xref: /linux/drivers/memory/emif.c (revision 5294bac97e12bdabbb97e9adf44d388612a700b8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * EMIF driver
4  *
5  * Copyright (C) 2012 Texas Instruments, Inc.
6  *
7  * Aneesh V <aneesh@ti.com>
8  * Santosh Shilimkar <santosh.shilimkar@ti.com>
9  */
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/reboot.h>
13 #include <linux/platform_data/emif_plat.h>
14 #include <linux/io.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20 #include <linux/debugfs.h>
21 #include <linux/seq_file.h>
22 #include <linux/module.h>
23 #include <linux/list.h>
24 #include <linux/spinlock.h>
25 #include <linux/pm.h>
26 
27 #include "emif.h"
28 #include "jedec_ddr.h"
29 #include "of_memory.h"
30 
31 /**
32  * struct emif_data - Per device static data for driver's use
33  * @duplicate:			Whether the DDR devices attached to this EMIF
34  *				instance are exactly same as that on EMIF1. In
35  *				this case we can save some memory and processing
36  * @temperature_level:		Maximum temperature of LPDDR2 devices attached
37  *				to this EMIF - read from MR4 register. If there
38  *				are two devices attached to this EMIF, this
39  *				value is the maximum of the two temperature
40  *				levels.
41  * @node:			node in the device list
42  * @base:			base address of memory-mapped IO registers.
43  * @dev:			device pointer.
44  * @addressing			table with addressing information from the spec
45  * @regs_cache:			An array of 'struct emif_regs' that stores
46  *				calculated register values for different
47  *				frequencies, to avoid re-calculating them on
48  *				each DVFS transition.
49  * @curr_regs:			The set of register values used in the last
50  *				frequency change (i.e. corresponding to the
51  *				frequency in effect at the moment)
52  * @plat_data:			Pointer to saved platform data.
53  * @debugfs_root:		dentry to the root folder for EMIF in debugfs
54  * @np_ddr:			Pointer to ddr device tree node
55  */
56 struct emif_data {
57 	u8				duplicate;
58 	u8				temperature_level;
59 	u8				lpmode;
60 	struct list_head		node;
61 	unsigned long			irq_state;
62 	void __iomem			*base;
63 	struct device			*dev;
64 	const struct lpddr2_addressing	*addressing;
65 	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
66 	struct emif_regs		*curr_regs;
67 	struct emif_platform_data	*plat_data;
68 	struct dentry			*debugfs_root;
69 	struct device_node		*np_ddr;
70 };
71 
72 static struct emif_data *emif1;
73 static spinlock_t	emif_lock;
74 static unsigned long	irq_state;
75 static u32		t_ck; /* DDR clock period in ps */
76 static LIST_HEAD(device_list);
77 
78 #ifdef CONFIG_DEBUG_FS
79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
80 	struct emif_regs *regs)
81 {
82 	u32 type = emif->plat_data->device_info->type;
83 	u32 ip_rev = emif->plat_data->ip_rev;
84 
85 	seq_printf(s, "EMIF register cache dump for %dMHz\n",
86 		regs->freq/1000000);
87 
88 	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
89 	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
90 	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
91 	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
92 
93 	if (ip_rev == EMIF_4D) {
94 		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95 			regs->read_idle_ctrl_shdw_normal);
96 		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 			regs->read_idle_ctrl_shdw_volt_ramp);
98 	} else if (ip_rev == EMIF_4D5) {
99 		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100 			regs->dll_calib_ctrl_shdw_normal);
101 		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102 			regs->dll_calib_ctrl_shdw_volt_ramp);
103 	}
104 
105 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
106 		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107 			regs->ref_ctrl_shdw_derated);
108 		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109 			regs->sdram_tim1_shdw_derated);
110 		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111 			regs->sdram_tim3_shdw_derated);
112 	}
113 }
114 
115 static int emif_regdump_show(struct seq_file *s, void *unused)
116 {
117 	struct emif_data	*emif	= s->private;
118 	struct emif_regs	**regs_cache;
119 	int			i;
120 
121 	if (emif->duplicate)
122 		regs_cache = emif1->regs_cache;
123 	else
124 		regs_cache = emif->regs_cache;
125 
126 	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
127 		do_emif_regdump_show(s, emif, regs_cache[i]);
128 		seq_putc(s, '\n');
129 	}
130 
131 	return 0;
132 }
133 
134 static int emif_regdump_open(struct inode *inode, struct file *file)
135 {
136 	return single_open(file, emif_regdump_show, inode->i_private);
137 }
138 
139 static const struct file_operations emif_regdump_fops = {
140 	.open			= emif_regdump_open,
141 	.read			= seq_read,
142 	.release		= single_release,
143 };
144 
145 static int emif_mr4_show(struct seq_file *s, void *unused)
146 {
147 	struct emif_data *emif = s->private;
148 
149 	seq_printf(s, "MR4=%d\n", emif->temperature_level);
150 	return 0;
151 }
152 
153 static int emif_mr4_open(struct inode *inode, struct file *file)
154 {
155 	return single_open(file, emif_mr4_show, inode->i_private);
156 }
157 
158 static const struct file_operations emif_mr4_fops = {
159 	.open			= emif_mr4_open,
160 	.read			= seq_read,
161 	.release		= single_release,
162 };
163 
164 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
165 {
166 	struct dentry	*dentry;
167 	int		ret;
168 
169 	dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
170 	if (!dentry) {
171 		ret = -ENOMEM;
172 		goto err0;
173 	}
174 	emif->debugfs_root = dentry;
175 
176 	dentry = debugfs_create_file("regcache_dump", S_IRUGO,
177 			emif->debugfs_root, emif, &emif_regdump_fops);
178 	if (!dentry) {
179 		ret = -ENOMEM;
180 		goto err1;
181 	}
182 
183 	dentry = debugfs_create_file("mr4", S_IRUGO,
184 			emif->debugfs_root, emif, &emif_mr4_fops);
185 	if (!dentry) {
186 		ret = -ENOMEM;
187 		goto err1;
188 	}
189 
190 	return 0;
191 err1:
192 	debugfs_remove_recursive(emif->debugfs_root);
193 err0:
194 	return ret;
195 }
196 
197 static void __exit emif_debugfs_exit(struct emif_data *emif)
198 {
199 	debugfs_remove_recursive(emif->debugfs_root);
200 	emif->debugfs_root = NULL;
201 }
202 #else
203 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
204 {
205 	return 0;
206 }
207 
208 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
209 {
210 }
211 #endif
212 
213 /*
214  * Calculate the period of DDR clock from frequency value
215  */
216 static void set_ddr_clk_period(u32 freq)
217 {
218 	/* Divide 10^12 by frequency to get period in ps */
219 	t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
220 }
221 
222 /*
223  * Get bus width used by EMIF. Note that this may be different from the
224  * bus width of the DDR devices used. For instance two 16-bit DDR devices
225  * may be connected to a given CS of EMIF. In this case bus width as far
226  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
227  */
228 static u32 get_emif_bus_width(struct emif_data *emif)
229 {
230 	u32		width;
231 	void __iomem	*base = emif->base;
232 
233 	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
234 			>> NARROW_MODE_SHIFT;
235 	width = width == 0 ? 32 : 16;
236 
237 	return width;
238 }
239 
240 /*
241  * Get the CL from SDRAM_CONFIG register
242  */
243 static u32 get_cl(struct emif_data *emif)
244 {
245 	u32		cl;
246 	void __iomem	*base = emif->base;
247 
248 	cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
249 
250 	return cl;
251 }
252 
253 static void set_lpmode(struct emif_data *emif, u8 lpmode)
254 {
255 	u32 temp;
256 	void __iomem *base = emif->base;
257 
258 	/*
259 	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
260 	 * Efficient
261 	 *
262 	 * i743 DESCRIPTION:
263 	 * The EMIF supports power-down state for low power. The EMIF
264 	 * automatically puts the SDRAM into power-down after the memory is
265 	 * not accessed for a defined number of cycles and the
266 	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
267 	 * As the EMIF supports automatic output impedance calibration, a ZQ
268 	 * calibration long command is issued every time it exits active
269 	 * power-down and precharge power-down modes. The EMIF waits and
270 	 * blocks any other command during this calibration.
