULL, NULL); 985 if (r < 0) 986 goto out; 987 988 /* Disable CS while changing base address and size mask */ 989 gpmc_cs_disable_mem(cs); 990 991 r = gpmc_cs_set_memconf(cs, res->start, resource_size(res)); 992 if (r < 0) { 993 release_resource(res); 994 goto out; 995 } 996 997 /* Enable CS */ 998 gpmc_cs_enable_mem(cs); 999 *base = res->start; 1000 gpmc_cs_set_reserved(cs, 1); 1001 out: 1002 spin_unlock(&gpmc_mem_lock); 1003 return r; 1004 } 1005 EXPORT_SYMBOL(gpmc_cs_request); 1006 1007 void gpmc_cs_free(int cs) 1008 { 1009 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 1010 struct resource *res = &gpmc->mem; 1011 1012 spin_lock(&gpmc_mem_lock); 1013 if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) { 1014 printk(KERN_ERR "Trying to free non-reserved GPMC CS%d\n", cs); 1015 BUG(); 1016 spin_unlock(&gpmc_mem_lock); 1017 return; 1018 } 1019 gpmc_cs_disable_mem(cs); 1020 if (res->flags) 1021 release_resource(res); 1022 gpmc_cs_set_reserved(cs, 0); 1023 spin_unlock(&gpmc_mem_lock); 1024 } 1025 EXPORT_SYMBOL(gpmc_cs_free); 1026 1027 /** 1028 * gpmc_configure - write request to configure gpmc 1029 * @cmd: command type 1030 * @wval: value to write 1031 * @return status of the operation 1032 */ 1033 int gpmc_configure(int cmd, int wval) 1034 { 1035 u32 regval; 1036 1037 switch (cmd) { 1038 case GPMC_ENABLE_IRQ: 1039 gpmc_write_reg(GPMC_IRQENABLE, wval); 1040 break; 1041 1042 case GPMC_SET_IRQ_STATUS: 1043 gpmc_write_reg(GPMC_IRQSTATUS, wval); 1044 break; 1045 1046 case GPMC_CONFIG_WP: 1047 regval = gpmc_read_reg(GPMC_CONFIG); 1048 if (wval) 1049 regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */ 1050 else 1051 regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */ 1052 gpmc_write_reg(GPMC_CONFIG, regval); 1053 break; 1054 1055 default: 1056 pr_err("%s: command not supported\n", __func__); 1057 return -EINVAL; 1058 } 1059 1060 return 0; 1061 } 1062 EXPORT_SYMBOL(gpmc_configure); 1063 1064 void gpmc_update_nand_reg(struct gpmc_nand_regs *reg, int cs) 1065 { 1066 int i; 1067 1068 reg->gpmc_status = gpmc_base + GPMC_STATUS; 1069 reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET + 1070 GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs; 1071 reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET + 1072 GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs; 1073 reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET + 1074 GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs; 1075 reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1; 1076 reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2; 1077 reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL; 1078 reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS; 1079 reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG; 1080 reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL; 1081 reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG; 1082 reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT; 1083 1084 for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) { 1085 reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 + 1086 GPMC_BCH_SIZE * i; 1087 reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 + 1088 GPMC_BCH_SIZE * i; 1089 reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 + 1090 GPMC_BCH_SIZE * i; 1091 reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 + 1092 GPMC_BCH_SIZE * i; 1093 reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 + 1094 i * GPMC_BCH_SIZE; 1095 reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 + 1096 i * GPMC_BCH_SIZE; 1097 reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 + 1098 i * GPMC_BCH_SIZE; 1099 } 1100 } 1101 1102 int gpmc_get_client_irq(unsigned irq_config) 1103 { 1104 int i; 1105 1106 if (hweight32(irq_config) > 1) 1107 return 0; 1108 1109 for (i = 0; i < GPMC_NR_IRQ; i++) 1110 if (gpmc_client_irq[i].bitmask & irq_config) 1111 return gpmc_client_irq[i].irq; 1112 1113 return 0; 1114 } 1115 1116 static int gpmc_irq_endis(unsigned irq, bool endis) 1117 { 1118 int i; 1119 u32 regval; 1120 1121 for (i = 0; i < GPMC_NR_IRQ; i++) 1122 if (irq == gpmc_client_irq[i].irq) { 1123 regval = gpmc_read_reg(GPMC_IRQENABLE); 1124 if (endis) 1125 regval |= gpmc_client_irq[i].bitmask; 1126 else 1127 regval &= ~gpmc_client_irq[i].bitmask; 1128 gpmc_write_reg(GPMC_IRQENABLE, regval); 1129 break; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static void gpmc_irq_disable(struct irq_data *p) 1136 { 1137 gpmc_irq_endis(p->irq, false); 1138 } 1139 1140 static void gpmc_irq_enable(struct irq_data *p) 1141 { 1142 gpmc_irq_endis(p->irq, true); 1143 } 1144 1145 static void gpmc_irq_noop(struct irq_data *data) { } 1146 1147 static unsigned int gpmc_irq_noop_ret(struct irq_data *data) { return 0; } 1148 1149 static int gpmc_setup_irq(void) 1150 { 1151 int i; 1152 u32 regval; 1153 1154 if (!gpmc_irq) 1155 return -EINVAL; 1156 1157 gpmc_irq_start = irq_alloc_descs(-1, 0, GPMC_NR_IRQ, 0); 1158 if (gpmc_irq_start < 0) { 1159 pr_err("irq_alloc_descs failed\n"); 1160 return gpmc_irq_start; 1161 } 1162 1163 gpmc_irq_chip.name = "gpmc"; 1164 gpmc_irq_chip.irq_startup = gpmc_irq_noop_ret; 1165 gpmc_irq_chip.irq_enable = gpmc_irq_enable; 1166 gpmc_irq_chip.irq_disable = gpmc_irq_disable; 1167 gpmc_irq_chip.irq_shutdown = gpmc_irq_noop; 1168 gpmc_irq_chip.irq_ack = gpmc_irq_noop; 1169 gpmc_irq_chip.irq_mask = gpmc_irq_noop; 1170 gpmc_irq_chip.irq_unmask = gpmc_irq_noop; 1171 1172 gpmc_client_irq[0].bitmask = GPMC_IRQ_FIFOEVENTENABLE; 1173 gpmc_client_irq[1].bitmask = GPMC_IRQ_COUNT_EVENT; 1174 1175 for (i = 0; i < GPMC_NR_IRQ; i++) { 1176 gpmc_client_irq[i].irq = gpmc_irq_start + i; 1177 irq_set_chip_and_handler(gpmc_client_irq[i].irq, 1178 &gpmc_irq_chip, handle_simple_irq); 1179 set_irq_flags(gpmc_client_irq[i].irq, 1180 IRQF_VALID | IRQF_NOAUTOEN); 1181 } 1182 1183 /* Disable interrupts */ 1184 gpmc_write_reg(GPMC_IRQENABLE, 0); 1185 1186 /* clear interrupts */ 1187 regval = gpmc_read_reg(GPMC_IRQSTATUS); 1188 gpmc_write_reg(GPMC_IRQSTATUS, regval); 1189 1190 return request_irq(gpmc_irq, gpmc_handle_irq, 0, "gpmc", NULL); 1191 } 1192 1193 static int gpmc_free_irq(void) 1194 { 1195 int i; 1196 1197 if (gpmc_irq) 1198 free_irq(gpmc_irq, NULL); 1199 1200 for (i = 0; i < GPMC_NR_IRQ; i++) { 1201 irq_set_handler(gpmc_client_irq[i].irq, NULL); 1202 irq_set_chip(gpmc_client_irq[i].irq, &no_irq_chip); 1203 irq_modify_status(gpmc_client_irq[i].irq, 0, 0); 1204 } 1205 1206 irq_free_descs(gpmc_irq_start, GPMC_NR_IRQ); 1207 1208 return 0; 1209 } 1210 1211 static void gpmc_mem_exit(void) 1212 { 1213 int cs; 1214 1215 for (cs = 0; cs < gpmc_cs_num; cs++) { 1216 if (!gpmc_cs_mem_enabled(cs)) 1217 continue; 1218 gpmc_cs_delete_mem(cs); 1219 } 1220 1221 } 1222 1223 static void gpmc_mem_init(void) 1224 { 1225 int cs; 1226 1227 /* 1228 * The first 1MB of GPMC address space is typically mapped to 1229 * the internal ROM. Never allocate the first page, to 1230 * facilitate bug detection; even if we didn't boot from ROM. 1231 */ 1232 gpmc_mem_root.start = SZ_1M; 1233 gpmc_mem_root.end = GPMC_MEM_END; 1234 1235 /* Reserve all regions that has been set up by bootloader */ 1236 for (cs = 0; cs < gpmc_cs_num; cs++) { 1237 u32 base, size; 1238 1239 if (!gpmc_cs_mem_enabled(cs)) 1240 continue; 1241 gpmc_cs_get_memconf(cs, &base, &size); 1242 if (gpmc_cs_insert_mem(cs, base, size)) { 1243 pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n", 1244 __func__, cs, base, base + size); 1245 gpmc_cs_disable_mem(cs); 1246 } 1247 } 1248 } 1249 1250 static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk) 1251 { 1252 u32 temp; 1253 int div; 1254 1255 div = gpmc_calc_divider(sync_clk); 1256 temp = gpmc_ps_to_ticks(time_ps); 1257 temp = (temp + div - 1) / div; 1258 return gpmc_ticks_to_ps(temp * div); 1259 } 1260 1261 /* XXX: can the cycles be avoided ? */ 1262 static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t, 1263 struct gpmc_device_timings *dev_t, 1264 bool mux) 1265 { 1266 u32 temp; 1267 1268 /* adv_rd_off */ 1269 temp = dev_t->t_avdp_r; 1270 /* XXX: mux check required ? */ 1271 if (mux) { 1272 /* XXX: t_avdp not to be required for sync, only added for tusb 1273 * this indirectly necessitates requirement of t_avdp_r and 1274 * t_avdp_w instead of having a single t_avdp 1275 */ 1276 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh); 1277 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); 1278 } 1279 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp); 1280 1281 /* oe_on */ 1282 temp = dev_t->t_oeasu; /* XXX: remove this ? */ 1283 if (mux) { 1284 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach); 1285 temp = max_t(u32, temp, gpmc_t->adv_rd_off + 1286 gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe)); 1287 } 1288 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp); 1289 1290 /* access */ 1291 /* XXX: any scope for improvement ?, by combining oe_on 1292 * and clk_activation, need to check whether 1293 * access = clk_activation + round to sync clk ? 1294 */ 1295 temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk); 1296 temp += gpmc_t->clk_activation; 1297 if (dev_t->cyc_oe) 1298 temp = max_t(u32, temp, gpmc_t->oe_on + 1299 gpmc_ticks_to_ps(dev_t->cyc_oe)); 1300 gpmc_t->access = gpmc_round_ps_to_ticks(temp); 1301 1302 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1); 1303 gpmc_t->cs_rd_off = gpmc_t->oe_off; 1304 1305 /* rd_cycle */ 1306 temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez); 1307 temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) + 1308 gpmc_t->access; 1309 /* XXX: barter t_ce_rdyz with t_cez_r ? */ 1310 if (dev_t->t_ce_rdyz) 1311 temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz); 1312 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp); 1313 1314 return 0; 1315 } 1316 1317 static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t, 1318 struct gpmc_device_timings *dev_t, 1319 bool mux) 1320 { 1321 u32 temp; 1322 1323 /* adv_wr_off */ 1324 temp = dev_t->t_avdp_w; 1325 if (mux) { 1326 temp = max_t(u32, temp, 1327 gpmc_t->clk_activation + dev_t->t_avdh); 1328 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); 1329 } 1330 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp); 1331 1332 /* wr_data_mux_bus */ 1333 temp = max_t(u32, dev_t->t_weasu, 1334 gpmc_t->clk_activation + dev_t->t_rdyo); 1335 /* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?, 1336 * and in that case remember to handle we_on properly 1337 */ 1338 if (mux) { 1339 temp = max_t(u32, temp, 1340 gpmc_t->adv_wr_off + dev_t->t_aavdh); 1341 temp = max_t(u32, temp, gpmc_t->adv_wr_off + 1342 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we)); 1343 } 1344 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp); 1345 1346 /* we_on */ 1347 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) 1348 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu); 1349 else 1350 gpmc_t->we_on = gpmc_t->wr_data_mux_bus; 1351 1352 /* wr_access */ 1353 /* XXX: gpmc_capability check reqd ? , even if not, will not harm */ 1354 gpmc_t->wr_access = gpmc_t->access; 1355 1356 /* we_off */ 1357 temp = gpmc_t->we_on + dev_t->t_wpl; 1358 temp = max_t(u32, temp, 1359 gpmc_t->wr_access + gpmc_ticks_to_ps(1)); 1360 temp = max_t(u32, temp, 1361 gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl)); 1362 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp); 1363 1364 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off + 1365 dev_t->t_wph); 1366 1367 /* wr_cycle */ 1368 temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk); 1369 temp += gpmc_t->wr_access; 1370 /* XXX: barter t_ce_rdyz with t_cez_w ? */ 1371 if (dev_t->t_ce_rdyz) 1372 temp = max_t(u32, temp, 1373 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz); 1374 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp); 1375 1376 return 0; 1377 } 1378 1379 static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t, 1380 struct gpmc_device_timings *dev_t, 1381 bool mux) 1382 { 1383 u32 temp; 1384 1385 /* adv_rd_off */ 1386 temp = dev_t->t_avdp_r; 1387 if (mux) 1388 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); 1389 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp); 1390 1391 /* oe_on */ 1392 temp = dev_t->t_oeasu; 1393 if (mux) 1394 temp = max_t(u32, temp, 1395 gpmc_t->adv_rd_off + dev_t->t_aavdh); 1396 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp); 1397 1398 /* access */ 1399 temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */ 1400 gpmc_t->oe_on + dev_t->t_oe); 1401 temp = max_t(u32, temp, 1402 gpmc_t->cs_on + dev_t->t_ce); 1403 temp = max_t(u32, temp, 1404 gpmc_t->adv_on + dev_t->t_aa); 1405 gpmc_t->access = gpmc_round_ps_to_ticks(temp); 1406 1407 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1); 1408 gpmc_t->cs_rd_off = gpmc_t->oe_off; 1409 1410 /* rd_cycle */ 1411 temp = max_t(u32, dev_t->t_rd_cycle, 1412 gpmc_t->cs_rd_off + dev_t->t_cez_r); 1413 temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez); 1414 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp); 1415 1416 return 0; 1417 } 1418 1419 static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t, 1420 struct gpmc_device_timings *dev_t, 1421 bool mux) 1422 { 1423 u32 temp; 1424 1425 /* adv_wr_off */ 1426 temp = dev_t->t_avdp_w; 1427 if (mux) 1428 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); 1429 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp); 1430 1431 /* wr_data_mux_bus */ 1432 temp = dev_t->t_weasu; 1433 if (mux) { 1434 temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh); 1435 temp = max_t(u32, temp, gpmc_t->adv_wr_off + 1436 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we)); 1437 } 1438 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp); 1439 1440 /* we_on */ 1441 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) 1442 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu); 1443 else 1444 gpmc_t->we_on = gpmc_t->wr_data_mux_bus; 1445 1446 /* we_off */ 1447 temp = gpmc_t->we_on + dev_t->t_wpl; 1448 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp); 1449 1450 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off + 1451 dev_t->t_wph); 1452 1453 /* wr_cycle */ 1454 temp = max_t(u32, dev_t->t_wr_cycle, 1455 gpmc_t->cs_wr_off + dev_t->t_cez_w); 1456 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp); 1457 1458 return 0; 1459 } 1460 1461 static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t, 1462 struct gpmc_device_timings *dev_t) 1463 { 1464 u32 temp; 1465 1466 gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) * 1467 gpmc_get_fclk_period(); 1468 1469 gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk( 1470 dev_t->t_bacc, 1471 gpmc_t->sync_clk); 1472 1473 temp = max_t(u32, dev_t->t_ces, dev_t->t_avds); 1474 gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp); 1475 1476 if (gpmc_calc_divider(gpmc_t->sync_clk) != 1) 1477 return 0; 1478 1479 if (dev_t->ce_xdelay) 1480 gpmc_t->bool_timings.cs_extra_delay = true; 1481 if (dev_t->avd_xdelay) 1482 gpmc_t->bool_timings.adv_extra_delay = true; 1483 if (dev_t->oe_xdelay) 1484 gpmc_t->bool_timings.oe_extra_delay = true; 1485 if (dev_t->we_xdelay) 1486 gpmc_t->bool_timings.we_extra_delay = true; 1487 1488 return 0; 1489 } 1490 1491 static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t, 1492 struct gpmc_device_timings *dev_t, 1493 bool sync) 1494 { 1495 u32 temp; 1496 1497 /* cs_on */ 1498 gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu); 1499 1500 /* adv_on */ 1501 temp = dev_t->t_avdasu; 1502 if (dev_t->t_ce_avd) 1503 