1 /* 2 * EMIF driver 3 * 4 * Copyright (C) 2012 Texas Instruments, Inc. 5 * 6 * Aneesh V <aneesh@ti.com> 7 * Santosh Shilimkar <santosh.shilimkar@ti.com> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 */ 13 #include <linux/kernel.h> 14 #include <linux/reboot.h> 15 #include <linux/platform_data/emif_plat.h> 16 #include <linux/io.h> 17 #include <linux/device.h> 18 #include <linux/platform_device.h> 19 #include <linux/interrupt.h> 20 #include <linux/slab.h> 21 #include <linux/of.h> 22 #include <linux/debugfs.h> 23 #include <linux/seq_file.h> 24 #include <linux/module.h> 25 #include <linux/list.h> 26 #include <linux/spinlock.h> 27 #include <memory/jedec_ddr.h> 28 #include "emif.h" 29 #include "of_memory.h" 30 31 /** 32 * struct emif_data - Per device static data for driver's use 33 * @duplicate: Whether the DDR devices attached to this EMIF 34 * instance are exactly same as that on EMIF1. In 35 * this case we can save some memory and processing 36 * @temperature_level: Maximum temperature of LPDDR2 devices attached 37 * to this EMIF - read from MR4 register. If there 38 * are two devices attached to this EMIF, this 39 * value is the maximum of the two temperature 40 * levels. 41 * @node: node in the device list 42 * @base: base address of memory-mapped IO registers. 43 * @dev: device pointer. 44 * @addressing table with addressing information from the spec 45 * @regs_cache: An array of 'struct emif_regs' that stores 46 * calculated register values for different 47 * frequencies, to avoid re-calculating them on 48 * each DVFS transition. 49 * @curr_regs: The set of register values used in the last 50 * frequency change (i.e. corresponding to the 51 * frequency in effect at the moment) 52 * @plat_data: Pointer to saved platform data. 53 * @debugfs_root: dentry to the root folder for EMIF in debugfs 54 * @np_ddr: Pointer to ddr device tree node 55 */ 56 struct emif_data { 57 u8 duplicate; 58 u8 temperature_level; 59 u8 lpmode; 60 struct list_head node; 61 unsigned long irq_state; 62 void __iomem *base; 63 struct device *dev; 64 const struct lpddr2_addressing *addressing; 65 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; 66 struct emif_regs *curr_regs; 67 struct emif_platform_data *plat_data; 68 struct dentry *debugfs_root; 69 struct device_node *np_ddr; 70 }; 71 72 static struct emif_data *emif1; 73 static spinlock_t emif_lock; 74 static unsigned long irq_state; 75 static u32 t_ck; /* DDR clock period in ps */ 76 static LIST_HEAD(device_list); 77 78 #ifdef CONFIG_DEBUG_FS 79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, 80 struct emif_regs *regs) 81 { 82 u32 type = emif->plat_data->device_info->type; 83 u32 ip_rev = emif->plat_data->ip_rev; 84 85 seq_printf(s, "EMIF register cache dump for %dMHz\n", 86 regs->freq/1000000); 87 88 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); 89 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); 90 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); 91 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); 92 93 if (ip_rev == EMIF_4D) { 94 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", 95 regs->read_idle_ctrl_shdw_normal); 96 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", 97 regs->read_idle_ctrl_shdw_volt_ramp); 98 } else if (ip_rev == EMIF_4D5) { 99 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", 100 regs->dll_calib_ctrl_shdw_normal); 101 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", 102 regs->dll_calib_ctrl_shdw_volt_ramp); 103 } 104 105 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 106 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", 107 regs->ref_ctrl_shdw_derated); 108 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", 109 regs->sdram_tim1_shdw_derated); 110 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", 111 regs->sdram_tim3_shdw_derated); 112 } 113 } 114 115 static int emif_regdump_show(struct seq_file *s, void *unused) 116 { 117 struct emif_data *emif = s->private; 118 struct emif_regs **regs_cache; 119 int i; 120 121 if (emif->duplicate) 122 regs_cache = emif1->regs_cache; 123 else 124 regs_cache = emif->regs_cache; 125 126 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 127 do_emif_regdump_show(s, emif, regs_cache[i]); 128 seq_printf(s, "\n"); 129 } 130 131 return 0; 132 } 133 134 static int emif_regdump_open(struct inode *inode, struct file *file) 135 { 136 return single_open(file, emif_regdump_show, inode->i_private); 137 } 138 139 static const struct file_operations emif_regdump_fops = { 140 .open = emif_regdump_open, 141 .read = seq_read, 142 .release = single_release, 143 }; 144 145 static int emif_mr4_show(struct seq_file *s, void *unused) 