xref: /linux/drivers/memory/emif.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EMIF driver
4  *
5  * Copyright (C) 2012 Texas Instruments, Inc.
6  *
7  * Aneesh V <aneesh@ti.com>
8  * Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
14 #include <linux/io.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/pm.h>
26 
27 #include "emif.h"
28 #include "jedec_ddr.h"
29 #include "of_memory.h"
30 
31 /**
32  * struct emif_data - Per device static data for driver's use
33  * @duplicate:			Whether the DDR devices attached to this EMIF
34  *				instance are exactly same as that on EMIF1. In
35  *				this case we can save some memory and processing
36  * @temperature_level:		Maximum temperature of LPDDR2 devices attached
37  *				to this EMIF - read from MR4 register. If there
38  *				are two devices attached to this EMIF, this
39  *				value is the maximum of the two temperature
40  *				levels.
41  * @node:			node in the device list
42  * @base:			base address of memory-mapped IO registers.
43  * @dev:			device pointer.
44  * @regs_cache:			An array of 'struct emif_regs' that stores
45  *				calculated register values for different
46  *				frequencies, to avoid re-calculating them on
47  *				each DVFS transition.
48  * @curr_regs:			The set of register values used in the last
49  *				frequency change (i.e. corresponding to the
50  *				frequency in effect at the moment)
51  * @plat_data:			Pointer to saved platform data.
52  * @debugfs_root:		dentry to the root folder for EMIF in debugfs
53  * @np_ddr:			Pointer to ddr device tree node
54  */
55 struct emif_data {
56 	u8				duplicate;
57 	u8				temperature_level;
58 	u8				lpmode;
59 	struct list_head		node;
60 	unsigned long			irq_state;
61 	void __iomem			*base;
62 	struct device			*dev;
63 	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
64 	struct emif_regs		*curr_regs;
65 	struct emif_platform_data	*plat_data;
66 	struct dentry			*debugfs_root;
67 	struct device_node		*np_ddr;
68 };
69 
70 static struct emif_data *emif1;
71 static DEFINE_SPINLOCK(emif_lock);
72 static unsigned long	irq_state;
73 static LIST_HEAD(device_list);
74 
75 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
76 	struct emif_regs *regs)
77 {
78 	u32 type = emif->plat_data->device_info->type;
79 	u32 ip_rev = emif->plat_data->ip_rev;
80 
81 	seq_printf(s, "EMIF register cache dump for %dMHz\n",
82 		regs->freq/1000000);
83 
84 	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
85 	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
86 	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
87 	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
88 
89 	if (ip_rev == EMIF_4D) {
90 		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
91 			regs->read_idle_ctrl_shdw_normal);
92 		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
93 			regs->read_idle_ctrl_shdw_volt_ramp);
94 	} else if (ip_rev == EMIF_4D5) {
95 		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
96 			regs->dll_calib_ctrl_shdw_normal);
97 		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
98 			regs->dll_calib_ctrl_shdw_volt_ramp);
99 	}
100 
101 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
102 		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
103 			regs->ref_ctrl_shdw_derated);
104 		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
105 			regs->sdram_tim1_shdw_derated);
106 		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
107 			regs->sdram_tim3_shdw_derated);
108 	}
109 }
110 
111 static int emif_regdump_show(struct seq_file *s, void *unused)
112 {
113 	struct emif_data	*emif	= s->private;
114 	struct emif_regs	**regs_cache;
115 	int			i;
116 
117 	if (emif->duplicate)
118 		regs_cache = emif1->regs_cache;
119 	else
120 		regs_cache = emif->regs_cache;
121 
122 	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
123 		do_emif_regdump_show(s, emif, regs_cache[i]);
124 		seq_putc(s, '\n');
125 	}
126 
127 	return 0;
128 }
129 
130 DEFINE_SHOW_ATTRIBUTE(emif_regdump);
131 
132 static int emif_mr4_show(struct seq_file *s, void *unused)