temp = max_t(u32, temp, 1504 gpmc_t->cs_on + dev_t->t_ce_avd); 1505 gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp); 1506 1507 if (sync) 1508 gpmc_calc_sync_common_timings(gpmc_t, dev_t); 1509 1510 return 0; 1511 } 1512 1513 /* TODO: remove this function once all peripherals are confirmed to 1514 * work with generic timing. Simultaneously gpmc_cs_set_timings() 1515 * has to be modified to handle timings in ps instead of ns 1516 */ 1517 static void gpmc_convert_ps_to_ns(struct gpmc_timings *t) 1518 { 1519 t->cs_on /= 1000; 1520 t->cs_rd_off /= 1000; 1521 t->cs_wr_off /= 1000; 1522 t->adv_on /= 1000; 1523 t->adv_rd_off /= 1000; 1524 t->adv_wr_off /= 1000; 1525 t->we_on /= 1000; 1526 t->we_off /= 1000; 1527 t->oe_on /= 1000; 1528 t->oe_off /= 1000; 1529 t->page_burst_access /= 1000; 1530 t->access /= 1000; 1531 t->rd_cycle /= 1000; 1532 t->wr_cycle /= 1000; 1533 t->bus_turnaround /= 1000; 1534 t->cycle2cycle_delay /= 1000; 1535 t->wait_monitoring /= 1000; 1536 t->clk_activation /= 1000; 1537 t->wr_access /= 1000; 1538 t->wr_data_mux_bus /= 1000; 1539 } 1540 1541 int gpmc_calc_timings(struct gpmc_timings *gpmc_t, 1542 struct gpmc_settings *gpmc_s, 1543 struct gpmc_device_timings *dev_t) 1544 { 1545 bool mux = false, sync = false; 1546 1547 if (gpmc_s) { 1548 mux = gpmc_s->mux_add_data ? true : false; 1549 sync = (gpmc_s->sync_read || gpmc_s->sync_write); 1550 } 1551 1552 memset(gpmc_t, 0, sizeof(*gpmc_t)); 1553 1554 gpmc_calc_common_timings(gpmc_t, dev_t, sync); 1555 1556 if (gpmc_s && gpmc_s->sync_read) 1557 gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux); 1558 else 1559 gpmc_calc_async_read_timings(gpmc_t, dev_t, mux); 1560 1561 if (gpmc_s && gpmc_s->sync_write) 1562 gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux); 1563 else 1564 gpmc_calc_async_write_timings(gpmc_t, dev_t, mux); 1565 1566 /* TODO: remove, see function definition */ 1567 gpmc_convert_ps_to_ns(gpmc_t); 1568 1569 return 0; 1570 } 1571 1572 /** 1573 * gpmc_cs_program_settings - programs non-timing related settings 1574 * @cs: GPMC chip-select to program 1575 * @p: pointer to GPMC settings structure 1576 * 1577 * Programs non-timing related settings for a GPMC chip-select, such as 1578 * bus-width, burst configuration, etc. Function should be called once 1579 * for each chip-select that is being used and must be called before 1580 * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1 1581 * register will be initialised to zero by this function. Returns 0 on 1582 * success and appropriate negative error code on failure. 1583 */ 1584 int gpmc_cs_program_settings(int cs, struct gpmc_settings *p) 1585 { 1586 u32 config1; 1587 1588 if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) { 1589 pr_err("%s: invalid width %d!", __func__, p->device_width); 1590 return -EINVAL; 1591 } 1592 1593 /* Address-data multiplexing not supported for NAND devices */ 1594 if (p->device_nand && p->mux_add_data) { 1595 pr_err("%s: invalid configuration!\n", __func__); 1596 return -EINVAL; 1597 } 1598 1599 if ((p->mux_add_data > GPMC_MUX_AD) || 1600 ((p->mux_add_data == GPMC_MUX_AAD) && 1601 !(gpmc_capability & GPMC_HAS_MUX_AAD))) { 1602 pr_err("%s: invalid multiplex configuration!\n", __func__); 1603 return -EINVAL; 1604 } 1605 1606 /* Page/burst mode supports lengths of 4, 8 and 16 bytes */ 1607 if (p->burst_read || p->burst_write) { 1608 switch (p->burst_len) { 1609 case GPMC_BURST_4: 1610 case GPMC_BURST_8: 1611 case GPMC_BURST_16: 1612 break; 1613 default: 1614 pr_err("%s: invalid page/burst-length (%d)\n", 1615 __func__, p->burst_len); 1616 return -EINVAL; 1617 } 1618 } 1619 1620 if (p->wait_pin > gpmc_nr_waitpins) { 1621 pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin); 1622 return -EINVAL; 1623 } 1624 1625 config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1)); 1626 1627 if (p->sync_read) 1628 config1 |= GPMC_CONFIG1_READTYPE_SYNC; 1629 if (p->sync_write) 1630 config1 |= GPMC_CONFIG1_WRITETYPE_SYNC; 1631 if (p->wait_on_read) 1632 config1 |= GPMC_CONFIG1_WAIT_READ_MON; 1633 if (p->wait_on_write) 1634 config1 |= GPMC_CONFIG1_WAIT_WRITE_MON; 1635 if (p->wait_on_read || p->wait_on_write) 1636 config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin); 1637 if (p->device_nand) 1638 config1 |= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND); 1639 if (p->mux_add_data) 1640 config1 |= GPMC_CONFIG1_MUXTYPE(p->mux_add_data); 1641 if (p->burst_read) 1642 config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP; 1643 if (p->burst_write) 1644 config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP; 1645 if (p->burst_read || p->burst_write) { 1646 config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3); 1647 config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0; 1648 } 1649 1650 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1); 1651 1652 return 0; 1653 } 1654 1655 #ifdef CONFIG_OF 1656 static const struct of_device_id gpmc_dt_ids[] = { 1657 { .compatible = "ti,omap2420-gpmc" }, 1658 { .compatible = "ti,omap2430-gpmc" }, 1659 { .compatible = "ti,omap3430-gpmc" }, /* omap3430 & omap3630 */ 1660 { .compatible = "ti,omap4430-gpmc" }, /* omap4430 & omap4460 & omap543x */ 1661 { .compatible = "ti,am3352-gpmc" }, /* am335x devices */ 1662 { } 1663 }; 1664 MODULE_DEVICE_TABLE(of, gpmc_dt_ids); 1665 1666 /** 1667 * gpmc_read_settings_dt - read gpmc settings from device-tree 1668 * @np: pointer to device-tree node for a gpmc child device 1669 * @p: pointer to gpmc settings structure 1670 * 1671 * Reads the GPMC settings for a GPMC child device from device-tree and 1672 * stores them in the GPMC settings structure passed. The GPMC settings 1673 * structure is initialised to zero by this function and so any 1674 * previously stored settings will be cleared. 