146 { 147 struct emif_data *emif = s->private; 148 149 seq_printf(s, "MR4=%d\n", emif->temperature_level); 150 return 0; 151 } 152 153 static int emif_mr4_open(struct inode *inode, struct file *file) 154 { 155 return single_open(file, emif_mr4_show, inode->i_private); 156 } 157 158 static const struct file_operations emif_mr4_fops = { 159 .open = emif_mr4_open, 160 .read = seq_read, 161 .release = single_release, 162 }; 163 164 static int __init_or_module emif_debugfs_init(struct emif_data *emif) 165 { 166 struct dentry *dentry; 167 int ret; 168 169 dentry = debugfs_create_dir(dev_name(emif->dev), NULL); 170 if (!dentry) { 171 ret = -ENOMEM; 172 goto err0; 173 } 174 emif->debugfs_root = dentry; 175 176 dentry = debugfs_create_file("regcache_dump", S_IRUGO, 177 emif->debugfs_root, emif, &emif_regdump_fops); 178 if (!dentry) { 179 ret = -ENOMEM; 180 goto err1; 181 } 182 183 dentry = debugfs_create_file("mr4", S_IRUGO, 184 emif->debugfs_root, emif, &emif_mr4_fops); 185 if (!dentry) { 186 ret = -ENOMEM; 187 goto err1; 188 } 189 190 return 0; 191 err1: 192 debugfs_remove_recursive(emif->debugfs_root); 193 err0: 194 return ret; 195 } 196 197 static void __exit emif_debugfs_exit(struct emif_data *emif) 198 { 199 debugfs_remove_recursive(emif->debugfs_root); 200 emif->debugfs_root = NULL; 201 } 202 #else 203 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif) 204 { 205 return 0; 206 } 207 208 static inline void __exit emif_debugfs_exit(struct emif_data *emif) 209 { 210 } 211 #endif 212 213 /* 214 * Calculate the period of DDR clock from frequency value 215 */ 216 static void set_ddr_clk_period(u32 freq) 217 { 218 /* Divide 10^12 by frequency to get period in ps */ 219 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); 220 } 221 222 /* 223 * Get bus width used by EMIF. Note that this may be different from the 224 * bus width of the DDR devices used. For instance two 16-bit DDR devices 225 * may be connected to a given CS of EMIF. In this case bus width as far 226 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. 227 */ 228 static u32 get_emif_bus_width(struct emif_data *emif) 229 { 230 u32 width; 231 void __iomem *base = emif->base; 232 233 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) 234 >> NARROW_MODE_SHIFT; 235 width = width == 0 ? 32 : 16; 236 237 return width; 238 } 239 240 /* 241 * Get the CL from SDRAM_CONFIG register 242 */ 243 static u32 get_cl(struct emif_data *emif) 244 { 245 u32 cl; 246 void __iomem *base = emif->base; 247 248 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; 249 250 return cl; 251 } 252 253 static void set_lpmode(struct emif_data *emif, u8 lpmode) 254 { 255 u32 temp; 256 void __iomem *base = emif->base; 257 258 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); 259 temp &= ~LP_MODE_MASK; 260 temp |= (lpmode << LP_MODE_SHIFT); 261 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); 262 } 263 264 static void do_freq_update(void) 265 { 266 struct emif_data *emif; 267 268 /* 269 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE 270 * 271 * i728 DESCRIPTION: 272 * The EMIF automatically puts the SDRAM into self-refresh mode 273 * after the EMIF has not performed accesses during 274 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles 275 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set 276 * to 0x2. If during a small window the following three events 277 * occur: 278 * - The SR_TIMING counter expires 279 * - And frequency change is requested 280 * - And OCP access is requested 281 * Then it causes instable clock on the DDR interface. 282 * 283 * WORKAROUND 284 * To avoid the occurrence of the three events, the workaround 285 * is to disable the self-refresh when requesting a frequency 286 * change. Before requesting a frequency change the software must 287 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the 288 * frequency change has been done, the software can reprogram 289 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 290 */ 291 list_for_each_entry(emif, &device_list, node) { 292 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 293 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 294 } 295 296 /* 297 * TODO: Do FREQ_UPDATE here when an API 298 * is available for this as part of the new 299 * clock framework 300 */ 301 302 list_for_each_entry(emif, &device_list, node) { 303 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 304 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 305 } 306 } 307 308 /* Find addressing table entry based on the device's type and density */ 309 static const struct lpddr2_addressing *get_addressing_table( 310 const struct ddr_device_info *device_info) 311 { 312 