271 	 * The EMIF does not allow selective disabling of ZQ calibration upon
272 	 * exit of power-down mode. Due to very short periods of power-down
273 	 * cycles, ZQ calibration overhead creates bandwidth issues and
274 	 * increases overall system power consumption. On the other hand,
275 	 * issuing ZQ calibration long commands when exiting self-refresh is
276 	 * still required.
277 	 *
278 	 * WORKAROUND
279 	 * Because there is no power consumption benefit of the power-down due
280 	 * to the calibration and there is a performance risk, the guideline
281 	 * is to not allow power-down state and, therefore, to not have set
282 	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
283 	 */
284 	if ((emif->plat_data->ip_rev == EMIF_4D) &&
285 	    (lpmode == EMIF_LP_MODE_PWR_DN)) {
286 		WARN_ONCE(1,
287 			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
288 		/* rollback LP_MODE to Self-refresh mode */
289 		lpmode = EMIF_LP_MODE_SELF_REFRESH;
290 	}
291 
292 	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
293 	temp &= ~LP_MODE_MASK;
294 	temp |= (lpmode << LP_MODE_SHIFT);
295 	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
296 }
297 
298 static void do_freq_update(void)
299 {
300 	struct emif_data *emif;
301 
302 	/*
303 	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
304 	 *
305 	 * i728 DESCRIPTION:
306 	 * The EMIF automatically puts the SDRAM into self-refresh mode
307 	 * after the EMIF has not performed accesses during
308 	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
309 	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
310 	 * to 0x2. If during a small window the following three events
311 	 * occur:
312 	 * - The SR_TIMING counter expires
313 	 * - And frequency change is requested
314 	 * - And OCP access is requested
315 	 * Then it causes instable clock on the DDR interface.
316 	 *
317 	 * WORKAROUND
318 	 * To avoid the occurrence of the three events, the workaround
319 	 * is to disable the self-refresh when requesting a frequency
320 	 * change. Before requesting a frequency change the software must
321 	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
322 	 * frequency change has been done, the software can reprogram
323 	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
324 	 */
325 	list_for_each_entry(emif, &device_list, node) {
326 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
327 			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
328 	}
329 
330 	/*
331 	 * TODO: Do FREQ_UPDATE here when an API
332 	 * is available for this as part of the new
333 	 * clock framework
334 	 */
335 
336 	list_for_each_entry(emif, &device_list, node) {
337 		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
338 			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
339 	}
340 }
341 
342 /* Find addressing table entry based on the device's type and density */
343 static const struct lpddr2_addressing *get_addressing_table(
344 	const struct ddr_device_info *device_info)
345 {
346 	u32		index, type, density;
347 
348 	type = device_info->type;
349 	density = device_info->density;
350 
351 	switch (type) {
352 	case DDR_TYPE_LPDDR2_S4:
353 		index = density - 1;
354 		break;
355 	case DDR_TYPE_LPDDR2_S2:
356 		switch (density) {
357 		case DDR_DENSITY_1Gb:
358 		case DDR_DENSITY_2Gb:
359 			index = density + 3;
360 			break;
361 		default:
362 			index = density - 1;
363 		}
364 		break;
365 	default:
366 		return NULL;
367 	}
368 
369 	return &lpddr2_jedec_addressing_table[index];
370 }
371 
372 /*
373  * Find the the right timing table from the array of timing
374  * tables of the device using DDR clock frequency
375  */
376 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
377 		u32 freq)
378 {
379 	u32				i, min, max, freq_nearest;
380 	const struct lpddr2_timings	*timings = NULL;
381 	const struct lpddr2_timings	*timings_arr = emif->plat_data->timings;
382 	struct				device *dev = emif->dev;
383 
384 	/* Start with a very high frequency - 1GHz */
385 	freq_nearest = 1000000000;
386 
387 	/*
388 	 * Find the timings table such that:
389 	 *  1. the frequency range covers the required frequency(safe) AND
390 	 *  2. the max_freq is closest to the required frequency(optimal)
391 	 */
392 	for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
393 		max = timings_arr[i].max_freq;
394 		min = timings_arr[i].min_freq;
395 		if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
396 			freq_nearest = max;
397 			timings = &timings_arr[i];
398 		}
399 	}
400 
401 	if (!timings)
402 		dev_err(dev, "%s: couldn't find timings for - %dHz\n",
403 			__func__, freq);
404 
405 	dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
406 		__func__, freq, freq_nearest);
407 
408 	return timings;
409 }
410 
411 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
412 		const struct lpddr2_addressing *addressing)
413 {
414 	u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
415 
416 	/* Scale down frequency and t_refi to avoid overflow */
417 	freq_khz = freq / 1000;
418 	t_refi = addressing->tREFI_ns / 100;
419 
420 	/*
421 	 * refresh rate to be set is 'tREFI(in us) * freq in MHz
422 	 * division by 10000 to account for change in units
423 	 */
424 	val = t_refi * freq_khz / 10000;
425 	ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
426 
427 	return ref_ctrl_shdw;
428 }
429 
430 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
431 		const struct lpddr2_min_tck *min_tck,
432 		const struct lpddr2_addressing *addressing)
433 {
434 	u32 tim1 = 0, val = 0;
435 
436 	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
437 	tim1 |= val << T_WTR_SHIFT;
438 
439 	if (addressing->num_banks == B8)
440 		val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
441 	else
442 		val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
443 	tim1 |= (val - 1) << T_RRD_SHIFT;
444 
445 	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
446 	tim1 |= val << T_RC_SHIFT;
447 
448 	val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
449 	tim1 |= (val - 1) << T_RAS_SHIFT;
450 
451 	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
452 	tim1 |= val << T_WR_SHIFT;
453 
454 	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
455 	tim1 |= val << T_RCD_SHIFT;
456 
457 	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
458 	tim1 |= val << T_RP_SHIFT;
459 
460 	return tim1;
461 }
462 
463 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
464 		const struct lpddr2_min_tck *min_tck,
465 		const struct lpddr2_addressing *addressing)
466 {
467 	u32 tim1 = 0, val = 0;
468 
469 	val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
470 	tim1 = val << T_WTR_SHIFT;
471 
472 	/*
473 	 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
474 	 * to tFAW for de-rating
475 	 */
476 	if (addressing->num_banks == B8) {
477 		val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
478 	} else {
479 		val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
480 		val = max(min_tck->tRRD, val) - 1;
481 	}
482 	tim1 |= val << T_RRD_SHIFT;
483 
484 	val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
485 	tim1 |= (val - 1) << T_RC_SHIFT;
486 
487 	val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
488 	val = max(min_tck->tRASmin, val) - 1;
489 	tim1 |= val << T_RAS_SHIFT;
490 
491 	val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
492 	tim1 |= val << T_WR_SHIFT;
493 
494 	val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
495 	tim1 |= (val - 1) << T_RCD_SHIFT;
496 
497 	val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
498 	tim1 |= (val - 1) << T_RP_SHIFT;
499 
500 	return tim1;
501 }
502 
503 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
504 		const struct lpddr2_min_tck *min_tck,
505 		const struct lpddr2_addressing *addressing,
506 		u32 type)
507 {
508 	u32 tim2 = 0, val = 0;
509 
510 	val = min_tck->tCKE - 1;
511 	tim2 |= val << T_CKE_SHIFT;