133 {
134 	struct emif_data *emif = s->private;
135 
136 	seq_printf(s, "MR4=%d\n", emif->temperature_level);
137 	return 0;
138 }
139 
140 DEFINE_SHOW_ATTRIBUTE(emif_mr4);
141 
142 static void emif_debugfs_init(struct emif_data *emif)
143 {
144 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
145 		emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
146 		debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
147 				    &emif_regdump_fops);
148 		debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
149 				    &emif_mr4_fops);
150 	}
151 }
152 
153 static void emif_debugfs_exit(struct emif_data *emif)
154 {
155 	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
156 		debugfs_remove_recursive(emif->debugfs_root);
157 		emif->debugfs_root = NULL;
158 	}
159 }
160 
161 /*
162  * Get bus width used by EMIF. Note that this may be different from the
163  * bus width of the DDR devices used. For instance two 16-bit DDR devices
164  * may be connected to a given CS of EMIF. In this case bus width as far
165  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
166  */
167 static u32 get_emif_bus_width(struct emif_data *emif)
168 {
169 	u32		width;
170 	void __iomem	*base = emif->base;
171 
172 	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
173 			>> NARROW_MODE_SHIFT;
174 	width = width == 0 ? 32 : 16;
175 
176 	return width;
177 }
178 
179 static void set_lpmode(struct emif_data *emif, u8 lpmode)
180 {
181 	u32 temp;
182 	void __iomem *base = emif->base;
183 
184 	/*
185 	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
186 	 * Efficient
187 	 *
188 	 * i743 DESCRIPTION:
189 	 * The EMIF supports power-down state for low power. The EMIF
190 	 * automatically puts the SDRAM into power-down after the memory is
191 	 * not accessed for a defined number of cycles and the
192 	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
193 	 * As the EMIF supports automatic output impedance calibration, a ZQ
194 	 * calibration long command is issued every time it exits active
195 	 * power-down and precharge power-down modes. The EMIF waits and
196 	 * blocks any other command during this calibration.
197 	 * The EMIF does not allow selective disabling of ZQ calibration upon
198 	 * exit of power-down mode. Due to very short periods of power-down
199 	 * cycles, ZQ calibration overhead creates bandwidth issues and
200 	 * increases overall system power consumption. On the other hand,
201 	 * issuing ZQ calibration long commands when exiting self-refresh is
202 	 * still required.
203 	 *
204 	 * WORKAROUND
205 	 * Because there is no power consumption benefit of the power-down due
206 	 * to the calibration and there is a performance risk, the guideline
207 	 * is to not allow power-down state and, therefore, to not have set
208 	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
209 	 */
210 	if ((emif->plat_data->ip_rev == EMIF_4D) &&
211 	    (lpmode == EMIF_LP_MODE_PWR_DN)) {
212 		WARN_ONCE(1,
213 			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
214 		/* rollback LP_MODE to Self-refresh mode */
215 		lpmode = EMIF_LP_MODE_SELF_REFRESH;
216 	}
217 
218 	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
219 	temp &= ~LP_MODE_MASK;
220 	temp |= (lpmode << LP_MODE_SHIFT);
221 	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
222 }
223 
224 static void do_freq_update(void)
225 {
226 	struct emif_data *emif;
227 
228 	/*
229 	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
230 	 *
231 	 * i728 DESCRIPTION:
232 	 * The EMIF automatically puts the SDRAM into self-refresh mode
233 	 * after the EMIF has not performed accesses during
234 	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
235 	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
236 	 * to 0x2. If during a small window the following three events
237 	 * occur:
238 	 * - The SR_TIMING counter expires
239 	 * - And frequency change is requested
240 	 * - And OCP access is requested
241 	 * Then it causes instable clock on the DDR interface.