u32 index, type, density; 313 314 type = device_info->type; 315 density = device_info->density; 316 317 switch (type) { 318 case DDR_TYPE_LPDDR2_S4: 319 index = density - 1; 320 break; 321 case DDR_TYPE_LPDDR2_S2: 322 switch (density) { 323 case DDR_DENSITY_1Gb: 324 case DDR_DENSITY_2Gb: 325 index = density + 3; 326 break; 327 default: 328 index = density - 1; 329 } 330 break; 331 default: 332 return NULL; 333 } 334 335 return &lpddr2_jedec_addressing_table[index]; 336 } 337 338 /* 339 * Find the the right timing table from the array of timing 340 * tables of the device using DDR clock frequency 341 */ 342 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, 343 u32 freq) 344 { 345 u32 i, min, max, freq_nearest; 346 const struct lpddr2_timings *timings = NULL; 347 const struct lpddr2_timings *timings_arr = emif->plat_data->timings; 348 struct device *dev = emif->dev; 349 350 /* Start with a very high frequency - 1GHz */ 351 freq_nearest = 1000000000; 352 353 /* 354 * Find the timings table such that: 355 * 1. the frequency range covers the required frequency(safe) AND 356 * 2. the max_freq is closest to the required frequency(optimal) 357 */ 358 for (i = 0; i < emif->plat_data->timings_arr_size; i++) { 359 max = timings_arr[i].max_freq; 360 min = timings_arr[i].min_freq; 361 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { 362 freq_nearest = max; 363 timings = &timings_arr[i]; 364 } 365 } 366 367 if (!timings) 368 dev_err(dev, "%s: couldn't find timings for - %dHz\n", 369 __func__, freq); 370 371 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", 372 __func__, freq, freq_nearest); 373 374 return timings; 375 } 376 377 static u32 get_sdram_ref_ctrl_shdw(u32 freq, 378 const struct lpddr2_addressing *addressing) 379 { 380 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; 381 382 /* Scale down frequency and t_refi to avoid overflow */ 383 freq_khz = freq / 1000; 384 t_refi = addressing->tREFI_ns / 100; 385 386 /* 387 * refresh rate to be set is 'tREFI(in us) * freq in MHz 388 * division by 10000 to account for change in units 389 */ 390 val = t_refi * freq_khz / 10000; 391 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; 392 393 return ref_ctrl_shdw; 394 } 395 396 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, 397 const struct lpddr2_min_tck *min_tck, 398 const struct lpddr2_addressing *addressing) 399 { 400 u32 tim1 = 0, val = 0; 401 402 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 403 tim1 |= val << T_WTR_SHIFT; 404 405 if (addressing->num_banks == B8) 406 val = DIV_ROUND_UP(timings->tFAW, t_ck*4); 407 else 408 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); 409 tim1 |= (val - 1) << T_RRD_SHIFT; 410 411 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; 412 tim1 |= val << T_RC_SHIFT; 413 414 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); 415 tim1 |= (val - 1) << T_RAS_SHIFT; 416 417 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 418 tim1 |= val << T_WR_SHIFT; 419 420 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; 421 tim1 |= val << T_RCD_SHIFT; 422 423 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; 424 tim1 |= val << T_RP_SHIFT; 425 426 return tim1; 427 } 428 429 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, 430 const struct lpddr2_min_tck *min_tck, 431 const struct lpddr2_addressing *addressing) 432 { 433 u32 tim1 = 0, val = 0; 434 435 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; 436 tim1 = val << T_WTR_SHIFT; 437 438 /* 439 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps 440 * to tFAW for de-rating 441 */ 442 if (addressing->num_banks == B8) { 443 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; 444 } else { 445 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); 446 val = max(min_tck->tRRD, val) - 1; 447 } 448 tim1 |= val << T_RRD_SHIFT; 449 450 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); 451 tim1 |= (val - 1) << T_RC_SHIFT; 452 453 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); 454 val = max(min_tck->tRASmin, val) - 1; 455 tim1 |= val << T_RAS_SHIFT; 456 457 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; 458 tim1 |= val << T_WR_SHIFT; 459 460 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); 461 tim1 |= (val - 1) << T_RCD_SHIFT; 462 463 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); 464 tim1 |= (val - 1) << T_RP_SHIFT; 465 466 return tim1; 467 } 468 469 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, 470 const struct lpddr2_min_tck *min_tck, 471 const struct lpddr2_addressing *addressing, 472 u32 type) 473 { 474 u32 tim2 = 0, val = 0; 475 476 val = min_tck->tCKE - 1; 477 tim2 |= val << T_CKE_SHIFT; 478 479 