512 
513 	val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
514 	tim2 |= val << T_RTP_SHIFT;
515 
516 	/* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
517 	val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
518 	tim2 |= val << T_XSNR_SHIFT;
519 
520 	/* XSRD same as XSNR for LPDDR2 */
521 	tim2 |= val << T_XSRD_SHIFT;
522 
523 	val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
524 	tim2 |= val << T_XP_SHIFT;
525 
526 	return tim2;
527 }
528 
529 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
530 		const struct lpddr2_min_tck *min_tck,
531 		const struct lpddr2_addressing *addressing,
532 		u32 type, u32 ip_rev, u32 derated)
533 {
534 	u32 tim3 = 0, val = 0, t_dqsck;
535 
536 	val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
537 	val = val > 0xF ? 0xF : val;
538 	tim3 |= val << T_RAS_MAX_SHIFT;
539 
540 	val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
541 	tim3 |= val << T_RFC_SHIFT;
542 
543 	t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
544 		timings->tDQSCK_max_derated : timings->tDQSCK_max;
545 	if (ip_rev == EMIF_4D5)
546 		val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
547 	else
548 		val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
549 
550 	tim3 |= val << T_TDQSCKMAX_SHIFT;
551 
552 	val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
553 	tim3 |= val << ZQ_ZQCS_SHIFT;
554 
555 	val = DIV_ROUND_UP(timings->tCKESR, t_ck);
556 	val = max(min_tck->tCKESR, val) - 1;
557 	tim3 |= val << T_CKESR_SHIFT;
558 
559 	if (ip_rev == EMIF_4D5) {
560 		tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
561 
562 		val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
563 		tim3 |= val << T_PDLL_UL_SHIFT;
564 	}
565 
566 	return tim3;
567 }
568 
569 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
570 		bool cs1_used, bool cal_resistors_per_cs)
571 {
572 	u32 zq = 0, val = 0;
573 
574 	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
575 	zq |= val << ZQ_REFINTERVAL_SHIFT;
576 
577 	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
578 	zq |= val << ZQ_ZQCL_MULT_SHIFT;
579 
580 	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
581 	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
582 
583 	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
584 
585 	if (cal_resistors_per_cs)
586 		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
587 	else
588 		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
589 
590 	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
591 
592 	val = cs1_used ? 1 : 0;
593 	zq |= val << ZQ_CS1EN_SHIFT;
594 
595 	return zq;
596 }
597 
598 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
599 		const struct emif_custom_configs *custom_configs, bool cs1_used,
600 		u32 sdram_io_width, u32 emif_bus_width)
601 {
602 	u32 alert = 0, interval, devcnt;
603 
604 	if (custom_configs && (custom_configs->mask &
605 				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
606 		interval = custom_configs->temp_alert_poll_interval_ms;
607 	else
608 		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
609 
610 	interval *= 1000000;			/* Convert to ns */
611 	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
612 	alert |= (interval << TA_REFINTERVAL_SHIFT);
613 
614 	/*
615 	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
616 	 * also to this form and subtract to get TA_DEVCNT, which is
617 	 * in log2(x) form.
618 	 */
619 	emif_bus_width = __fls(emif_bus_width) - 1;
620 	devcnt = emif_bus_width - sdram_io_width;
621 	alert |= devcnt << TA_DEVCNT_SHIFT;
622 
623 	/* DEVWDT is in 'log2(x) - 3' form */
624 	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
625 
626 	alert |= 1 << TA_SFEXITEN_SHIFT;
627 	alert |= 1 << TA_CS0EN_SHIFT;
628 	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
629 
630 	return alert;
631 }
632 
633 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
634 {
635 	u32 idle = 0, val = 0;
636 
637 	/*
638 	 * Maximum value in normal conditions and increased frequency
639 	 * when voltage is ramping
640 	 */
641 	if (volt_ramp)
642 		val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
643 	else
644 		val = 0x1FF;
645 
646 	/*
647 	 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
648 	 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
649 	 */
650 	idle |= val << DLL_CALIB_INTERVAL_SHIFT;
651 	idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
652 
653 	return idle;
654 }
655 
656 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
657 {
658 	u32 calib = 0, val = 0;
659 
660 	if (volt_ramp == DDR_VOLTAGE_RAMPING)
661 		val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
662 	else
663 		val = 0; /* Disabled when voltage is stable */
664 
665 	calib |= val << DLL_CALIB_INTERVAL_SHIFT;
666 	calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
667 
668 	return calib;
669 }
670 
671 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
672 	u32 freq, u8 RL)
673 {
674 	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
675 
676 	val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
677 	phy |= val << READ_LATENCY_SHIFT_4D;
678 
679 	if (freq <= 100000000)
680 		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
681 	else if (freq <= 200000000)
682 		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
683 	else
684 		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
685 
686 	phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
687 
688 	return phy;
689 }
690 
691 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
692 {
693 	u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
694 
695 	/*
696 	 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
697 	 * half-delay is not needed else set half-delay
698 	 */
699 	if (freq >= 265000000 && freq < 267000000)
700 		half_delay = 0;
701 	else
702 		half_delay = 1;
703 
704 	phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
705 	phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
706 			t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
707 
708 	return phy;
709 }
710 
711 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
712 {
713 	u32 fifo_we_slave_ratio;
714 
715 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
716 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
717 
718 	return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
719 		fifo_we_slave_ratio << 22;
720 }
721 
722 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
723 {
724 	u32 fifo_we_slave_ratio;
725 
726 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
727 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
728 
729 	return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
730 		fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
731 }
732 
733 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
734 {
735 	u32 fifo_we_slave_ratio;
736 
737 	fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
738 		EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
739 
740 	return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
741 		fifo_we_slave_ratio << 13;
742 }
743 
744 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
745 {
746 	u32 pwr_mgmt_ctrl	= 0, timeout;
747 	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
748 	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
749 	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
750 	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
751 	u32 mask;
752 	u8 shift;
753 
754 	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
755 
756 	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
757 		lpmode		= cust_cfgs->lpmode;
758 		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
759 		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
760 		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
761 	}
762 
763 	/* Timeout based on DDR frequency */
764 	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
