1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GPMC support functions 4 * 5 * Copyright (C) 2005-2006 Nokia Corporation 6 * 7 * Author: Juha Yrjola 8 * 9 * Copyright (C) 2009 Texas Instruments 10 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com> 11 */ 12 #include <linux/cleanup.h> 13 #include <linux/cpu_pm.h> 14 #include <linux/irq.h> 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/init.h> 18 #include <linux/err.h> 19 #include <linux/clk.h> 20 #include <linux/ioport.h> 21 #include <linux/spinlock.h> 22 #include <linux/io.h> 23 #include <linux/gpio/driver.h> 24 #include <linux/gpio/consumer.h> /* GPIO descriptor enum */ 25 #include <linux/gpio/machine.h> 26 #include <linux/interrupt.h> 27 #include <linux/irqdomain.h> 28 #include <linux/platform_device.h> 29 #include <linux/of.h> 30 #include <linux/of_address.h> 31 #include <linux/of_device.h> 32 #include <linux/of_platform.h> 33 #include <linux/omap-gpmc.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/sizes.h> 36 37 #include <linux/platform_data/mtd-nand-omap2.h> 38 39 #define DEVICE_NAME "omap-gpmc" 40 41 /* GPMC register offsets */ 42 #define GPMC_REVISION 0x00 43 #define GPMC_SYSCONFIG 0x10 44 #define GPMC_SYSSTATUS 0x14 45 #define GPMC_IRQSTATUS 0x18 46 #define GPMC_IRQENABLE 0x1c 47 #define GPMC_TIMEOUT_CONTROL 0x40 48 #define GPMC_ERR_ADDRESS 0x44 49 #define GPMC_ERR_TYPE 0x48 50 #define GPMC_CONFIG 0x50 51 #define GPMC_STATUS 0x54 52 #define GPMC_PREFETCH_CONFIG1 0x1e0 53 #define GPMC_PREFETCH_CONFIG2 0x1e4 54 #define GPMC_PREFETCH_CONTROL 0x1ec 55 #define GPMC_PREFETCH_STATUS 0x1f0 56 #define GPMC_ECC_CONFIG 0x1f4 57 #define GPMC_ECC_CONTROL 0x1f8 58 #define GPMC_ECC_SIZE_CONFIG 0x1fc 59 #define GPMC_ECC1_RESULT 0x200 60 #define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */ 61 #define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */ 62 #define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */ 63 #define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */ 64 #define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */ 65 #define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */ 66 #define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */ 67 68 /* GPMC ECC control settings */ 69 #define GPMC_ECC_CTRL_ECCCLEAR 0x100 70 #define GPMC_ECC_CTRL_ECCDISABLE 0x000 71 #define GPMC_ECC_CTRL_ECCREG1 0x001 72 #define GPMC_ECC_CTRL_ECCREG2 0x002 73 #define GPMC_ECC_CTRL_ECCREG3 0x003 74 #define GPMC_ECC_CTRL_ECCREG4 0x004 75 #define GPMC_ECC_CTRL_ECCREG5 0x005 76 #define GPMC_ECC_CTRL_ECCREG6 0x006 77 #define GPMC_ECC_CTRL_ECCREG7 0x007 78 #define GPMC_ECC_CTRL_ECCREG8 0x008 79 #define GPMC_ECC_CTRL_ECCREG9 0x009 80 81 #define GPMC_CONFIG_LIMITEDADDRESS BIT(1) 82 83 #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS BIT(0) 84 85 #define GPMC_CONFIG2_CSEXTRADELAY BIT(7) 86 #define GPMC_CONFIG3_ADVEXTRADELAY BIT(7) 87 #define GPMC_CONFIG4_OEEXTRADELAY BIT(7) 88 #define GPMC_CONFIG4_WEEXTRADELAY BIT(23) 89 #define GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN BIT(6) 90 #define GPMC_CONFIG6_CYCLE2CYCLESAMECSEN BIT(7) 91 92 #define GPMC_CS0_OFFSET 0x60 93 #define GPMC_CS_SIZE 0x30 94 #define GPMC_BCH_SIZE 0x10 95 96 /* 97 * The first 1MB of GPMC address space is typically mapped to 98 * the internal ROM. Never allocate the first page, to 99 * facilitate bug detection; even if we didn't boot from ROM. 100 * As GPMC minimum partition size is 16MB we can only start from 101 * there. 102 */ 103 #define GPMC_MEM_START 0x1000000 104 #define GPMC_MEM_END 0x3FFFFFFF 105 106 #define GPMC_CHUNK_SHIFT 24 /* 16 MB */ 107 #define GPMC_SECTION_SHIFT 28 /* 128 MB */ 108 109 #define CS_NUM_SHIFT 24 110 #define ENABLE_PREFETCH (0x1 << 7) 111 #define DMA_MPU_MODE 2 112 113 #define GPMC_REVISION_MAJOR(l) (((l) >> 4) & 0xf) 114 #define GPMC_REVISION_MINOR(l) ((l) & 0xf) 115 116 #define GPMC_HAS_WR_ACCESS 0x1 117 #define GPMC_HAS_WR_DATA_MUX_BUS 0x2 118 #define GPMC_HAS_MUX_AAD 0x4 119 120 #define GPMC_NR_WAITPINS 4 121 122 #define GPMC_CS_CONFIG1 0x00 123 #define GPMC_CS_CONFIG2 0x04 124 #define GPMC_CS_CONFIG3 0x08 125 #define GPMC_CS_CONFIG4 0x0c 126 #define GPMC_CS_CONFIG5 0x10 127 #define GPMC_CS_CONFIG6 0x14 128 #define GPMC_CS_CONFIG7 0x18 129 #define GPMC_CS_NAND_COMMAND 0x1c 130 #define GPMC_CS_NAND_ADDRESS 0x20 131 #define GPMC_CS_NAND_DATA 0x24 132 133 /* Control Commands */ 134 #define GPMC_CONFIG_RDY_BSY 0x00000001 135 #define GPMC_CONFIG_DEV_SIZE 0x00000002 136 #define GPMC_CONFIG_DEV_TYPE 0x00000003 137 138 #define GPMC_CONFIG_WAITPINPOLARITY(pin) (BIT(pin) << 8) 139 #define GPMC_CONFIG1_WRAPBURST_SUPP (1 << 31) 140 #define GPMC_CONFIG1_READMULTIPLE_SUPP (1 << 30) 141 #define GPMC_CONFIG1_READTYPE_ASYNC (0 << 29) 142 #define GPMC_CONFIG1_READTYPE_SYNC (1 << 29) 143 #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28) 144 #define GPMC_CONFIG1_WRITETYPE_ASYNC (0 << 27) 145 #define GPMC_CONFIG1_WRITETYPE_SYNC (1 << 27) 146 #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25) 147 /** CLKACTIVATIONTIME Max Ticks */ 148 #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2 149 #define GPMC_CONFIG1_PAGE_LEN(val) (((val) & 3) << 23) 150 /** ATTACHEDDEVICEPAGELENGTH Max Value */ 151 #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2 152 #define GPMC_CONFIG1_WAIT_READ_MON (1 << 22) 153 #define GPMC_CONFIG1_WAIT_WRITE_MON (1 << 21) 154 #define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18) 155 /** WAITMONITORINGTIME Max Ticks */ 156 #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX 2 157 #define GPMC_CONFIG1_WAIT_PIN_SEL(val) (((val) & 3) << 16) 158 #define GPMC_CONFIG1_DEVICESIZE(val) (((val) & 3) << 12) 159 #define GPMC_CONFIG1_DEVICESIZE_16 GPMC_CONFIG1_DEVICESIZE(1) 160 /** DEVICESIZE Max Value */ 161 #define GPMC_CONFIG1_DEVICESIZE_MAX 1 162 #define GPMC_CONFIG1_DEVICETYPE(val) (((val) & 3) << 10) 163 #define GPMC_CONFIG1_DEVICETYPE_NOR GPMC_CONFIG1_DEVICETYPE(0) 164 #define GPMC_CONFIG1_MUXTYPE(val) (((val) & 3) << 8) 165 #define GPMC_CONFIG1_TIME_PARA_GRAN (1 << 4) 166 #define GPMC_CONFIG1_FCLK_DIV(val) ((val) & 3) 167 #define GPMC_CONFIG1_FCLK_DIV2 (GPMC_CONFIG1_FCLK_DIV(1)) 168 #define GPMC_CONFIG1_FCLK_DIV3 (GPMC_CONFIG1_FCLK_DIV(2)) 169 #define GPMC_CONFIG1_FCLK_DIV4 (GPMC_CONFIG1_FCLK_DIV(3)) 170 #define GPMC_CONFIG7_CSVALID (1 << 6) 171 172 #define GPMC_CONFIG7_BASEADDRESS_MASK 0x3f 173 #define GPMC_CONFIG7_CSVALID_MASK BIT(6) 174 #define GPMC_CONFIG7_MASKADDRESS_OFFSET 8 175 #define GPMC_CONFIG7_MASKADDRESS_MASK (0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET) 176 /* All CONFIG7 bits except reserved bits */ 177 #define GPMC_CONFIG7_MASK (GPMC_CONFIG7_BASEADDRESS_MASK | \ 178 GPMC_CONFIG7_CSVALID_MASK | \ 179 GPMC_CONFIG7_MASKADDRESS_MASK) 180 181 #define GPMC_DEVICETYPE_NOR 0 182 #define GPMC_DEVICETYPE_NAND 2 183 #define GPMC_CONFIG_WRITEPROTECT 0x00000010 184 #define WR_RD_PIN_MONITORING 0x00600000 185 186 /* ECC commands */ 187 #define GPMC_ECC_READ 0 /* Reset Hardware ECC for read */ 188 #define GPMC_ECC_WRITE 1 /* Reset Hardware ECC for write */ 189 #define GPMC_ECC_READSYN 2 /* Reset before syndrom is read back */ 190 191 #define GPMC_NR_NAND_IRQS 2 /* number of NAND specific IRQs */ 192 193 enum gpmc_clk_domain { 194 GPMC_CD_FCLK, 195 GPMC_CD_CLK 196 }; 197 198 struct gpmc_cs_data { 199 const char *name; 200 201 #define GPMC_CS_RESERVED (1 << 0) 202 u32 flags; 203 204 struct resource mem; 205 }; 206 207 /* Structure to save gpmc cs context */ 208 struct gpmc_cs_config { 209 u32 config1; 210 u32 config2; 211 u32 config3; 212 u32 config4; 213 u32 config5; 214 u32 config6; 215 u32 config7; 216 int is_valid; 217 }; 218 219 /* 220 * Structure to save/restore gpmc context 221 * to support core off on OMAP3 222 */ 223 struct omap3_gpmc_regs { 224 u32 sysconfig; 225 u32 irqenable; 226 u32 timeout_ctrl; 227 u32 config; 228 u32 prefetch_config1; 229 u32 prefetch_config2; 230 u32 prefetch_control; 231 struct gpmc_cs_config cs_context[GPMC_CS_NUM]; 232 }; 233 234 struct gpmc_waitpin { 235 u32 pin; 236 u32 polarity; 237 struct gpio_desc *desc; 238 }; 239 240 struct gpmc_device { 241 struct device *dev; 242 int irq; 243 struct irq_chip irq_chip; 244 struct gpio_chip gpio_chip; 245 struct notifier_block nb; 246 struct omap3_gpmc_regs context; 247 struct gpmc_waitpin *waitpins; 248 int nirqs; 249 unsigned int is_suspended:1; 250 struct resource *data; 251 }; 252 253 static struct irq_domain *gpmc_irq_domain; 254 255 static struct resource gpmc_mem_root; 256 static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM]; 257 static DEFINE_SPINLOCK(gpmc_mem_lock); 258 /* Define chip-selects as reserved by default until probe completes */ 259 static unsigned int gpmc_cs_num = GPMC_CS_NUM; 260 static unsigned int gpmc_nr_waitpins; 261 static unsigned int gpmc_capability; 262 static void __iomem *gpmc_base; 263 264 static struct clk *gpmc_l3_clk; 265 266 static irqreturn_t gpmc_handle_irq(int irq, void *dev); 267 268 static void gpmc_write_reg(int idx, u32 val) 269 { 270 writel_relaxed(val, gpmc_base + idx); 271 } 272 273 static u32 gpmc_read_reg(int idx) 274 { 275 return readl_relaxed(gpmc_base + idx); 276 } 277 278 void gpmc_cs_write_reg(int cs, int idx, u32 val) 279 { 280 void __iomem *reg_addr; 281 282 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx; 283 writel_relaxed(val, reg_addr); 284 } 285 286 static u32 gpmc_cs_read_reg(int cs, int idx) 287 { 288 void __iomem *reg_addr; 289 290 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx; 291 return readl_relaxed(reg_addr); 292 } 293 294 /* TODO: Add support for gpmc_fck to clock framework and use it */ 295 static unsigned long gpmc_get_fclk_period(void) 296 { 297 unsigned long rate = clk_get_rate(gpmc_l3_clk); 298 299 rate /= 1000; 300 rate = 1000000000 / rate; /* In picoseconds */ 301 302 return rate; 303 } 304 305 /** 306 * gpmc_get_clk_period - get period of selected clock domain in ps 307 * @cs: Chip Select Region. 308 * @cd: Clock Domain. 