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; 480 tim2 |= val << T_RTP_SHIFT; 481 482 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ 483 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; 484 tim2 |= val << T_XSNR_SHIFT; 485 486 /* XSRD same as XSNR for LPDDR2 */ 487 tim2 |= val << T_XSRD_SHIFT; 488 489 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; 490 tim2 |= val << T_XP_SHIFT; 491 492 return tim2; 493 } 494 495 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, 496 const struct lpddr2_min_tck *min_tck, 497 const struct lpddr2_addressing *addressing, 498 u32 type, u32 ip_rev, u32 derated) 499 { 500 u32 tim3 = 0, val = 0, t_dqsck; 501 502 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; 503 val = val > 0xF ? 0xF : val; 504 tim3 |= val << T_RAS_MAX_SHIFT; 505 506 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; 507 tim3 |= val << T_RFC_SHIFT; 508 509 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? 510 timings->tDQSCK_max_derated : timings->tDQSCK_max; 511 if (ip_rev == EMIF_4D5) 512 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; 513 else 514 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; 515 516 tim3 |= val << T_TDQSCKMAX_SHIFT; 517 518 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; 519 tim3 |= val << ZQ_ZQCS_SHIFT; 520 521 val = DIV_ROUND_UP(timings->tCKESR, t_ck); 522 val = max(min_tck->tCKESR, val) - 1; 523 tim3 |= val << T_CKESR_SHIFT; 524 525 if (ip_rev == EMIF_4D5) { 526 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; 527 528 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; 529 tim3 |= val << T_PDLL_UL_SHIFT; 530 } 531 532 return tim3; 533 } 534 535 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, 536 bool cs1_used, bool cal_resistors_per_cs) 537 { 538 u32 zq = 0, val = 0; 539 540 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; 541 zq |= val << ZQ_REFINTERVAL_SHIFT; 542 543 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; 544 zq |= val << ZQ_ZQCL_MULT_SHIFT; 545 546 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; 547 zq |= val << ZQ_ZQINIT_MULT_SHIFT; 548 549 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; 550 551 if (cal_resistors_per_cs) 552 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; 553 else 554 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; 555 556 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ 557 558 val = cs1_used ? 1 : 0; 559 zq |= val << ZQ_CS1EN_SHIFT; 560 561 return zq; 562 } 563 564 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, 565 const struct emif_custom_configs *custom_configs, bool cs1_used, 566 u32 sdram_io_width, u32 emif_bus_width) 567 { 568 u32 alert = 0, interval, devcnt; 569 570 if (custom_configs && (custom_configs->mask & 571 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) 572 interval = custom_configs->temp_alert_poll_interval_ms; 573 else 574 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; 575 576 interval *= 1000000; /* Convert to ns */ 577 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ 578 alert |= (interval << TA_REFINTERVAL_SHIFT); 579 580 /* 581 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width 582 * also to this form and subtract to get TA_DEVCNT, which is 583 * in log2(x) form. 584 */ 585 emif_bus_width = __fls(emif_bus_width) - 1; 586 devcnt = emif_bus_width - sdram_io_width; 587 alert |= devcnt << TA_DEVCNT_SHIFT; 588 589 /* DEVWDT is in 'log2(x) - 3' form */ 590 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; 591 592 alert |= 1 << TA_SFEXITEN_SHIFT; 593 alert |= 1 << TA_CS0EN_SHIFT; 594 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; 595 596 return alert; 597 } 598 599 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) 600 { 601 u32 idle = 0, val = 0; 602 603 /* 604 * Maximum value in normal conditions and increased frequency 605 * when voltage is ramping 606 */ 607 if (volt_ramp) 608 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; 609 else 610 val = 0x1FF; 611 612 /* 613 * READ_IDLE_CTRL register in EMIF4D has same offset and fields 614 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts 615 */ 616 idle |= val << DLL_CALIB_INTERVAL_SHIFT; 617 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; 618 619 return idle; 620 } 621 622 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) 623 { 624 u32 calib = 0, val = 0; 625 626 if (volt_ramp == DDR_VOLTAGE_RAMPING) 627 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; 628 else 629 val = 0; /* Disabled when voltage is stable */ 630 631 calib |= val << DLL_CALIB_INTERVAL_SHIFT; 632 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; 633 634 return calib; 635 } 636 637 