765 
766 	/*
767 	 * The value to be set in register is "log2(timeout) - 3"
768 	 * if timeout < 16 load 0 in register
769 	 * if timeout is not a power of 2, round to next highest power of 2
770 	 */
771 	if (timeout < 16) {
772 		timeout = 0;
773 	} else {
774 		if (timeout & (timeout - 1))
775 			timeout <<= 1;
776 		timeout = __fls(timeout) - 3;
777 	}
778 
779 	switch (lpmode) {
780 	case EMIF_LP_MODE_CLOCK_STOP:
781 		shift = CS_TIM_SHIFT;
782 		mask = CS_TIM_MASK;
783 		break;
784 	case EMIF_LP_MODE_SELF_REFRESH:
785 		/* Workaround for errata i735 */
786 		if (timeout < 6)
787 			timeout = 6;
788 
789 		shift = SR_TIM_SHIFT;
790 		mask = SR_TIM_MASK;
791 		break;
792 	case EMIF_LP_MODE_PWR_DN:
793 		shift = PD_TIM_SHIFT;
794 		mask = PD_TIM_MASK;
795 		break;
796 	case EMIF_LP_MODE_DISABLE:
797 	default:
798 		mask = 0;
799 		shift = 0;
800 		break;
801 	}
802 	/* Round to maximum in case of overflow, BUT warn! */
803 	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
804 		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
805 		       lpmode,
806 		       timeout_perf,
807 		       timeout_pwr,
808 		       freq_threshold);
809 		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
810 		     timeout, mask >> shift);
811 		timeout = mask >> shift;
812 	}
813 
814 	/* Setup required timing */
815 	pwr_mgmt_ctrl = (timeout << shift) & mask;
816 	/* setup a default mask for rest of the modes */
817 	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
818 			  ~mask;
819 
820 	/* No CS_TIM in EMIF_4D5 */
821 	if (ip_rev == EMIF_4D5)
822 		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
823 
824 	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
825 
826 	return pwr_mgmt_ctrl;
827 }
828 
829 /*
830  * Get the temperature level of the EMIF instance:
831  * Reads the MR4 register of attached SDRAM parts to find out the temperature
832  * level. If there are two parts attached(one on each CS), then the temperature
833  * level for the EMIF instance is the higher of the two temperatures.
834  */
835 static void get_temperature_level(struct emif_data *emif)
836 {
837 	u32		temp, temperature_level;
838 	void __iomem	*base;
839 
840 	base = emif->base;
841 
842 	/* Read mode register 4 */
843 	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
844 	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
845 	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
846 				MR4_SDRAM_REF_RATE_SHIFT;
847 
848 	if (emif->plat_data->device_info->cs1_used) {
849 		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
850 		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
851 		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
852 				>> MR4_SDRAM_REF_RATE_SHIFT;
853 		temperature_level = max(temp, temperature_level);
854 	}
855 
856 	/* treat everything less than nominal(3) in MR4 as nominal */
857 	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
858 		temperature_level = SDRAM_TEMP_NOMINAL;
859 
860 	/* if we get reserved value in MR4 persist with the existing value */
861 	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
862 		emif->temperature_level = temperature_level;
863 }
864 
865 /*
866  * Program EMIF shadow registers that are not dependent on temperature
867  * or voltage
868  */
869 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
870 {
871 	void __iomem	*base = emif->base;
872 
873 	writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
874 	writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
875 	writel(regs->pwr_mgmt_ctrl_shdw,
876 	       base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
877 
878 	/* Settings specific for EMIF4D5 */
879 	if (emif->plat_data->ip_rev != EMIF_4D5)
880 		return;
881 	writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
882 	writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
883 	writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
884 }
885 
886 /*
887  * When voltage ramps dll calibration and forced read idle should
888  * happen more often
889  */
890 static void setup_volt_sensitive_regs(struct emif_data *emif,
891 		struct emif_regs *regs, u32 volt_state)
892 {
893 	u32		calib_ctrl;
894 	void __iomem	*base = emif->base;
895 
896 	/*
897 	 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
898 	 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
899 	 * is an alias of the respective read_idle_ctrl_shdw_* (members of
900 	 * a union). So, the below code takes care of both cases
901 	 */
902 	if (volt_state == DDR_VOLTAGE_RAMPING)
903 		calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
904 	else
905 		calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
906 
907 	writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
908 }
909 
910 /*
911  * setup_temperature_sensitive_regs() - set the timings for temperature
912  * sensitive registers. This happens once at initialisation time based
913  * on the temperature at boot time and subsequently based on the temperature
914  * alert interrupt. Temperature alert can happen when the temperature
915  * increases or drops. So this function can have the effect of either
916  * derating the timings or going back to nominal values.
917  */
918 static void setup_temperature_sensitive_regs(struct emif_data *emif,
919 		struct emif_regs *regs)
920 {
921 	u32		tim1, tim3, ref_ctrl, type;
922 	void __iomem	*base = emif->base;
923 	u32		temperature;
924 
925 	type = emif->plat_data->device_info->type;
926 
927 	tim1 = regs->sdram_tim1_shdw;
928 	tim3 = regs->sdram_tim3_shdw;
929 	ref_ctrl = regs->ref_ctrl_shdw;
930 
931 	/* No de-rating for non-lpddr2 devices */
932 	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
933 		goto out;
934 
935 	temperature = emif->temperature_level;
936 	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
937 		ref_ctrl = regs->ref_ctrl_shdw_derated;
938 	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
939 		tim1 = regs->sdram_tim1_shdw_derated;
940 		tim3 = regs->sdram_tim3_shdw_derated;
941 		ref_ctrl = regs->ref_ctrl_shdw_derated;
942 	}
943 
944 out:
945 	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
946 	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
947 	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
948 }
949 
950 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
951 {
952 	u32		old_temp_level;
953 	irqreturn_t	ret = IRQ_HANDLED;
954 	struct emif_custom_configs *custom_configs;
955 
956 	spin_lock_irqsave(&emif_lock, irq_state);
957 	old_temp_level = emif->temperature_level;
958 	get_temperature_level(emif);
959 
960 	if (unlikely(emif->temperature_level == old_temp_level)) {
961 		goto out;
962 	} else if (!emif->curr_regs) {
963 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
964 		goto out;
965 	}
966 
967 	custom_configs = emif->plat_data->custom_configs;
968 
969 	/*
970 	 * IF we detect higher than "nominal rating" from DDR sensor
971 	 * on an unsupported DDR part, shutdown system
972 	 */
973 	if (custom_configs && !(custom_configs->mask &
974 				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
975 		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
976 			dev_err(emif->dev,
977 				"%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
978 				__func__, emif->temperature_level);
979 			/*
980 			 * Temperature far too high - do kernel_power_off()
981 			 * from thread context
982 			 */
983 			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
984 			ret = IRQ_WAKE_THREAD;
985 			goto out;
986 		}
987 	}
988 
989 	if (emif->temperature_level < old_temp_level ||
990 		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
991 		/*
992 		 * Temperature coming down - defer handling to thread OR
993 		 * Temperature far too high - do kernel_power_off() from
994 		 * thread context
995 		 */
996 		ret = IRQ_WAKE_THREAD;
997 	} else {
998 		/* Temperature is going up - handle immediately */