1675 */ 1676 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p) 1677 { 1678 memset(p, 0, sizeof(struct gpmc_settings)); 1679 1680 p->sync_read = of_property_read_bool(np, "gpmc,sync-read"); 1681 p->sync_write = of_property_read_bool(np, "gpmc,sync-write"); 1682 of_property_read_u32(np, "gpmc,device-width", &p->device_width); 1683 of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data); 1684 1685 if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) { 1686 p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap"); 1687 p->burst_read = of_property_read_bool(np, "gpmc,burst-read"); 1688 p->burst_write = of_property_read_bool(np, "gpmc,burst-write"); 1689 if (!p->burst_read && !p->burst_write) 1690 pr_warn("%s: page/burst-length set but not used!\n", 1691 __func__); 1692 } 1693 1694 if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) { 1695 p->wait_on_read = of_property_read_bool(np, 1696 "gpmc,wait-on-read"); 1697 p->wait_on_write = of_property_read_bool(np, 1698 "gpmc,wait-on-write"); 1699 if (!p->wait_on_read && !p->wait_on_write) 1700 pr_debug("%s: rd/wr wait monitoring not enabled!\n", 1701 __func__); 1702 } 1703 } 1704 1705 static void __maybe_unused gpmc_read_timings_dt(struct device_node *np, 1706 struct gpmc_timings *gpmc_t) 1707 { 1708 struct gpmc_bool_timings *p; 1709 1710 if (!np || !gpmc_t) 1711 return; 1712 1713 memset(gpmc_t, 0, sizeof(*gpmc_t)); 1714 1715 /* minimum clock period for syncronous mode */ 1716 of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk); 1717 1718 /* chip select timtings */ 1719 of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on); 1720 of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off); 1721 of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off); 1722 1723 /* ADV signal timings */ 1724 of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on); 1725 of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off); 1726 of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off); 1727 1728 /* WE signal timings */ 1729 of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on); 1730 of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off); 1731 1732 /* OE signal timings */ 1733 of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on); 1734 of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off); 1735 1736 /* access and cycle timings */ 1737 of_property_read_u32(np, "gpmc,page-burst-access-ns", 1738 &gpmc_t->page_burst_access); 1739 of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access); 1740 of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle); 1741 of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle); 1742 of_property_read_u32(np, "gpmc,bus-turnaround-ns", 1743 &gpmc_t->bus_turnaround); 1744 of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns", 1745 &gpmc_t->cycle2cycle_delay); 1746 of_property_read_u32(np, "gpmc,wait-monitoring-ns", 1747 &gpmc_t->wait_monitoring); 1748 of_property_read_u32(np, "gpmc,clk-activation-ns", 1749 &gpmc_t->clk_activation); 1750 1751 /* only applicable to OMAP3+ */ 1752 of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access); 1753 of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns", 1754 &gpmc_t->wr_data_mux_bus); 1755 1756 /* bool timing parameters */ 1757 p = &gpmc_t->bool_timings; 1758 1759 p->cycle2cyclediffcsen = 1760 of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen"); 1761 p->cycle2cyclesamecsen = 1762 of_property_read_bool(np, "gpmc,cycle2cycle-samecsen"); 1763 p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay"); 1764 p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay"); 1765 p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay"); 1766 p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay"); 1767 p->time_para_granularity = 1768 of_property_read_bool(np, "gpmc,time-para-granularity"); 1769 } 1770 1771 #if IS_ENABLED(CONFIG_MTD_NAND) 1772 1773 static const char * const nand_xfer_types[] = { 1774 [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled", 1775 [NAND_OMAP_POLLED] = "polled", 1776 [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma", 1777 [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq", 1778 }; 1779 1780 static int gpmc_probe_nand_child(struct platform_device *pdev, 1781 struct device_node *child) 1782 { 1783 u32 val; 1784 const char *s; 1785 struct gpmc_timings gpmc_t; 1786 struct omap_nand_platform_data *gpmc_nand_data; 1787 1788 if (of_property_read_u32(child, "reg", &val) < 0) { 1789 dev_err(&pdev->dev, "%s has no 'reg' property\n", 1790 child->full_name); 1791 