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, 638 u32 freq, u8 RL) 639 { 640 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; 641 642 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; 643 phy |= val << READ_LATENCY_SHIFT_4D; 644 645 if (freq <= 100000000) 646 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; 647 else if (freq <= 200000000) 648 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; 649 else 650 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; 651 652 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; 653 654 return phy; 655 } 656 657 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) 658 { 659 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; 660 661 /* 662 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, 663 * half-delay is not needed else set half-delay 664 */ 665 if (freq >= 265000000 && freq < 267000000) 666 half_delay = 0; 667 else 668 half_delay = 1; 669 670 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; 671 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, 672 t_ck) - 1) << READ_LATENCY_SHIFT_4D5); 673 674 return phy; 675 } 676 677 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) 678 { 679 u32 fifo_we_slave_ratio; 680 681 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 682 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 683 684 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | 685 fifo_we_slave_ratio << 22; 686 } 687 688 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) 689 { 690 u32 fifo_we_slave_ratio; 691 692 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 693 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 694 695 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | 696 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; 697 } 698 699 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) 700 { 701 u32 fifo_we_slave_ratio; 702 703 fifo_we_slave_ratio = DIV_ROUND_CLOSEST( 704 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); 705 706 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | 707 fifo_we_slave_ratio << 13; 708 } 709 710 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) 711 { 712 u32 pwr_mgmt_ctrl = 0, timeout; 713 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; 714 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; 715 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; 716 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; 717 718 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; 719 720 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { 721 lpmode = cust_cfgs->lpmode; 722 timeout_perf = cust_cfgs->lpmode_timeout_performance; 723 timeout_pwr = cust_cfgs->lpmode_timeout_power; 724 freq_threshold = cust_cfgs->lpmode_freq_threshold; 725 } 726 727 /* Timeout based on DDR frequency */ 728 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; 729 730 /* The value to be set in register is "log2(timeout) - 3" */ 731 if (timeout < 16) { 732 timeout = 0; 733 } else { 734 timeout = __fls(timeout) - 3; 735 if (timeout & (timeout - 1)) 736 timeout++; 737 } 738 739 switch (lpmode) { 740 case EMIF_LP_MODE_CLOCK_STOP: 741 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | 742 SR_TIM_MASK | PD_TIM_MASK; 743 break; 744 case EMIF_LP_MODE_SELF_REFRESH: 745 /* Workaround for errata i735 */ 746 if (timeout < 6) 747 timeout = 6; 748 749 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | 750 CS_TIM_MASK | PD_TIM_MASK; 751 break; 752 case EMIF_LP_MODE_PWR_DN: 753 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | 754 CS_TIM_MASK | SR_TIM_MASK; 755 break; 756 case EMIF_LP_MODE_DISABLE: 757 default: 758 pwr_mgmt_ctrl = CS_TIM_MASK | 759 PD_TIM_MASK | SR_TIM_MASK; 760 } 761 762 /* No CS_TIM in EMIF_4D5 */ 763 if (ip_rev == EMIF_4D5) 764 pwr_mgmt_ctrl &= ~CS_TIM_MASK; 765 766 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; 767 768 return pwr_mgmt_ctrl; 769 } 770 771 /* 772 * Get the temperature level of the EMIF instance: 773 * Reads the MR4 register of attached SDRAM parts to find out the temperature 774 * level. If there are two parts attached(one on each CS), then the temperature 775 * level for the EMIF instance is the higher of the two temperatures. 