242 	 *
243 	 * WORKAROUND
244 	 * To avoid the occurrence of the three events, the workaround
245 	 * is to disable the self-refresh when requesting a frequency
246 	 * change. Before requesting a frequency change the software must
247 	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
248 	 * frequency change has been done, the software can reprogram
249 	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
250 	 */
251 	list_for_each_entry(emif, &device_list, node) {
252 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
253 			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
254 	}
255 
256 	/*
257 	 * TODO: Do FREQ_UPDATE here when an API
258 	 * is available for this as part of the new
259 	 * clock framework
260 	 */
261 
262 	list_for_each_entry(emif, &device_list, node) {
263 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
264 			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
265 	}
266 }
267 
268 /* Find addressing table entry based on the device's type and density */
269 static const struct lpddr2_addressing *get_addressing_table(
270 	const struct ddr_device_info *device_info)
271 {
272 	u32		index, type, density;
273 
274 	type = device_info->type;
275 	density = device_info->density;
276 
277 	switch (type) {
278 	case DDR_TYPE_LPDDR2_S4:
279 		index = density - 1;
280 		break;
281 	case DDR_TYPE_LPDDR2_S2:
282 		switch (density) {
283 		case DDR_DENSITY_1Gb:
284 		case DDR_DENSITY_2Gb:
285 			index = density + 3;
286 			break;
287 		default:
288 			index = density - 1;
289 		}
290 		break;
291 	default:
292 		return NULL;
293 	}
294 
295 	return &lpddr2_jedec_addressing_table[index];
296 }
297 
298 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
299 		bool cs1_used, bool cal_resistors_per_cs)
300 {
301 	u32 zq = 0, val = 0;
302 
303 	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
304 	zq |= val << ZQ_REFINTERVAL_SHIFT;
305 
306 	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
307 	zq |= val << ZQ_ZQCL_MULT_SHIFT;
308 
309 	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
310 	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
311 
312 	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
313 
314 	if (cal_resistors_per_cs)
315 		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
316 	else
317 		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
318 
319 	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
320 
321 	val = cs1_used ? 1 : 0;
322 	zq |= val << ZQ_CS1EN_SHIFT;
323 
324 	return zq;
325 }
326 
327 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
328 		const struct emif_custom_configs *custom_configs, bool cs1_used,
329 		u32 sdram_io_width, u32 emif_bus_width)
330 {
331 	u32 alert = 0, interval, devcnt;
332 
333 	if (custom_configs && (custom_configs->mask &
334 				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
335 		interval = custom_configs->temp_alert_poll_interval_ms;
336 	else
337 		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
338 
339 	interval *= 1000000;			/* Convert to ns */
340 	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
341 	alert |= (interval << TA_REFINTERVAL_SHIFT);
342 
343 	/*
344 	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
345 	 * also to this form and subtract to get TA_DEVCNT, which is
346 	 * in log2(x) form.
347 	 */
348 	emif_bus_width = __fls(emif_bus_width) - 1;
349 	devcnt = emif_bus_width - sdram_io_width;
350 	alert |= devcnt << TA_DEVCNT_SHIFT;
351 
352 	/* DEVWDT is in 'log2(x) - 3' form */
353 	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
354 
355 	alert |= 1 << TA_SFEXITEN_SHIFT;
356 	alert |= 1 << TA_CS0EN_SHIFT;
357 	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
358 
359 	return alert;
360 }
361 
362 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
363 {
364 	u32 pwr_mgmt_ctrl	= 0, timeout;
365 	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
366 	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
367 	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
368 	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
369 	u32 mask;
370 	u8 shift;
371 
372 	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
373 
374 	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
375 		lpmode		= cust_cfgs->lpmode;
376 		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
377 		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
378 		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
379 	}
380 
381 	/* Timeout based on DDR frequency */
382 	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
383 
384 	/*
385 	 * The value to be set in register is "log2(timeout) - 3"
386 	 * if timeout < 16 load 0 in register
387 	 * if timeout is not a power of 2, round to next highest power of 2
388 	 */
389 	if (timeout < 16) {
390 		timeout = 0;
391 	} else {
392 		if (timeout & (timeout - 1))
393 			timeout <<= 1;
394 		timeout = __fls(timeout) - 3;
395 	}
396 
397 	switch (lpmode) {
398 	case EMIF_LP_MODE_CLOCK_STOP:
399 		shift = CS_TIM_SHIFT;
400 		mask = CS_TIM_MASK;
401 		break;
402 	case EMIF_LP_MODE_SELF_REFRESH:
403 		/* Workaround for errata i735 */
404 		if (timeout < 6)
405 			timeout = 6;
406 
407 		shift = SR_TIM_SHIFT;
408 		mask = SR_TIM_MASK;
409 		break;
410 	case EMIF_LP_MODE_PWR_DN:
411 		shift = PD_TIM_SHIFT;
412 		mask = PD_TIM_MASK;
413 		break;
414 	case EMIF_LP_MODE_DISABLE:
415 	default:
416 		mask = 0;
417 		shift = 0;
418 		break;
419 	}
420 	/* Round to maximum in case of overflow, BUT warn! */
421 	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
422 		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
423 		       lpmode,
424 		       timeout_perf,
425 		       timeout_pwr,
426 		       freq_threshold);
427 		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
428 		     timeout, mask >> shift);
429 		timeout = mask >> shift;
430 	}
431 
432 	/* Setup required timing */
433 	pwr_mgmt_ctrl = (timeout << shift) & mask;
434 	/* setup a default mask for rest of the modes */
435 	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
436 			  ~mask;
437 
438 	/* No CS_TIM in EMIF_4D5 */
439 	if (ip_rev == EMIF_4D5)
440 		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
441 
442 	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
443 
444 	return pwr_mgmt_ctrl;
445 }
446 
447 /*
448  * Get the temperature level of the EMIF instance:
449  * Reads the MR4 register of attached SDRAM parts to find out the temperature
450  * level. If there are two parts attached(one on each CS), then the temperature
451  * level for the EMIF instance is the higher of the two temperatures.