return -ENODEV; 1792 } 1793 1794 gpmc_nand_data = devm_kzalloc(&pdev->dev, sizeof(*gpmc_nand_data), 1795 GFP_KERNEL); 1796 if (!gpmc_nand_data) 1797 return -ENOMEM; 1798 1799 gpmc_nand_data->cs = val; 1800 gpmc_nand_data->of_node = child; 1801 1802 /* Detect availability of ELM module */ 1803 gpmc_nand_data->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0); 1804 if (gpmc_nand_data->elm_of_node == NULL) 1805 gpmc_nand_data->elm_of_node = 1806 of_parse_phandle(child, "elm_id", 0); 1807 1808 /* select ecc-scheme for NAND */ 1809 if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) { 1810 pr_err("%s: ti,nand-ecc-opt not found\n", __func__); 1811 return -ENODEV; 1812 } 1813 1814 if (!strcmp(s, "sw")) 1815 gpmc_nand_data->ecc_opt = OMAP_ECC_HAM1_CODE_SW; 1816 else if (!strcmp(s, "ham1") || 1817 !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) 1818 gpmc_nand_data->ecc_opt = 1819 OMAP_ECC_HAM1_CODE_HW; 1820 else if (!strcmp(s, "bch4")) 1821 if (gpmc_nand_data->elm_of_node) 1822 gpmc_nand_data->ecc_opt = 1823 OMAP_ECC_BCH4_CODE_HW; 1824 else 1825 gpmc_nand_data->ecc_opt = 1826 OMAP_ECC_BCH4_CODE_HW_DETECTION_SW; 1827 else if (!strcmp(s, "bch8")) 1828 if (gpmc_nand_data->elm_of_node) 1829 gpmc_nand_data->ecc_opt = 1830 OMAP_ECC_BCH8_CODE_HW; 1831 else 1832 gpmc_nand_data->ecc_opt = 1833 OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; 1834 else if (!strcmp(s, "bch16")) 1835 if (gpmc_nand_data->elm_of_node) 1836 gpmc_nand_data->ecc_opt = 1837 OMAP_ECC_BCH16_CODE_HW; 1838 else 1839 pr_err("%s: BCH16 requires ELM support\n", __func__); 1840 else 1841 pr_err("%s: ti,nand-ecc-opt invalid value\n", __func__); 1842 1843 /* select data transfer mode for NAND controller */ 1844 if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) 1845 for (val = 0; val < ARRAY_SIZE(nand_xfer_types); val++) 1846 if (!strcasecmp(s, nand_xfer_types[val])) { 1847 gpmc_nand_data->xfer_type = val; 1848 break; 1849 } 1850 1851 gpmc_nand_data->flash_bbt = of_get_nand_on_flash_bbt(child); 1852 1853 val = of_get_nand_bus_width(child); 1854 if (val == 16) 1855 gpmc_nand_data->devsize = NAND_BUSWIDTH_16; 1856 1857 gpmc_read_timings_dt(child, &gpmc_t); 1858 gpmc_nand_init(gpmc_nand_data, &gpmc_t); 1859 1860 return 0; 1861 } 1862 #else 1863 static int gpmc_probe_nand_child(struct platform_device *pdev, 1864 struct device_node *child) 1865 { 1866 return 0; 1867 } 1868 #endif 1869 1870 #if IS_ENABLED(CONFIG_MTD_ONENAND) 1871 static int gpmc_probe_onenand_child(struct platform_device *pdev, 1872 struct device_node *child) 1873 { 1874 u32 val; 1875 struct omap_onenand_platform_data *gpmc_onenand_data; 1876 1877 if (of_property_read_u32(child, "reg", &val) < 0) { 1878 dev_err(&pdev->dev, "%s has no 'reg' property\n", 1879 child->full_name); 1880 return -ENODEV; 1881 } 1882 1883 gpmc_onenand_data = devm_kzalloc(&pdev->dev, sizeof(*gpmc_onenand_data), 1884 GFP_KERNEL); 1885 if (!gpmc_onenand_data) 1886 return -ENOMEM; 1887 1888 gpmc_onenand_data->cs = val; 1889 gpmc_onenand_data->of_node = child; 1890 gpmc_onenand_data->dma_channel = -1; 1891 1892 if (!of_property_read_u32(child, "dma-channel", &val)) 1893 gpmc_onenand_data->dma_channel = val; 1894 1895 gpmc_onenand_init(gpmc_onenand_data); 1896 1897 return 0; 1898 } 1899 #else 1900 static int gpmc_probe_onenand_child(struct platform_device *pdev, 1901 struct device_node *child) 1902 { 1903 return 0; 1904 } 1905 #endif 1906 1907 /** 1908 * gpmc_probe_generic_child - configures the gpmc for a child device 1909 * @pdev: pointer to gpmc platform device 1910 * @child: pointer to device-tree node for child device 1911 * 1912 * Allocates and configures a GPMC chip-select for a child device. 1913 * Returns 0 on success and appropriate negative error code on failure. 1914 */ 1915 static int gpmc_probe_generic_child(struct platform_device *pdev, 1916 struct device_node *child) 1917 { 1918 struct gpmc_settings gpmc_s; 1919 struct gpmc_timings gpmc_t; 1920 struct resource res; 1921 unsigned long base; 1922 const char *name; 1923 int ret, cs; 1924 u32 val; 1925 1926 if (of_property_read_u32(child, "reg", &cs) < 0) { 1927 dev_err(&pdev->dev, "%s has no 'reg' property\n", 1928 child->full_name); 1929 return -ENODEV; 1930 } 1931 1932 if (of_address_to_resource(child, 0, &res) < 0) { 1933 dev_err(&pdev->dev, "%s has malformed 'reg' property\n", 1934 child->full_name); 1935 return -ENODEV; 1936 } 1937 1938 /* 1939 * Check if we have multiple instances of the same device 1940 * on a single chip select. If so, use the already initialized 1941 * timings. 