776 */ 777 static void get_temperature_level(struct emif_data *emif) 778 { 779 u32 temp, temperature_level; 780 void __iomem *base; 781 782 base = emif->base; 783 784 /* Read mode register 4 */ 785 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); 786 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 787 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> 788 MR4_SDRAM_REF_RATE_SHIFT; 789 790 if (emif->plat_data->device_info->cs1_used) { 791 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); 792 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); 793 temp = (temp & MR4_SDRAM_REF_RATE_MASK) 794 >> MR4_SDRAM_REF_RATE_SHIFT; 795 temperature_level = max(temp, temperature_level); 796 } 797 798 /* treat everything less than nominal(3) in MR4 as nominal */ 799 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) 800 temperature_level = SDRAM_TEMP_NOMINAL; 801 802 /* if we get reserved value in MR4 persist with the existing value */ 803 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) 804 emif->temperature_level = temperature_level; 805 } 806 807 /* 808 * Program EMIF shadow registers that are not dependent on temperature 809 * or voltage 810 */ 811 static void setup_registers(struct emif_data *emif, struct emif_regs *regs) 812 { 813 void __iomem *base = emif->base; 814 815 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); 816 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); 817 818 /* Settings specific for EMIF4D5 */ 819 if (emif->plat_data->ip_rev != EMIF_4D5) 820 return; 821 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); 822 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); 823 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); 824 } 825 826 /* 827 * When voltage ramps dll calibration and forced read idle should 828 * happen more often 829 */ 830 static void setup_volt_sensitive_regs(struct emif_data *emif, 831 struct emif_regs *regs, u32 volt_state) 832 { 833 u32 calib_ctrl; 834 void __iomem *base = emif->base; 835 836 /* 837 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as 838 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* 839 * is an alias of the respective read_idle_ctrl_shdw_* (members of 840 * a union). So, the below code takes care of both cases 841 */ 842 if (volt_state == DDR_VOLTAGE_RAMPING) 843 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; 844 else 845 calib_ctrl = regs->dll_calib_ctrl_shdw_normal; 846 847 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); 848 } 849 850 /* 851 * setup_temperature_sensitive_regs() - set the timings for temperature 852 * sensitive registers. This happens once at initialisation time based 853 * on the temperature at boot time and subsequently based on the temperature 854 * alert interrupt. Temperature alert can happen when the temperature 855 * increases or drops. So this function can have the effect of either 856 * derating the timings or going back to nominal values. 857 */ 858 static void setup_temperature_sensitive_regs(struct emif_data *emif, 859 struct emif_regs *regs) 860 { 861 u32 tim1, tim3, ref_ctrl, type; 862 void __iomem *base = emif->base; 863 u32 temperature; 864 865 type = emif->plat_data->device_info->type; 866 867 tim1 = regs->sdram_tim1_shdw; 868 tim3 = regs->sdram_tim3_shdw; 869 ref_ctrl = regs->ref_ctrl_shdw; 870 871 /* No de-rating for non-lpddr2 devices */ 872 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) 873 goto out; 874 875 temperature = emif->temperature_level; 876 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { 877 ref_ctrl = regs->ref_ctrl_shdw_derated; 878 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { 879 tim1 = regs->sdram_tim1_shdw_derated; 880 tim3 = regs->sdram_tim3_shdw_derated; 881 ref_ctrl = regs->ref_ctrl_shdw_derated; 882 } 883 884 out: 885 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); 886 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); 887 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); 888 } 889 890 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) 891 { 892 u32 old_temp_level; 893 irqreturn_t ret = IRQ_HANDLED; 894 895 spin_lock_irqsave(&emif_lock, irq_state); 896 old_temp_level = emif->temperature_level; 897 get_temperature_level(emif); 898 899 if (unlikely(emif->temperature_level == old_temp_level)) { 900 goto out; 901 } else if (!emif->curr_regs) { 902 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 903 goto out; 904 } 905 906 if (emif->temperature_level < old_temp_level || 907 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 908 /* 909 * Temperature coming down - defer handling to thread OR 910 * Temperature far too high - do kernel_power_off() from 911 * thread context 912 */ 913 ret = IRQ_WAKE_THREAD; 914 } else { 915 /* Temperature is going up - handle immediately */ 916 setup_temperature_sensitive_regs(emif, emif->curr_regs); 917 do_freq_update(); 918 } 919 920 out: 921 spin_unlock_irqrestore(&emif_lock, irq_state); 922 return ret; 923 } 924 925 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) 926 { 927 u32 interrupts; 928 struct emif_data *emif = dev_id; 929 void __iomem *base = emif->base; 930 struct device *dev = emif->dev; 931 