309 * 310 * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup 311 * prior to calling this function with GPMC_CD_CLK. 312 */ 313 static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd) 314 { 315 unsigned long tick_ps = gpmc_get_fclk_period(); 316 u32 l; 317 int div; 318 319 switch (cd) { 320 case GPMC_CD_CLK: 321 /* get current clk divider */ 322 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1); 323 div = (l & 0x03) + 1; 324 /* get GPMC_CLK period */ 325 tick_ps *= div; 326 break; 327 case GPMC_CD_FCLK: 328 default: 329 break; 330 } 331 332 return tick_ps; 333 } 334 335 static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs, 336 enum gpmc_clk_domain cd) 337 { 338 unsigned long tick_ps; 339 340 /* Calculate in picosecs to yield more exact results */ 341 tick_ps = gpmc_get_clk_period(cs, cd); 342 343 return (time_ns * 1000 + tick_ps - 1) / tick_ps; 344 } 345 346 static unsigned int gpmc_ns_to_ticks(unsigned int time_ns) 347 { 348 return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK); 349 } 350 351 static unsigned int gpmc_ps_to_ticks(unsigned int time_ps) 352 { 353 unsigned long tick_ps; 354 355 /* Calculate in picosecs to yield more exact results */ 356 tick_ps = gpmc_get_fclk_period(); 357 358 return (time_ps + tick_ps - 1) / tick_ps; 359 } 360 361 static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs, 362 enum gpmc_clk_domain cd) 363 { 364 return ticks * gpmc_get_clk_period(cs, cd) / 1000; 365 } 366 367 unsigned int gpmc_ticks_to_ns(unsigned int ticks) 368 { 369 return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK); 370 } 371 372 static unsigned int gpmc_ticks_to_ps(unsigned int ticks) 373 { 374 return ticks * gpmc_get_fclk_period(); 375 } 376 377 static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps) 378 { 379 unsigned long ticks = gpmc_ps_to_ticks(time_ps); 380 381 return ticks * gpmc_get_fclk_period(); 382 } 383 384 static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value) 385 { 386 u32 l; 387 388 l = gpmc_cs_read_reg(cs, reg); 389 if (value) 390 l |= mask; 391 else 392 l &= ~mask; 393 gpmc_cs_write_reg(cs, reg, l); 394 } 395 396 static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p) 397 { 398 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1, 399 GPMC_CONFIG1_TIME_PARA_GRAN, 400 p->time_para_granularity); 401 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2, 402 GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay); 403 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3, 404 GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay); 405 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4, 406 GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay); 407 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4, 408 GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay); 409 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6, 410 GPMC_CONFIG6_CYCLE2CYCLESAMECSEN, 411 p->cycle2cyclesamecsen); 412 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6, 413 GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN, 414 p->cycle2cyclediffcsen); 415 } 416 417 #ifdef CONFIG_OMAP_GPMC_DEBUG 418 /** 419 * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it. 420 * @cs: Chip Select Region 421 * @reg: GPMC_CS_CONFIGn register offset. 422 * @st_bit: Start Bit 423 * @end_bit: End Bit. Must be >= @st_bit. 424 * @max: Maximum parameter value (before optional @shift). 425 * If 0, maximum is as high as @st_bit and @end_bit allow. 426 * @name: DTS node name, w/o "gpmc," 427 * @cd: Clock Domain of timing parameter. 428 * @shift: Parameter value left shifts @shift, which is then printed instead of value. 429 * @raw: Raw Format Option. 430 * raw format: gpmc,name = <value> 431 * tick format: gpmc,name = <value> /‍* x ns -- y ns; x ticks *‍/ 432 * Where x ns -- y ns result in the same tick value. 433 * When @max is exceeded, "invalid" is printed inside comment. 434 * @noval: Parameter values equal to 0 are not printed. 435 * @return: Specified timing parameter (after optional @shift). 436 * 437 */ 438 static int get_gpmc_timing_reg( 439 /* timing specifiers */ 440 int cs, int reg, int st_bit, int end_bit, int max, 441 const char *name, const enum gpmc_clk_domain cd, 442 /* value transform */ 443 int shift, 444 /* format specifiers */ 445 bool raw, bool noval) 446 { 447 u32 l; 448 int nr_bits; 449 int mask; 450 bool invalid; 451 452 l = gpmc_cs_read_reg(cs, reg); 453 nr_bits = end_bit - st_bit + 1; 454 mask = (1 << nr_bits) - 1; 455 l = (l >> st_bit) & mask; 456 if (!max) 457 max = mask; 458 invalid = l > max; 459 if (shift) 460 l = (shift << l); 461 if (noval && (l == 0)) 462 return 0; 463 if (!raw) { 464 /* DTS tick format for timings in ns */ 465 unsigned int time_ns; 466 unsigned int time_ns_min = 0; 467 468 if (l) 469 time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1; 470 time_ns = gpmc_clk_ticks_to_ns(l, cs, cd); 471 pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n", 472 name, time_ns, time_ns_min, time_ns, l, 473 invalid ? "; invalid " : " "); 474 } else { 475 /* raw format */ 476 pr_info("gpmc,%s = <%u>;%s\n", name, l, 477 invalid ? " /* invalid */" : ""); 478 } 479 480 return l; 481 } 482 483 #define GPMC_PRINT_CONFIG(cs, config) \ 484 pr_info("cs%i %s: 0x%08x\n", cs, #config, \ 485 gpmc_cs_read_reg(cs, config)) 486 #define GPMC_GET_RAW(reg, st, end, field) \ 487 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0) 488 #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \ 489 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0) 490 #define GPMC_GET_RAW_BOOL(reg, st, end, field) \ 491 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1) 492 #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \ 493 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1) 494 #define GPMC_GET_TICKS(reg, st, end, field) \ 495 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0) 496 #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \ 497 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0) 498 #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \ 499 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0) 500 501 static void gpmc_show_regs(int cs, const char *desc) 502 { 503 pr_info("gpmc cs%i %s:\n", cs, desc); 504 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1); 505 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2); 506 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3); 507 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4); 508 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5); 509 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6); 510 } 511 512 /* 513 * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available, 514 * see commit c9fb809. 515 */ 516 static void gpmc_cs_show_timings(int cs, const char *desc) 517 { 518 gpmc_show_regs(cs, desc); 519 520 pr_info("gpmc cs%i access configuration:\n", cs); 521 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 4, 4, "time-para-granularity"); 522 GPMC_GET_RAW(GPMC_CS_CONFIG1, 8, 9, "mux-add-data"); 523 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1, 524 GPMC_CONFIG1_DEVICESIZE_MAX, "device-width"); 525 GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin"); 526 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write"); 527 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read"); 528 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4, 529 GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX, 530 "burst-length"); 531 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write"); 532 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write"); 533 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read"); 534 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read"); 535 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap"); 536 537 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2, 7, 7, "cs-extra-delay"); 538 539 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3, 7, 7, "adv-extra-delay"); 540 541 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay"); 542 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 7, 7, "oe-extra-delay"); 543 544 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 7, 7, "cycle2cycle-samecsen"); 545 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 6, 6, "cycle2cycle-diffcsen"); 546 547 pr_info("gpmc cs%i timings configuration:\n", cs); 548 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 0, 3, "cs-on-ns"); 549 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 8, 12, "cs-rd-off-ns"); 550 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns"); 551 552 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 0, 3, "adv-on-ns"); 553 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 8, 12, "adv-rd-off-ns"); 554 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns"); 555 if (gpmc_capability & GPMC_HAS_MUX_AAD) { 556 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns"); 557 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26, 558 "adv-aad-mux-rd-off-ns"); 559 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30, 560 "adv-aad-mux-wr-off-ns"); 561 } 562 563 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 0, 3, "oe-on-ns"); 564 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 8, 12, "oe-off-ns"); 565 if (gpmc_capability & GPMC_HAS_MUX_AAD) { 566 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 4, 6, "oe-aad-mux-on-ns"); 567 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns"); 568 } 569 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns"); 570 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns"); 571 572 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 0, 4, "rd-cycle-ns"); 573 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 8, 12, "wr-cycle-ns"); 574 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns"); 575 576 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns"); 577 578 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns"); 579 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns"); 580 581 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19, 582 GPMC_CONFIG1_WAITMONITORINGTIME_MAX, 583 "wait-monitoring-ns", GPMC_CD_CLK); 584 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26, 585 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX, 586 "clk-activation-ns", GPMC_CD_FCLK); 587 588 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns"); 589 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns"); 590 } 591 #else 592 static inline void gpmc_cs_show_timings(int cs, const char *desc) 593 { 594 } 595 #endif 596 597 /** 598 * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region. 599 * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER 600 * prior to calling this function with @cd equal to GPMC_CD_CLK. 601 * 602 * @cs: Chip Select Region. 603 * @reg: GPMC_CS_CONFIGn register offset. 604 * @st_bit: Start Bit 605 * @end_bit: End Bit. Must be >= @st_bit. 606 * @max: Maximum parameter value. 607 * If 0, maximum is as high as @st_bit and @end_bit allow. 608 * @time: Timing parameter in ns. 609 * @cd: Timing parameter clock domain. 610 * @name: Timing parameter name. 611 * @return: 0 on success, -1 on error. 