1942 */ 1943 name = gpmc_cs_get_name(cs); 1944 if (name && child->name && of_node_cmp(child->name, name) == 0) 1945 goto no_timings; 1946 1947 ret = gpmc_cs_request(cs, resource_size(&res), &base); 1948 if (ret < 0) { 1949 dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs); 1950 return ret; 1951 } 1952 gpmc_cs_set_name(cs, child->name); 1953 1954 gpmc_read_settings_dt(child, &gpmc_s); 1955 gpmc_read_timings_dt(child, &gpmc_t); 1956 1957 /* 1958 * For some GPMC devices we still need to rely on the bootloader 1959 * timings because the devices can be connected via FPGA. 1960 * REVISIT: Add timing support from slls644g.pdf. 1961 */ 1962 if (!gpmc_t.cs_rd_off) { 1963 WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n", 1964 cs); 1965 gpmc_cs_show_timings(cs, 1966 "please add GPMC bootloader timings to .dts"); 1967 goto no_timings; 1968 } 1969 1970 /* CS must be disabled while making changes to gpmc configuration */ 1971 gpmc_cs_disable_mem(cs); 1972 1973 /* 1974 * FIXME: gpmc_cs_request() will map the CS to an arbitary 1975 * location in the gpmc address space. When booting with 1976 * device-tree we want the NOR flash to be mapped to the 1977 * location specified in the device-tree blob. So remap the 1978 * CS to this location. Once DT migration is complete should 1979 * just make gpmc_cs_request() map a specific address. 1980 */ 1981 ret = gpmc_cs_remap(cs, res.start); 1982 if (ret < 0) { 1983 dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n", 1984 cs, &res.start); 1985 goto err; 1986 } 1987 1988 ret = of_property_read_u32(child, "bank-width", &gpmc_s.device_width); 1989 if (ret < 0) 1990 goto err; 1991 1992 ret = gpmc_cs_program_settings(cs, &gpmc_s); 1993 if (ret < 0) 1994 goto err; 1995 1996 ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s); 1997 if (ret) { 1998 dev_err(&pdev->dev, "failed to set gpmc timings for: %s\n", 1999 child->name); 2000 goto err; 2001 } 2002 2003 /* Clear limited address i.e. enable A26-A11 */ 2004 val = gpmc_read_reg(GPMC_CONFIG); 2005 val &= ~GPMC_CONFIG_LIMITEDADDRESS; 2006 gpmc_write_reg(GPMC_CONFIG, val); 2007 2008 /* Enable CS region */ 2009 gpmc_cs_enable_mem(cs); 2010 2011 no_timings: 2012 2013 /* create platform device, NULL on error or when disabled */ 2014 if (!of_platform_device_create(child, NULL, &pdev->dev)) 2015 goto err_child_fail; 2016 2017 /* is child a common bus? */ 2018 if (of_match_node(of_default_bus_match_table, child)) 2019 /* create children and other common bus children */ 2020 if (of_platform_populate(child, of_default_bus_match_table, 2021 NULL, &pdev->dev)) 2022 goto err_child_fail; 2023 2024 return 0; 2025 2026 err_child_fail: 2027 2028 dev_err(&pdev->dev, "failed to create gpmc child %s\n", child->name); 2029 ret = -ENODEV; 2030 2031 err: 2032 gpmc_cs_free(cs); 2033 2034 return ret; 2035 } 2036 2037 static int gpmc_probe_dt(struct platform_device *pdev) 2038 { 2039 int ret; 2040 struct device_node *child; 2041 const struct of_device_id *of_id = 2042 of_match_device(gpmc_dt_ids, &pdev->dev); 2043 2044 if (!of_id) 2045 return 0; 2046 2047 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs", 2048 &gpmc_cs_num); 2049 if (ret < 0) { 2050 pr_err("%s: number of chip-selects not defined\n", __func__); 2051 return ret; 2052 } else if (gpmc_cs_num < 1) { 2053 pr_err("%s: all chip-selects are disabled\n", __func__); 2054 return -EINVAL; 2055 } else if (gpmc_cs_num > GPMC_CS_NUM) { 2056 pr_err("%s: number of supported chip-selects cannot be > %d\n", 2057 __func__, GPMC_CS_NUM); 2058 return -EINVAL; 2059 } 2060 2061 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins", 2062 &gpmc_nr_waitpins); 2063 if (ret < 0) { 2064 pr_err("%s: number of wait pins not found!\n", __func__); 2065 return ret; 2066 } 2067 2068 for_each_available_child_of_node(pdev->dev.of_node, child) { 2069 2070 if (!child->name) 2071 continue; 2072 2073 if (of_node_cmp(child->name, "nand") == 0) 2074 ret = gpmc_probe_nand_child(pdev, child); 2075 else if (of_node_cmp(child->name, "onenand") == 0) 2076 ret = gpmc_probe_onenand_child(pdev, child); 2077 else 2078 ret = gpmc_probe_generic_child(pdev, child); 2079 } 2080 2081 return 0; 2082 } 2083 #else 2084 static int gpmc_probe_dt(struct platform_device *pdev) 2085 { 2086 return 0; 2087 } 2088 #endif 2089 2090 static int gpmc_probe(struct platform_device *pdev) 2091 { 2092 int rc; 2093 u32 l; 2094 struct resource *res; 2095 2096 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2097 if (res == NULL) 2098 return -ENOENT; 2099 2100 phys_base = res->start; 2101 mem_size = resource_size(res); 2102 2103 gpmc_base = devm_ioremap_resource(&pdev->dev, res); 2104 if (IS_ERR(gpmc_base)) 2105 return PTR_ERR(gpmc_base); 2106 2107 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 2108 if (res == NULL) 2109 dev_warn(&pdev->dev, "Failed to get resource: irq\n"); 2110 else 2111 gpmc_irq = res->start; 2112 2113 gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck"); 2114 if (IS_ERR(gpmc_l3_clk)) { 2115 dev_err(&pdev->dev, "Failed to get GPMC fck\n"); 2116 gpmc_irq = 0; 2117 return PTR_ERR(gpmc_l3_clk); 2118 } 2119 2120 if (!clk_get_rate(gpmc_l3_clk)) { 2121 dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n"); 2122 return -EINVAL; 2123 } 2124 2125 pm_runtime_enable(&pdev->dev); 2126 pm_runtime_get_sync(&pdev->dev); 2127 2128 gpmc_dev = &pdev->dev; 2129 2130 l = gpmc_read_reg(GPMC_REVISION); 2131 2132 /* 2133 * FIXME: Once device-tree migration is complete the below flags 2134 * should be populated based upon the device-tree compatible 2135 * string. For now just use the IP revision. OMAP3+ devices have 2136 * the wr_access and wr_data_mux_bus register fields. OMAP4+ 2137 * devices support the addr-addr-data multiplex protocol. 