irqreturn_t ret = IRQ_HANDLED; 932 933 /* Save the status and clear it */ 934 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 935 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 936 937 /* 938 * Handle temperature alert 939 * Temperature alert should be same for all ports 940 * So, it's enough to process it only for one of the ports 941 */ 942 if (interrupts & TA_SYS_MASK) 943 ret = handle_temp_alert(base, emif); 944 945 if (interrupts & ERR_SYS_MASK) 946 dev_err(dev, "Access error from SYS port - %x\n", interrupts); 947 948 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 949 /* Save the status and clear it */ 950 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); 951 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); 952 953 if (interrupts & ERR_LL_MASK) 954 dev_err(dev, "Access error from LL port - %x\n", 955 interrupts); 956 } 957 958 return ret; 959 } 960 961 static irqreturn_t emif_threaded_isr(int irq, void *dev_id) 962 { 963 struct emif_data *emif = dev_id; 964 965 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { 966 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 967 kernel_power_off(); 968 return IRQ_HANDLED; 969 } 970 971 spin_lock_irqsave(&emif_lock, irq_state); 972 973 if (emif->curr_regs) { 974 setup_temperature_sensitive_regs(emif, emif->curr_regs); 975 do_freq_update(); 976 } else { 977 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); 978 } 979 980 spin_unlock_irqrestore(&emif_lock, irq_state); 981 982 return IRQ_HANDLED; 983 } 984 985 static void clear_all_interrupts(struct emif_data *emif) 986 { 987 void __iomem *base = emif->base; 988 989 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), 990 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); 991 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 992 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), 993 base + EMIF_LL_OCP_INTERRUPT_STATUS); 994 } 995 996 static void disable_and_clear_all_interrupts(struct emif_data *emif) 997 { 998 void __iomem *base = emif->base; 999 1000 /* Disable all interrupts */ 1001 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), 1002 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); 1003 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) 1004 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), 1005 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); 1006 1007 /* Clear all interrupts */ 1008 clear_all_interrupts(emif); 1009 } 1010 1011 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) 1012 { 1013 u32 interrupts, type; 1014 void __iomem *base = emif->base; 1015 1016 type = emif->plat_data->device_info->type; 1017 1018 clear_all_interrupts(emif); 1019 1020 /* Enable interrupts for SYS interface */ 1021 interrupts = EN_ERR_SYS_MASK; 1022 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) 1023 interrupts |= EN_TA_SYS_MASK; 1024 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); 1025 1026 /* Enable interrupts for LL interface */ 1027 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { 1028 /* TA need not be enabled for LL */ 1029 interrupts = EN_ERR_LL_MASK; 1030 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); 1031 } 1032 1033 /* setup IRQ handlers */ 1034 return devm_request_threaded_irq(emif->dev, irq, 1035 emif_interrupt_handler, 1036 emif_threaded_isr, 1037 0, dev_name(emif->dev), 1038 emif); 1039 1040 } 1041 1042 static void __init_or_module emif_onetime_settings(struct emif_data *emif) 1043 { 1044 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; 1045 void __iomem *base = emif->base; 1046 const struct lpddr2_addressing *addressing; 1047 const struct ddr_device_info *device_info; 1048 1049 device_info = emif->plat_data->device_info; 1050 addressing = get_addressing_table(device_info); 1051 1052 /* 1053 * Init power management settings 1054 * We don't know the frequency yet. Use a high frequency 1055 * value for a conservative timeout setting 1056 */ 1057 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, 1058 emif->plat_data->ip_rev); 1059 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; 1060 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); 1061 1062 /* Init ZQ calibration settings */ 1063 zq = get_zq_config_reg(addressing, device_info->cs1_used, 1064 device_info->cal_resistors_per_cs); 1065 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); 1066 1067 /* Check temperature level temperature level*/ 1068 get_temperature_level(emif); 1069 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) 1070 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); 1071 1072 /* Init temperature polling */ 1073 temp_alert_cfg = get_temp_alert_config(addressing, 1074 