612 */ 613 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max, 614 int time, enum gpmc_clk_domain cd, const char *name) 615 { 616 u32 l; 617 int ticks, mask, nr_bits; 618 619 if (time == 0) 620 ticks = 0; 621 else 622 ticks = gpmc_ns_to_clk_ticks(time, cs, cd); 623 nr_bits = end_bit - st_bit + 1; 624 mask = (1 << nr_bits) - 1; 625 626 if (!max) 627 max = mask; 628 629 if (ticks > max) { 630 pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n", 631 __func__, cs, name, time, ticks, max); 632 633 return -1; 634 } 635 636 l = gpmc_cs_read_reg(cs, reg); 637 #ifdef CONFIG_OMAP_GPMC_DEBUG 638 pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n", 639 cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000, 640 (l >> st_bit) & mask, time); 641 #endif 642 l &= ~(mask << st_bit); 643 l |= ticks << st_bit; 644 gpmc_cs_write_reg(cs, reg, l); 645 646 return 0; 647 } 648 649 /** 650 * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME 651 * WAITMONITORINGTIME will be _at least_ as long as desired, i.e. 652 * read --> don't sample bus too early 653 * write --> data is longer on bus 654 * 655 * Formula: 656 * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns) 657 * / waitmonitoring_ticks) 658 * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by 659 * div <= 0 check. 660 * 661 * @wait_monitoring: WAITMONITORINGTIME in ns. 662 * @return: -1 on failure to scale, else proper divider > 0. 663 */ 664 static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring) 665 { 666 int div = gpmc_ns_to_ticks(wait_monitoring); 667 668 div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1; 669 div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX; 670 671 if (div > 4) 672 return -1; 673 if (div <= 0) 674 div = 1; 675 676 return div; 677 } 678 679 /** 680 * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period. 681 * @sync_clk: GPMC_CLK period in ps. 682 * @return: Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK. 683 * Else, returns -1. 684 */ 685 int gpmc_calc_divider(unsigned int sync_clk) 686 { 687 int div = gpmc_ps_to_ticks(sync_clk); 688 689 if (div > 4) 690 return -1; 691 if (div <= 0) 692 div = 1; 693 694 return div; 695 } 696 697 /** 698 * gpmc_cs_set_timings - program timing parameters for Chip Select Region. 699 * @cs: Chip Select Region. 700 * @t: GPMC timing parameters. 701 * @s: GPMC timing settings. 702 * @return: 0 on success, -1 on error. 703 */ 704 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t, 705 const struct gpmc_settings *s) 706 { 707 int div, ret; 708 u32 l; 709 710 div = gpmc_calc_divider(t->sync_clk); 711 if (div < 0) 712 return -EINVAL; 713 714 /* 715 * See if we need to change the divider for waitmonitoringtime. 716 * 717 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for 718 * pure asynchronous accesses, i.e. both read and write asynchronous. 719 * However, only do so if WAITMONITORINGTIME is actually used, i.e. 720 * either WAITREADMONITORING or WAITWRITEMONITORING is set. 721 * 722 * This statement must not change div to scale async WAITMONITORINGTIME 723 * to protect mixed synchronous and asynchronous accesses. 724 * 725 * We raise an error later if WAITMONITORINGTIME does not fit. 726 */ 727 if (!s->sync_read && !s->sync_write && 728 (s->wait_on_read || s->wait_on_write) 729 ) { 730 div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring); 731 if (div < 0) { 732 pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n", 733 __func__, 734 t->wait_monitoring 735 ); 736 return -ENXIO; 737 } 738 } 739 740 ret = 0; 741 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on, 742 GPMC_CD_FCLK, "cs_on"); 743 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off, 744 GPMC_CD_FCLK, "cs_rd_off"); 745 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off, 746 GPMC_CD_FCLK, "cs_wr_off"); 747 if (ret) 748 return -ENXIO; 749 750 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on, 751 GPMC_CD_FCLK, "adv_on"); 752 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off, 753 GPMC_CD_FCLK, "adv_rd_off"); 754 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off, 755 GPMC_CD_FCLK, "adv_wr_off"); 756 if (ret) 757 return -ENXIO; 758 759 if (gpmc_capability & GPMC_HAS_MUX_AAD) { 760 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0, 761 t->adv_aad_mux_on, GPMC_CD_FCLK, 762 "adv_aad_mux_on"); 763 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0, 764 t->adv_aad_mux_rd_off, GPMC_CD_FCLK, 765 "adv_aad_mux_rd_off"); 766 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0, 767 t->adv_aad_mux_wr_off, GPMC_CD_FCLK, 768 "adv_aad_mux_wr_off"); 769 if (ret) 770 return -ENXIO; 771 } 772 773 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on, 774 GPMC_CD_FCLK, "oe_on"); 775 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off, 776 GPMC_CD_FCLK, "oe_off"); 777 if (gpmc_capability & GPMC_HAS_MUX_AAD) { 778 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0, 779 t->oe_aad_mux_on, GPMC_CD_FCLK, 780 "oe_aad_mux_on"); 781 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0, 782 t->oe_aad_mux_off, GPMC_CD_FCLK, 783 "oe_aad_mux_off"); 784 } 785 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on, 786 GPMC_CD_FCLK, "we_on"); 787 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off, 788 GPMC_CD_FCLK, "we_off"); 789 if (ret) 790 return -ENXIO; 791 792 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle, 793 GPMC_CD_FCLK, "rd_cycle"); 794 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle, 795 GPMC_CD_FCLK, "wr_cycle"); 796 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access, 797 GPMC_CD_FCLK, "access"); 798 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0, 799 t->page_burst_access, GPMC_CD_FCLK, 800 "page_burst_access"); 801 if (ret) 802 return -ENXIO; 803 804 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0, 805 t->bus_turnaround, GPMC_CD_FCLK, 806 "bus_turnaround"); 807 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0, 808 t->cycle2cycle_delay, GPMC_CD_FCLK, 809 "cycle2cycle_delay"); 810 if (ret) 811 return -ENXIO; 812 813 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) { 814 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0, 815 t->wr_data_mux_bus, GPMC_CD_FCLK, 816 "wr_data_mux_bus"); 817 if (ret) 818 return -ENXIO; 819 } 820 if (gpmc_capability & GPMC_HAS_WR_ACCESS) { 821 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0, 822 t->wr_access, GPMC_CD_FCLK, 823 "wr_access"); 824 if (ret) 825 return -ENXIO; 826 } 827 828 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1); 829 l &= ~0x03; 830 l |= (div - 1); 831 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l); 832 833 ret = 0; 834 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19, 835 GPMC_CONFIG1_WAITMONITORINGTIME_MAX, 836 t->wait_monitoring, GPMC_CD_CLK, 837 "wait_monitoring"); 838 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26, 839 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX, 840 t->clk_activation, GPMC_CD_FCLK, 841 "clk_activation"); 842 if (ret) 843 return -ENXIO; 844 845 #ifdef CONFIG_OMAP_GPMC_DEBUG 846 pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n", 847 cs, (div * gpmc_get_fclk_period()) / 1000, div); 848 #endif 849 850 gpmc_cs_bool_timings(cs, &t->bool_timings); 851 gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings"); 852 853 return 0; 854 } 855 856 static int gpmc_cs_set_memconf(int cs, u32 base, u32 size) 857 { 858 u32 l; 859 u32 mask; 860 861 /* 862 * Ensure that base address is aligned on a 863 * boundary equal to or greater than size. 864 */ 865 if (base & (size - 1)) 866 return -EINVAL; 867 868 base >>= GPMC_CHUNK_SHIFT; 869 mask = (1 << GPMC_SECTION_SHIFT) - size; 870 mask >>= GPMC_CHUNK_SHIFT; 871 mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET; 872 873 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 874 l &= ~GPMC_CONFIG7_MASK; 875 l |= base & GPMC_CONFIG7_BASEADDRESS_MASK; 876 l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK; 877 l |= GPMC_CONFIG7_CSVALID; 878 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l); 879 880 return 0; 881 } 882 883 static void gpmc_cs_enable_mem(int cs) 884 { 885 u32 l; 886 887 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 888 l |= GPMC_CONFIG7_CSVALID; 889 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l); 890 } 891 892 static void gpmc_cs_disable_mem(int cs) 893 { 894 u32 l; 895 896 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 897 l &= ~GPMC_CONFIG7_CSVALID; 898 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l); 899 } 900 901 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size) 902 { 903 u32 l; 904 u32 mask; 905 906 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 907 *base = (l & 0x3f) << GPMC_CHUNK_SHIFT; 908 mask = (l >> 8) & 0x0f; 909 *size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT); 910 } 911 912 static int gpmc_cs_mem_enabled(int cs) 913 { 914 u32 l; 915 916 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7); 917 return l & GPMC_CONFIG7_CSVALID; 918 } 919 920 static void gpmc_cs_set_reserved(int cs, int reserved) 921 { 922 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 923 924 gpmc->flags |= GPMC_CS_RESERVED; 925 } 926 927 static bool gpmc_cs_reserved(int cs) 928 { 929 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 930 931 return gpmc->flags & GPMC_CS_RESERVED; 932 } 933 934 static unsigned long gpmc_mem_align(unsigned long size) 935 { 936 int order; 937 938 size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1); 939 order = GPMC_CHUNK_SHIFT - 1; 940 do { 941 size >>= 1; 942 order++; 943 } while (size); 944 size = 1 << order; 945 return size; 946 } 947 948 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size) 949 { 950 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 951 struct resource *res = &gpmc->mem; 952 int r; 953 954 size = gpmc_mem_align(size); 955 spin_lock(&gpmc_mem_lock); 956 res->start = base; 957 res->end = base + size - 1; 958 r = request_resource(&gpmc_mem_root, res); 959 spin_unlock(&gpmc_mem_lock); 960 961 return r; 962 } 963 964 static int gpmc_cs_delete_mem(int cs) 965 { 966 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 967 struct resource *res = &gpmc->mem; 968 int r; 969 970 spin_lock(&gpmc_mem_lock); 971 r = release_resource(res); 972 res->start = 0; 973 res->end = 0; 974 spin_unlock(&gpmc_mem_lock); 975 976 return r; 977 } 978 979 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base) 980 { 981 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 982 struct resource *res = &gpmc->mem; 983 int r = -1; 984 985 if (cs >= gpmc_cs_num) { 986 pr_err("%s: requested chip-select is disabled\n", __func__); 987 return -ENODEV; 988 } 989 size = gpmc_mem_align(size); 990 if (size > (1 << GPMC_SECTION_SHIFT)) 991 return -ENOMEM; 992 993 guard(spinlock)(&gpmc_mem_lock); 994 995 if (gpmc_cs_reserved(cs)) 