xref: /linux/drivers/memory/omap-gpmc.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  * GPMC support functions
3  *
4  * Copyright (C) 2005-2006 Nokia Corporation
5  *
6  * Author: Juha Yrjola
7  *
8  * Copyright (C) 2009 Texas Instruments
9  * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  */
15 #include <linux/irq.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/err.h>
19 #include <linux/clk.h>
20 #include <linux/ioport.h>
21 #include <linux/spinlock.h>
22 #include <linux/io.h>
23 #include <linux/gpio/driver.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/platform_device.h>
27 #include <linux/of.h>
28 #include <linux/of_address.h>
29 #include <linux/of_device.h>
30 #include <linux/of_platform.h>
31 #include <linux/omap-gpmc.h>
32 #include <linux/pm_runtime.h>
33 
34 #include <linux/platform_data/mtd-nand-omap2.h>
35 
36 #include <asm/mach-types.h>
37 
38 #define	DEVICE_NAME		"omap-gpmc"
39 
40 /* GPMC register offsets */
41 #define GPMC_REVISION		0x00
42 #define GPMC_SYSCONFIG		0x10
43 #define GPMC_SYSSTATUS		0x14
44 #define GPMC_IRQSTATUS		0x18
45 #define GPMC_IRQENABLE		0x1c
46 #define GPMC_TIMEOUT_CONTROL	0x40
47 #define GPMC_ERR_ADDRESS	0x44
48 #define GPMC_ERR_TYPE		0x48
49 #define GPMC_CONFIG		0x50
50 #define GPMC_STATUS		0x54
51 #define GPMC_PREFETCH_CONFIG1	0x1e0
52 #define GPMC_PREFETCH_CONFIG2	0x1e4
53 #define GPMC_PREFETCH_CONTROL	0x1ec
54 #define GPMC_PREFETCH_STATUS	0x1f0
55 #define GPMC_ECC_CONFIG		0x1f4
56 #define GPMC_ECC_CONTROL	0x1f8
57 #define GPMC_ECC_SIZE_CONFIG	0x1fc
58 #define GPMC_ECC1_RESULT        0x200
59 #define GPMC_ECC_BCH_RESULT_0   0x240   /* not available on OMAP2 */
60 #define	GPMC_ECC_BCH_RESULT_1	0x244	/* not available on OMAP2 */
61 #define	GPMC_ECC_BCH_RESULT_2	0x248	/* not available on OMAP2 */
62 #define	GPMC_ECC_BCH_RESULT_3	0x24c	/* not available on OMAP2 */
63 #define	GPMC_ECC_BCH_RESULT_4	0x300	/* not available on OMAP2 */
64 #define	GPMC_ECC_BCH_RESULT_5	0x304	/* not available on OMAP2 */
65 #define	GPMC_ECC_BCH_RESULT_6	0x308	/* not available on OMAP2 */
66 
67 /* GPMC ECC control settings */
68 #define GPMC_ECC_CTRL_ECCCLEAR		0x100
69 #define GPMC_ECC_CTRL_ECCDISABLE	0x000
70 #define GPMC_ECC_CTRL_ECCREG1		0x001
71 #define GPMC_ECC_CTRL_ECCREG2		0x002
72 #define GPMC_ECC_CTRL_ECCREG3		0x003
73 #define GPMC_ECC_CTRL_ECCREG4		0x004
74 #define GPMC_ECC_CTRL_ECCREG5		0x005
75 #define GPMC_ECC_CTRL_ECCREG6		0x006
76 #define GPMC_ECC_CTRL_ECCREG7		0x007
77 #define GPMC_ECC_CTRL_ECCREG8		0x008
78 #define GPMC_ECC_CTRL_ECCREG9		0x009
79 
80 #define GPMC_CONFIG_LIMITEDADDRESS		BIT(1)
81 
82 #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS	BIT(0)
83 
84 #define	GPMC_CONFIG2_CSEXTRADELAY		BIT(7)
85 #define	GPMC_CONFIG3_ADVEXTRADELAY		BIT(7)
86 #define	GPMC_CONFIG4_OEEXTRADELAY		BIT(7)
87 #define	GPMC_CONFIG4_WEEXTRADELAY		BIT(23)
88 #define	GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN	BIT(6)
89 #define	GPMC_CONFIG6_CYCLE2CYCLESAMECSEN	BIT(7)
90 
91 #define GPMC_CS0_OFFSET		0x60
92 #define GPMC_CS_SIZE		0x30
93 #define	GPMC_BCH_SIZE		0x10
94 
95 /*
96  * The first 1MB of GPMC address space is typically mapped to
97  * the internal ROM. Never allocate the first page, to
98  * facilitate bug detection; even if we didn't boot from ROM.
99  * As GPMC minimum partition size is 16MB we can only start from
100  * there.
101  */
102 #define GPMC_MEM_START		0x1000000
103 #define GPMC_MEM_END		0x3FFFFFFF
104 
105 #define GPMC_CHUNK_SHIFT	24		/* 16 MB */
106 #define GPMC_SECTION_SHIFT	28		/* 128 MB */
107 
108 #define CS_NUM_SHIFT		24
109 #define ENABLE_PREFETCH		(0x1 << 7)
110 #define DMA_MPU_MODE		2
111 
112 #define	GPMC_REVISION_MAJOR(l)		((l >> 4) & 0xf)
113 #define	GPMC_REVISION_MINOR(l)		(l & 0xf)
114 
115 #define	GPMC_HAS_WR_ACCESS		0x1
116 #define	GPMC_HAS_WR_DATA_MUX_BUS	0x2
117 #define	GPMC_HAS_MUX_AAD		0x4
118 
119 #define GPMC_NR_WAITPINS		4
120 
121 #define GPMC_CS_CONFIG1		0x00
122 #define GPMC_CS_CONFIG2		0x04
123 #define GPMC_CS_CONFIG3		0x08
124 #define GPMC_CS_CONFIG4		0x0c
125 #define GPMC_CS_CONFIG5		0x10
126 #define GPMC_CS_CONFIG6		0x14
127 #define GPMC_CS_CONFIG7		0x18
128 #define GPMC_CS_NAND_COMMAND	0x1c
129 #define GPMC_CS_NAND_ADDRESS	0x20
130 #define GPMC_CS_NAND_DATA	0x24
131 
132 /* Control Commands */
133 #define GPMC_CONFIG_RDY_BSY	0x00000001
134 #define GPMC_CONFIG_DEV_SIZE	0x00000002
135 #define GPMC_CONFIG_DEV_TYPE	0x00000003
136 
137 #define GPMC_CONFIG1_WRAPBURST_SUPP     (1 << 31)
138 #define GPMC_CONFIG1_READMULTIPLE_SUPP  (1 << 30)
139 #define GPMC_CONFIG1_READTYPE_ASYNC     (0 << 29)
140 #define GPMC_CONFIG1_READTYPE_SYNC      (1 << 29)
141 #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
142 #define GPMC_CONFIG1_WRITETYPE_ASYNC    (0 << 27)
143 #define GPMC_CONFIG1_WRITETYPE_SYNC     (1 << 27)
144 #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) ((val & 3) << 25)
145 /** CLKACTIVATIONTIME Max Ticks */
146 #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
147 #define GPMC_CONFIG1_PAGE_LEN(val)      ((val & 3) << 23)
148 /** ATTACHEDDEVICEPAGELENGTH Max Value */
149 #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
150 #define GPMC_CONFIG1_WAIT_READ_MON      (1 << 22)
151 #define GPMC_CONFIG1_WAIT_WRITE_MON     (1 << 21)
152 #define GPMC_CONFIG1_WAIT_MON_TIME(val) ((val & 3) << 18)
153 /** WAITMONITORINGTIME Max Ticks */
154 #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX  2
155 #define GPMC_CONFIG1_WAIT_PIN_SEL(val)  ((val & 3) << 16)
156 #define GPMC_CONFIG1_DEVICESIZE(val)    ((val & 3) << 12)
157 #define GPMC_CONFIG1_DEVICESIZE_16      GPMC_CONFIG1_DEVICESIZE(1)
158 /** DEVICESIZE Max Value */
159 #define GPMC_CONFIG1_DEVICESIZE_MAX     1
160 #define GPMC_CONFIG1_DEVICETYPE(val)    ((val & 3) << 10)
161 #define GPMC_CONFIG1_DEVICETYPE_NOR     GPMC_CONFIG1_DEVICETYPE(0)
162 #define GPMC_CONFIG1_MUXTYPE(val)       ((val & 3) << 8)
163 #define GPMC_CONFIG1_TIME_PARA_GRAN     (1 << 4)
164 #define GPMC_CONFIG1_FCLK_DIV(val)      (val & 3)
165 #define GPMC_CONFIG1_FCLK_DIV2          (GPMC_CONFIG1_FCLK_DIV(1))
166 #define GPMC_CONFIG1_FCLK_DIV3          (GPMC_CONFIG1_FCLK_DIV(2))
167 #define GPMC_CONFIG1_FCLK_DIV4          (GPMC_CONFIG1_FCLK_DIV(3))
168 #define GPMC_CONFIG7_CSVALID		(1 << 6)
169 
170 #define GPMC_CONFIG7_BASEADDRESS_MASK	0x3f
171 #define GPMC_CONFIG7_CSVALID_MASK	BIT(6)
172 #define GPMC_CONFIG7_MASKADDRESS_OFFSET	8
173 #define GPMC_CONFIG7_MASKADDRESS_MASK	(0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
174 /* All CONFIG7 bits except reserved bits */
175 #define GPMC_CONFIG7_MASK		(GPMC_CONFIG7_BASEADDRESS_MASK | \
176 					 GPMC_CONFIG7_CSVALID_MASK |     \
177 					 GPMC_CONFIG7_MASKADDRESS_MASK)
178 
179 #define GPMC_DEVICETYPE_NOR		0
180 #define GPMC_DEVICETYPE_NAND		2
181 #define GPMC_CONFIG_WRITEPROTECT	0x00000010
182 #define WR_RD_PIN_MONITORING		0x00600000
183 
184 /* ECC commands */
185 #define GPMC_ECC_READ		0 /* Reset Hardware ECC for read */
186 #define GPMC_ECC_WRITE		1 /* Reset Hardware ECC for write */
187 #define GPMC_ECC_READSYN	2 /* Reset before syndrom is read back */
188 
189 #define	GPMC_NR_NAND_IRQS	2 /* number of NAND specific IRQs */
190 
191 enum gpmc_clk_domain {
192 	GPMC_CD_FCLK,
193 	GPMC_CD_CLK
194 };
195 
196 struct gpmc_cs_data {
197 	const char *name;
198 
199 #define GPMC_CS_RESERVED	(1 << 0)
200 	u32 flags;
201 
202 	struct resource mem;
203 };
204 
205 /* Structure to save gpmc cs context */
206 struct gpmc_cs_config {
207 	u32 config1;
208 	u32 config2;
209 	u32 config3;
210 	u32 config4;
211 	u32 config5;
212 	u32 config6;
213 	u32 config7;
214 	int is_valid;
215 };
216 
217 /*
218  * Structure to save/restore gpmc context
219  * to support core off on OMAP3
220  */
221 struct omap3_gpmc_regs {
222 	u32 sysconfig;
223 	u32 irqenable;
224 	u32 timeout_ctrl;
225 	u32 config;
226 	u32 prefetch_config1;
227 	u32 prefetch_config2;
228 	u32 prefetch_control;
229 	struct gpmc_cs_config cs_context[GPMC_CS_NUM];
230 };
231 
232 struct gpmc_device {
233 	struct device *dev;
234 	int irq;
235 	struct irq_chip irq_chip;
236 	struct gpio_chip gpio_chip;
237 	int nirqs;
238 };
239 
240 static struct irq_domain *gpmc_irq_domain;
241 
242 static struct resource	gpmc_mem_root;
243 static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
244 static DEFINE_SPINLOCK(gpmc_mem_lock);
245 /* Define chip-selects as reserved by default until probe completes */
246 static unsigned int gpmc_cs_num = GPMC_CS_NUM;
247 static unsigned int gpmc_nr_waitpins;
248 static resource_size_t phys_base, mem_size;
249 static unsigned gpmc_capability;
250 static void __iomem *gpmc_base;
251 
252 static struct clk *gpmc_l3_clk;
253 
254 static irqreturn_t gpmc_handle_irq(int irq, void *dev);
255 
256 static void gpmc_write_reg(int idx, u32 val)
257 {
258 	writel_relaxed(val, gpmc_base + idx);
259 }
260 
261 static u32 gpmc_read_reg(int idx)
262 {
263 	return readl_relaxed(gpmc_base + idx);
264 }
265 
266 void gpmc_cs_write_reg(int cs, int idx, u32 val)
267 {
268 	void __iomem *reg_addr;
269 
270 	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
271 	writel_relaxed(val, reg_addr);
272 }
273 
274 static u32 gpmc_cs_read_reg(int cs, int idx)
275 {
276 	void __iomem *reg_addr;
277 
278 	reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
279 	return readl_relaxed(reg_addr);
280 }
281 
282 /* TODO: Add support for gpmc_fck to clock framework and use it */
283 static unsigned long gpmc_get_fclk_period(void)
284 {
285 	unsigned long rate = clk_get_rate(gpmc_l3_clk);
286 
287 	rate /= 1000;
288 	rate = 1000000000 / rate;	/* In picoseconds */
289 
290 	return rate;
291 }
292 
293 /**
294  * gpmc_get_clk_period - get period of selected clock domain in ps
295  * @cs Chip Select Region.