999 		setup_temperature_sensitive_regs(emif, emif->curr_regs);
1000 		do_freq_update();
1001 	}
1002 
1003 out:
1004 	spin_unlock_irqrestore(&emif_lock, irq_state);
1005 	return ret;
1006 }
1007 
1008 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1009 {
1010 	u32			interrupts;
1011 	struct emif_data	*emif = dev_id;
1012 	void __iomem		*base = emif->base;
1013 	struct device		*dev = emif->dev;
1014 	irqreturn_t		ret = IRQ_HANDLED;
1015 
1016 	/* Save the status and clear it */
1017 	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1018 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1019 
1020 	/*
1021 	 * Handle temperature alert
1022 	 * Temperature alert should be same for all ports
1023 	 * So, it's enough to process it only for one of the ports
1024 	 */
1025 	if (interrupts & TA_SYS_MASK)
1026 		ret = handle_temp_alert(base, emif);
1027 
1028 	if (interrupts & ERR_SYS_MASK)
1029 		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1030 
1031 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1032 		/* Save the status and clear it */
1033 		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1034 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1035 
1036 		if (interrupts & ERR_LL_MASK)
1037 			dev_err(dev, "Access error from LL port - %x\n",
1038 				interrupts);
1039 	}
1040 
1041 	return ret;
1042 }
1043 
1044 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1045 {
1046 	struct emif_data	*emif = dev_id;
1047 
1048 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1049 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1050 
1051 		/* If we have Power OFF ability, use it, else try restarting */
1052 		if (pm_power_off) {
1053 			kernel_power_off();
1054 		} else {
1055 			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1056 			kernel_restart("SDRAM Over-temp Emergency restart");
1057 		}
1058 		return IRQ_HANDLED;
1059 	}
1060 
1061 	spin_lock_irqsave(&emif_lock, irq_state);
1062 
1063 	if (emif->curr_regs) {
1064 		setup_temperature_sensitive_regs(emif, emif->curr_regs);
1065 		do_freq_update();
1066 	} else {
1067 		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1068 	}
1069 
1070 	spin_unlock_irqrestore(&emif_lock, irq_state);
1071 
1072 	return IRQ_HANDLED;
1073 }
1074 
1075 static void clear_all_interrupts(struct emif_data *emif)
1076 {
1077 	void __iomem	*base = emif->base;
1078 
1079 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1080 		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1081 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1082 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1083 			base + EMIF_LL_OCP_INTERRUPT_STATUS);
1084 }
1085 
1086 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1087 {
1088 	void __iomem		*base = emif->base;
1089 
1090 	/* Disable all interrupts */
1091 	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1092 		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1093 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1094 		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1095 			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1096 
1097 	/* Clear all interrupts */
1098 	clear_all_interrupts(emif);
1099 }
1100 
1101 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1102 {
1103 	u32		interrupts, type;
1104 	void __iomem	*base = emif->base;
1105 
1106 	type = emif->plat_data->device_info->type;
1107 
1108 	clear_all_interrupts(emif);
1109 
1110 	/* Enable interrupts for SYS interface */
1111 	interrupts = EN_ERR_SYS_MASK;
1112 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1113 		interrupts |= EN_TA_SYS_MASK;
1114 	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1115 
1116 	/* Enable interrupts for LL interface */
1117 	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1118 		/* TA need not be enabled for LL */
1119 		interrupts = EN_ERR_LL_MASK;
1120 		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1121 	}
1122 
1123 	/* setup IRQ handlers */
1124 	return devm_request_threaded_irq(emif->dev, irq,
1125 				    emif_interrupt_handler,
1126 				    emif_threaded_isr,
1127 				    0, dev_name(emif->dev),
1128 				    emif);
1129 
1130 }
1131 
1132 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1133 {
1134 	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
1135 	void __iomem			*base = emif->base;
1136 	const struct lpddr2_addressing	*addressing;
1137 	const struct ddr_device_info	*device_info;
1138 
1139 	device_info = emif->plat_data->device_info;
1140 	addressing = get_addressing_table(device_info);
1141 
1142 	/*
1143 	 * Init power management settings
1144 	 * We don't know the frequency yet. Use a high frequency
1145 	 * value for a conservative timeout setting
1146 	 */
1147 	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1148 			emif->plat_data->ip_rev);
1149 	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1150 	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1151 
1152 	/* Init ZQ calibration settings */
1153 	zq = get_zq_config_reg(addressing, device_info->cs1_used,
1154 		device_info->cal_resistors_per_cs);
1155 	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1156 
1157 	/* Check temperature level temperature level*/
1158 	get_temperature_level(emif);
1159 	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1160 		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1161 
1162 	/* Init temperature polling */
1163 	temp_alert_cfg = get_temp_alert_config(addressing,
1164 		emif->plat_data->custom_configs, device_info->cs1_used,
1165 		device_info->io_width, get_emif_bus_width(emif));
1166 	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1167 
1168 	/*
1169 	 * Program external PHY control registers that are not frequency
1170 	 * dependent
1171 	 */
1172 	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1173 		return;
1174 	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1175 	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1176 	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1177 	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1178 	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1179 	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1180 	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1181 	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1182 	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1183 	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1184 	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1185 	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1186 	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1187 	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1188 	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1189 	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1190 	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1191 	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1192 	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1193 	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1194 	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1195 }
1196 
1197 static void get_default_timings(struct emif_data *emif)
1198 {
1199 	struct emif_platform_data *pd = emif->plat_data;
1200 
1201 	pd->timings		= lpddr2_jedec_timings;
1202 	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
1203 
1204 	dev_warn(emif->dev, "%s: using default timings\n", __func__);
1205 }
1206 
1207 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1208 		u32 ip_rev, struct device *dev)
1209 {
1210 	int valid;
1211 
1212 	valid = (type == DDR_TYPE_LPDDR2_S4 ||
1213 			type == DDR_TYPE_LPDDR2_S2)
1214 		&& (density >= DDR_DENSITY_64Mb
1215 			&& density <= DDR_DENSITY_8Gb)
1216 		&& (io_width >= DDR_IO_WIDTH_8
1217 			&& io_width <= DDR_IO_WIDTH_32);
1218 
1219 	/* Combinations of EMIF and PHY revisions that we support today */
1220 	switch (ip_rev) {