996 return -EBUSY; 997 998 if (gpmc_cs_mem_enabled(cs)) 999 r = adjust_resource(res, res->start & ~(size - 1), size); 1000 if (r < 0) 1001 r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0, 1002 size, NULL, NULL); 1003 if (r < 0) 1004 return r; 1005 1006 /* Disable CS while changing base address and size mask */ 1007 gpmc_cs_disable_mem(cs); 1008 1009 r = gpmc_cs_set_memconf(cs, res->start, resource_size(res)); 1010 if (r < 0) { 1011 release_resource(res); 1012 return r; 1013 } 1014 1015 /* Enable CS */ 1016 gpmc_cs_enable_mem(cs); 1017 *base = res->start; 1018 gpmc_cs_set_reserved(cs, 1); 1019 1020 return 0; 1021 } 1022 EXPORT_SYMBOL(gpmc_cs_request); 1023 1024 void gpmc_cs_free(int cs) 1025 { 1026 struct gpmc_cs_data *gpmc; 1027 struct resource *res; 1028 1029 guard(spinlock)(&gpmc_mem_lock); 1030 if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) { 1031 WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs); 1032 return; 1033 } 1034 gpmc = &gpmc_cs[cs]; 1035 res = &gpmc->mem; 1036 1037 gpmc_cs_disable_mem(cs); 1038 if (res->flags) 1039 release_resource(res); 1040 gpmc_cs_set_reserved(cs, 0); 1041 } 1042 EXPORT_SYMBOL(gpmc_cs_free); 1043 1044 static bool gpmc_is_valid_waitpin(u32 waitpin) 1045 { 1046 return waitpin < gpmc_nr_waitpins; 1047 } 1048 1049 static int gpmc_alloc_waitpin(struct gpmc_device *gpmc, 1050 struct gpmc_settings *p) 1051 { 1052 int ret; 1053 struct gpmc_waitpin *waitpin; 1054 struct gpio_desc *waitpin_desc; 1055 1056 if (!gpmc_is_valid_waitpin(p->wait_pin)) 1057 return -EINVAL; 1058 1059 waitpin = &gpmc->waitpins[p->wait_pin]; 1060 1061 if (!waitpin->desc) { 1062 /* Reserve the GPIO for wait pin usage. 1063 * GPIO polarity doesn't matter here. Wait pin polarity 1064 * is set in GPMC_CONFIG register. 1065 */ 1066 waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip, 1067 p->wait_pin, "WAITPIN", 1068 GPIO_ACTIVE_HIGH, 1069 GPIOD_IN); 1070 1071 ret = PTR_ERR(waitpin_desc); 1072 if (IS_ERR(waitpin_desc) && ret != -EBUSY) 1073 return ret; 1074 1075 /* New wait pin */ 1076 waitpin->desc = waitpin_desc; 1077 waitpin->pin = p->wait_pin; 1078 waitpin->polarity = p->wait_pin_polarity; 1079 } else { 1080 /* Shared wait pin */ 1081 if (p->wait_pin_polarity != waitpin->polarity || 1082 p->wait_pin != waitpin->pin) { 1083 dev_err(gpmc->dev, 1084 "shared-wait-pin: invalid configuration\n"); 1085 return -EINVAL; 1086 } 1087 dev_info(gpmc->dev, "shared wait-pin: %d\n", waitpin->pin); 1088 } 1089 1090 return 0; 1091 } 1092 1093 static void gpmc_free_waitpin(struct gpmc_device *gpmc, 1094 int wait_pin) 1095 { 1096 if (gpmc_is_valid_waitpin(wait_pin)) 1097 gpiochip_free_own_desc(gpmc->waitpins[wait_pin].desc); 1098 } 1099 1100 /** 1101 * gpmc_configure - write request to configure gpmc 1102 * @cmd: command type 1103 * @wval: value to write 1104 * @return status of the operation 1105 */ 1106 int gpmc_configure(int cmd, int wval) 1107 { 1108 u32 regval; 1109 1110 switch (cmd) { 1111 case GPMC_CONFIG_WP: 1112 regval = gpmc_read_reg(GPMC_CONFIG); 1113 if (wval) 1114 regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */ 1115 else 1116 regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */ 1117 gpmc_write_reg(GPMC_CONFIG, regval); 1118 break; 1119 1120 default: 1121 pr_err("%s: command not supported\n", __func__); 1122 return -EINVAL; 1123 } 1124 1125 return 0; 1126 } 1127 EXPORT_SYMBOL(gpmc_configure); 1128 1129 static bool gpmc_nand_writebuffer_empty(void) 1130 { 1131 if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS) 1132 return true; 1133 1134 return false; 1135 } 1136 1137 static struct gpmc_nand_ops nand_ops = { 1138 .nand_writebuffer_empty = gpmc_nand_writebuffer_empty, 1139 }; 1140 1141 /** 1142 * gpmc_omap_get_nand_ops - Get the GPMC NAND interface 1143 * @reg: the GPMC NAND register map exclusive for NAND use. 1144 * @cs: GPMC chip select number on which the NAND sits. The 1145 * register map returned will be specific to this chip select. 1146 * 1147 * Returns NULL on error e.g. invalid cs. 1148 */ 1149 struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs) 1150 { 1151 int i; 1152 1153 if (cs >= gpmc_cs_num) 1154 return NULL; 1155 1156 reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET + 1157 GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs; 1158 reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET + 1159 GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs; 1160 reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET + 1161 GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs; 1162 reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1; 1163 reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2; 1164 reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL; 1165 reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS; 1166 reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG; 1167 reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL; 1168 reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG; 1169 reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT; 1170 1171 for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) { 1172 reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 + 1173 GPMC_BCH_SIZE * i; 1174 reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 + 1175 GPMC_BCH_SIZE * i; 1176 reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 + 1177 GPMC_BCH_SIZE * i; 1178 reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 + 1179 GPMC_BCH_SIZE * i; 1180 reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 + 1181 i * GPMC_BCH_SIZE; 1182 reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 + 1183 i * GPMC_BCH_SIZE; 1184 reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 + 1185 i * GPMC_BCH_SIZE; 1186 } 1187 1188 return &nand_ops; 1189 } 1190 EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops); 1191 1192 static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t, 1193 struct gpmc_settings *s, 1194 int freq, int latency) 1195 { 1196 struct gpmc_device_timings dev_t; 1197 const int t_cer = 15; 1198 const int t_avdp = 12; 1199 const int t_cez = 20; /* max of t_cez, t_oez */ 1200 const int t_wpl = 40; 1201 const int t_wph = 30; 1202 int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo; 1203 1204 switch (freq) { 1205 case 104: 1206 min_gpmc_clk_period = 9600; /* 104 MHz */ 1207 t_ces = 3; 1208 t_avds = 4; 1209 t_avdh = 2; 1210 t_ach = 3; 1211 t_aavdh = 6; 1212 t_rdyo = 6; 1213 break; 1214 case 83: 1215 min_gpmc_clk_period = 12000; /* 83 MHz */ 1216 t_ces = 5; 1217 t_avds = 4; 1218 t_avdh = 2; 1219 t_ach = 6; 1220 t_aavdh = 6; 1221 t_rdyo = 9; 1222 break; 1223 case 66: 1224 min_gpmc_clk_period = 15000; /* 66 MHz */ 1225 t_ces = 6; 1226 t_avds = 5; 1227 t_avdh = 2; 1228 t_ach = 6; 1229 t_aavdh = 6; 1230 t_rdyo = 11; 1231 break; 1232 default: 1233 min_gpmc_clk_period = 18500; /* 54 MHz */ 1234 t_ces = 7; 1235 t_avds = 7; 1236 t_avdh = 7; 1237 t_ach = 9; 1238 t_aavdh = 7; 1239 t_rdyo = 15; 1240 break; 1241 } 1242 1243 /* Set synchronous read timings */ 1244 memset(&dev_t, 0, sizeof(dev_t)); 1245 1246 if (!s->sync_write) { 1247 dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000; 1248 dev_t.t_wpl = t_wpl * 1000; 1249 dev_t.t_wph = t_wph * 1000; 1250 dev_t.t_aavdh = t_aavdh * 1000; 1251 } 1252 dev_t.ce_xdelay = true; 1253 dev_t.avd_xdelay = true; 1254 dev_t.oe_xdelay = true; 1255 dev_t.we_xdelay = true; 1256 dev_t.clk = min_gpmc_clk_period; 1257 dev_t.t_bacc = dev_t.clk; 1258 dev_t.t_ces = t_ces * 1000; 1259 dev_t.t_avds = t_avds * 1000; 1260 dev_t.t_avdh = t_avdh * 1000; 1261 dev_t.t_ach = t_ach * 1000; 1262 dev_t.cyc_iaa = (latency + 1); 1263 dev_t.t_cez_r = t_cez * 1000; 1264 dev_t.t_cez_w = dev_t.t_cez_r; 1265 dev_t.cyc_aavdh_oe = 1; 1266 dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period; 1267 1268 gpmc_calc_timings(t, s, &dev_t); 1269 } 1270 1271 int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq, 1272 int latency, 1273 struct gpmc_onenand_info *info) 1274 { 1275 int ret; 1276 struct gpmc_timings gpmc_t; 1277 struct gpmc_settings gpmc_s; 1278 1279 gpmc_read_settings_dt(dev->of_node, &gpmc_s); 1280 1281 info->sync_read = gpmc_s.sync_read; 1282 info->sync_write = gpmc_s.sync_write; 1283 info->burst_len = gpmc_s.burst_len; 1284 1285 if (!gpmc_s.sync_read && !gpmc_s.sync_write) 1286 return 0; 1287 1288 gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency); 1289 1290 ret = gpmc_cs_program_settings(cs, &gpmc_s); 1291 if (ret < 0) 1292 return ret; 1293 1294 return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s); 1295 } 1296 EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings); 1297 1298 int gpmc_get_client_irq(unsigned int irq_config) 1299 { 1300 if (!gpmc_irq_domain) { 1301 pr_warn("%s called before GPMC IRQ domain available\n", 1302 __func__); 1303 return 0; 1304 } 1305 1306 /* we restrict this to NAND IRQs only */ 1307 if (irq_config >= GPMC_NR_NAND_IRQS) 1308 return 0; 1309 1310 return irq_create_mapping(gpmc_irq_domain, irq_config); 1311 } 1312 1313 static int gpmc_irq_endis(unsigned long hwirq, bool endis) 1314 { 1315 u32 regval; 1316 1317 /* bits GPMC_NR_NAND_IRQS to 8 are reserved */ 1318 if (hwirq >= GPMC_NR_NAND_IRQS) 1319 hwirq += 8 - GPMC_NR_NAND_IRQS; 1320 1321 regval = gpmc_read_reg(GPMC_IRQENABLE); 1322 if (endis) 1323 regval |= BIT(hwirq); 1324 else 1325 regval &= ~BIT(hwirq); 1326 gpmc_write_reg(GPMC_IRQENABLE, regval); 1327 1328 return 0; 1329 } 1330 1331 static void gpmc_irq_disable(struct irq_data *p) 1332 { 1333 gpmc_irq_endis(p->hwirq, false); 1334 } 1335 1336 static void gpmc_irq_enable(struct irq_data *p) 1337 { 1338 gpmc_irq_endis(p->hwirq, true); 1339 } 1340 1341 static void gpmc_irq_mask(struct irq_data *d) 1342 { 1343 gpmc_irq_endis(d->hwirq, false); 1344 } 1345 1346 static void gpmc_irq_unmask(struct irq_data *d) 1347 { 1348 gpmc_irq_endis(d->hwirq, true); 1349 } 1350 1351 static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge) 1352 { 1353 u32 regval; 1354 1355 /* NAND IRQs polarity is not configurable */ 1356 if (hwirq < GPMC_NR_NAND_IRQS) 1357 return; 1358 1359 /* WAITPIN starts at BIT 8 */ 1360 hwirq += 8 - GPMC_NR_NAND_IRQS; 1361 1362 regval = gpmc_read_reg(GPMC_CONFIG); 1363 if (rising_edge) 1364 regval &= ~BIT(hwirq); 1365 else 1366 regval |= BIT(hwirq); 1367 1368 gpmc_write_reg(GPMC_CONFIG, regval); 1369 } 1370 1371 static void gpmc_irq_ack(struct irq_data *d) 1372 { 1373 unsigned int hwirq = d->hwirq; 1374 1375 /* skip reserved bits */ 1376 if (hwirq >= GPMC_NR_NAND_IRQS) 1377 hwirq += 8 - GPMC_NR_NAND_IRQS; 1378 1379 /* Setting bit to 1 clears (or Acks) the interrupt */ 1380 gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq)); 1381 } 1382 