296  * @cd Clock Domain.
297  *
298  * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
299  * prior to calling this function with GPMC_CD_CLK.
300  */
301 static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
302 {
303 
304 	unsigned long tick_ps = gpmc_get_fclk_period();
305 	u32 l;
306 	int div;
307 
308 	switch (cd) {
309 	case GPMC_CD_CLK:
310 		/* get current clk divider */
311 		l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
312 		div = (l & 0x03) + 1;
313 		/* get GPMC_CLK period */
314 		tick_ps *= div;
315 		break;
316 	case GPMC_CD_FCLK:
317 		/* FALL-THROUGH */
318 	default:
319 		break;
320 	}
321 
322 	return tick_ps;
323 
324 }
325 
326 static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
327 					 enum gpmc_clk_domain cd)
328 {
329 	unsigned long tick_ps;
330 
331 	/* Calculate in picosecs to yield more exact results */
332 	tick_ps = gpmc_get_clk_period(cs, cd);
333 
334 	return (time_ns * 1000 + tick_ps - 1) / tick_ps;
335 }
336 
337 static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
338 {
339 	return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
340 }
341 
342 static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
343 {
344 	unsigned long tick_ps;
345 
346 	/* Calculate in picosecs to yield more exact results */
347 	tick_ps = gpmc_get_fclk_period();
348 
349 	return (time_ps + tick_ps - 1) / tick_ps;
350 }
351 
352 static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
353 					 enum gpmc_clk_domain cd)
354 {
355 	return ticks * gpmc_get_clk_period(cs, cd) / 1000;
356 }
357 
358 unsigned int gpmc_ticks_to_ns(unsigned int ticks)
359 {
360 	return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
361 }
362 
363 static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
364 {
365 	return ticks * gpmc_get_fclk_period();
366 }
367 
368 static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
369 {
370 	unsigned long ticks = gpmc_ps_to_ticks(time_ps);
371 
372 	return ticks * gpmc_get_fclk_period();
373 }
374 
375 static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
376 {
377 	u32 l;
378 
379 	l = gpmc_cs_read_reg(cs, reg);
380 	if (value)
381 		l |= mask;
382 	else
383 		l &= ~mask;
384 	gpmc_cs_write_reg(cs, reg, l);
385 }
386 
387 static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
388 {
389 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
390 			   GPMC_CONFIG1_TIME_PARA_GRAN,
391 			   p->time_para_granularity);
392 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
393 			   GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
394 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
395 			   GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
396 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
397 			   GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
398 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
399 			   GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
400 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
401 			   GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
402 			   p->cycle2cyclesamecsen);
403 	gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
404 			   GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
405 			   p->cycle2cyclediffcsen);
406 }
407 
408 #ifdef CONFIG_OMAP_GPMC_DEBUG
409 /**
410  * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
411  * @cs:      Chip Select Region
412  * @reg:     GPMC_CS_CONFIGn register offset.
413  * @st_bit:  Start Bit
414  * @end_bit: End Bit. Must be >= @st_bit.
415  * @ma:x     Maximum parameter value (before optional @shift).
416  *           If 0, maximum is as high as @st_bit and @end_bit allow.
417  * @name:    DTS node name, w/o "gpmc,"
418  * @cd:      Clock Domain of timing parameter.
419  * @shift:   Parameter value left shifts @shift, which is then printed instead of value.
420  * @raw:     Raw Format Option.
421  *           raw format:  gpmc,name = <value>
422  *           tick format: gpmc,name = <value> /&zwj;* x ns -- y ns; x ticks *&zwj;/
423  *           Where x ns -- y ns result in the same tick value.
424  *           When @max is exceeded, "invalid" is printed inside comment.
425  * @noval:   Parameter values equal to 0 are not printed.
426  * @return:  Specified timing parameter (after optional @shift).
427  *
428  */
429 static int get_gpmc_timing_reg(
430 	/* timing specifiers */
431 	int cs, int reg, int st_bit, int end_bit, int max,
432 	const char *name, const enum gpmc_clk_domain cd,
433 	/* value transform */
434 	int shift,
435 	/* format specifiers */
436 	bool raw, bool noval)
437 {
438 	u32 l;
439 	int nr_bits;
440 	int mask;
441 	bool invalid;
442 
443 	l = gpmc_cs_read_reg(cs, reg);
444 	nr_bits = end_bit - st_bit + 1;
445 	mask = (1 << nr_bits) - 1;
446 	l = (l >> st_bit) & mask;
447 	if (!max)
448 		max = mask;
449 	invalid = l > max;
450 	if (shift)
451 		l = (shift << l);
452 	if (noval && (l == 0))
453 		return 0;
454 	if (!raw) {
455 		/* DTS tick format for timings in ns */
456 		unsigned int time_ns;
457 		unsigned int time_ns_min = 0;
458 
459 		if (l)
460 			time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
461 		time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
462 		pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
463 			name, time_ns, time_ns_min, time_ns, l,
464 			invalid ? "; invalid " : " ");
465 	} else {
466 		/* raw format */
467 		pr_info("gpmc,%s = <%u>;%s\n", name, l,
468 			invalid ? " /* invalid */" : "");
469 	}
470 
471 	return l;
472 }
473 
474 #define GPMC_PRINT_CONFIG(cs, config) \
475 	pr_info("cs%i %s: 0x%08x\n", cs, #config, \
476 		gpmc_cs_read_reg(cs, config))
477 #define GPMC_GET_RAW(reg, st, end, field) \
478 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
479 #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
480 	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
481 #define GPMC_GET_RAW_BOOL(reg, st, end, field) \
482 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
483 #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
484 	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
485 #define GPMC_GET_TICKS(reg, st, end, field) \
486 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
487 #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
488 	get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
489 #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
490 	get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
491 
492 static void gpmc_show_regs(int cs, const char *desc)
493 {
494 	pr_info("gpmc cs%i %s:\n", cs, desc);
495 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
496 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
497 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
498 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
499 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
500 	GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
501 }
502 
503 /*
504  * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
505  * see commit c9fb809.
506  */
507 static void gpmc_cs_show_timings(int cs, const char *desc)
508 {
509 	gpmc_show_regs(cs, desc);
510 
511 	pr_info("gpmc cs%i access configuration:\n", cs);
512 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1,  4,  4, "time-para-granularity");
513 	GPMC_GET_RAW(GPMC_CS_CONFIG1,  8,  9, "mux-add-data");
514 	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
515 			 GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
516 	GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
517 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
518 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
519 	GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
520 			       GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
521 			       "burst-length");
522 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
523 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
524 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
525 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
526 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
527 
528 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2,  7,  7, "cs-extra-delay");
529 
530 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3,  7,  7, "adv-extra-delay");
531 
532 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
533 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4,  7,  7, "oe-extra-delay");
534 
535 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  7,  7, "cycle2cycle-samecsen");
536 	GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6,  6,  6, "cycle2cycle-diffcsen");
537 
538 	pr_info("gpmc cs%i timings configuration:\n", cs);
539 	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  0,  3, "cs-on-ns");
540 	GPMC_GET_TICKS(GPMC_CS_CONFIG2,  8, 12, "cs-rd-off-ns");
541 	GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
542 
543 	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  0,  3, "adv-on-ns");
544 	GPMC_GET_TICKS(GPMC_CS_CONFIG3,  8, 12, "adv-rd-off-ns");
545 	GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
546 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
547 		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
548 		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
549 				"adv-aad-mux-rd-off-ns");
550 		GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
551 				"adv-aad-mux-wr-off-ns");
552 	}
553 
554 	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  0,  3, "oe-on-ns");
555 	GPMC_GET_TICKS(GPMC_CS_CONFIG4,  8, 12, "oe-off-ns");
556 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
557 		GPMC_GET_TICKS(GPMC_CS_CONFIG4,  4,  6, "oe-aad-mux-on-ns");
558 		GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
559 	}
560 	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
561 	GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
562 
563 	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  0,  4, "rd-cycle-ns");
564 	GPMC_GET_TICKS(GPMC_CS_CONFIG5,  8, 12, "wr-cycle-ns");
565 	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
566 
567 	GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
568 
569 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
570 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
571 
572 	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
573 			      GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
574 			      "wait-monitoring-ns", GPMC_CD_CLK);
575 	GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
576 			      GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
577 			      "clk-activation-ns", GPMC_CD_FCLK);
578 
579 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
580 	GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
581 }
582 #else
583 static inline void gpmc_cs_show_timings(int cs, const char *desc)
584 {
585 }
586 #endif
587 
588 /**
589  * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
590  * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
591  * prior to calling this function with @cd equal to GPMC_CD_CLK.