1221 	case EMIF_4D:
1222 		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1223 		break;
1224 	case EMIF_4D5:
1225 		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1226 		break;
1227 	default:
1228 		valid = 0;
1229 	}
1230 
1231 	if (!valid)
1232 		dev_err(dev, "%s: invalid DDR details\n", __func__);
1233 	return valid;
1234 }
1235 
1236 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1237 		struct device *dev)
1238 {
1239 	int valid = 1;
1240 
1241 	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1242 		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1243 		valid = cust_cfgs->lpmode_freq_threshold &&
1244 			cust_cfgs->lpmode_timeout_performance &&
1245 			cust_cfgs->lpmode_timeout_power;
1246 
1247 	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1248 		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1249 
1250 	if (!valid)
1251 		dev_warn(dev, "%s: invalid custom configs\n", __func__);
1252 
1253 	return valid;
1254 }
1255 
1256 #if defined(CONFIG_OF)
1257 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1258 		struct emif_data *emif)
1259 {
1260 	struct emif_custom_configs	*cust_cfgs = NULL;
1261 	int				len;
1262 	const __be32			*lpmode, *poll_intvl;
1263 
1264 	lpmode = of_get_property(np_emif, "low-power-mode", &len);
1265 	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1266 
1267 	if (lpmode || poll_intvl)
1268 		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1269 			GFP_KERNEL);
1270 
1271 	if (!cust_cfgs)
1272 		return;
1273 
1274 	if (lpmode) {
1275 		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1276 		cust_cfgs->lpmode = be32_to_cpup(lpmode);
1277 		of_property_read_u32(np_emif,
1278 				"low-power-mode-timeout-performance",
1279 				&cust_cfgs->lpmode_timeout_performance);
1280 		of_property_read_u32(np_emif,
1281 				"low-power-mode-timeout-power",
1282 				&cust_cfgs->lpmode_timeout_power);
1283 		of_property_read_u32(np_emif,
1284 				"low-power-mode-freq-threshold",
1285 				&cust_cfgs->lpmode_freq_threshold);
1286 	}
1287 
1288 	if (poll_intvl) {
1289 		cust_cfgs->mask |=
1290 				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1291 		cust_cfgs->temp_alert_poll_interval_ms =
1292 						be32_to_cpup(poll_intvl);
1293 	}
1294 
1295 	if (of_find_property(np_emif, "extended-temp-part", &len))
1296 		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1297 
1298 	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1299 		devm_kfree(emif->dev, cust_cfgs);
1300 		return;
1301 	}
1302 
1303 	emif->plat_data->custom_configs = cust_cfgs;
1304 }
1305 
1306 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1307 		struct device_node *np_ddr,
1308 		struct ddr_device_info *dev_info)
1309 {
1310 	u32 density = 0, io_width = 0;
1311 	int len;
1312 
1313 	if (of_find_property(np_emif, "cs1-used", &len))
1314 		dev_info->cs1_used = true;
1315 
1316 	if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1317 		dev_info->cal_resistors_per_cs = true;
1318 
1319 	if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
1320 		dev_info->type = DDR_TYPE_LPDDR2_S4;
1321 	else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
1322 		dev_info->type = DDR_TYPE_LPDDR2_S2;
1323 
1324 	of_property_read_u32(np_ddr, "density", &density);
1325 	of_property_read_u32(np_ddr, "io-width", &io_width);
1326 
1327 	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
1328 	if (density & (density - 1))
1329 		dev_info->density = 0;
1330 	else
1331 		dev_info->density = __fls(density) - 5;
1332 
1333 	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1334 	if (io_width & (io_width - 1))
1335 		dev_info->io_width = 0;
1336 	else
1337 		dev_info->io_width = __fls(io_width) - 1;
1338 }
1339 
1340 static struct emif_data * __init_or_module of_get_memory_device_details(
1341 		struct device_node *np_emif, struct device *dev)
1342 {
1343 	struct emif_data		*emif = NULL;
1344 	struct ddr_device_info		*dev_info = NULL;
1345 	struct emif_platform_data	*pd = NULL;
1346 	struct device_node		*np_ddr;
1347 	int				len;
1348 
1349 	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1350 	if (!np_ddr)
1351 		goto error;
1352 	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1353 	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1354 	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1355 
1356 	if (!emif || !pd || !dev_info) {
1357 		dev_err(dev, "%s: Out of memory!!\n",
1358 			__func__);
1359 		goto error;
1360 	}
1361 
1362 	emif->plat_data		= pd;
1363 	pd->device_info		= dev_info;
1364 	emif->dev		= dev;
1365 	emif->np_ddr		= np_ddr;
1366 	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1367 
1368 	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1369 		emif->plat_data->ip_rev = EMIF_4D;
1370 	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1371 		emif->plat_data->ip_rev = EMIF_4D5;
1372 
1373 	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1374 
1375 	if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1376 		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1377 
1378 	of_get_ddr_info(np_emif, np_ddr, dev_info);
1379 	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1380 			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1381 			emif->dev)) {
1382 		dev_err(dev, "%s: invalid device data!!\n", __func__);
1383 		goto error;
1384 	}
1385 	/*
1386 	 * For EMIF instances other than EMIF1 see if the devices connected
1387 	 * are exactly same as on EMIF1(which is typically the case). If so,
1388 	 * mark it as a duplicate of EMIF1. This will save some memory and
1389 	 * computation.
1390 	 */
1391 	if (emif1 && emif1->np_ddr == np_ddr) {
1392 		emif->duplicate = true;
1393 		goto out;
1394 	} else if (emif1) {
1395 		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1396 			__func__);
1397 	}
1398 
1399 	of_get_custom_configs(np_emif, emif);
1400 	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1401 					emif->plat_data->device_info->type,
1402 					&emif->plat_data->timings_arr_size);
1403 
1404 	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1405 	goto out;
1406 
1407 error:
1408 	return NULL;
1409 out:
1410 	return emif;
1411 }
1412 
1413 #else
1414 
1415 static struct emif_data * __init_or_module of_get_memory_device_details(
1416 		struct device_node *np_emif, struct device *dev)
1417 {
1418 	return NULL;
1419 }
1420 #endif
1421 
1422 static struct emif_data *__init_or_module get_device_details(
1423 		struct platform_device *pdev)
1424 {
1425 	u32				size;
1426 	struct emif_data		*emif = NULL;
1427 	struct ddr_device_info		*dev_info;
1428 	struct emif_custom_configs	*cust_cfgs;
1429 	struct emif_platform_data	*pd;
1430 	struct device			*dev;
1431 	void				*temp;
1432 
1433 	pd = pdev->dev.platform_data;
1434 	dev = &pdev->dev;
1435 
1436 	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1437 			pd->device_info->density, pd->device_info->io_width,
1438 			pd->phy_type, pd->ip_rev, dev))) {
1439 		dev_err(dev, "%s: invalid device data\n", __func__);
1440 		goto error;
1441 	}
1442 
1443 	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1444 	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1445 	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1446 
1447 	if (!emif || !pd || !dev_info) {
1448 		dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1449 		goto error;
1450 	}
1451 
1452 	memcpy(temp, pd, sizeof(*pd));
1453 	pd = temp;
1454 	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1455 
1456 	pd->device_info		= dev_info;
1457 	emif->plat_data		= pd;
1458 	emif->dev		= dev;
1459 	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1460 
1461 	/*
1462 	 * For EMIF instances other than EMIF1 see if the devices connected
1463 	 * are exactly same as on EMIF1(which is typically the case). If so,
1464 	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1465 	 * This will save some memory and some computation later.