1383 static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger) 1384 { 1385 /* can't set type for NAND IRQs */ 1386 if (d->hwirq < GPMC_NR_NAND_IRQS) 1387 return -EINVAL; 1388 1389 /* We can support either rising or falling edge at a time */ 1390 if (trigger == IRQ_TYPE_EDGE_FALLING) 1391 gpmc_irq_edge_config(d->hwirq, false); 1392 else if (trigger == IRQ_TYPE_EDGE_RISING) 1393 gpmc_irq_edge_config(d->hwirq, true); 1394 else 1395 return -EINVAL; 1396 1397 return 0; 1398 } 1399 1400 static int gpmc_irq_map(struct irq_domain *d, unsigned int virq, 1401 irq_hw_number_t hw) 1402 { 1403 struct gpmc_device *gpmc = d->host_data; 1404 1405 irq_set_chip_data(virq, gpmc); 1406 if (hw < GPMC_NR_NAND_IRQS) { 1407 irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN); 1408 irq_set_chip_and_handler(virq, &gpmc->irq_chip, 1409 handle_simple_irq); 1410 } else { 1411 irq_set_chip_and_handler(virq, &gpmc->irq_chip, 1412 handle_edge_irq); 1413 } 1414 1415 return 0; 1416 } 1417 1418 static const struct irq_domain_ops gpmc_irq_domain_ops = { 1419 .map = gpmc_irq_map, 1420 .xlate = irq_domain_xlate_twocell, 1421 }; 1422 1423 static irqreturn_t gpmc_handle_irq(int irq, void *data) 1424 { 1425 int hwirq, virq; 1426 u32 regval, regvalx; 1427 struct gpmc_device *gpmc = data; 1428 1429 regval = gpmc_read_reg(GPMC_IRQSTATUS); 1430 regvalx = regval; 1431 1432 if (!regval) 1433 return IRQ_NONE; 1434 1435 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) { 1436 /* skip reserved status bits */ 1437 if (hwirq == GPMC_NR_NAND_IRQS) 1438 regvalx >>= 8 - GPMC_NR_NAND_IRQS; 1439 1440 if (regvalx & BIT(hwirq)) { 1441 virq = irq_find_mapping(gpmc_irq_domain, hwirq); 1442 if (!virq) { 1443 dev_warn(gpmc->dev, 1444 "spurious irq detected hwirq %d, virq %d\n", 1445 hwirq, virq); 1446 } 1447 1448 generic_handle_irq(virq); 1449 } 1450 } 1451 1452 gpmc_write_reg(GPMC_IRQSTATUS, regval); 1453 1454 return IRQ_HANDLED; 1455 } 1456 1457 static int gpmc_setup_irq(struct gpmc_device *gpmc) 1458 { 1459 u32 regval; 1460 int rc; 1461 1462 /* Disable interrupts */ 1463 gpmc_write_reg(GPMC_IRQENABLE, 0); 1464 1465 /* clear interrupts */ 1466 regval = gpmc_read_reg(GPMC_IRQSTATUS); 1467 gpmc_write_reg(GPMC_IRQSTATUS, regval); 1468 1469 gpmc->irq_chip.name = "gpmc"; 1470 gpmc->irq_chip.irq_enable = gpmc_irq_enable; 1471 gpmc->irq_chip.irq_disable = gpmc_irq_disable; 1472 gpmc->irq_chip.irq_ack = gpmc_irq_ack; 1473 gpmc->irq_chip.irq_mask = gpmc_irq_mask; 1474 gpmc->irq_chip.irq_unmask = gpmc_irq_unmask; 1475 gpmc->irq_chip.irq_set_type = gpmc_irq_set_type; 1476 1477 gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node, 1478 gpmc->nirqs, 1479 &gpmc_irq_domain_ops, 1480 gpmc); 1481 if (!gpmc_irq_domain) { 1482 dev_err(gpmc->dev, "IRQ domain add failed\n"); 1483 return -ENODEV; 1484 } 1485 1486 rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc); 1487 if (rc) { 1488 dev_err(gpmc->dev, "failed to request irq %d: %d\n", 1489 gpmc->irq, rc); 1490 irq_domain_remove(gpmc_irq_domain); 1491 gpmc_irq_domain = NULL; 1492 } 1493 1494 return rc; 1495 } 1496 1497 static int gpmc_free_irq(struct gpmc_device *gpmc) 1498 { 1499 int hwirq; 1500 1501 free_irq(gpmc->irq, gpmc); 1502 1503 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) 1504 irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq)); 1505 1506 irq_domain_remove(gpmc_irq_domain); 1507 gpmc_irq_domain = NULL; 1508 1509 return 0; 1510 } 1511 1512 static void gpmc_mem_exit(void) 1513 { 1514 int cs; 1515 1516 for (cs = 0; cs < gpmc_cs_num; cs++) { 1517 if (!gpmc_cs_mem_enabled(cs)) 1518 continue; 1519 gpmc_cs_delete_mem(cs); 1520 } 1521 } 1522 1523 static void gpmc_mem_init(struct gpmc_device *gpmc) 1524 { 1525 int cs; 1526 1527 if (!gpmc->data) { 1528 /* All legacy devices have same data IO window */ 1529 gpmc_mem_root.start = GPMC_MEM_START; 1530 gpmc_mem_root.end = GPMC_MEM_END; 1531 } else { 1532 gpmc_mem_root.start = gpmc->data->start; 1533 gpmc_mem_root.end = gpmc->data->end; 1534 } 1535 1536 /* Reserve all regions that has been set up by bootloader */ 1537 for (cs = 0; cs < gpmc_cs_num; cs++) { 1538 u32 base, size; 1539 1540 if (!gpmc_cs_mem_enabled(cs)) 1541 continue; 1542 gpmc_cs_get_memconf(cs, &base, &size); 1543 if (gpmc_cs_insert_mem(cs, base, size)) { 1544 pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n", 1545 __func__, cs, base, base + size); 1546 gpmc_cs_disable_mem(cs); 1547 } 1548 } 1549 } 1550 1551 static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk) 1552 { 1553 u32 temp; 1554 int div; 1555 1556 div = gpmc_calc_divider(sync_clk); 1557 temp = gpmc_ps_to_ticks(time_ps); 1558 temp = (temp + div - 1) / div; 1559 return gpmc_ticks_to_ps(temp * div); 1560 } 1561 1562 /* XXX: can the cycles be avoided ? */ 1563 static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t, 1564 struct gpmc_device_timings *dev_t, 1565 bool mux) 1566 { 1567 u32 temp; 1568 1569 /* adv_rd_off */ 1570 temp = dev_t->t_avdp_r; 1571 /* XXX: mux check required ? */ 1572 if (mux) { 1573 /* XXX: t_avdp not to be required for sync, only added for tusb 1574 * this indirectly necessitates requirement of t_avdp_r and 1575 * t_avdp_w instead of having a single t_avdp 1576 */ 1577 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh); 1578 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); 1579 } 1580 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp); 1581 1582 /* oe_on */ 1583 temp = dev_t->t_oeasu; /* XXX: remove this ? */ 1584 if (mux) { 1585 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach); 1586 temp = max_t(u32, temp, gpmc_t->adv_rd_off + 1587 gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe)); 1588 } 1589 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp); 1590 1591 /* access */ 1592 /* XXX: any scope for improvement ?, by combining oe_on 1593 * and clk_activation, need to check whether 1594 * access = clk_activation + round to sync clk ? 1595 */ 1596 temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk); 1597 temp += gpmc_t->clk_activation; 1598 if (dev_t->cyc_oe) 1599 temp = max_t(u32, temp, gpmc_t->oe_on + 1600 gpmc_ticks_to_ps(dev_t->cyc_oe)); 1601 gpmc_t->access = gpmc_round_ps_to_ticks(temp); 1602 1603 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1); 1604 gpmc_t->cs_rd_off = gpmc_t->oe_off; 1605 1606 /* rd_cycle */ 1607 temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez); 1608 temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) + 1609 gpmc_t->access; 1610 /* XXX: barter t_ce_rdyz with t_cez_r ? */ 1611 if (dev_t->t_ce_rdyz) 1612 temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz); 1613 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp); 1614 1615 return 0; 1616 } 1617 1618 static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t, 1619 struct gpmc_device_timings *dev_t, 1620 bool mux) 1621 { 1622 u32 temp; 1623 1624 /* adv_wr_off */ 1625 temp = dev_t->t_avdp_w; 1626 if (mux) { 1627 temp = max_t(u32, temp, 1628 gpmc_t->clk_activation + dev_t->t_avdh); 1629 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); 1630 } 1631 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp); 1632 1633 /* wr_data_mux_bus */ 1634 temp = max_t(u32, dev_t->t_weasu, 1635 gpmc_t->clk_activation + dev_t->t_rdyo); 1636 /* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?, 1637 * and in that case remember to handle we_on properly 1638 */ 1639 if (mux) { 1640 temp = max_t(u32, temp, 1641 gpmc_t->adv_wr_off + dev_t->t_aavdh); 1642 temp = max_t(u32, temp, gpmc_t->adv_wr_off + 1643 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we)); 1644 } 1645 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp); 1646 1647 /* we_on */ 1648 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) 1649 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu); 1650 else 1651 gpmc_t->we_on = gpmc_t->wr_data_mux_bus; 1652 1653 /* wr_access */ 1654 /* XXX: gpmc_capability check reqd ? , even if not, will not harm */ 1655 gpmc_t->wr_access = gpmc_t->access; 1656 1657 /* we_off */ 1658 temp = gpmc_t->we_on + dev_t->t_wpl; 1659 temp = max_t(u32, temp, 1660 gpmc_t->wr_access + gpmc_ticks_to_ps(1)); 1661 temp = max_t(u32, temp, 1662 gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl)); 1663 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp); 1664 1665 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off + 1666 dev_t->t_wph); 1667 1668 /* wr_cycle */ 1669 temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk); 1670 temp += gpmc_t->wr_access; 1671 /* XXX: barter t_ce_rdyz with t_cez_w ? */ 1672 if (dev_t->t_ce_rdyz) 1673 temp = max_t(u32, temp, 1674 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz); 1675 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp); 1676 1677 return 0; 1678 } 1679 1680 static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t, 1681 struct gpmc_device_timings *dev_t, 1682 bool mux) 1683 { 1684 u32 temp; 1685 1686 /* adv_rd_off */ 1687 temp = dev_t->t_avdp_r; 1688 if (mux) 1689 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); 1690 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp); 1691 1692 /* oe_on */ 1693 temp = dev_t->t_oeasu; 1694 if (mux) 1695 temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh); 1696 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp); 1697 1698 /* access */ 1699 temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */ 1700 gpmc_t->oe_on + dev_t->t_oe); 1701 temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce); 1702 temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa); 1703 gpmc_t->access = gpmc_round_ps_to_ticks(temp); 1704 1705 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1); 1706 gpmc_t->cs_rd_off = gpmc_t->oe_off; 1707 1708 /* rd_cycle */ 1709 temp = max_t(u32, dev_t->t_rd_cycle, 1710 gpmc_t->cs_rd_off + dev_t->t_cez_r); 1711 temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez); 1712 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp); 1713 1714 return 0; 1715 } 1716 1717 static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t, 1718 struct gpmc_device_timings *dev_t, 1719 bool mux) 1720 { 1721 u32 temp; 1722 1723 /* adv_wr_off */ 1724 temp = dev_t->t_avdp_w; 1725 if (mux) 1726 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp); 1727 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp); 1728 1729 /* wr_data_mux_bus */ 1730 temp = dev_t->t_weasu; 1731 if (mux) { 1732 temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh); 1733 temp = max_t(u32, temp, gpmc_t->adv_wr_off + 1734 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we)); 1735 } 1736 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp); 1737 1738 /* we_on */ 1739 