452  */
453 static void get_temperature_level(struct emif_data *emif)
454 {
455 	u32		temp, temperature_level;
456 	void __iomem	*base;
457 
458 	base = emif->base;
459 
460 	/* Read mode register 4 */
461 	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
462 	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
463 	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
464 				MR4_SDRAM_REF_RATE_SHIFT;
465 
466 	if (emif->plat_data->device_info->cs1_used) {
467 		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
468 		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
469 		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
470 				>> MR4_SDRAM_REF_RATE_SHIFT;
471 		temperature_level = max(temp, temperature_level);
472 	}
473 
474 	/* treat everything less than nominal(3) in MR4 as nominal */
475 	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
476 		temperature_level = SDRAM_TEMP_NOMINAL;
477 
478 	/* if we get reserved value in MR4 persist with the existing value */
479 	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
480 		emif->temperature_level = temperature_level;
481 }
482 
483 /*
484  * setup_temperature_sensitive_regs() - set the timings for temperature
485  * sensitive registers. This happens once at initialisation time based
486  * on the temperature at boot time and subsequently based on the temperature
487  * alert interrupt. Temperature alert can happen when the temperature
488  * increases or drops. So this function can have the effect of either
489  * derating the timings or going back to nominal values.
490  */
491 static void setup_temperature_sensitive_regs(struct emif_data *emif,
492 		struct emif_regs *regs)
493 {
494 	u32		tim1, tim3, ref_ctrl, type;
495 	void __iomem	*base = emif->base;
496 	u32		temperature;
497 
498 	type = emif->plat_data->device_info->type;
499 
500 	tim1 = regs->sdram_tim1_shdw;
501 	tim3 = regs->sdram_tim3_shdw;
502 	ref_ctrl = regs->ref_ctrl_shdw;
503 
504 	/* No de-rating for non-lpddr2 devices */
505 	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
506 		goto out;
507 
508 	temperature = emif->temperature_level;
509 	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
510 		ref_ctrl = regs->ref_ctrl_shdw_derated;
511 	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
512 		tim1 = regs->sdram_tim1_shdw_derated;
513 		tim3 = regs->sdram_tim3_shdw_derated;
514 		ref_ctrl = regs->ref_ctrl_shdw_derated;
515 	}
516 
517 out:
518 	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
519 	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
520 	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
521 }
522 
523 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
524 {
525 	u32		old_temp_level;
526 	irqreturn_t	ret = IRQ_HANDLED;
527 	struct emif_custom_configs *custom_configs;
528 
529 	spin_lock_irqsave(&emif_lock, irq_state);
530 	old_temp_level = emif->temperature_level;
531 	get_temperature_level(emif);
532 
533 	if (unlikely(emif->temperature_level == old_temp_level)) {
534 		goto out;
535 	} else if (!emif->curr_regs) {
536 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
537 		goto out;
538 	}
539 
540 	custom_configs = emif->plat_data->custom_configs;
541 
542 	/*
543 	 * IF we detect higher than "nominal rating" from DDR sensor
544 	 * on an unsupported DDR part, shutdown system
545 	 */
546 	if (custom_configs && !(custom_configs->mask &
547 				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
548 		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
549 			dev_err(emif->dev,
550 				"%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
551 				__func__, emif->temperature_level);
552 			/*
553 			 * Temperature far too high - do kernel_power_off()
554 			 * from thread context
555 			 */
556 			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
557 			ret = IRQ_WAKE_THREAD;
558 			goto out;
559 		}
560 	}
561 
562 	if (emif->temperature_level < old_temp_level ||
563 		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
564 		/*
565 		 * Temperature coming down - defer handling to thread OR
566 		 * Temperature far too high - do kernel_power_off() from
567 		 * thread context
568 		 */
569 		ret = IRQ_WAKE_THREAD;
570 	} else {
571 		/* Temperature is going up - handle immediately */
572 		setup_temperature_sensitive_regs(emif, emif->curr_regs);
573 		do_freq_update();
574 	}
575 
576 out:
577 	spin_unlock_irqrestore(&emif_lock, irq_state);
578 	return ret;
579 }
580 
581 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
582 {
583 	u32			interrupts;
584 	struct emif_data	*emif = dev_id;
585 	void __iomem		*base = emif->base;
586 	struct device		*dev = emif->dev;
587 	irqreturn_t		ret = IRQ_HANDLED;
588 
589 	/* Save the status and clear it */
590 	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
591 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