592  *
593  * @cs:      Chip Select Region.
594  * @reg:     GPMC_CS_CONFIGn register offset.
595  * @st_bit:  Start Bit
596  * @end_bit: End Bit. Must be >= @st_bit.
597  * @max:     Maximum parameter value.
598  *           If 0, maximum is as high as @st_bit and @end_bit allow.
599  * @time:    Timing parameter in ns.
600  * @cd:      Timing parameter clock domain.
601  * @name:    Timing parameter name.
602  * @return:  0 on success, -1 on error.
603  */
604 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
605 			       int time, enum gpmc_clk_domain cd, const char *name)
606 {
607 	u32 l;
608 	int ticks, mask, nr_bits;
609 
610 	if (time == 0)
611 		ticks = 0;
612 	else
613 		ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
614 	nr_bits = end_bit - st_bit + 1;
615 	mask = (1 << nr_bits) - 1;
616 
617 	if (!max)
618 		max = mask;
619 
620 	if (ticks > max) {
621 		pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
622 		       __func__, cs, name, time, ticks, max);
623 
624 		return -1;
625 	}
626 
627 	l = gpmc_cs_read_reg(cs, reg);
628 #ifdef CONFIG_OMAP_GPMC_DEBUG
629 	pr_info(
630 		"GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
631 	       cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
632 			(l >> st_bit) & mask, time);
633 #endif
634 	l &= ~(mask << st_bit);
635 	l |= ticks << st_bit;
636 	gpmc_cs_write_reg(cs, reg, l);
637 
638 	return 0;
639 }
640 
641 #define GPMC_SET_ONE_CD_MAX(reg, st, end, max, field, cd)  \
642 	if (set_gpmc_timing_reg(cs, (reg), (st), (end), (max), \
643 	    t->field, (cd), #field) < 0)                       \
644 		return -1
645 
646 #define GPMC_SET_ONE(reg, st, end, field) \
647 	GPMC_SET_ONE_CD_MAX(reg, st, end, 0, field, GPMC_CD_FCLK)
648 
649 /**
650  * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
651  * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
652  * read  --> don't sample bus too early
653  * write --> data is longer on bus
654  *
655  * Formula:
656  * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
657  *                    / waitmonitoring_ticks)
658  * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
659  * div <= 0 check.
660  *
661  * @wait_monitoring: WAITMONITORINGTIME in ns.
662  * @return:          -1 on failure to scale, else proper divider > 0.
663  */
664 static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
665 {
666 
667 	int div = gpmc_ns_to_ticks(wait_monitoring);
668 
669 	div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
670 	div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
671 
672 	if (div > 4)
673 		return -1;
674 	if (div <= 0)
675 		div = 1;
676 
677 	return div;
678 
679 }
680 
681 /**
682  * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
683  * @sync_clk: GPMC_CLK period in ps.
684  * @return:   Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
685  *            Else, returns -1.
686  */
687 int gpmc_calc_divider(unsigned int sync_clk)
688 {
689 	int div = gpmc_ps_to_ticks(sync_clk);
690 
691 	if (div > 4)
692 		return -1;
693 	if (div <= 0)
694 		div = 1;
695 
696 	return div;
697 }
698 
699 /**
700  * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
701  * @cs:     Chip Select Region.
702  * @t:      GPMC timing parameters.
703  * @s:      GPMC timing settings.
704  * @return: 0 on success, -1 on error.
705  */
706 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
707 			const struct gpmc_settings *s)
708 {
709 	int div;
710 	u32 l;
711 
712 	div = gpmc_calc_divider(t->sync_clk);
713 	if (div < 0)
714 		return div;
715 
716 	/*
717 	 * See if we need to change the divider for waitmonitoringtime.
718 	 *
719 	 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
720 	 * pure asynchronous accesses, i.e. both read and write asynchronous.
721 	 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
722 	 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
723 	 *
724 	 * This statement must not change div to scale async WAITMONITORINGTIME
725 	 * to protect mixed synchronous and asynchronous accesses.
726 	 *
727 	 * We raise an error later if WAITMONITORINGTIME does not fit.
728 	 */
729 	if (!s->sync_read && !s->sync_write &&
730 	    (s->wait_on_read || s->wait_on_write)
731 	   ) {
732 
733 		div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
734 		if (div < 0) {
735 			pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
736 			       __func__,
737 			       t->wait_monitoring
738 			       );
739 			return -1;
740 		}
741 	}
742 
743 	GPMC_SET_ONE(GPMC_CS_CONFIG2,  0,  3, cs_on);
744 	GPMC_SET_ONE(GPMC_CS_CONFIG2,  8, 12, cs_rd_off);
745 	GPMC_SET_ONE(GPMC_CS_CONFIG2, 16, 20, cs_wr_off);
746 
747 	GPMC_SET_ONE(GPMC_CS_CONFIG3,  0,  3, adv_on);
748 	GPMC_SET_ONE(GPMC_CS_CONFIG3,  8, 12, adv_rd_off);
749 	GPMC_SET_ONE(GPMC_CS_CONFIG3, 16, 20, adv_wr_off);
750 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
751 		GPMC_SET_ONE(GPMC_CS_CONFIG3,  4,  6, adv_aad_mux_on);
752 		GPMC_SET_ONE(GPMC_CS_CONFIG3, 24, 26, adv_aad_mux_rd_off);
753 		GPMC_SET_ONE(GPMC_CS_CONFIG3, 28, 30, adv_aad_mux_wr_off);
754 	}
755 
756 	GPMC_SET_ONE(GPMC_CS_CONFIG4,  0,  3, oe_on);
757 	GPMC_SET_ONE(GPMC_CS_CONFIG4,  8, 12, oe_off);
758 	if (gpmc_capability & GPMC_HAS_MUX_AAD) {
759 		GPMC_SET_ONE(GPMC_CS_CONFIG4,  4,  6, oe_aad_mux_on);
760 		GPMC_SET_ONE(GPMC_CS_CONFIG4, 13, 15, oe_aad_mux_off);
761 	}
762 	GPMC_SET_ONE(GPMC_CS_CONFIG4, 16, 19, we_on);
763 	GPMC_SET_ONE(GPMC_CS_CONFIG4, 24, 28, we_off);
764 
765 	GPMC_SET_ONE(GPMC_CS_CONFIG5,  0,  4, rd_cycle);
766 	GPMC_SET_ONE(GPMC_CS_CONFIG5,  8, 12, wr_cycle);
767 	GPMC_SET_ONE(GPMC_CS_CONFIG5, 16, 20, access);
768 
769 	GPMC_SET_ONE(GPMC_CS_CONFIG5, 24, 27, page_burst_access);
770 
771 	GPMC_SET_ONE(GPMC_CS_CONFIG6, 0, 3, bus_turnaround);
772 	GPMC_SET_ONE(GPMC_CS_CONFIG6, 8, 11, cycle2cycle_delay);
773 
774 	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
775 		GPMC_SET_ONE(GPMC_CS_CONFIG6, 16, 19, wr_data_mux_bus);
776 	if (gpmc_capability & GPMC_HAS_WR_ACCESS)
777 		GPMC_SET_ONE(GPMC_CS_CONFIG6, 24, 28, wr_access);
778 
779 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
780 	l &= ~0x03;
781 	l |= (div - 1);
782 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
783 
784 	GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
785 			    GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
786 			    wait_monitoring, GPMC_CD_CLK);
787 	GPMC_SET_ONE_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
788 			    GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
789 			    clk_activation, GPMC_CD_FCLK);
790 
791 #ifdef CONFIG_OMAP_GPMC_DEBUG
792 	pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
793 			cs, (div * gpmc_get_fclk_period()) / 1000, div);
794 #endif
795 
796 	gpmc_cs_bool_timings(cs, &t->bool_timings);
797 	gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
798 
799 	return 0;
800 }
801 
802 static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
803 {
804 	u32 l;
805 	u32 mask;
806 
807 	/*
808 	 * Ensure that base address is aligned on a
809 	 * boundary equal to or greater than size.
810 	 */
811 	if (base & (size - 1))
812 		return -EINVAL;
813 
814 	base >>= GPMC_CHUNK_SHIFT;
815 	mask = (1 << GPMC_SECTION_SHIFT) - size;
816 	mask >>= GPMC_CHUNK_SHIFT;
817 	mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
818 
819 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
820 	l &= ~GPMC_CONFIG7_MASK;
821 	l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
822 	l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
823 	l |= GPMC_CONFIG7_CSVALID;
824 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
825 
826 	return 0;
827 }
828 
829 static void gpmc_cs_enable_mem(int cs)
830 {
831 	u32 l;
832 
833 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
834 	l |= GPMC_CONFIG7_CSVALID;
835 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
836 }
837 
838 static void gpmc_cs_disable_mem(int cs)
839 {
840 	u32 l;
841 
842 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
843 	l &= ~GPMC_CONFIG7_CSVALID;
844 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
845 }
846 
847 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
848 {
849 	u32 l;
850 	u32 mask;
851 
852 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
853 	*base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
854 	mask = (l >> 8) & 0x0f;
855 	*size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
856 }
857 
858 static int gpmc_cs_mem_enabled(int cs)
859 {
860 	u32 l;
861 
862 	l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
863 	return l & GPMC_CONFIG7_CSVALID;
864 }
865 
866 static void gpmc_cs_set_reserved(int cs, int reserved)
867 {
868 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
869 
870 	gpmc->flags |= GPMC_CS_RESERVED;
871 }
872 
873 static bool gpmc_cs_reserved(int cs)
874 {
875 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
876 
877 	return gpmc->flags & GPMC_CS_RESERVED;
878 }
879 
880 static void gpmc_cs_set_name(int cs, const char *name)
881 {
882 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
883 
884 	gpmc->name = name;
885 }
886 
887 static const char *gpmc_cs_get_name(int cs)
888 {
889 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
890 
891 	return gpmc->name;
892 }
893 
894 static unsigned long gpmc_mem_align(unsigned long size)
895 {
896 	int order;
897 
898 	size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
899 	order = GPMC_CHUNK_SHIFT - 1;
900 	do {
901 		size >>= 1;
902 		order++;
903 	} while (size);
904 	size = 1 << order;
905 	return size;
906 }
907 
908 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
909 {
910 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
911 	struct resource *res = &gpmc->mem;
912 	int r;
913 
914 	size = gpmc_mem_align(size);
915 	spin_lock(&gpmc_mem_lock);
916 	res->start = base;
917 	res->end = base + size - 1;
918 	r = request_resource(&gpmc_mem_root, res);
919 	spin_unlock(&gpmc_mem_lock);
920 
921 	return r;
922 }
923 
924 static int gpmc_cs_delete_mem(int cs)
925 {
926 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
927 	struct resource *res = &gpmc->mem;
928 	int r;
929 
930 	spin_lock(&gpmc_mem_lock);
931 	r = release_resource(res);
932 	res->start = 0;
933 	res->end = 0;
934 	spin_unlock(&gpmc_mem_lock);
935 
936 	return r;
937 }
938 
939 /**
940  * gpmc_cs_remap - remaps a chip-select physical base address
941  * @cs:		chip-select to remap
942  * @base:	physical base address to re-map chip-select to
943  *
944  * Re-maps a chip-select to a new physical base address specified by
945  * "base". Returns 0 on success and appropriate negative error code
946  * on failure.