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) 1740 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu); 1741 else 1742 gpmc_t->we_on = gpmc_t->wr_data_mux_bus; 1743 1744 /* we_off */ 1745 temp = gpmc_t->we_on + dev_t->t_wpl; 1746 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp); 1747 1748 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off + 1749 dev_t->t_wph); 1750 1751 /* wr_cycle */ 1752 temp = max_t(u32, dev_t->t_wr_cycle, 1753 gpmc_t->cs_wr_off + dev_t->t_cez_w); 1754 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp); 1755 1756 return 0; 1757 } 1758 1759 static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t, 1760 struct gpmc_device_timings *dev_t) 1761 { 1762 u32 temp; 1763 1764 gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) * 1765 gpmc_get_fclk_period(); 1766 1767 gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk( 1768 dev_t->t_bacc, 1769 gpmc_t->sync_clk); 1770 1771 temp = max_t(u32, dev_t->t_ces, dev_t->t_avds); 1772 gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp); 1773 1774 if (gpmc_calc_divider(gpmc_t->sync_clk) != 1) 1775 return 0; 1776 1777 if (dev_t->ce_xdelay) 1778 gpmc_t->bool_timings.cs_extra_delay = true; 1779 if (dev_t->avd_xdelay) 1780 gpmc_t->bool_timings.adv_extra_delay = true; 1781 if (dev_t->oe_xdelay) 1782 gpmc_t->bool_timings.oe_extra_delay = true; 1783 if (dev_t->we_xdelay) 1784 gpmc_t->bool_timings.we_extra_delay = true; 1785 1786 return 0; 1787 } 1788 1789 static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t, 1790 struct gpmc_device_timings *dev_t, 1791 bool sync) 1792 { 1793 u32 temp; 1794 1795 /* cs_on */ 1796 gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu); 1797 1798 /* adv_on */ 1799 temp = dev_t->t_avdasu; 1800 if (dev_t->t_ce_avd) 1801 temp = max_t(u32, temp, 1802 gpmc_t->cs_on + dev_t->t_ce_avd); 1803 gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp); 1804 1805 if (sync) 1806 gpmc_calc_sync_common_timings(gpmc_t, dev_t); 1807 1808 return 0; 1809 } 1810 1811 /* 1812 * TODO: remove this function once all peripherals are confirmed to 1813 * work with generic timing. Simultaneously gpmc_cs_set_timings() 1814 * has to be modified to handle timings in ps instead of ns 1815 */ 1816 static void gpmc_convert_ps_to_ns(struct gpmc_timings *t) 1817 { 1818 t->cs_on /= 1000; 1819 t->cs_rd_off /= 1000; 1820 t->cs_wr_off /= 1000; 1821 t->adv_on /= 1000; 1822 t->adv_rd_off /= 1000; 1823 t->adv_wr_off /= 1000; 1824 t->we_on /= 1000; 1825 t->we_off /= 1000; 1826 t->oe_on /= 1000; 1827 t->oe_off /= 1000; 1828 t->page_burst_access /= 1000; 1829 t->access /= 1000; 1830 t->rd_cycle /= 1000; 1831 t->wr_cycle /= 1000; 1832 t->bus_turnaround /= 1000; 1833 t->cycle2cycle_delay /= 1000; 1834 t->wait_monitoring /= 1000; 1835 t->clk_activation /= 1000; 1836 t->wr_access /= 1000; 1837 t->wr_data_mux_bus /= 1000; 1838 } 1839 1840 int gpmc_calc_timings(struct gpmc_timings *gpmc_t, 1841 struct gpmc_settings *gpmc_s, 1842 struct gpmc_device_timings *dev_t) 1843 { 1844 bool mux = false, sync = false; 1845 1846 if (gpmc_s) { 1847 mux = gpmc_s->mux_add_data ? true : false; 1848 sync = (gpmc_s->sync_read || gpmc_s->sync_write); 1849 } 1850 1851 memset(gpmc_t, 0, sizeof(*gpmc_t)); 1852 1853 gpmc_calc_common_timings(gpmc_t, dev_t, sync); 1854 1855 if (gpmc_s && gpmc_s->sync_read) 1856 gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux); 1857 else 1858 gpmc_calc_async_read_timings(gpmc_t, dev_t, mux); 1859 1860 if (gpmc_s && gpmc_s->sync_write) 1861 gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux); 1862 else 1863 gpmc_calc_async_write_timings(gpmc_t, dev_t, mux); 1864 1865 /* TODO: remove, see function definition */ 1866 gpmc_convert_ps_to_ns(gpmc_t); 1867 1868 return 0; 1869 } 1870 1871 /** 1872 * gpmc_cs_program_settings - programs non-timing related settings 1873 * @cs: GPMC chip-select to program 1874 * @p: pointer to GPMC settings structure 1875 * 1876 * Programs non-timing related settings for a GPMC chip-select, such as 1877 * bus-width, burst configuration, etc. Function should be called once 1878 * for each chip-select that is being used and must be called before 1879 * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1 1880 * register will be initialised to zero by this function. Returns 0 on 1881 * success and appropriate negative error code on failure. 1882 */ 1883 int gpmc_cs_program_settings(int cs, struct gpmc_settings *p) 1884 { 1885 u32 config1; 1886 1887 if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) { 1888 pr_err("%s: invalid width %d!", __func__, p->device_width); 1889 return -EINVAL; 1890 } 1891 1892 /* Address-data multiplexing not supported for NAND devices */ 1893 if (p->device_nand && p->mux_add_data) { 1894 pr_err("%s: invalid configuration!\n", __func__); 1895 return -EINVAL; 1896 } 1897 1898 if ((p->mux_add_data > GPMC_MUX_AD) || 1899 ((p->mux_add_data == GPMC_MUX_AAD) && 1900 !(gpmc_capability & GPMC_HAS_MUX_AAD))) { 1901 pr_err("%s: invalid multiplex configuration!\n", __func__); 1902 return -EINVAL; 1903 } 1904 1905 /* Page/burst mode supports lengths of 4, 8 and 16 bytes */ 1906 if (p->burst_read || p->burst_write) { 1907 switch (p->burst_len) { 1908 case GPMC_BURST_4: 1909 case GPMC_BURST_8: 1910 case GPMC_BURST_16: 1911 break; 1912 default: 1913 pr_err("%s: invalid page/burst-length (%d)\n", 1914 __func__, p->burst_len); 1915 return -EINVAL; 1916 } 1917 } 1918 1919 if (p->wait_pin != GPMC_WAITPIN_INVALID && 1920 p->wait_pin > gpmc_nr_waitpins) { 1921 pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin); 1922 return -EINVAL; 1923 } 1924 1925 config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1)); 1926 1927 if (p->sync_read) 1928 config1 |= GPMC_CONFIG1_READTYPE_SYNC; 1929 if (p->sync_write) 1930 config1 |= GPMC_CONFIG1_WRITETYPE_SYNC; 1931 if (p->wait_on_read) 1932 config1 |= GPMC_CONFIG1_WAIT_READ_MON; 1933 if (p->wait_on_write) 1934 config1 |= GPMC_CONFIG1_WAIT_WRITE_MON; 1935 if (p->wait_on_read || p->wait_on_write) 1936 config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin); 1937 if (p->device_nand) 1938 config1 |= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND); 1939 if (p->mux_add_data) 1940 config1 |= GPMC_CONFIG1_MUXTYPE(p->mux_add_data); 1941 if (p->burst_read) 1942 config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP; 1943 if (p->burst_write) 1944 config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP; 1945 if (p->burst_read || p->burst_write) { 1946 config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3); 1947 config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0; 1948 } 1949 1950 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1); 1951 1952 if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_INVALID) { 1953 config1 = gpmc_read_reg(GPMC_CONFIG); 1954 1955 if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_LOW) 1956 config1 &= ~GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin); 1957 else if (p->wait_pin_polarity == GPMC_WAITPINPOLARITY_ACTIVE_HIGH) 1958 config1 |= GPMC_CONFIG_WAITPINPOLARITY(p->wait_pin); 1959 1960 gpmc_write_reg(GPMC_CONFIG, config1); 1961 } 1962 1963 return 0; 1964 } 1965 1966 #ifdef CONFIG_OF 1967 static void gpmc_cs_set_name(int cs, const char *name) 1968 { 1969 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 1970 1971 gpmc->name = name; 1972 } 1973 1974 static const char *gpmc_cs_get_name(int cs) 1975 { 1976 struct gpmc_cs_data *gpmc = &gpmc_cs[cs]; 1977 1978 return gpmc->name; 1979 } 1980 1981 /** 1982 * gpmc_cs_remap - remaps a chip-select physical base address 1983 * @cs: chip-select to remap 1984 * @base: physical base address to re-map chip-select to 1985 * 1986 * Re-maps a chip-select to a new physical base address specified by 1987 * "base". Returns 0 on success and appropriate negative error code 1988 * on failure. 1989 */ 1990 static int gpmc_cs_remap(int cs, u32 base) 1991 { 1992 int ret; 1993 u32 old_base, size; 1994 1995 if (cs >= gpmc_cs_num) { 1996 pr_err("%s: requested chip-select is disabled\n", __func__); 1997 return -ENODEV; 1998 } 1999 2000 /* 2001 * Make sure we ignore any device offsets from the GPMC partition 2002 * allocated for the chip select and that the new base confirms 2003 * to the GPMC 16MB minimum granularity. 2004 */ 2005 base &= ~(SZ_16M - 1); 2006 2007 gpmc_cs_get_memconf(cs, &old_base, &size); 2008 if (base == old_base) 2009 return 0; 2010 2011 ret = gpmc_cs_delete_mem(cs); 2012 if (ret < 0) 2013 return ret; 2014 2015 ret = gpmc_cs_insert_mem(cs, base, size); 2016 if (ret < 0) 2017 return ret; 2018 2019 ret = gpmc_cs_set_memconf(cs, base, size); 2020 2021 return ret; 2022 } 2023 2024 /** 2025 * gpmc_read_settings_dt - read gpmc settings from device-tree 2026 * @np: pointer to device-tree node for a gpmc child device 2027 * @p: pointer to gpmc settings structure 2028 * 2029 * Reads the GPMC settings for a GPMC child device from device-tree and 2030 * stores them in the GPMC settings structure passed. The GPMC settings 2031 * structure is initialised to zero by this function and so any 2032 * previously stored settings will be cleared. 2033 */ 2034 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p) 2035 { 2036 memset(p, 0, sizeof(struct gpmc_settings)); 2037 2038 p->sync_read = of_property_read_bool(np, "gpmc,sync-read"); 2039 p->sync_write = of_property_read_bool(np, "gpmc,sync-write"); 2040 of_property_read_u32(np, "gpmc,device-width", &p->device_width); 2041 of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data); 2042 2043 if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) { 2044 p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap"); 2045 p->burst_read = of_property_read_bool(np, "gpmc,burst-read"); 2046 p->burst_write = of_property_read_bool(np, "gpmc,burst-write"); 2047 if (!p->burst_read && !p->burst_write) 2048 pr_warn("%s: page/burst-length set but not used!\n", 2049 __func__); 2050 } 2051 2052 p->wait_pin = GPMC_WAITPIN_INVALID; 2053 p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID; 2054 2055 if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) { 2056 if (!gpmc_is_valid_waitpin(p->wait_pin)) { 2057 pr_err("%s: Invalid wait-pin (%d)\n", __func__, p->wait_pin); 2058 p->wait_pin = GPMC_WAITPIN_INVALID; 2059 } 2060 2061 if (!of_property_read_u32(np, "ti,wait-pin-polarity", 2062 &p->wait_pin_polarity)) { 2063 if (p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_HIGH && 2064 p->wait_pin_polarity != GPMC_WAITPINPOLARITY_ACTIVE_LOW) { 2065 pr_err("%s: Invalid wait-pin-polarity (%d)\n", 2066 __func__, p->wait_pin_polarity); 2067 p->wait_pin_polarity = GPMC_WAITPINPOLARITY_INVALID; 2068 } 2069 } 2070 2071 p->wait_on_read = of_property_read_bool(np, 2072 "gpmc,wait-on-read"); 2073 p->wait_on_write = of_property_read_bool(np, 2074 "gpmc,wait-on-write"); 2075 if (!p->wait_on_read && !p->wait_on_write) 2076 pr_debug("%s: rd/wr wait monitoring not enabled!