1466 	 */
1467 	emif->duplicate = emif1 && (memcmp(dev_info,
1468 		emif1->plat_data->device_info,
1469 		sizeof(struct ddr_device_info)) == 0);
1470 
1471 	if (emif->duplicate) {
1472 		pd->timings = NULL;
1473 		pd->min_tck = NULL;
1474 		goto out;
1475 	} else if (emif1) {
1476 		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1477 			__func__);
1478 	}
1479 
1480 	/*
1481 	 * Copy custom configs - ignore allocation error, if any, as
1482 	 * custom_configs is not very critical
1483 	 */
1484 	cust_cfgs = pd->custom_configs;
1485 	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1486 		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1487 		if (temp)
1488 			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1489 		else
1490 			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1491 				__LINE__);
1492 		pd->custom_configs = temp;
1493 	}
1494 
1495 	/*
1496 	 * Copy timings and min-tck values from platform data. If it is not
1497 	 * available or if memory allocation fails, use JEDEC defaults
1498 	 */
1499 	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1500 	if (pd->timings) {
1501 		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1502 		if (temp) {
1503 			memcpy(temp, pd->timings, size);
1504 			pd->timings = temp;
1505 		} else {
1506 			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1507 				__LINE__);
1508 			get_default_timings(emif);
1509 		}
1510 	} else {
1511 		get_default_timings(emif);
1512 	}
1513 
1514 	if (pd->min_tck) {
1515 		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1516 		if (temp) {
1517 			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1518 			pd->min_tck = temp;
1519 		} else {
1520 			dev_warn(dev, "%s:%d: allocation error\n", __func__,
1521 				__LINE__);
1522 			pd->min_tck = &lpddr2_jedec_min_tck;
1523 		}
1524 	} else {
1525 		pd->min_tck = &lpddr2_jedec_min_tck;
1526 	}
1527 
1528 out:
1529 	return emif;
1530 
1531 error:
1532 	return NULL;
1533 }
1534 
1535 static int __init_or_module emif_probe(struct platform_device *pdev)
1536 {
1537 	struct emif_data	*emif;
1538 	struct resource		*res;
1539 	int			irq;
1540 
1541 	if (pdev->dev.of_node)
1542 		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1543 	else
1544 		emif = get_device_details(pdev);
1545 
1546 	if (!emif) {
1547 		pr_err("%s: error getting device data\n", __func__);
1548 		goto error;
1549 	}
1550 
1551 	list_add(&emif->node, &device_list);
1552 	emif->addressing = get_addressing_table(emif->plat_data->device_info);
1553 
1554 	/* Save pointers to each other in emif and device structures */
1555 	emif->dev = &pdev->dev;
1556 	platform_set_drvdata(pdev, emif);
1557 
1558 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1559 	emif->base = devm_ioremap_resource(emif->dev, res);
1560 	if (IS_ERR(emif->base))
1561 		goto error;
1562 
1563 	irq = platform_get_irq(pdev, 0);
1564 	if (irq < 0)
1565 		goto error;
1566 
1567 	emif_onetime_settings(emif);
1568 	emif_debugfs_init(emif);
1569 	disable_and_clear_all_interrupts(emif);
1570 	setup_interrupts(emif, irq);
1571 
1572 	/* One-time actions taken on probing the first device */
1573 	if (!emif1) {
1574 		emif1 = emif;
1575 		spin_lock_init(&emif_lock);
1576 
1577 		/*
1578 		 * TODO: register notifiers for frequency and voltage
1579 		 * change here once the respective frameworks are
1580 		 * available
1581 		 */
1582 	}
1583 
1584 	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1585 		__func__, emif->base, irq);
1586 
1587 	return 0;
1588 error:
1589 	return -ENODEV;
1590 }
1591 
1592 static int __exit emif_remove(struct platform_device *pdev)
1593 {
1594 	struct emif_data *emif = platform_get_drvdata(pdev);
1595 
1596 	emif_debugfs_exit(emif);
1597 
1598 	return 0;
1599 }
1600 
1601 static void emif_shutdown(struct platform_device *pdev)
1602 {
1603 	struct emif_data	*emif = platform_get_drvdata(pdev);
1604 
1605 	disable_and_clear_all_interrupts(emif);
1606 }
1607 
1608 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1609 		struct emif_regs *regs)
1610 {
1611 	u32				ip_rev, phy_type;
1612 	u32				cl, type;
1613 	const struct lpddr2_timings	*timings;
1614 	const struct lpddr2_min_tck	*min_tck;
1615 	const struct ddr_device_info	*device_info;
1616 	const struct lpddr2_addressing	*addressing;
1617 	struct emif_data		*emif_for_calc;
1618 	struct device			*dev;
1619 
1620 	dev = emif->dev;
1621 	/*
1622 	 * If the devices on this EMIF instance is duplicate of EMIF1,
1623 	 * use EMIF1 details for the calculation
1624 	 */
1625 	emif_for_calc	= emif->duplicate ? emif1 : emif;
1626 	timings		= get_timings_table(emif_for_calc, freq);
1627 	addressing	= emif_for_calc->addressing;
1628 	if (!timings || !addressing) {
1629 		dev_err(dev, "%s: not enough data available for %dHz",
1630 			__func__, freq);
1631 		return -1;
1632 	}
1633 
1634 	device_info	= emif_for_calc->plat_data->device_info;
1635 	type		= device_info->type;
1636 	ip_rev		= emif_for_calc->plat_data->ip_rev;
1637 	phy_type	= emif_for_calc->plat_data->phy_type;
1638 
1639 	min_tck		= emif_for_calc->plat_data->min_tck;
1640 
1641 	set_ddr_clk_period(freq);
1642 
1643 	regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1644 	regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1645 			addressing);
1646 	regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1647 			addressing, type);
1648 	regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1649 		addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1650 
1651 	cl = get_cl(emif);
1652 
1653 	if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1654 		regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1655 			timings, freq, cl);
1656 	} else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1657 		regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1658 		regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1659 		regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1660 		regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1661 	} else {
1662 		return -1;
1663 	}
1664 
1665 	/* Only timeout values in pwr_mgmt_ctrl_shdw register */
1666 	regs->pwr_mgmt_ctrl_shdw =
1667 		get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1668 		(CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1669 
1670 	if (ip_rev & EMIF_4D) {
1671 		regs->read_idle_ctrl_shdw_normal =
1672 			get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1673 
1674 		regs->read_idle_ctrl_shdw_volt_ramp =
1675 			get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1676 	} else if (ip_rev & EMIF_4D5) {
1677 		regs->dll_calib_ctrl_shdw_normal =
1678 			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1679 
1680 		regs->dll_calib_ctrl_shdw_volt_ramp =
1681 			get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1682 	}
1683 
1684 	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1685 		regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1686 			addressing);
1687 
1688 		regs->sdram_tim1_shdw_derated =
1689 			get_sdram_tim_1_shdw_derated(timings, min_tck,
1690 				addressing);
1691 
1692 		regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1693 			min_tck, addressing, type, ip_rev,
1694 			EMIF_DERATED_TIMINGS);
1695 	}
1696 
1697 	regs->freq = freq;
1698 
1699 	return 0;
1700 }
1701 
1702 /*
1703  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1704  * given frequency(freq):
1705  *
1706  * As an optimisation, every EMIF instance other than EMIF1 shares the
1707  * register cache with EMIF1 if the devices connected on this instance
1708  * are same as that on EMIF1(indicated by the duplicate flag)
1709  *
1710  * If we do not have an entry corresponding to the frequency given, we
1711  * allocate a new entry and calculate the values
1712  *
1713  * Upon finding the right reg dump, save it in curr_regs. It can be
1714  * directly used for thermal de-rating and voltage ramping changes.