947  */
948 static int gpmc_cs_remap(int cs, u32 base)
949 {
950 	int ret;
951 	u32 old_base, size;
952 
953 	if (cs > gpmc_cs_num) {
954 		pr_err("%s: requested chip-select is disabled\n", __func__);
955 		return -ENODEV;
956 	}
957 
958 	/*
959 	 * Make sure we ignore any device offsets from the GPMC partition
960 	 * allocated for the chip select and that the new base confirms
961 	 * to the GPMC 16MB minimum granularity.
962 	 */
963 	base &= ~(SZ_16M - 1);
964 
965 	gpmc_cs_get_memconf(cs, &old_base, &size);
966 	if (base == old_base)
967 		return 0;
968 
969 	ret = gpmc_cs_delete_mem(cs);
970 	if (ret < 0)
971 		return ret;
972 
973 	ret = gpmc_cs_insert_mem(cs, base, size);
974 	if (ret < 0)
975 		return ret;
976 
977 	ret = gpmc_cs_set_memconf(cs, base, size);
978 
979 	return ret;
980 }
981 
982 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
983 {
984 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
985 	struct resource *res = &gpmc->mem;
986 	int r = -1;
987 
988 	if (cs > gpmc_cs_num) {
989 		pr_err("%s: requested chip-select is disabled\n", __func__);
990 		return -ENODEV;
991 	}
992 	size = gpmc_mem_align(size);
993 	if (size > (1 << GPMC_SECTION_SHIFT))
994 		return -ENOMEM;
995 
996 	spin_lock(&gpmc_mem_lock);
997 	if (gpmc_cs_reserved(cs)) {
998 		r = -EBUSY;
999 		goto out;
1000 	}
1001 	if (gpmc_cs_mem_enabled(cs))
1002 		r = adjust_resource(res, res->start & ~(size - 1), size);
1003 	if (r < 0)
1004 		r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
1005 				      size, NULL, NULL);
1006 	if (r < 0)
1007 		goto out;
1008 
1009 	/* Disable CS while changing base address and size mask */
1010 	gpmc_cs_disable_mem(cs);
1011 
1012 	r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
1013 	if (r < 0) {
1014 		release_resource(res);
1015 		goto out;
1016 	}
1017 
1018 	/* Enable CS */
1019 	gpmc_cs_enable_mem(cs);
1020 	*base = res->start;
1021 	gpmc_cs_set_reserved(cs, 1);
1022 out:
1023 	spin_unlock(&gpmc_mem_lock);
1024 	return r;
1025 }
1026 EXPORT_SYMBOL(gpmc_cs_request);
1027 
1028 void gpmc_cs_free(int cs)
1029 {
1030 	struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1031 	struct resource *res = &gpmc->mem;
1032 
1033 	spin_lock(&gpmc_mem_lock);
1034 	if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1035 		printk(KERN_ERR "Trying to free non-reserved GPMC CS%d\n", cs);
1036 		BUG();
1037 		spin_unlock(&gpmc_mem_lock);
1038 		return;
1039 	}
1040 	gpmc_cs_disable_mem(cs);
1041 	if (res->flags)
1042 		release_resource(res);
1043 	gpmc_cs_set_reserved(cs, 0);
1044 	spin_unlock(&gpmc_mem_lock);
1045 }
1046 EXPORT_SYMBOL(gpmc_cs_free);
1047 
1048 /**
1049  * gpmc_configure - write request to configure gpmc
1050  * @cmd: command type
1051  * @wval: value to write
1052  * @return status of the operation
1053  */
1054 int gpmc_configure(int cmd, int wval)
1055 {
1056 	u32 regval;
1057 
1058 	switch (cmd) {
1059 	case GPMC_CONFIG_WP:
1060 		regval = gpmc_read_reg(GPMC_CONFIG);
1061 		if (wval)
1062 			regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
1063 		else
1064 			regval |= GPMC_CONFIG_WRITEPROTECT;  /* WP is OFF */
1065 		gpmc_write_reg(GPMC_CONFIG, regval);
1066 		break;
1067 
1068 	default:
1069 		pr_err("%s: command not supported\n", __func__);
1070 		return -EINVAL;
1071 	}
1072 
1073 	return 0;
1074 }
1075 EXPORT_SYMBOL(gpmc_configure);
1076 
1077 static bool gpmc_nand_writebuffer_empty(void)
1078 {
1079 	if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
1080 		return true;
1081 
1082 	return false;
1083 }
1084 
1085 static struct gpmc_nand_ops nand_ops = {
1086 	.nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
1087 };
1088 
1089 /**
1090  * gpmc_omap_get_nand_ops - Get the GPMC NAND interface
1091  * @regs: the GPMC NAND register map exclusive for NAND use.
1092  * @cs: GPMC chip select number on which the NAND sits. The
1093  *      register map returned will be specific to this chip select.
1094  *
1095  * Returns NULL on error e.g. invalid cs.
1096  */
1097 struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
1098 {
1099 	int i;
1100 
1101 	if (cs >= gpmc_cs_num)
1102 		return NULL;
1103 
1104 	reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
1105 				GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
1106 	reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
1107 				GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
1108 	reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
1109 				GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
1110 	reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
1111 	reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
1112 	reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
1113 	reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
1114 	reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
1115 	reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
1116 	reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
1117 	reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1118 
1119 	for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
1120 		reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
1121 					   GPMC_BCH_SIZE * i;
1122 		reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
1123 					   GPMC_BCH_SIZE * i;
1124 		reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
1125 					   GPMC_BCH_SIZE * i;
1126 		reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
1127 					   GPMC_BCH_SIZE * i;
1128 		reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
1129 					   i * GPMC_BCH_SIZE;
1130 		reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
1131 					   i * GPMC_BCH_SIZE;
1132 		reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
1133 					   i * GPMC_BCH_SIZE;
1134 	}
1135 
1136 	return &nand_ops;
1137 }
1138 EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
1139 
1140 static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
1141 						struct gpmc_settings *s,
1142 						int freq, int latency)
1143 {
1144 	struct gpmc_device_timings dev_t;
1145 	const int t_cer  = 15;
1146 	const int t_avdp = 12;
1147 	const int t_cez  = 20; /* max of t_cez, t_oez */
1148 	const int t_wpl  = 40;
1149 	const int t_wph  = 30;
1150 	int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
1151 
1152 	switch (freq) {
1153 	case 104:
1154 		min_gpmc_clk_period = 9600; /* 104 MHz */
1155 		t_ces   = 3;
1156 		t_avds  = 4;
1157 		t_avdh  = 2;
1158 		t_ach   = 3;
1159 		t_aavdh = 6;
1160 		t_rdyo  = 6;
1161 		break;
1162 	case 83:
1163 		min_gpmc_clk_period = 12000; /* 83 MHz */
1164 		t_ces   = 5;
1165 		t_avds  = 4;
1166 		t_avdh  = 2;
1167 		t_ach   = 6;
1168 		t_aavdh = 6;
1169 		t_rdyo  = 9;
1170 		break;
1171 	case 66:
1172 		min_gpmc_clk_period = 15000; /* 66 MHz */
1173 		t_ces   = 6;
1174 		t_avds  = 5;
1175 		t_avdh  = 2;
1176 		t_ach   = 6;
1177 		t_aavdh = 6;
1178 		t_rdyo  = 11;
1179 		break;
1180 	default:
1181 		min_gpmc_clk_period = 18500; /* 54 MHz */
1182 		t_ces   = 7;
1183 		t_avds  = 7;
1184 		t_avdh  = 7;
1185 		t_ach   = 9;
1186 		t_aavdh = 7;
1187 		t_rdyo  = 15;
1188 		break;
1189 	}
1190 
1191 	/* Set synchronous read timings */
1192 	memset(&dev_t, 0, sizeof(dev_t));
1193 
1194 	if (!s->sync_write) {
1195 		dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
1196 		dev_t.t_wpl = t_wpl * 1000;
1197 		dev_t.t_wph = t_wph * 1000;
1198 		dev_t.t_aavdh = t_aavdh * 1000;
1199 	}
1200 	dev_t.ce_xdelay = true;
1201 	dev_t.avd_xdelay = true;
1202 	dev_t.oe_xdelay = true;
1203 	dev_t.we_xdelay = true;
1204 	dev_t.clk = min_gpmc_clk_period;
1205 	dev_t.t_bacc = dev_t.clk;
1206 	dev_t.t_ces = t_ces * 1000;
1207 	dev_t.t_avds = t_avds * 1000;
1208 	dev_t.t_avdh = t_avdh * 1000;
1209 	dev_t.t_ach = t_ach * 1000;
1210 	dev_t.cyc_iaa = (latency + 1);
1211 	dev_t.t_cez_r = t_cez * 1000;
1212 	dev_t.t_cez_w = dev_t.t_cez_r;
1213 	dev_t.cyc_aavdh_oe = 1;
1214 	dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
1215 
1216 	gpmc_calc_timings(t, s, &dev_t);
1217 }
1218 
1219 int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
1220 				  int latency,
1221 				  struct gpmc_onenand_info *info)
1222 {
1223 	int ret;
1224 	struct gpmc_timings gpmc_t;
1225 	struct gpmc_settings gpmc_s;
1226 
1227 	gpmc_read_settings_dt(dev->of_node, &gpmc_s);
1228 
1229 	info->sync_read = gpmc_s.sync_read;
1230 	info->sync_write = gpmc_s.sync_write;
1231 	info->burst_len = gpmc_s.burst_len;
1232 
1233 	if (!gpmc_s.sync_read && !gpmc_s.sync_write)