\n", 2077 __func__); 2078 } 2079 } 2080 2081 static void __maybe_unused gpmc_read_timings_dt(struct device_node *np, 2082 struct gpmc_timings *gpmc_t) 2083 { 2084 struct gpmc_bool_timings *p; 2085 2086 if (!np || !gpmc_t) 2087 return; 2088 2089 memset(gpmc_t, 0, sizeof(*gpmc_t)); 2090 2091 /* minimum clock period for syncronous mode */ 2092 of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk); 2093 2094 /* chip select timtings */ 2095 of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on); 2096 of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off); 2097 of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off); 2098 2099 /* ADV signal timings */ 2100 of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on); 2101 of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off); 2102 of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off); 2103 of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns", 2104 &gpmc_t->adv_aad_mux_on); 2105 of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns", 2106 &gpmc_t->adv_aad_mux_rd_off); 2107 of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns", 2108 &gpmc_t->adv_aad_mux_wr_off); 2109 2110 /* WE signal timings */ 2111 of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on); 2112 of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off); 2113 2114 /* OE signal timings */ 2115 of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on); 2116 of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off); 2117 of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns", 2118 &gpmc_t->oe_aad_mux_on); 2119 of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns", 2120 &gpmc_t->oe_aad_mux_off); 2121 2122 /* access and cycle timings */ 2123 of_property_read_u32(np, "gpmc,page-burst-access-ns", 2124 &gpmc_t->page_burst_access); 2125 of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access); 2126 of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle); 2127 of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle); 2128 of_property_read_u32(np, "gpmc,bus-turnaround-ns", 2129 &gpmc_t->bus_turnaround); 2130 of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns", 2131 &gpmc_t->cycle2cycle_delay); 2132 of_property_read_u32(np, "gpmc,wait-monitoring-ns", 2133 &gpmc_t->wait_monitoring); 2134 of_property_read_u32(np, "gpmc,clk-activation-ns", 2135 &gpmc_t->clk_activation); 2136 2137 /* only applicable to OMAP3+ */ 2138 of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access); 2139 of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns", 2140 &gpmc_t->wr_data_mux_bus); 2141 2142 /* bool timing parameters */ 2143 p = &gpmc_t->bool_timings; 2144 2145 p->cycle2cyclediffcsen = 2146 of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen"); 2147 p->cycle2cyclesamecsen = 2148 of_property_read_bool(np, "gpmc,cycle2cycle-samecsen"); 2149 p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay"); 2150 p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay"); 2151 p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay"); 2152 p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay"); 2153 p->time_para_granularity = 2154 of_property_read_bool(np, "gpmc,time-para-granularity"); 2155 } 2156 2157 /** 2158 * gpmc_probe_generic_child - configures the gpmc for a child device 2159 * @pdev: pointer to gpmc platform device 2160 * @child: pointer to device-tree node for child device 2161 * 2162 * Allocates and configures a GPMC chip-select for a child device. 2163 * Returns 0 on success and appropriate negative error code on failure. 2164 */ 2165 static int gpmc_probe_generic_child(struct platform_device *pdev, 2166 struct device_node *child) 2167 { 2168 struct gpmc_settings gpmc_s; 2169 struct gpmc_timings gpmc_t; 2170 struct resource res; 2171 unsigned long base; 2172 const char *name; 2173 int ret, cs; 2174 u32 val; 2175 struct gpmc_device *gpmc = platform_get_drvdata(pdev); 2176 2177 if (of_property_read_u32(child, "reg", &cs) < 0) { 2178 dev_err(&pdev->dev, "%pOF has no 'reg' property\n", 2179 child); 2180 return -ENODEV; 2181 } 2182 2183 if (of_address_to_resource(child, 0, &res) < 0) { 2184 dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n", 2185 child); 2186 return -ENODEV; 2187 } 2188 2189 /* 2190 * Check if we have multiple instances of the same device 2191 * on a single chip select. If so, use the already initialized 2192 * timings. 2193 */ 2194 name = gpmc_cs_get_name(cs); 2195 if (name && of_node_name_eq(child, name)) 2196 goto no_timings; 2197 2198 ret = gpmc_cs_request(cs, resource_size(&res), &base); 2199 if (ret < 0) { 2200 dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs); 2201 return ret; 2202 } 2203 gpmc_cs_set_name(cs, child->full_name); 2204 2205 gpmc_read_settings_dt(child, &gpmc_s); 2206 gpmc_read_timings_dt(child, &gpmc_t); 2207 2208 /* 2209 * For some GPMC devices we still need to rely on the bootloader 2210 * timings because the devices can be connected via FPGA. 2211 * REVISIT: Add timing support from slls644g.pdf. 2212 */ 2213 if (!gpmc_t.cs_rd_off) { 2214 WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n", 2215 cs); 2216 gpmc_cs_show_timings(cs, 2217 "please add GPMC bootloader timings to .dts"); 2218 goto no_timings; 2219 } 2220 2221 /* CS must be disabled while making changes to gpmc configuration */ 2222 gpmc_cs_disable_mem(cs); 2223 2224 /* 2225 * FIXME: gpmc_cs_request() will map the CS to an arbitrary 2226 * location in the gpmc address space. When booting with 2227 * device-tree we want the NOR flash to be mapped to the 2228 * location specified in the device-tree blob. So remap the 2229 * CS to this location. Once DT migration is complete should 2230 * just make gpmc_cs_request() map a specific address. 2231 */ 2232 ret = gpmc_cs_remap(cs, res.start); 2233 if (ret < 0) { 2234 dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n", 2235 cs, &res.start); 2236 if (res.start < GPMC_MEM_START) { 2237 dev_info(&pdev->dev, 2238 "GPMC CS %d start cannot be lesser than 0x%x\n", 2239 cs, GPMC_MEM_START); 2240 } else if (res.end > GPMC_MEM_END) { 2241 dev_info(&pdev->dev, 2242 "GPMC CS %d end cannot be greater than 0x%x\n", 2243 cs, GPMC_MEM_END); 2244 } 2245 goto err; 2246 } 2247 2248 if (of_node_name_eq(child, "nand")) { 2249 /* Warn about older DT blobs with no compatible property */ 2250 if (!of_property_read_bool(child, "compatible")) { 2251 dev_warn(&pdev->dev, 2252 "Incompatible NAND node: missing compatible"); 2253 ret = -EINVAL; 2254 goto err; 2255 } 2256 } 2257 2258 if (of_node_name_eq(child, "onenand")) { 2259 /* Warn about older DT blobs with no compatible property */ 2260 if (!of_property_read_bool(child, "compatible")) { 2261 dev_warn(&pdev->dev, 2262 "Incompatible OneNAND node: missing compatible"); 2263 ret = -EINVAL; 2264 goto err; 2265 } 2266 } 2267 2268 if (of_match_node(omap_nand_ids, child)) { 2269 /* NAND specific setup */ 2270 val = 8; 2271 of_property_read_u32(child, "nand-bus-width", &val); 2272 switch (val) { 2273 case 8: 2274 gpmc_s.device_width = GPMC_DEVWIDTH_8BIT; 2275 break; 2276 case 16: 2277 gpmc_s.device_width = GPMC_DEVWIDTH_16BIT; 2278 break; 2279 default: 2280 dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n", 2281 child); 2282 ret = -EINVAL; 2283 goto err; 2284 } 2285 2286 /* disable write protect */ 2287 gpmc_configure(GPMC_CONFIG_WP, 0); 2288 gpmc_s.device_nand = true; 2289 } else { 2290 ret = of_property_read_u32(child, "bank-width", 2291 &gpmc_s.device_width); 2292 if (ret < 0 && !gpmc_s.device_width) { 2293 dev_err(&pdev->dev, 2294 "%pOF has no 'gpmc,device-width' property\n", 2295 child); 2296 goto err; 2297 } 2298 } 2299 2300 /* Reserve wait pin if it is required and valid */ 2301 if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) { 2302 ret = gpmc_alloc_waitpin(gpmc, &gpmc_s); 2303 if (ret < 0) 2304 goto err; 2305 } 2306 2307 gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings"); 2308 2309 ret = gpmc_cs_program_settings(cs, &gpmc_s); 2310 if (ret < 0) 2311 goto err_cs; 2312 2313 ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s); 2314 if (ret) { 2315 dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n", 2316 child); 2317 goto err_cs; 2318 } 2319 2320 /* Clear limited address i.e. enable A26-A11 */ 2321 val = gpmc_read_reg(GPMC_CONFIG); 2322 val &= ~GPMC_CONFIG_LIMITEDADDRESS; 2323 gpmc_write_reg(GPMC_CONFIG, val); 2324 2325 /* Enable CS region */ 2326 gpmc_cs_enable_mem(cs); 2327 2328 no_timings: 2329 2330 /* create platform device, NULL on error or when disabled */ 2331 if (!of_platform_device_create(child, NULL, &pdev->dev)) 2332 goto err_child_fail; 2333 2334 /* create children and other common bus children */ 2335 if (of_platform_default_populate(child, NULL, &pdev->dev)) 2336 goto err_child_fail; 2337 2338 return 0; 2339 2340 err_child_fail: 2341 2342 dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child); 2343 ret = -ENODEV; 2344 2345 err_cs: 2346 gpmc_free_waitpin(gpmc, gpmc_s.wait_pin); 2347 err: 2348 gpmc_cs_free(cs); 2349 2350 return ret; 2351 } 2352 2353 static const struct of_device_id gpmc_dt_ids[]; 2354 2355 static int gpmc_probe_dt(struct platform_device *pdev) 2356 { 2357 int ret; 2358 const struct of_device_id *of_id = 2359 of_match_device(gpmc_dt_ids, &pdev->dev); 2360 2361 if (!of_id) 2362 return 0; 2363 2364 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs", 2365 &gpmc_cs_num); 2366 if (ret < 0) { 2367 pr_err("%s: number of chip-selects not defined\n", __func__); 2368 return ret; 2369 } else if (gpmc_cs_num < 1) { 2370 pr_err("%s: all chip-selects are disabled\n", __func__); 2371 return -EINVAL; 2372 } else if (gpmc_cs_num > GPMC_CS_NUM) { 2373 pr_err("%s: number of supported chip-selects cannot be > %d\n", 2374 __func__, GPMC_CS_NUM); 2375 return -EINVAL; 2376 } 2377 2378 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins", 2379 &gpmc_nr_waitpins); 2380 if (ret < 0) { 2381 pr_err("%s: number of wait pins not found!