592 
593 	/*
594 	 * Handle temperature alert
595 	 * Temperature alert should be same for all ports
596 	 * So, it's enough to process it only for one of the ports
597 	 */
598 	if (interrupts & TA_SYS_MASK)
599 		ret = handle_temp_alert(base, emif);
600 
601 	if (interrupts & ERR_SYS_MASK)
602 		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
603 
604 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
605 		/* Save the status and clear it */
606 		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
607 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
608 
609 		if (interrupts & ERR_LL_MASK)
610 			dev_err(dev, "Access error from LL port - %x\n",
611 				interrupts);
612 	}
613 
614 	return ret;
615 }
616 
617 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
618 {
619 	struct emif_data	*emif = dev_id;
620 
621 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
622 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
623 
624 		/* If we have Power OFF ability, use it, else try restarting */
625 		if (kernel_can_power_off()) {
626 			kernel_power_off();
627 		} else {
628 			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
629 			kernel_restart("SDRAM Over-temp Emergency restart");
630 		}
631 		return IRQ_HANDLED;
632 	}
633 
634 	spin_lock_irqsave(&emif_lock, irq_state);
635 
636 	if (emif->curr_regs) {
637 		setup_temperature_sensitive_regs(emif, emif->curr_regs);
638 		do_freq_update();
639 	} else {
640 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
641 	}
642 
643 	spin_unlock_irqrestore(&emif_lock, irq_state);
644 
645 	return IRQ_HANDLED;
646 }
647 
648 static void clear_all_interrupts(struct emif_data *emif)
649 {
650 	void __iomem	*base = emif->base;
651 
652 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
653 		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
654 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
655 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
656 			base + EMIF_LL_OCP_INTERRUPT_STATUS);
657 }
658 
659 static void disable_and_clear_all_interrupts(struct emif_data *emif)
660 {
661 	void __iomem		*base = emif->base;
662 
663 	/* Disable all interrupts */
664 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
665 		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
666 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
667 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
668 			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
669 
670 	/* Clear all interrupts */
671 	clear_all_interrupts(emif);
672 }
673 
674 static int setup_interrupts(struct emif_data *emif, u32 irq)
675 {
676 	u32		interrupts, type;
677 	void __iomem	*base = emif->base;
678 
679 	type = emif->plat_data->device_info->type;
680 
681 	clear_all_interrupts(emif);
682 
683 	/* Enable interrupts for SYS interface */
684 	interrupts = EN_ERR_SYS_MASK;
685 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
686 		interrupts |= EN_TA_SYS_MASK;
687 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
688 
689 	/* Enable interrupts for LL interface */
690 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
691 		/* TA need not be enabled for LL */
692 		interrupts = EN_ERR_LL_MASK;
693 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
694 	}
695 
696 	/* setup IRQ handlers */
697 	return devm_request_threaded_irq(emif->dev, irq,
698 				    emif_interrupt_handler,
699 				    emif_threaded_isr,
700 				    0, dev_name(emif->dev),
701 				    emif);
702 
703 }
704 
705 static void emif_onetime_settings(struct emif_data *emif)
706 {
707 	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
708 	void __iomem			*base = emif->base;
709 	const struct lpddr2_addressing	*addressing;
710 	const struct ddr_device_info	*device_info;
711 
712 	device_info = emif->plat_data->device_info;
713 	addressing = get_addressing_table(device_info);
714 
715 	/*
716 	 * Init power management settings
717 	 * We don't know the frequency yet. Use a high frequency
718 	 * value for a conservative timeout setting
719 	 */
720 	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
721 			emif->plat_data->ip_rev);
722 	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
723 	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
724 
725 	/* Init ZQ calibration settings */
726 	zq = get_zq_config_reg(addressing, device_info->cs1_used,
727 		device_info->cal_resistors_per_cs);
728 	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
729 
730 	/* Check temperature level temperature level*/
731 	get_temperature_level(emif);
732 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
733 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
734 
735 	/* Init temperature polling */
736 	temp_alert_cfg = get_temp_alert_config(addressing,
737 		emif->plat_data->custom_configs, device_info->cs1_used,