1234 		return 0;
1235 
1236 	gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
1237 
1238 	ret = gpmc_cs_program_settings(cs, &gpmc_s);
1239 	if (ret < 0)
1240 		return ret;
1241 
1242 	return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1243 }
1244 EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
1245 
1246 int gpmc_get_client_irq(unsigned irq_config)
1247 {
1248 	if (!gpmc_irq_domain) {
1249 		pr_warn("%s called before GPMC IRQ domain available\n",
1250 			__func__);
1251 		return 0;
1252 	}
1253 
1254 	/* we restrict this to NAND IRQs only */
1255 	if (irq_config >= GPMC_NR_NAND_IRQS)
1256 		return 0;
1257 
1258 	return irq_create_mapping(gpmc_irq_domain, irq_config);
1259 }
1260 
1261 static int gpmc_irq_endis(unsigned long hwirq, bool endis)
1262 {
1263 	u32 regval;
1264 
1265 	/* bits GPMC_NR_NAND_IRQS to 8 are reserved */
1266 	if (hwirq >= GPMC_NR_NAND_IRQS)
1267 		hwirq += 8 - GPMC_NR_NAND_IRQS;
1268 
1269 	regval = gpmc_read_reg(GPMC_IRQENABLE);
1270 	if (endis)
1271 		regval |= BIT(hwirq);
1272 	else
1273 		regval &= ~BIT(hwirq);
1274 	gpmc_write_reg(GPMC_IRQENABLE, regval);
1275 
1276 	return 0;
1277 }
1278 
1279 static void gpmc_irq_disable(struct irq_data *p)
1280 {
1281 	gpmc_irq_endis(p->hwirq, false);
1282 }
1283 
1284 static void gpmc_irq_enable(struct irq_data *p)
1285 {
1286 	gpmc_irq_endis(p->hwirq, true);
1287 }
1288 
1289 static void gpmc_irq_mask(struct irq_data *d)
1290 {
1291 	gpmc_irq_endis(d->hwirq, false);
1292 }
1293 
1294 static void gpmc_irq_unmask(struct irq_data *d)
1295 {
1296 	gpmc_irq_endis(d->hwirq, true);
1297 }
1298 
1299 static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
1300 {
1301 	u32 regval;
1302 
1303 	/* NAND IRQs polarity is not configurable */
1304 	if (hwirq < GPMC_NR_NAND_IRQS)
1305 		return;
1306 
1307 	/* WAITPIN starts at BIT 8 */
1308 	hwirq += 8 - GPMC_NR_NAND_IRQS;
1309 
1310 	regval = gpmc_read_reg(GPMC_CONFIG);
1311 	if (rising_edge)
1312 		regval &= ~BIT(hwirq);
1313 	else
1314 		regval |= BIT(hwirq);
1315 
1316 	gpmc_write_reg(GPMC_CONFIG, regval);
1317 }
1318 
1319 static void gpmc_irq_ack(struct irq_data *d)
1320 {
1321 	unsigned int hwirq = d->hwirq;
1322 
1323 	/* skip reserved bits */
1324 	if (hwirq >= GPMC_NR_NAND_IRQS)
1325 		hwirq += 8 - GPMC_NR_NAND_IRQS;
1326 
1327 	/* Setting bit to 1 clears (or Acks) the interrupt */
1328 	gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
1329 }
1330 
1331 static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
1332 {
1333 	/* can't set type for NAND IRQs */
1334 	if (d->hwirq < GPMC_NR_NAND_IRQS)
1335 		return -EINVAL;
1336 
1337 	/* We can support either rising or falling edge at a time */
1338 	if (trigger == IRQ_TYPE_EDGE_FALLING)
1339 		gpmc_irq_edge_config(d->hwirq, false);
1340 	else if (trigger == IRQ_TYPE_EDGE_RISING)
1341 		gpmc_irq_edge_config(d->hwirq, true);
1342 	else
1343 		return -EINVAL;
1344 
1345 	return 0;
1346 }
1347 
1348 static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
1349 			irq_hw_number_t hw)
1350 {
1351 	struct gpmc_device *gpmc = d->host_data;
1352 
1353 	irq_set_chip_data(virq, gpmc);
1354 	if (hw < GPMC_NR_NAND_IRQS) {
1355 		irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
1356 		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1357 					 handle_simple_irq);
1358 	} else {
1359 		irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1360 					 handle_edge_irq);
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static const struct irq_domain_ops gpmc_irq_domain_ops = {
1367 	.map    = gpmc_irq_map,
1368 	.xlate  = irq_domain_xlate_twocell,
1369 };
1370 
1371 static irqreturn_t gpmc_handle_irq(int irq, void *data)
1372 {
1373 	int hwirq, virq;
1374 	u32 regval, regvalx;
1375 	struct gpmc_device *gpmc = data;
1376 
1377 	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1378 	regvalx = regval;
1379 
1380 	if (!regval)
1381 		return IRQ_NONE;
1382 
1383 	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
1384 		/* skip reserved status bits */
1385 		if (hwirq == GPMC_NR_NAND_IRQS)
1386 			regvalx >>= 8 - GPMC_NR_NAND_IRQS;
1387 
1388 		if (regvalx & BIT(hwirq)) {
1389 			virq = irq_find_mapping(gpmc_irq_domain, hwirq);
1390 			if (!virq) {
1391 				dev_warn(gpmc->dev,
1392 					 "spurious irq detected hwirq %d, virq %d\n",
1393 					 hwirq, virq);
1394 			}
1395 
1396 			generic_handle_irq(virq);
1397 		}
1398 	}
1399 
1400 	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1401 
1402 	return IRQ_HANDLED;
1403 }
1404 
1405 static int gpmc_setup_irq(struct gpmc_device *gpmc)
1406 {
1407 	u32 regval;
1408 	int rc;
1409 
1410 	/* Disable interrupts */
1411 	gpmc_write_reg(GPMC_IRQENABLE, 0);
1412 
1413 	/* clear interrupts */
1414 	regval = gpmc_read_reg(GPMC_IRQSTATUS);
1415 	gpmc_write_reg(GPMC_IRQSTATUS, regval);
1416 
1417 	gpmc->irq_chip.name = "gpmc";
1418 	gpmc->irq_chip.irq_enable = gpmc_irq_enable;
1419 	gpmc->irq_chip.irq_disable = gpmc_irq_disable;
1420 	gpmc->irq_chip.irq_ack = gpmc_irq_ack;
1421 	gpmc->irq_chip.irq_mask = gpmc_irq_mask;
1422 	gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
1423 	gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
1424 
1425 	gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
1426 						gpmc->nirqs,
1427 						&gpmc_irq_domain_ops,
1428 						gpmc);
1429 	if (!gpmc_irq_domain) {
1430 		dev_err(gpmc->dev, "IRQ domain add failed\n");
1431 		return -ENODEV;
1432 	}
1433 
1434 	rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
1435 	if (rc) {
1436 		dev_err(gpmc->dev, "failed to request irq %d: %d\n",
1437 			gpmc->irq, rc);
1438 		irq_domain_remove(gpmc_irq_domain);
1439 		gpmc_irq_domain = NULL;
1440 	}
1441 
1442 	return rc;
1443 }
1444 
1445 static int gpmc_free_irq(struct gpmc_device *gpmc)
1446 {
1447 	int hwirq;
1448 
1449 	free_irq(gpmc->irq, gpmc);
1450 
1451 	for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
1452 		irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
1453 
1454 	irq_domain_remove(gpmc_irq_domain);
1455 	gpmc_irq_domain = NULL;
1456 
1457 	return 0;
1458 }
1459 
1460 static void gpmc_mem_exit(void)
1461 {
1462 	int cs;
1463 
1464 	for (cs = 0; cs < gpmc_cs_num; cs++) {
1465 		if (!gpmc_cs_mem_enabled(cs))
1466 			continue;
1467 		gpmc_cs_delete_mem(cs);
1468 	}
1469 
1470 }
1471 
1472 static void gpmc_mem_init(void)
1473 {
1474 	int cs;
1475 
1476 	gpmc_mem_root.start = GPMC_MEM_START;
1477 	gpmc_mem_root.end = GPMC_MEM_END;
1478 
1479 	/* Reserve all regions that has been set up by bootloader */
1480 	for (cs = 0; cs < gpmc_cs_num; cs++) {
1481 		u32 base, size;
1482 
1483 		if (!gpmc_cs_mem_enabled(cs))
1484 			continue;
1485 		gpmc_cs_get_memconf(cs, &base, &size);
1486 		if (gpmc_cs_insert_mem(cs, base, size)) {
1487 			pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
1488 				__func__, cs, base, base + size);
1489 			gpmc_cs_disable_mem(cs);
1490 		}
1491 	}
1492 }
1493 
1494 static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
1495 {
1496 	u32 temp;
1497 	int div;
1498 
1499 	div = gpmc_calc_divider(sync_clk);
1500 	temp = gpmc_ps_to_ticks(time_ps);
1501 	temp = (temp + div - 1) / div;
1502 	return gpmc_ticks_to_ps(temp * div);
1503 }
1504 
1505 /* XXX: can the cycles be avoided ? */
1506 static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1507 				       struct gpmc_device_timings *dev_t,
1508 				       bool mux)
1509 {
1510 	u32 temp;
1511 
1512 	/* adv_rd_off */
1513 	temp = dev_t->t_avdp_r;
1514 	/* XXX: mux check required ? */
1515 	if (mux) {
1516 		/* XXX: t_avdp not to be required for sync, only added for tusb
1517 		 * this indirectly necessitates requirement of t_avdp_r and
1518 		 * t_avdp_w instead of having a single t_avdp
1519 		 */
1520 		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_avdh);
1521 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1522 	}
1523 	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1524 
1525 	/* oe_on */
1526 	temp = dev_t->t_oeasu; /* XXX: remove this ? */
1527 	if (mux) {
1528 		temp = max_t(u32, temp,	gpmc_t->clk_activation + dev_t->t_ach);
1529 		temp = max_t(u32, temp, gpmc_t->adv_rd_off +
1530 				gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
1531 	}
1532 	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1533 
1534 	/* access */
1535 	/* XXX: any scope for improvement ?, by combining oe_on
1536 	 * and clk_activation, need to check whether
1537 	 * access = clk_activation + round to sync clk ?