1715  */
1716 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1717 {
1718 	int			i;
1719 	struct emif_regs	**regs_cache;
1720 	struct emif_regs	*regs = NULL;
1721 	struct device		*dev;
1722 
1723 	dev = emif->dev;
1724 	if (emif->curr_regs && emif->curr_regs->freq == freq) {
1725 		dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1726 		return emif->curr_regs;
1727 	}
1728 
1729 	if (emif->duplicate)
1730 		regs_cache = emif1->regs_cache;
1731 	else
1732 		regs_cache = emif->regs_cache;
1733 
1734 	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1735 		if (regs_cache[i]->freq == freq) {
1736 			regs = regs_cache[i];
1737 			dev_dbg(dev,
1738 				"%s: reg dump found in reg cache for %u Hz\n",
1739 				__func__, freq);
1740 			break;
1741 		}
1742 	}
1743 
1744 	/*
1745 	 * If we don't have an entry for this frequency in the cache create one
1746 	 * and calculate the values
1747 	 */
1748 	if (!regs) {
1749 		regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1750 		if (!regs)
1751 			return NULL;
1752 
1753 		if (get_emif_reg_values(emif, freq, regs)) {
1754 			devm_kfree(emif->dev, regs);
1755 			return NULL;
1756 		}
1757 
1758 		/*
1759 		 * Now look for an un-used entry in the cache and save the
1760 		 * newly created struct. If there are no free entries
1761 		 * over-write the last entry
1762 		 */
1763 		for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1764 			;
1765 
1766 		if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1767 			dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1768 				__func__);
1769 			i = EMIF_MAX_NUM_FREQUENCIES - 1;
1770 			devm_kfree(emif->dev, regs_cache[i]);
1771 		}
1772 		regs_cache[i] = regs;
1773 	}
1774 
1775 	return regs;
1776 }
1777 
1778 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1779 {
1780 	dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1781 		volt_state);
1782 
1783 	if (!emif->curr_regs) {
1784 		dev_err(emif->dev,
1785 			"%s: volt-notify before registers are ready: %d\n",
1786 			__func__, volt_state);
1787 		return;
1788 	}
1789 
1790 	setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1791 }
1792 
1793 /*
1794  * TODO: voltage notify handling should be hooked up to
1795  * regulator framework as soon as the necessary support
1796  * is available in mainline kernel. This function is un-used
1797  * right now.
1798  */
1799 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1800 {
1801 	struct emif_data *emif;
1802 
1803 	spin_lock_irqsave(&emif_lock, irq_state);
1804 
1805 	list_for_each_entry(emif, &device_list, node)
1806 		do_volt_notify_handling(emif, volt_state);
1807 	do_freq_update();
1808 
1809 	spin_unlock_irqrestore(&emif_lock, irq_state);
1810 }
1811 
1812 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1813 {
1814 	struct emif_regs *regs;
1815 
1816 	regs = get_regs(emif, new_freq);
1817 	if (!regs)
1818 		return;
1819 
1820 	emif->curr_regs = regs;
1821 
1822 	/*
1823 	 * Update the shadow registers:
1824 	 * Temperature and voltage-ramp sensitive settings are also configured
1825 	 * in terms of DDR cycles. So, we need to update them too when there
1826 	 * is a freq change
1827 	 */
1828 	dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1829 		__func__, new_freq);
1830 	setup_registers(emif, regs);
1831 	setup_temperature_sensitive_regs(emif, regs);
1832 	setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1833 
1834 	/*
1835 	 * Part of workaround for errata i728. See do_freq_update()
1836 	 * for more details
1837 	 */
1838 	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1839 		set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1840 }
1841 
1842 /*
1843  * TODO: frequency notify handling should be hooked up to
1844  * clock framework as soon as the necessary support is
1845  * available in mainline kernel. This function is un-used
1846  * right now.
1847  */
1848 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1849 {
1850 	struct emif_data *emif;
1851 
1852 	/*
1853 	 * NOTE: we are taking the spin-lock here and releases it
1854 	 * only in post-notifier. This doesn't look good and
1855 	 * Sparse complains about it, but this seems to be
1856 	 * un-avoidable. We need to lock a sequence of events
1857 	 * that is split between EMIF and clock framework.
1858 	 *
1859 	 * 1. EMIF driver updates EMIF timings in shadow registers in the
1860 	 *    frequency pre-notify callback from clock framework
1861 	 * 2. clock framework sets up the registers for the new frequency
1862 	 * 3. clock framework initiates a hw-sequence that updates
1863 	 *    the frequency EMIF timings synchronously.
1864 	 *
1865 	 * All these 3 steps should be performed as an atomic operation
1866 	 * vis-a-vis similar sequence in the EMIF interrupt handler
1867 	 * for temperature events. Otherwise, there could be race
1868 	 * conditions that could result in incorrect EMIF timings for
1869 	 * a given frequency
1870 	 */
1871 	spin_lock_irqsave(&emif_lock, irq_state);
1872 
1873 	list_for_each_entry(emif, &device_list, node)
1874 		do_freq_pre_notify_handling(emif, new_freq);
1875 }
1876 
1877 static void do_freq_post_notify_handling(struct emif_data *emif)
1878 {
1879 	/*
1880 	 * Part of workaround for errata i728. See do_freq_update()
1881 	 * for more details
1882 	 */
1883 	if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1884 		set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1885 }
1886 
1887 /*
1888  * TODO: frequency notify handling should be hooked up to
1889  * clock framework as soon as the necessary support is
1890  * available in mainline kernel. This function is un-used
1891  * right now.
1892  */
1893 static void __attribute__((unused)) freq_post_notify_handling(void)
1894 {
1895 	struct emif_data *emif;
1896 
1897 	list_for_each_entry(emif, &device_list, node)
1898 		do_freq_post_notify_handling(emif);
1899 
1900 	/*
1901 	 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1902 	 * for more details
1903 	 */
1904 	spin_unlock_irqrestore(&emif_lock, irq_state);
1905 }
1906 
1907 #if defined(CONFIG_OF)
1908 static const struct of_device_id emif_of_match[] = {
1909 		{ .compatible = "ti,emif-4d" },
1910 		{ .compatible = "ti,emif-4d5" },
1911 		{},
1912 };
1913 MODULE_DEVICE_TABLE(of, emif_of_match);
1914 #endif
1915 
1916 static struct platform_driver emif_driver = {
1917 	.remove		= __exit_p(emif_remove),
1918 	.shutdown	= emif_shutdown,
1919 	.driver = {
1920 		.name = "emif",
1921 		.of_match_table = of_match_ptr(emif_of_match),
1922 	},
1923 };
1924 
1925 module_platform_driver_probe(emif_driver, emif_probe);
1926 
1927 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1928 MODULE_LICENSE("GPL");
1929 MODULE_ALIAS("platform:emif");
1930 MODULE_AUTHOR("Texas Instruments Inc");
1931