\n", __func__); 2382 return ret; 2383 } 2384 2385 return 0; 2386 } 2387 2388 static void gpmc_probe_dt_children(struct platform_device *pdev) 2389 { 2390 int ret; 2391 struct device_node *child; 2392 2393 for_each_available_child_of_node(pdev->dev.of_node, child) { 2394 ret = gpmc_probe_generic_child(pdev, child); 2395 if (ret) { 2396 dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n", 2397 child, ret); 2398 } 2399 } 2400 } 2401 #else 2402 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p) 2403 { 2404 memset(p, 0, sizeof(*p)); 2405 } 2406 static int gpmc_probe_dt(struct platform_device *pdev) 2407 { 2408 return 0; 2409 } 2410 2411 static void gpmc_probe_dt_children(struct platform_device *pdev) 2412 { 2413 } 2414 #endif /* CONFIG_OF */ 2415 2416 static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) 2417 { 2418 return 1; /* we're input only */ 2419 } 2420 2421 static int gpmc_gpio_direction_input(struct gpio_chip *chip, 2422 unsigned int offset) 2423 { 2424 return 0; /* we're input only */ 2425 } 2426 2427 static int gpmc_gpio_direction_output(struct gpio_chip *chip, 2428 unsigned int offset, int value) 2429 { 2430 return -EINVAL; /* we're input only */ 2431 } 2432 2433 static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset, 2434 int value) 2435 { 2436 } 2437 2438 static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset) 2439 { 2440 u32 reg; 2441 2442 offset += 8; 2443 2444 reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset); 2445 2446 return !!reg; 2447 } 2448 2449 static int gpmc_gpio_init(struct gpmc_device *gpmc) 2450 { 2451 int ret; 2452 2453 gpmc->gpio_chip.parent = gpmc->dev; 2454 gpmc->gpio_chip.owner = THIS_MODULE; 2455 gpmc->gpio_chip.label = DEVICE_NAME; 2456 gpmc->gpio_chip.ngpio = gpmc_nr_waitpins; 2457 gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction; 2458 gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input; 2459 gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output; 2460 gpmc->gpio_chip.set = gpmc_gpio_set; 2461 gpmc->gpio_chip.get = gpmc_gpio_get; 2462 gpmc->gpio_chip.base = -1; 2463 2464 ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL); 2465 if (ret < 0) { 2466 dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret); 2467 return ret; 2468 } 2469 2470 return 0; 2471 } 2472 2473 static void omap3_gpmc_save_context(struct gpmc_device *gpmc) 2474 { 2475 struct omap3_gpmc_regs *gpmc_context; 2476 int i; 2477 2478 if (!gpmc || !gpmc_base) 2479 return; 2480 2481 gpmc_context = &gpmc->context; 2482 2483 gpmc_context->sysconfig = gpmc_read_reg(GPMC_SYSCONFIG); 2484 gpmc_context->irqenable = gpmc_read_reg(GPMC_IRQENABLE); 2485 gpmc_context->timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL); 2486 gpmc_context->config = gpmc_read_reg(GPMC_CONFIG); 2487 gpmc_context->prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1); 2488 gpmc_context->prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2); 2489 gpmc_context->prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL); 2490 for (i = 0; i < gpmc_cs_num; i++) { 2491 gpmc_context->cs_context[i].is_valid = gpmc_cs_mem_enabled(i); 2492 if (gpmc_context->cs_context[i].is_valid) { 2493 gpmc_context->cs_context[i].config1 = 2494 gpmc_cs_read_reg(i, GPMC_CS_CONFIG1); 2495 gpmc_context->cs_context[i].config2 = 2496 gpmc_cs_read_reg(i, GPMC_CS_CONFIG2); 2497 gpmc_context->cs_context[i].config3 = 2498 gpmc_cs_read_reg(i, GPMC_CS_CONFIG3); 2499 gpmc_context->cs_context[i].config4 = 2500 gpmc_cs_read_reg(i, GPMC_CS_CONFIG4); 2501 gpmc_context->cs_context[i].config5 = 2502 gpmc_cs_read_reg(i, GPMC_CS_CONFIG5); 2503 gpmc_context->cs_context[i].config6 = 2504 gpmc_cs_read_reg(i, GPMC_CS_CONFIG6); 2505 gpmc_context->cs_context[i].config7 = 2506 gpmc_cs_read_reg(i, GPMC_CS_CONFIG7); 2507 } 2508 } 2509 } 2510 2511 static void omap3_gpmc_restore_context(struct gpmc_device *gpmc) 2512 { 2513 struct omap3_gpmc_regs *gpmc_context; 2514 int i; 2515 2516 if (!gpmc || !gpmc_base) 2517 return; 2518 2519 gpmc_context = &gpmc->context; 2520 2521 gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context->sysconfig); 2522 gpmc_write_reg(GPMC_IRQENABLE, gpmc_context->irqenable); 2523 gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context->timeout_ctrl); 2524 gpmc_write_reg(GPMC_CONFIG, gpmc_context->config); 2525 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context->prefetch_config1); 2526 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context->prefetch_config2); 2527 gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context->prefetch_control); 2528 for (i = 0; i < gpmc_cs_num; i++) { 2529 if (gpmc_context->cs_context[i].is_valid) { 2530 gpmc_cs_write_reg(i, GPMC_CS_CONFIG1, 2531 gpmc_context->cs_context[i].config1); 2532 gpmc_cs_write_reg(i, GPMC_CS_CONFIG2, 2533 gpmc_context->cs_context[i].config2); 2534 gpmc_cs_write_reg(i, GPMC_CS_CONFIG3, 2535 gpmc_context->cs_context[i].config3); 2536 gpmc_cs_write_reg(i, GPMC_CS_CONFIG4, 2537 gpmc_context->cs_context[i].config4); 2538 gpmc_cs_write_reg(i, GPMC_CS_CONFIG5, 2539 gpmc_context->cs_context[i].config5); 2540 gpmc_cs_write_reg(i, GPMC_CS_CONFIG6, 2541 gpmc_context->cs_context[i].config6); 2542 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 2543 gpmc_context->cs_context[i].config7); 2544 } else { 2545 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7, 0); 2546 } 2547 } 2548 } 2549 2550 static int omap_gpmc_context_notifier(struct notifier_block *nb, 2551 unsigned long cmd, void *v) 2552 { 2553 struct gpmc_device *gpmc; 2554 2555 gpmc = container_of(nb, struct gpmc_device, nb); 2556 if (gpmc->is_suspended || pm_runtime_suspended(gpmc->dev)) 2557 return NOTIFY_OK; 2558 2559 switch (cmd) { 2560 case CPU_CLUSTER_PM_ENTER: 2561 omap3_gpmc_save_context(gpmc); 2562 break; 2563 case CPU_CLUSTER_PM_ENTER_FAILED: /* No need to restore context */ 2564 break; 2565 case CPU_CLUSTER_PM_EXIT: 2566 omap3_gpmc_restore_context(gpmc); 2567 break; 2568 } 2569 2570 return NOTIFY_OK; 2571 } 2572 2573 static int gpmc_probe(struct platform_device *pdev) 2574 { 2575 int rc, i; 2576 u32 l; 2577 struct resource *res; 2578 struct gpmc_device *gpmc; 2579 2580 gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL); 2581 if (!gpmc) 2582 return -ENOMEM; 2583 2584 gpmc->dev = &pdev->dev; 2585 platform_set_drvdata(pdev, gpmc); 2586 2587 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg"); 2588 if (!res) { 2589 /* legacy DT */ 2590 gpmc_base = devm_platform_ioremap_resource(pdev, 0); 2591 if (IS_ERR(gpmc_base)) 2592 return PTR_ERR(gpmc_base); 2593 } else { 2594 gpmc_base = devm_ioremap_resource(&pdev->dev, res); 2595 if (IS_ERR(gpmc_base)) 2596 return PTR_ERR(gpmc_base); 2597 2598 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "data"); 2599 if (!res) { 2600 dev_err(&pdev->dev, "couldn't get data reg resource\n"); 2601 return -ENOENT; 2602 } 2603 2604 gpmc->data = res; 2605 } 2606 2607 gpmc->irq = platform_get_irq(pdev, 0); 2608 if (gpmc->irq < 0) 2609 return gpmc->irq; 2610 2611 gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck"); 2612 if (IS_ERR(gpmc_l3_clk)) { 2613 dev_err(&pdev->dev, "Failed to get GPMC fck\n"); 2614 return PTR_ERR(gpmc_l3_clk); 2615 } 2616 2617 if (!clk_get_rate(gpmc_l3_clk)) { 2618 dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n"); 2619 return -EINVAL; 2620 } 2621 2622 if (pdev->dev.of_node) { 2623 rc = gpmc_probe_dt(pdev); 2624 if (rc) 2625 return rc; 2626 } else { 2627 gpmc_cs_num = GPMC_CS_NUM; 2628 gpmc_nr_waitpins = GPMC_NR_WAITPINS; 2629 } 2630 2631 gpmc->waitpins = devm_kzalloc(&pdev->dev, 2632 gpmc_nr_waitpins * sizeof(struct gpmc_waitpin), 2633 GFP_KERNEL); 2634 if (!gpmc->waitpins) 2635 return -ENOMEM; 2636 2637 for (i = 0; i < gpmc_nr_waitpins; i++) 2638 gpmc->waitpins[i].pin = GPMC_WAITPIN_INVALID; 2639 2640 pm_runtime_enable(&pdev->dev); 2641 pm_runtime_get_sync(&pdev->dev); 2642 2643 l = gpmc_read_reg(GPMC_REVISION); 2644 2645 /* 2646 * FIXME: Once device-tree migration is complete the below flags 2647 * should be populated based upon the device-tree compatible 2648 * string. For now just use the IP revision. OMAP3+ devices have 2649 * the wr_access and wr_data_mux_bus register fields. OMAP4+ 2650 * devices support the addr-addr-data multiplex protocol. 2651 * 2652 * GPMC IP revisions: 2653 * - OMAP24xx = 2.0 2654 * - OMAP3xxx = 5.0 2655 * - OMAP44xx/54xx/AM335x = 6.0 2656 */ 2657 if (GPMC_REVISION_MAJOR(l) > 0x4) 2658 gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS; 2659 if (GPMC_REVISION_MAJOR(l) > 0x5) 2660 gpmc_capability |= GPMC_HAS_MUX_AAD; 2661 dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l), 2662 GPMC_REVISION_MINOR(l)); 2663 2664 gpmc_mem_init(gpmc); 2665 rc = gpmc_gpio_init(gpmc); 2666 if (rc) 2667 goto gpio_init_failed; 2668 2669 gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins; 2670 rc = gpmc_setup_irq(gpmc); 2671 if (rc) { 2672 dev_err(gpmc->dev, "gpmc_setup_irq failed\n"); 2673 goto gpio_init_failed; 2674 } 2675 2676 gpmc_probe_dt_children(pdev); 2677 2678 gpmc->nb.notifier_call = omap_gpmc_context_notifier; 2679 cpu_pm_register_notifier(&gpmc->nb); 2680 2681 return 0; 2682 2683 gpio_init_failed: 2684 gpmc_mem_exit(); 2685 pm_runtime_put_sync(&pdev->dev); 2686 pm_runtime_disable(&pdev->dev); 2687 2688 return rc; 2689 } 2690 2691 static void gpmc_remove(struct platform_device *pdev) 2692 { 2693 int i; 2694 struct gpmc_device *gpmc = platform_get_drvdata(pdev); 2695 2696 cpu_pm_unregister_notifier(&gpmc->nb); 2697 for (i = 0; i < gpmc_nr_waitpins; i++) 2698 gpmc_free_waitpin(gpmc, i); 2699 gpmc_free_irq(gpmc); 2700 gpmc_mem_exit(); 2701 pm_runtime_put_sync(&pdev->dev); 2702 pm_runtime_disable(&pdev->dev); 2703 } 2704 2705 #ifdef CONFIG_PM_SLEEP 2706 static int gpmc_suspend(struct device *dev) 2707 { 2708 struct gpmc_device *gpmc = dev_get_drvdata(dev); 2709 2710 omap3_gpmc_save_context(gpmc); 2711 pm_runtime_put_sync(dev); 2712 gpmc->is_suspended = 1; 2713 2714 return 0; 2715 } 2716 2717 static int gpmc_resume(struct device *dev) 2718 { 2719 struct gpmc_device *gpmc = dev_get_drvdata(dev); 2720 2721 pm_runtime_get_sync(dev); 2722 omap3_gpmc_restore_context(gpmc); 2723 gpmc->is_suspended = 0; 2724 2725 return 0; 2726 } 2727 #endif 2728 2729 static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume); 2730 2731 #ifdef CONFIG_OF 2732 static const struct of_device_id gpmc_dt_ids[] = { 2733 { .compatible = "ti,omap2420-gpmc" }, 2734 { .compatible = "ti,omap2430-gpmc" }, 2735 { .compatible = "ti,omap3430-gpmc" }, /* omap3430 & omap3630 */ 2736 { .compatible = "ti,omap4430-gpmc" }, /* omap4430 & omap4460 & omap543x */ 2737 { .compatible = "ti,am3352-gpmc" }, /* am335x devices */ 2738 { .compatible = "ti,am64-gpmc" }, 2739 { } 2740 }; 2741 MODULE_DEVICE_TABLE(of, gpmc_dt_ids); 2742 #endif 2743 2744 static struct platform_driver gpmc_driver = { 2745 .probe = gpmc_probe, 2746 .remove_new = gpmc_remove, 2747 .driver = { 2748 .name = DEVICE_NAME, 2749 .of_match_table = of_match_ptr(gpmc_dt_ids), 2750 .pm = &gpmc_pm_ops, 2751 }, 2752 }; 2753 2754 module_platform_driver(gpmc_driver); 2755 2756 MODULE_DESCRIPTION("Texas Instruments GPMC driver"); 2757 MODULE_LICENSE("GPL"); 2758