1538 	 */
1539 	temp = max_t(u32, dev_t->t_iaa,	dev_t->cyc_iaa * gpmc_t->sync_clk);
1540 	temp += gpmc_t->clk_activation;
1541 	if (dev_t->cyc_oe)
1542 		temp = max_t(u32, temp, gpmc_t->oe_on +
1543 				gpmc_ticks_to_ps(dev_t->cyc_oe));
1544 	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1545 
1546 	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1547 	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1548 
1549 	/* rd_cycle */
1550 	temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
1551 	temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
1552 							gpmc_t->access;
1553 	/* XXX: barter t_ce_rdyz with t_cez_r ? */
1554 	if (dev_t->t_ce_rdyz)
1555 		temp = max_t(u32, temp,	gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
1556 	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1557 
1558 	return 0;
1559 }
1560 
1561 static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1562 					struct gpmc_device_timings *dev_t,
1563 					bool mux)
1564 {
1565 	u32 temp;
1566 
1567 	/* adv_wr_off */
1568 	temp = dev_t->t_avdp_w;
1569 	if (mux) {
1570 		temp = max_t(u32, temp,
1571 			gpmc_t->clk_activation + dev_t->t_avdh);
1572 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1573 	}
1574 	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1575 
1576 	/* wr_data_mux_bus */
1577 	temp = max_t(u32, dev_t->t_weasu,
1578 			gpmc_t->clk_activation + dev_t->t_rdyo);
1579 	/* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
1580 	 * and in that case remember to handle we_on properly
1581 	 */
1582 	if (mux) {
1583 		temp = max_t(u32, temp,
1584 			gpmc_t->adv_wr_off + dev_t->t_aavdh);
1585 		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1586 				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1587 	}
1588 	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1589 
1590 	/* we_on */
1591 	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1592 		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1593 	else
1594 		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1595 
1596 	/* wr_access */
1597 	/* XXX: gpmc_capability check reqd ? , even if not, will not harm */
1598 	gpmc_t->wr_access = gpmc_t->access;
1599 
1600 	/* we_off */
1601 	temp = gpmc_t->we_on + dev_t->t_wpl;
1602 	temp = max_t(u32, temp,
1603 			gpmc_t->wr_access + gpmc_ticks_to_ps(1));
1604 	temp = max_t(u32, temp,
1605 		gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
1606 	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1607 
1608 	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1609 							dev_t->t_wph);
1610 
1611 	/* wr_cycle */
1612 	temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
1613 	temp += gpmc_t->wr_access;
1614 	/* XXX: barter t_ce_rdyz with t_cez_w ? */
1615 	if (dev_t->t_ce_rdyz)
1616 		temp = max_t(u32, temp,
1617 				 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
1618 	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1619 
1620 	return 0;
1621 }
1622 
1623 static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1624 					struct gpmc_device_timings *dev_t,
1625 					bool mux)
1626 {
1627 	u32 temp;
1628 
1629 	/* adv_rd_off */
1630 	temp = dev_t->t_avdp_r;
1631 	if (mux)
1632 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1633 	gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1634 
1635 	/* oe_on */
1636 	temp = dev_t->t_oeasu;
1637 	if (mux)
1638 		temp = max_t(u32, temp,
1639 			gpmc_t->adv_rd_off + dev_t->t_aavdh);
1640 	gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1641 
1642 	/* access */
1643 	temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
1644 				gpmc_t->oe_on + dev_t->t_oe);
1645 	temp = max_t(u32, temp,
1646 				gpmc_t->cs_on + dev_t->t_ce);
1647 	temp = max_t(u32, temp,
1648 				gpmc_t->adv_on + dev_t->t_aa);
1649 	gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1650 
1651 	gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1652 	gpmc_t->cs_rd_off = gpmc_t->oe_off;
1653 
1654 	/* rd_cycle */
1655 	temp = max_t(u32, dev_t->t_rd_cycle,
1656 			gpmc_t->cs_rd_off + dev_t->t_cez_r);
1657 	temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
1658 	gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1659 
1660 	return 0;
1661 }
1662 
1663 static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1664 					 struct gpmc_device_timings *dev_t,
1665 					 bool mux)
1666 {
1667 	u32 temp;
1668 
1669 	/* adv_wr_off */
1670 	temp = dev_t->t_avdp_w;
1671 	if (mux)
1672 		temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1673 	gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1674 
1675 	/* wr_data_mux_bus */
1676 	temp = dev_t->t_weasu;
1677 	if (mux) {
1678 		temp = max_t(u32, temp,	gpmc_t->adv_wr_off + dev_t->t_aavdh);
1679 		temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1680 				gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1681 	}
1682 	gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1683 
1684 	/* we_on */
1685 	if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1686 		gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1687 	else
1688 		gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1689 
1690 	/* we_off */
1691 	temp = gpmc_t->we_on + dev_t->t_wpl;
1692 	gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1693 
1694 	gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1695 							dev_t->t_wph);
1696 
1697 	/* wr_cycle */
1698 	temp = max_t(u32, dev_t->t_wr_cycle,
1699 				gpmc_t->cs_wr_off + dev_t->t_cez_w);
1700 	gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1701 
1702 	return 0;
1703 }
1704 
1705 static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1706 			struct gpmc_device_timings *dev_t)
1707 {
1708 	u32 temp;
1709 
1710 	gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1711 						gpmc_get_fclk_period();
1712 
1713 	gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1714 					dev_t->t_bacc,
1715 					gpmc_t->sync_clk);
1716 
1717 	temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1718 	gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1719 
1720 	if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1721 		return 0;
1722 
1723 	if (dev_t->ce_xdelay)
1724 		gpmc_t->bool_timings.cs_extra_delay = true;
1725 	if (dev_t->avd_xdelay)
1726 		gpmc_t->bool_timings.adv_extra_delay = true;
1727 	if (dev_t->oe_xdelay)
1728 		gpmc_t->bool_timings.oe_extra_delay = true;
1729 	if (dev_t->we_xdelay)
1730 		gpmc_t->bool_timings.we_extra_delay = true;
1731 
1732 	return 0;
1733 }
1734 
1735 static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1736 				    struct gpmc_device_timings *dev_t,
1737 				    bool sync)
1738 {
1739 	u32 temp;
1740 
1741 	/* cs_on */
1742 	gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1743 
1744 	/* adv_on */
1745 	temp = dev_t->t_avdasu;
1746 	if (dev_t->t_ce_avd)
1747 		temp = max_t(u32, temp,
1748 				gpmc_t->cs_on + dev_t->t_ce_avd);
1749 	gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1750 
1751 	if (sync)
1752 		gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1753 
1754 	return 0;
1755 }
1756 
1757 /* TODO: remove this function once all peripherals are confirmed to
1758  * work with generic timing. Simultaneously gpmc_cs_set_timings()
1759  * has to be modified to handle timings in ps instead of ns
1760 */
1761 static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1762 {
1763 	t->cs_on /= 1000;
1764 	t->cs_rd_off /= 1000;
1765 	t->cs_wr_off /= 1000;
1766 	t->adv_on /= 1000;
1767 	t->adv_rd_off /= 1000;
1768 	t->adv_wr_off /= 1000;
1769 	t->we_on /= 1000;
1770 	t->we_off /= 1000;
1771 	t->oe_on /= 1000;
1772 	t->oe_off /= 1000;
1773 	t->page_burst_access /= 1000;
1774 	t->access /= 1000;
1775 	t->rd_cycle /= 1000;
1776 	t->wr_cycle /= 1000;
1777 	t->bus_turnaround /= 1000;
1778 	t->cycle2cycle_delay /= 1000;
1779 	t->wait_monitoring /= 1000;
1780 	t->clk_activation /= 1000;
1781 	t->wr_access /= 1000;
1782 	t->wr_data_mux_bus /= 1000;
1783 }
1784 
1785 int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1786 		      struct gpmc_settings *gpmc_s,
1787 		      struct gpmc_device_timings *dev_t)
1788 {
1789 	bool mux = false, sync = false;
1790 
1791 	if (gpmc_s) {
1792 		mux = gpmc_s->mux_add_data ? true : false;
1793 		sync = (gpmc_s->sync_read || gpmc_s->sync_write);
1794 	}
1795 
1796 	memset(gpmc_t, 0, sizeof(*gpmc_t));
1797 
1798 	gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1799 
1800 	if (gpmc_s && gpmc_s->sync_read)
1801 		gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1802 	else
1803 		gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1804 
1805 	if (gpmc_s && gpmc_s->sync_write)
1806 		gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1807 	else
1808 		gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1809 
1810 	/* TODO: remove, see function definition */
1811 	gpmc_convert_ps_to_ns(gpmc_t);
1812 
1813 	return 0;
1814 }
1815 
1816 /**
1817  * gpmc_cs_program_settings - programs non-timing related settings
1818  * @cs:		GPMC chip-select to program
1819  * @p:		pointer to GPMC settings structure
1820  *
1821  * Programs non-timing related settings for a GPMC chip-select, such as
1822  * bus-width, burst configuration, etc. Function should be called once
1823  * for each chip-select that is being used and must be called before
1824  * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
1825  * register will be initialised to zero by this function. Returns 0 on
1826  * success and appropriate negative error code on failure.
1827  */
1828 int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
1829 {
1830 	u32 config1;
1831 
1832 	if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
1833 		pr_err("%s: invalid width %d!", __func__, p->device_width);
1834 		return -EINVAL;
1835 	}
1836 
1837 	/* Address-data multiplexing not supported for NAND devices */
1838 	if (p->device_nand && p->mux_add_data) {
1839 		pr_err("%s: invalid configuration!\n", __func__);
1840 		return -EINVAL;
1841 	}
1842 
1843 	if ((p->mux_add_data > GPMC_MUX_AD) ||
1844 	    ((p->mux_add_data == GPMC_MUX_AAD) &&
1845 	     !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
1846 		pr_err("%s: invalid multiplex configuration!\n", __func__);
1847 		return -EINVAL;
1848 	}
1849 
1850 	/* Page/burst mode supports lengths of 4, 8 and 16 bytes */
1851 	if (p->burst_read || p->burst_write) {
1852 		switch (p->burst_len) {
1853 		case GPMC_BURST_4:
1854 		case GPMC_BURST_8:
1855 		case GPMC_BURST_16:
1856 			break;
1857 		default:
1858 			pr_err("%s: invalid page/burst-length (%d)\n",
1859 			       __func__, p->burst_len);
1860 			return -EINVAL;
1861 		}
1862 	}
1863 
1864 	if (p->wait_pin > gpmc_nr_waitpins) {
1865 		pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
1866 		return -EINVAL;
1867 	}
1868 
1869 	config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
1870 
1871 	if (p->sync_read)
1872 		config1 |= GPMC_CONFIG1_READTYPE_SYNC;
1873 	if (p->sync_write)
1874 		config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
1875 	if (p->wait_on_read)
1876 		config1 |= GPMC_CONFIG1_WAIT_READ_MON;
1877 	if (p->wait_on_write)
1878 		config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
1879 	if (p->wait_on_read || p->wait_on_write)
1880 		config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
1881 	if (p->device_nand)
1882 		config1	|= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
1883 	if (p->mux_add_data)
1884 		config1	|= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
1885 	if (p->burst_read)
1886 		config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
1887 	if (p->burst_write)
1888 		config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
1889 	if (p->burst_read || p->burst_write) {
1890 		config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
1891 		config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
1892 	}
1893 
1894 	gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
1895 
1896 	return 0;
1897 }
1898 
1899 #ifdef CONFIG_OF
1900 static const struct of_device_id gpmc_dt_ids[] = {
1901 	{ .compatible = "ti,omap2420-gpmc" },
1902 	{ .compatible = "ti,omap2430-gpmc" },
1903 	{ .compatible = "ti,omap3430-gpmc" },	/* omap3430 & omap3630 */
1904 	{ .compatible = "ti,omap4430-gpmc" },	/* omap4430 & omap4460 & omap543x */
1905 	{ .compatible = "ti,am3352-gpmc" },	/* am335x devices */
1906 	{ }
1907 };
1908 
1909 /**
1910  * gpmc_read_settings_dt - read gpmc settings from device-tree
1911  * @np:		pointer to device-tree node for a gpmc child device
1912  * @p:		pointer to gpmc settings structure
1913  *
1914  * Reads the GPMC settings for a GPMC child device from device-tree and
1915  * stores them in the GPMC settings structure passed. The GPMC settings
1916  * structure is initialised to zero by this function and so any
1917  * previously stored settings will be cleared.