738 		device_info->io_width, get_emif_bus_width(emif));
739 	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
740 
741 	/*
742 	 * Program external PHY control registers that are not frequency
743 	 * dependent
744 	 */
745 	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
746 		return;
747 	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
748 	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
749 	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
750 	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
751 	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
752 	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
753 	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
754 	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
755 	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
756 	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
757 	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
758 	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
759 	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
760 	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
761 	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
762 	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
763 	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
764 	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
765 	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
766 	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
767 	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
768 }
769 
770 static void get_default_timings(struct emif_data *emif)
771 {
772 	struct emif_platform_data *pd = emif->plat_data;
773 
774 	pd->timings		= lpddr2_jedec_timings;
775 	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
776 
777 	dev_warn(emif->dev, "%s: using default timings\n", __func__);
778 }
779 
780 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
781 		u32 ip_rev, struct device *dev)
782 {
783 	int valid;
784 
785 	valid = (type == DDR_TYPE_LPDDR2_S4 ||
786 			type == DDR_TYPE_LPDDR2_S2)
787 		&& (density >= DDR_DENSITY_64Mb
788 			&& density <= DDR_DENSITY_8Gb)
789 		&& (io_width >= DDR_IO_WIDTH_8
790 			&& io_width <= DDR_IO_WIDTH_32);
791 
792 	/* Combinations of EMIF and PHY revisions that we support today */
793 	switch (ip_rev) {
794 	case EMIF_4D:
795 		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
796 		break;
797 	case EMIF_4D5:
798 		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
799 		break;
800 	default:
801 		valid = 0;
802 	}
803 
804 	if (!valid)
805 		dev_err(dev, "%s: invalid DDR details\n", __func__);
806 	return valid;
807 }
808 
809 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
810 		struct device *dev)
811 {
812 	int valid = 1;
813 
814 	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
815 		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
816 		valid = cust_cfgs->lpmode_freq_threshold &&
817 			cust_cfgs->lpmode_timeout_performance &&
818 			cust_cfgs->lpmode_timeout_power;
819 
820 	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
821 		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
822 
823 	if (!valid)
824 		dev_warn(dev, "%s: invalid custom configs\n", __func__);
825 
826 	return valid;
827 }
828 
829 static void of_get_custom_configs(struct device_node *np_emif,
830 		struct emif_data *emif)
831 {
832 	struct emif_custom_configs	*cust_cfgs = NULL;
833 	int				len;
834 	const __be32			*lpmode, *poll_intvl;
835 
836 	lpmode = of_get_property(np_emif, "low-power-mode", &len);
837 	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
838 
839 	if (lpmode || poll_intvl)
840 		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
841 			GFP_KERNEL);
842 
843 	if (!cust_cfgs)
844 		return;
845 
846 	if (lpmode) {
847 		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
848 		cust_cfgs->lpmode = be32_to_cpup(lpmode);
849 		of_property_read_u32(np_emif,
850 				"low-power-mode-timeout-performance",
851 				&cust_cfgs->lpmode_timeout_performance);
852 		of_property_read_u32(np_emif,
853 				"low-power-mode-timeout-power",
854 				&cust_cfgs->lpmode_timeout_power);
855 		of_property_read_u32(np_emif,
856 				"low-power-mode-freq-threshold",
857 				&cust_cfgs->lpmode_freq_threshold);
858 	}
859 
860 	if (poll_intvl) {
861 		cust_cfgs->mask |=
862 				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
863 		cust_cfgs->temp_alert_poll_interval_ms =
864 						be32_to_cpup(poll_intvl);
865 	}
866 
867 	if (of_find_property(np_emif, "extended-temp-part", &len))
868 		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
869 
870 	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
871 		devm_kfree(emif->dev, cust_cfgs);
872 		return;
873 	}
874 
875 	emif->plat_data->custom_configs = cust_cfgs;
876 }
877 
878 static void of_get_ddr_info(struct device_node *np_emif,