2138 * 2139 * GPMC IP revisions: 2140 * - OMAP24xx = 2.0 2141 * - OMAP3xxx = 5.0 2142 * - OMAP44xx/54xx/AM335x = 6.0 2143 */ 2144 if (GPMC_REVISION_MAJOR(l) > 0x4) 2145 gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS; 2146 if (GPMC_REVISION_MAJOR(l) > 0x5) 2147 gpmc_capability |= GPMC_HAS_MUX_AAD; 2148 dev_info(gpmc_dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l), 2149 GPMC_REVISION_MINOR(l)); 2150 2151 gpmc_mem_init(); 2152 2153 if (gpmc_setup_irq() < 0) 2154 dev_warn(gpmc_dev, "gpmc_setup_irq failed\n"); 2155 2156 if (!pdev->dev.of_node) { 2157 gpmc_cs_num = GPMC_CS_NUM; 2158 gpmc_nr_waitpins = GPMC_NR_WAITPINS; 2159 } 2160 2161 rc = gpmc_probe_dt(pdev); 2162 if (rc < 0) { 2163 pm_runtime_put_sync(&pdev->dev); 2164 dev_err(gpmc_dev, "failed to probe DT parameters\n"); 2165 return rc; 2166 } 2167 2168 return 0; 2169 } 2170 2171 static int gpmc_remove(struct platform_device *pdev) 2172 { 2173 gpmc_free_irq(); 2174 gpmc_mem_exit(); 2175 pm_runtime_put_sync(&pdev->dev); 2176 pm_runtime_disable(&pdev->dev); 2177 gpmc_dev = NULL; 2178 return 0; 2179 } 2180 2181 #ifdef CONFIG_PM_SLEEP 2182 static int gpmc_suspend(struct device *dev) 2183 { 2184 omap3_gpmc_save_context(); 2185 pm_runtime_put_sync(dev); 2186 return 0; 2187 } 2188 2189 static int gpmc_resume(struct device *dev) 2190 { 2191 pm_runtime_get_sync(dev); 2192 omap3_gpmc_restore_context(); 2193 return 0; 2194 } 2195 #endif 2196 2197 static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume); 2198 2199 static struct platform_driver gpmc_driver = { 2200 .probe = gpmc_probe, 2201 .remove = gpmc_remove, 2202 .driver = { 2203 .name = DEVICE_NAME, 2204 .of_match_table = of_match_ptr(gpmc_dt_ids), 2205 .pm = &gpmc_pm_ops, 2206 }, 2207 }; 2208 2209 static __init int gpmc_init(void) 2210 { 2211 return platform_driver_register(&gpmc_driver); 2212 } 2213 2214 static __exit void gpmc_exit(void) 2215 { 2216 platform_driver_unregister(&gpmc_driver); 2217 2218 } 2219 2220 postcore_initcall(gpmc_init); 2221 module_exit(gpmc_exit); 2222 2223 static irqreturn_t gpmc_handle_irq(int irq, void *dev) 2224 { 2225 int i; 2226 u32 regval; 2227 2228 regval = gpmc_read_reg(GPMC_IRQSTATUS); 2229 2230 if (!regval) 2231 return IRQ_NONE; 2232 2233 for (i = 0; i < GPMC_NR_IRQ; i++) 2234 if (regval & gpmc_client_irq[i].bitmask) 2235 generic_handle_irq(gpmc_client_irq[i].irq); 2236 2237 gpmc_write_reg(GPMC_IRQSTATUS, regval); 2238 2239 return IRQ_HANDLED; 2240 } 2241 2242 static struct omap3_gpmc_regs gpmc_context; 2243 2244 void omap3_gpmc_save_context(void) 2245 { 2246 int i; 2247 2248 if (!gpmc_base) 2249 return; 2250 2251 gpmc_context.sysconfig = gpmc_read_reg(GPMC_SYSCONFIG); 2252 gpmc_context.irqenable = gpmc_read_reg(GPMC_IRQENABLE); 2253 gpmc_context.timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL); 2254 gpmc_context.config = gpmc_read_reg(GPMC_CONFIG); 2255 gpmc_context.prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1); 2256 gpmc_context.prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2); 2257 gpmc_context.prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL); 2258 for (i = 0; i < gpmc_cs_num; i++) { 2259 gpmc_context.cs_context[i].is_valid = gpmc_cs_mem_enabled(i); 2260 if (gpmc_context.cs_context[i].is_valid) { 2261 gpmc_context.cs_context[i].config1 = 2262 gpmc_cs_read_reg(i, GPMC_CS_CONFIG1); 2263 gpmc_context.cs_context[i].config2 = 2264 gpmc_cs_read_reg(i, GPMC_CS_CONFIG2); 2265 gpmc_context.cs_context[i].config3 = 2266 gpmc_cs_read_reg(i, GPMC_CS_CONFIG3); 2267 gpmc_context.cs_context[i].config4 = 2268 gpmc_cs_read_reg(i, GPMC_CS_CONFIG4); 2269 gpmc_context.cs_context[i].config5 = 2270 gpmc_cs_read_reg(i, GPMC_CS_CONFIG5); 2271 gpmc_context.cs_context[i].config6 = 2272 gpmc_cs_read_reg(i, GPMC_CS_CONFIG6); 2273 gpmc_context.cs_context[i].config7 = 2274 gpmc_cs_read_reg(i, GPMC_CS_CONFIG7); 2275 } 2276 } 2277 } 2278 2279 void omap3_gpmc_restore_context(void) 2280 { 2281 int i; 2282 2283 if (!gpmc_base) 2284 return; 2285 2286 gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context.sysconfig); 2287 gpmc_write_reg(GPMC_IRQENABLE, gpmc_context.irqenable); 2288 gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context.timeout_ctrl); 2289 gpmc_write_reg(GPMC_CONFIG, gpmc_context.config); 2290 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context.prefetch_config1); 2291 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context.prefetch_config2); 2292 gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context.prefetch_control); 2293 for (i = 0; i < gpmc_cs_num; i++) { 2294 if (gpmc_context.cs_context[i].is_valid) { 2295 gpmc_cs_write_reg(i, GPMC_CS_CONFIG1, 2296 gpmc_context.cs_context[i].config1); 2297 gpmc_cs_write_reg(i, GPMC_CS_CONFIG2, 2298 gpmc_context.cs_context[i].config2); 2299 gpmc_cs_write_reg(i, GPMC_CS_CONFIG3, 2300 gpmc_context.cs_context[i].config3); 2301 gpmc_cs_write_reg(i, GPMC_CS_CONFIG4, 2302 gpmc_context.cs_context[i].config4); 2303 gpmc_cs_write_reg(i, GPMC_CS_CONFIG5, 2304 gpmc_context.cs_context[i].config5); 2305 gpmc_cs_write_reg(i, GPMC_CS_CONFIG6, 2306 gpmc_context.cs_context[i].config6); 2307 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 2308 gpmc_context.cs_context[i].config7); 2309 } 2310 } 2311 } 2312