1918  */
1919 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
1920 {
1921 	memset(p, 0, sizeof(struct gpmc_settings));
1922 
1923 	p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
1924 	p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
1925 	of_property_read_u32(np, "gpmc,device-width", &p->device_width);
1926 	of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
1927 
1928 	if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
1929 		p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
1930 		p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
1931 		p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
1932 		if (!p->burst_read && !p->burst_write)
1933 			pr_warn("%s: page/burst-length set but not used!\n",
1934 				__func__);
1935 	}
1936 
1937 	if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
1938 		p->wait_on_read = of_property_read_bool(np,
1939 							"gpmc,wait-on-read");
1940 		p->wait_on_write = of_property_read_bool(np,
1941 							 "gpmc,wait-on-write");
1942 		if (!p->wait_on_read && !p->wait_on_write)
1943 			pr_debug("%s: rd/wr wait monitoring not enabled!\n",
1944 				 __func__);
1945 	}
1946 }
1947 
1948 static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
1949 						struct gpmc_timings *gpmc_t)
1950 {
1951 	struct gpmc_bool_timings *p;
1952 
1953 	if (!np || !gpmc_t)
1954 		return;
1955 
1956 	memset(gpmc_t, 0, sizeof(*gpmc_t));
1957 
1958 	/* minimum clock period for syncronous mode */
1959 	of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
1960 
1961 	/* chip select timtings */
1962 	of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
1963 	of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
1964 	of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
1965 
1966 	/* ADV signal timings */
1967 	of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
1968 	of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
1969 	of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
1970 	of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
1971 			     &gpmc_t->adv_aad_mux_on);
1972 	of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
1973 			     &gpmc_t->adv_aad_mux_rd_off);
1974 	of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
1975 			     &gpmc_t->adv_aad_mux_wr_off);
1976 
1977 	/* WE signal timings */
1978 	of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
1979 	of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
1980 
1981 	/* OE signal timings */
1982 	of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
1983 	of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
1984 	of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
1985 			     &gpmc_t->oe_aad_mux_on);
1986 	of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
1987 			     &gpmc_t->oe_aad_mux_off);
1988 
1989 	/* access and cycle timings */
1990 	of_property_read_u32(np, "gpmc,page-burst-access-ns",
1991 			     &gpmc_t->page_burst_access);
1992 	of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
1993 	of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
1994 	of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
1995 	of_property_read_u32(np, "gpmc,bus-turnaround-ns",
1996 			     &gpmc_t->bus_turnaround);
1997 	of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
1998 			     &gpmc_t->cycle2cycle_delay);
1999 	of_property_read_u32(np, "gpmc,wait-monitoring-ns",
2000 			     &gpmc_t->wait_monitoring);
2001 	of_property_read_u32(np, "gpmc,clk-activation-ns",
2002 			     &gpmc_t->clk_activation);
2003 
2004 	/* only applicable to OMAP3+ */
2005 	of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
2006 	of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
2007 			     &gpmc_t->wr_data_mux_bus);
2008 
2009 	/* bool timing parameters */
2010 	p = &gpmc_t->bool_timings;
2011 
2012 	p->cycle2cyclediffcsen =
2013 		of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
2014 	p->cycle2cyclesamecsen =
2015 		of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
2016 	p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
2017 	p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
2018 	p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
2019 	p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
2020 	p->time_para_granularity =
2021 		of_property_read_bool(np, "gpmc,time-para-granularity");
2022 }
2023 
2024 /**
2025  * gpmc_probe_generic_child - configures the gpmc for a child device
2026  * @pdev:	pointer to gpmc platform device
2027  * @child:	pointer to device-tree node for child device
2028  *
2029  * Allocates and configures a GPMC chip-select for a child device.
2030  * Returns 0 on success and appropriate negative error code on failure.
2031  */
2032 static int gpmc_probe_generic_child(struct platform_device *pdev,
2033 				struct device_node *child)
2034 {
2035 	struct gpmc_settings gpmc_s;
2036 	struct gpmc_timings gpmc_t;
2037 	struct resource res;
2038 	unsigned long base;
2039 	const char *name;
2040 	int ret, cs;
2041 	u32 val;
2042 	struct gpio_desc *waitpin_desc = NULL;
2043 	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2044 
2045 	if (of_property_read_u32(child, "reg", &cs) < 0) {
2046 		dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
2047 			child);
2048 		return -ENODEV;
2049 	}
2050 
2051 	if (of_address_to_resource(child, 0, &res) < 0) {
2052 		dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
2053 			child);
2054 		return -ENODEV;
2055 	}
2056 
2057 	/*
2058 	 * Check if we have multiple instances of the same device
2059 	 * on a single chip select. If so, use the already initialized
2060 	 * timings.
2061 	 */
2062 	name = gpmc_cs_get_name(cs);
2063 	if (name && of_node_cmp(child->name, name) == 0)
2064 		goto no_timings;
2065 
2066 	ret = gpmc_cs_request(cs, resource_size(&res), &base);
2067 	if (ret < 0) {
2068 		dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
2069 		return ret;
2070 	}
2071 	gpmc_cs_set_name(cs, child->name);
2072 
2073 	gpmc_read_settings_dt(child, &gpmc_s);
2074 	gpmc_read_timings_dt(child, &gpmc_t);
2075 
2076 	/*
2077 	 * For some GPMC devices we still need to rely on the bootloader
2078 	 * timings because the devices can be connected via FPGA.
2079 	 * REVISIT: Add timing support from slls644g.pdf.
2080 	 */
2081 	if (!gpmc_t.cs_rd_off) {
2082 		WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
2083 			cs);
2084 		gpmc_cs_show_timings(cs,
2085 				     "please add GPMC bootloader timings to .dts");
2086 		goto no_timings;
2087 	}
2088 
2089 	/* CS must be disabled while making changes to gpmc configuration */
2090 	gpmc_cs_disable_mem(cs);
2091 
2092 	/*
2093 	 * FIXME: gpmc_cs_request() will map the CS to an arbitary
2094 	 * location in the gpmc address space. When booting with
2095 	 * device-tree we want the NOR flash to be mapped to the
2096 	 * location specified in the device-tree blob. So remap the
2097 	 * CS to this location. Once DT migration is complete should
2098 	 * just make gpmc_cs_request() map a specific address.
2099 	 */
2100 	ret = gpmc_cs_remap(cs, res.start);
2101 	if (ret < 0) {
2102 		dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
2103 			cs, &res.start);
2104 		if (res.start < GPMC_MEM_START) {
2105 			dev_info(&pdev->dev,
2106 				 "GPMC CS %d start cannot be lesser than 0x%x\n",
2107 				 cs, GPMC_MEM_START);
2108 		} else if (res.end > GPMC_MEM_END) {
2109 			dev_info(&pdev->dev,
2110 				 "GPMC CS %d end cannot be greater than 0x%x\n",
2111 				 cs, GPMC_MEM_END);
2112 		}
2113 		goto err;
2114 	}
2115 
2116 	if (of_node_cmp(child->name, "nand") == 0) {
2117 		/* Warn about older DT blobs with no compatible property */
2118 		if (!of_property_read_bool(child, "compatible")) {
2119 			dev_warn(&pdev->dev,
2120 				 "Incompatible NAND node: missing compatible");
2121 			ret = -EINVAL;
2122 			goto err;
2123 		}
2124 	}
2125 
2126 	if (of_node_cmp(child->name, "onenand") == 0) {
2127 		/* Warn about older DT blobs with no compatible property */
2128 		if (!of_property_read_bool(child, "compatible")) {
2129 			dev_warn(&pdev->dev,
2130 				 "Incompatible OneNAND node: missing compatible");
2131 			ret = -EINVAL;
2132 			goto err;
2133 		}
2134 	}
2135 
2136 	if (of_device_is_compatible(child, "ti,omap2-nand")) {
2137 		/* NAND specific setup */
2138 		val = 8;
2139 		of_property_read_u32(child, "nand-bus-width", &val);
2140 		switch (val) {
2141 		case 8:
2142 			gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
2143 			break;
2144 		case 16:
2145 			gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
2146 			break;
2147 		default:
2148 			dev_err(&pdev->dev, "%s: invalid 'nand-bus-width'\n",
2149 				child->name);
2150 			ret = -EINVAL;
2151 			goto err;
2152 		}
2153 
2154 		/* disable write protect */
2155 		gpmc_configure(GPMC_CONFIG_WP, 0);
2156 		gpmc_s.device_nand = true;
2157 	} else {
2158 		ret = of_property_read_u32(child, "bank-width",
2159 					   &gpmc_s.device_width);
2160 		if (ret < 0 && !gpmc_s.device_width) {
2161 			dev_err(&pdev->dev,
2162 				"%pOF has no 'gpmc,device-width' property\n",
2163 				child);
2164 			goto err;
2165 		}
2166 	}
2167 
2168 	/* Reserve wait pin if it is required and valid */
2169 	if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
2170 		unsigned int wait_pin = gpmc_s.wait_pin;
2171 
2172 		waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
2173 							 wait_pin, "WAITPIN");
2174 		if (IS_ERR(waitpin_desc)) {
2175 			dev_err(&pdev->dev, "invalid wait-pin: %d\n", wait_pin);
2176 			ret = PTR_ERR(waitpin_desc);
2177 			goto err;
2178 		}
2179 	}
2180 
2181 	gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
2182 
2183 	ret = gpmc_cs_program_settings(cs, &gpmc_s);
2184 	if (ret < 0)
2185 		goto err_cs;
2186 
2187 	ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
2188 	if (ret) {
2189 		dev_err(&pdev->dev, "failed to set gpmc timings for: %s\n",
2190 			child->name);
2191 		goto err_cs;
2192 	}
2193 
2194 	/* Clear limited address i.e. enable A26-A11 */
2195 	val = gpmc_read_reg(GPMC_CONFIG);
2196 	val &= ~GPMC_CONFIG_LIMITEDADDRESS;
2197 	gpmc_write_reg(GPMC_CONFIG, val);
2198 
2199 	/* Enable CS region */
2200 	gpmc_cs_enable_mem(cs);
2201 
2202 no_timings:
2203 
2204 	/* create platform device, NULL on error or when disabled */
2205 	if (!of_platform_device_create(child, NULL, &pdev->dev))
2206 		goto err_child_fail;
2207 
2208 	/* is child a common bus? */
2209 	if (of_match_node(of_default_bus_match_table, child))
2210 		/* create children and other common bus children */
2211 		if (of_platform_default_populate(child, NULL, &pdev->dev))