879 		struct device_node *np_ddr,
880 		struct ddr_device_info *dev_info)
881 {
882 	u32 density = 0, io_width = 0;
883 	int len;
884 
885 	if (of_find_property(np_emif, "cs1-used", &len))
886 		dev_info->cs1_used = true;
887 
888 	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
889 		dev_info->cal_resistors_per_cs = true;
890 
891 	if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
892 		dev_info->type = DDR_TYPE_LPDDR2_S4;
893 	else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
894 		dev_info->type = DDR_TYPE_LPDDR2_S2;
895 
896 	of_property_read_u32(np_ddr, "density", &density);
897 	of_property_read_u32(np_ddr, "io-width", &io_width);
898 
899 	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
900 	if (density & (density - 1))
901 		dev_info->density = 0;
902 	else
903 		dev_info->density = __fls(density) - 5;
904 
905 	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
906 	if (io_width & (io_width - 1))
907 		dev_info->io_width = 0;
908 	else
909 		dev_info->io_width = __fls(io_width) - 1;
910 }
911 
912 static struct emif_data *of_get_memory_device_details(
913 		struct device_node *np_emif, struct device *dev)
914 {
915 	struct emif_data		*emif = NULL;
916 	struct ddr_device_info		*dev_info = NULL;
917 	struct emif_platform_data	*pd = NULL;
918 	struct device_node		*np_ddr;
919 	int				len;
920 
921 	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
922 	if (!np_ddr)
923 		goto error;
924 	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
925 	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
926 	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
927 
928 	if (!emif || !pd || !dev_info) {
929 		dev_err(dev, "%s: Out of memory!!\n",
930 			__func__);
931 		goto error;
932 	}
933 
934 	emif->plat_data		= pd;
935 	pd->device_info		= dev_info;
936 	emif->dev		= dev;
937 	emif->np_ddr		= np_ddr;
938 	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
939 
940 	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
941 		emif->plat_data->ip_rev = EMIF_4D;
942 	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
943 		emif->plat_data->ip_rev = EMIF_4D5;
944 
945 	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
946 
947 	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
948 		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
949 
950 	of_get_ddr_info(np_emif, np_ddr, dev_info);
951 	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
952 			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
953 			emif->dev)) {
954 		dev_err(dev, "%s: invalid device data!!\n", __func__);
955 		goto error;
956 	}
957 	/*
958 	 * For EMIF instances other than EMIF1 see if the devices connected
959 	 * are exactly same as on EMIF1(which is typically the case). If so,
960 	 * mark it as a duplicate of EMIF1. This will save some memory and
961 	 * computation.
962 	 */
963 	if (emif1 && emif1->np_ddr == np_ddr) {
964 		emif->duplicate = true;
965 		goto out;
966 	} else if (emif1) {
967 		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
968 			__func__);
969 	}
970 
971 	of_get_custom_configs(np_emif, emif);
972 	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
973 					emif->plat_data->device_info->type,
974 					&emif->plat_data->timings_arr_size);
975 
976 	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
977 	goto out;
978 
979 error:
980 	return NULL;
981 out:
982 	return emif;
983 }
984 
985 static struct emif_data *get_device_details(
986 		struct platform_device *pdev)
987 {
988 	u32				size;
989 	struct emif_data		*emif = NULL;
990 	struct ddr_device_info		*dev_info;
991 	struct emif_custom_configs	*cust_cfgs;
992 	struct emif_platform_data	*pd;
993 	struct device			*dev;
994 	void				*temp;
995 
996 	pd = pdev->dev.platform_data;
997 	dev = &pdev->dev;
998 
999 	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1000 			pd->device_info->density, pd->device_info->io_width,
1001 			pd->phy_type, pd->ip_rev, dev))) {
1002 		dev_err(dev, "%s: invalid device data\n", __func__);
1003 		goto error;
1004 	}
1005 
1006 	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1007 	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1008 	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1009 
1010 	if (!emif || !temp || !dev_info)
1011 		goto error;
1012 
1013 	memcpy(temp, pd, sizeof(*pd));
1014 	pd = temp;
1015 	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1016 
1017 	pd->device_info		= dev_info;
1018 	emif->plat_data		= pd;
1019 	emif->dev		= dev;
1020 	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1021 
1022 	/*
1023 	 * For EMIF instances other than EMIF1 see if the devices connected
1024 	 * are exactly same as on EMIF1(which is typically the case). If so,
1025 	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1026 	 * This will save some memory and some computation later.