2212 			goto err_child_fail;
2213 
2214 	return 0;
2215 
2216 err_child_fail:
2217 
2218 	dev_err(&pdev->dev, "failed to create gpmc child %s\n", child->name);
2219 	ret = -ENODEV;
2220 
2221 err_cs:
2222 	gpiochip_free_own_desc(waitpin_desc);
2223 err:
2224 	gpmc_cs_free(cs);
2225 
2226 	return ret;
2227 }
2228 
2229 static int gpmc_probe_dt(struct platform_device *pdev)
2230 {
2231 	int ret;
2232 	const struct of_device_id *of_id =
2233 		of_match_device(gpmc_dt_ids, &pdev->dev);
2234 
2235 	if (!of_id)
2236 		return 0;
2237 
2238 	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
2239 				   &gpmc_cs_num);
2240 	if (ret < 0) {
2241 		pr_err("%s: number of chip-selects not defined\n", __func__);
2242 		return ret;
2243 	} else if (gpmc_cs_num < 1) {
2244 		pr_err("%s: all chip-selects are disabled\n", __func__);
2245 		return -EINVAL;
2246 	} else if (gpmc_cs_num > GPMC_CS_NUM) {
2247 		pr_err("%s: number of supported chip-selects cannot be > %d\n",
2248 					 __func__, GPMC_CS_NUM);
2249 		return -EINVAL;
2250 	}
2251 
2252 	ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
2253 				   &gpmc_nr_waitpins);
2254 	if (ret < 0) {
2255 		pr_err("%s: number of wait pins not found!\n", __func__);
2256 		return ret;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 static void gpmc_probe_dt_children(struct platform_device *pdev)
2263 {
2264 	int ret;
2265 	struct device_node *child;
2266 
2267 	for_each_available_child_of_node(pdev->dev.of_node, child) {
2268 
2269 		if (!child->name)
2270 			continue;
2271 
2272 		ret = gpmc_probe_generic_child(pdev, child);
2273 		if (ret) {
2274 			dev_err(&pdev->dev, "failed to probe DT child '%s': %d\n",
2275 				child->name, ret);
2276 		}
2277 	}
2278 }
2279 #else
2280 static int gpmc_probe_dt(struct platform_device *pdev)
2281 {
2282 	return 0;
2283 }
2284 
2285 static void gpmc_probe_dt_children(struct platform_device *pdev)
2286 {
2287 }
2288 #endif /* CONFIG_OF */
2289 
2290 static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
2291 {
2292 	return 1;	/* we're input only */
2293 }
2294 
2295 static int gpmc_gpio_direction_input(struct gpio_chip *chip,
2296 				     unsigned int offset)
2297 {
2298 	return 0;	/* we're input only */
2299 }
2300 
2301 static int gpmc_gpio_direction_output(struct gpio_chip *chip,
2302 				      unsigned int offset, int value)
2303 {
2304 	return -EINVAL;	/* we're input only */
2305 }
2306 
2307 static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
2308 			  int value)
2309 {
2310 }
2311 
2312 static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
2313 {
2314 	u32 reg;
2315 
2316 	offset += 8;
2317 
2318 	reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
2319 
2320 	return !!reg;
2321 }
2322 
2323 static int gpmc_gpio_init(struct gpmc_device *gpmc)
2324 {
2325 	int ret;
2326 
2327 	gpmc->gpio_chip.parent = gpmc->dev;
2328 	gpmc->gpio_chip.owner = THIS_MODULE;
2329 	gpmc->gpio_chip.label = DEVICE_NAME;
2330 	gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
2331 	gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
2332 	gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
2333 	gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
2334 	gpmc->gpio_chip.set = gpmc_gpio_set;
2335 	gpmc->gpio_chip.get = gpmc_gpio_get;
2336 	gpmc->gpio_chip.base = -1;
2337 
2338 	ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
2339 	if (ret < 0) {
2340 		dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
2341 		return ret;
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 static int gpmc_probe(struct platform_device *pdev)
2348 {
2349 	int rc;
2350 	u32 l;
2351 	struct resource *res;
2352 	struct gpmc_device *gpmc;
2353 
2354 	gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
2355 	if (!gpmc)
2356 		return -ENOMEM;
2357 
2358 	gpmc->dev = &pdev->dev;
2359 	platform_set_drvdata(pdev, gpmc);
2360 
2361 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2362 	if (res == NULL)
2363 		return -ENOENT;
2364 
2365 	phys_base = res->start;
2366 	mem_size = resource_size(res);
2367 
2368 	gpmc_base = devm_ioremap_resource(&pdev->dev, res);
2369 	if (IS_ERR(gpmc_base))
2370 		return PTR_ERR(gpmc_base);
2371 
2372 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2373 	if (!res) {
2374 		dev_err(&pdev->dev, "Failed to get resource: irq\n");
2375 		return -ENOENT;
2376 	}
2377 
2378 	gpmc->irq = res->start;
2379 
2380 	gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2381 	if (IS_ERR(gpmc_l3_clk)) {
2382 		dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2383 		return PTR_ERR(gpmc_l3_clk);
2384 	}
2385 
2386 	if (!clk_get_rate(gpmc_l3_clk)) {
2387 		dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
2388 		return -EINVAL;
2389 	}
2390 
2391 	if (pdev->dev.of_node) {
2392 		rc = gpmc_probe_dt(pdev);
2393 		if (rc)
2394 			return rc;
2395 	} else {
2396 		gpmc_cs_num = GPMC_CS_NUM;
2397 		gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2398 	}
2399 
2400 	pm_runtime_enable(&pdev->dev);
2401 	pm_runtime_get_sync(&pdev->dev);
2402 
2403 	l = gpmc_read_reg(GPMC_REVISION);
2404 
2405 	/*
2406 	 * FIXME: Once device-tree migration is complete the below flags
2407 	 * should be populated based upon the device-tree compatible
2408 	 * string. For now just use the IP revision. OMAP3+ devices have
2409 	 * the wr_access and wr_data_mux_bus register fields. OMAP4+
2410 	 * devices support the addr-addr-data multiplex protocol.
2411 	 *
2412 	 * GPMC IP revisions:
2413 	 * - OMAP24xx			= 2.0
2414 	 * - OMAP3xxx			= 5.0
2415 	 * - OMAP44xx/54xx/AM335x	= 6.0
2416 	 */
2417 	if (GPMC_REVISION_MAJOR(l) > 0x4)
2418 		gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2419 	if (GPMC_REVISION_MAJOR(l) > 0x5)
2420 		gpmc_capability |= GPMC_HAS_MUX_AAD;
2421 	dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
2422 		 GPMC_REVISION_MINOR(l));
2423 
2424 	gpmc_mem_init();
2425 	rc = gpmc_gpio_init(gpmc);
2426 	if (rc)
2427 		goto gpio_init_failed;
2428 
2429 	gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
2430 	rc = gpmc_setup_irq(gpmc);
2431 	if (rc) {
2432 		dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
2433 		goto gpio_init_failed;
2434 	}
2435 
2436 	gpmc_probe_dt_children(pdev);
2437 
2438 	return 0;
2439 
2440 gpio_init_failed:
2441 	gpmc_mem_exit();
2442 	pm_runtime_put_sync(&pdev->dev);
2443 	pm_runtime_disable(&pdev->dev);
2444 
2445 	return rc;
2446 }
2447 
2448 static int gpmc_remove(struct platform_device *pdev)
2449 {
2450 	struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2451 
2452 	gpmc_free_irq(gpmc);
2453 	gpmc_mem_exit();
2454 	pm_runtime_put_sync(&pdev->dev);
2455 	pm_runtime_disable(&pdev->dev);
2456 
2457 	return 0;
2458 }
2459 
2460 #ifdef CONFIG_PM_SLEEP
2461 static int gpmc_suspend(struct device *dev)
2462 {
2463 	omap3_gpmc_save_context();
2464 	pm_runtime_put_sync(dev);
2465 	return 0;
2466 }
2467 
2468 static int gpmc_resume(struct device *dev)
2469 {
2470 	pm_runtime_get_sync(dev);
2471 	omap3_gpmc_restore_context();
2472 	return 0;
2473 }
2474 #endif
2475 
2476 static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
2477 
2478 static struct platform_driver gpmc_driver = {
2479 	.probe		= gpmc_probe,
2480 	.remove		= gpmc_remove,
2481 	.driver		= {
2482 		.name	= DEVICE_NAME,
2483 		.of_match_table = of_match_ptr(gpmc_dt_ids),
2484 		.pm	= &gpmc_pm_ops,
2485 	},
2486 };
2487 
2488 static __init int gpmc_init(void)
2489 {
2490 	return platform_driver_register(&gpmc_driver);
2491 }
2492 postcore_initcall(gpmc_init);
2493 
2494 static struct omap3_gpmc_regs gpmc_context;
2495 
2496 void omap3_gpmc_save_context(void)
2497 {
2498 	int i;
2499 
2500 	if (!gpmc_base)
2501 		return;
2502 
2503 	gpmc_context.sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
2504 	gpmc_context.irqenable = gpmc_read_reg(GPMC_IRQENABLE);
2505 	gpmc_context.timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
2506 	gpmc_context.config = gpmc_read_reg(GPMC_CONFIG);
2507 	gpmc_context.prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
2508 	gpmc_context.prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
2509 	gpmc_context.prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2510 	for (i = 0; i < gpmc_cs_num; i++) {
2511 		gpmc_context.cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
2512 		if (gpmc_context.cs_context[i].is_valid) {
2513 			gpmc_context.cs_context[i].config1 =
2514 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
2515 			gpmc_context.cs_context[i].config2 =
2516 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
2517 			gpmc_context.cs_context[i].config3 =
2518 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
2519 			gpmc_context.cs_context[i].config4 =
2520 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
2521 			gpmc_context.cs_context[i].config5 =
2522 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
2523 			gpmc_context.cs_context[i].config6 =
2524 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
2525 			gpmc_context.cs_context[i].config7 =
2526 				gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
2527 		}
2528 	}
2529 }
2530 
2531 void omap3_gpmc_restore_context(void)
2532 {
2533 	int i;
2534 
2535 	if (!gpmc_base)
2536 		return;
2537 
2538 	gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context.sysconfig);
2539 	gpmc_write_reg(GPMC_IRQENABLE, gpmc_context.irqenable);
2540 	gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context.timeout_ctrl);
2541 	gpmc_write_reg(GPMC_CONFIG, gpmc_context.config);
2542 	gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context.prefetch_config1);
2543 	gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context.prefetch_config2);
2544 	gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context.prefetch_control);
2545 	for (i = 0; i < gpmc_cs_num; i++) {
2546 		if (gpmc_context.cs_context[i].is_valid) {
2547 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
2548 				gpmc_context.cs_context[i].config1);
2549 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
2550 				gpmc_context.cs_context[i].config2);
2551 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
2552 				gpmc_context.cs_context[i].config3);
2553 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
2554 				gpmc_context.cs_context[i].config4);
2555 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
2556 				gpmc_context.cs_context[i].config5);
2557 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
2558 				gpmc_context.cs_context[i].config6);
2559 			gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
2560 				gpmc_context.cs_context[i].config7);
2561 		}
2562 	}
2563 }
2564