1027 	 */
1028 	emif->duplicate = emif1 && (memcmp(dev_info,
1029 		emif1->plat_data->device_info,
1030 		sizeof(struct ddr_device_info)) == 0);
1031 
1032 	if (emif->duplicate) {
1033 		pd->timings = NULL;
1034 		pd->min_tck = NULL;
1035 		goto out;
1036 	} else if (emif1) {
1037 		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1038 			__func__);
1039 	}
1040 
1041 	/*
1042 	 * Copy custom configs - ignore allocation error, if any, as
1043 	 * custom_configs is not very critical
1044 	 */
1045 	cust_cfgs = pd->custom_configs;
1046 	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1047 		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1048 		if (temp)
1049 			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1050 		pd->custom_configs = temp;
1051 	}
1052 
1053 	/*
1054 	 * Copy timings and min-tck values from platform data. If it is not
1055 	 * available or if memory allocation fails, use JEDEC defaults
1056 	 */
1057 	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1058 	if (pd->timings) {
1059 		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1060 		if (temp) {
1061 			memcpy(temp, pd->timings, size);
1062 			pd->timings = temp;
1063 		} else {
1064 			get_default_timings(emif);
1065 		}
1066 	} else {
1067 		get_default_timings(emif);
1068 	}
1069 
1070 	if (pd->min_tck) {
1071 		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1072 		if (temp) {
1073 			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1074 			pd->min_tck = temp;
1075 		} else {
1076 			pd->min_tck = &lpddr2_jedec_min_tck;
1077 		}
1078 	} else {
1079 		pd->min_tck = &lpddr2_jedec_min_tck;
1080 	}
1081 
1082 out:
1083 	return emif;
1084 
1085 error:
1086 	return NULL;
1087 }
1088 
1089 static int emif_probe(struct platform_device *pdev)
1090 {
1091 	struct emif_data	*emif;
1092 	int			irq, ret;
1093 
1094 	if (pdev->dev.of_node)
1095 		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1096 	else
1097 		emif = get_device_details(pdev);
1098 
1099 	if (!emif) {
1100 		pr_err("%s: error getting device data\n", __func__);
1101 		goto error;
1102 	}
1103 
1104 	list_add(&emif->node, &device_list);
1105 
1106 	/* Save pointers to each other in emif and device structures */
1107 	emif->dev = &pdev->dev;
1108 	platform_set_drvdata(pdev, emif);
1109 
1110 	emif->base = devm_platform_ioremap_resource(pdev, 0);
1111 	if (IS_ERR(emif->base))
1112 		goto error;
1113 
1114 	irq = platform_get_irq(pdev, 0);
1115 	if (irq < 0)
1116 		goto error;
1117 
1118 	emif_onetime_settings(emif);
1119 	emif_debugfs_init(emif);
1120 	disable_and_clear_all_interrupts(emif);
1121 	ret = setup_interrupts(emif, irq);
1122 	if (ret)
1123 		goto error;
1124 
1125 	/* One-time actions taken on probing the first device */
1126 	if (!emif1) {
1127 		emif1 = emif;
1128 
1129 		/*
1130 		 * TODO: register notifiers for frequency and voltage
1131 		 * change here once the respective frameworks are
1132 		 * available
1133 		 */
1134 	}
1135 
1136 	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1137 		__func__, emif->base, irq);
1138 
1139 	return 0;
1140 error:
1141 	return -ENODEV;
1142 }
1143 
1144 static void emif_remove(struct platform_device *pdev)
1145 {
1146 	struct emif_data *emif = platform_get_drvdata(pdev);
1147 
1148 	emif_debugfs_exit(emif);
1149 }
1150 
1151 static void emif_shutdown(struct platform_device *pdev)
1152 {
1153 	struct emif_data	*emif = platform_get_drvdata(pdev);
1154 
1155 	disable_and_clear_all_interrupts(emif);
1156 }
1157 
1158 #if defined(CONFIG_OF)
1159 static const struct of_device_id emif_of_match[] = {
1160 		{ .compatible = "ti,emif-4d" },
1161 		{ .compatible = "ti,emif-4d5" },
1162 		{},
1163 };
1164 MODULE_DEVICE_TABLE(of, emif_of_match);
1165 #endif
1166 
1167 static struct platform_driver emif_driver = {
1168 	.probe		= emif_probe,
1169 	.remove_new	= emif_remove,
1170 	.shutdown	= emif_shutdown,
1171 	.driver = {
1172 		.name = "emif",
1173 		.of_match_table = of_match_ptr(emif_of_match),
1174 	},
1175 };
1176 
1177 module_platform_driver(emif_driver);
1178 
1179 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1180 MODULE_LICENSE("GPL");
1181 MODULE_ALIAS("platform:emif");
1182 MODULE_AUTHOR("Texas Instruments Inc");
1183