emif->plat_data->custom_configs, device_info->cs1_used, 1075 device_info->io_width, get_emif_bus_width(emif)); 1076 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); 1077 1078 /* 1079 * Program external PHY control registers that are not frequency 1080 * dependent 1081 */ 1082 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) 1083 return; 1084 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); 1085 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); 1086 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); 1087 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); 1088 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); 1089 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); 1090 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); 1091 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); 1092 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); 1093 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); 1094 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); 1095 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); 1096 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); 1097 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); 1098 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); 1099 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); 1100 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); 1101 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); 1102 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); 1103 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); 1104 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); 1105 } 1106 1107 static void get_default_timings(struct emif_data *emif) 1108 { 1109 struct emif_platform_data *pd = emif->plat_data; 1110 1111 pd->timings = lpddr2_jedec_timings; 1112 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); 1113 1114 dev_warn(emif->dev, "%s: using default timings\n", __func__); 1115 } 1116 1117 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, 1118 u32 ip_rev, struct device *dev) 1119 { 1120 int valid; 1121 1122 valid = (type == DDR_TYPE_LPDDR2_S4 || 1123 type == DDR_TYPE_LPDDR2_S2) 1124 && (density >= DDR_DENSITY_64Mb 1125 && density <= DDR_DENSITY_8Gb) 1126 && (io_width >= DDR_IO_WIDTH_8 1127 && io_width <= DDR_IO_WIDTH_32); 1128 1129 /* Combinations of EMIF and PHY revisions that we support today */ 1130 switch (ip_rev) { 1131 case EMIF_4D: 1132 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); 1133 break; 1134 case EMIF_4D5: 1135 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); 1136 break; 1137 default: 1138 valid = 0; 1139 } 1140 1141 if (!valid) 1142 dev_err(dev, "%s: invalid DDR details\n", __func__); 1143 return valid; 1144 } 1145 1146 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, 1147 struct device *dev) 1148 { 1149 int valid = 1; 1150 1151 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && 1152 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) 1153 valid = cust_cfgs->lpmode_freq_threshold && 1154 cust_cfgs->lpmode_timeout_performance && 1155 cust_cfgs->lpmode_timeout_power; 1156 1157 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) 1158 valid = valid && cust_cfgs->temp_alert_poll_interval_ms; 1159 1160 if (!valid) 1161 dev_warn(dev, "%s: invalid custom configs\n", __func__); 1162 1163 return valid; 1164 } 1165 1166 #if defined(CONFIG_OF) 1167 static void __init_or_module of_get_custom_configs(struct device_node *np_emif, 1168 struct emif_data *emif) 1169 { 1170 struct emif_custom_configs *cust_cfgs = NULL; 1171 int len; 1172 const int *lpmode, *poll_intvl; 1173 1174 lpmode = of_get_property(np_emif, "low-power-mode", &len); 1175 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len); 1176 1177 if (lpmode || poll_intvl) 1178 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs), 1179 GFP_KERNEL); 1180 1181 if (!cust_cfgs) 1182 return; 1183 1184 if (lpmode) { 1185 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE; 1186 cust_cfgs->lpmode = *lpmode; 1187 of_property_read_u32(np_emif, 1188 "low-power-mode-timeout-performance", 1189 &cust_cfgs->lpmode_timeout_performance); 1190 of_property_read_u32(np_emif, 1191 "low-power-mode-timeout-power", 1192 &cust_cfgs->lpmode_timeout_power); 1193 of_property_read_u32(np_emif, 1194 "low-power-mode-freq-threshold", 1195 &cust_cfgs->lpmode_freq_threshold); 1196 } 1197 1198 if (poll_intvl) { 1199 cust_cfgs->mask |= 1200 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL; 1201 cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl; 1202 } 1203 1204 if (!is_custom_config_valid(cust_cfgs, emif->dev)) { 1205 devm_kfree(emif->dev, cust_cfgs); 1206 return; 1207 } 1208 1209 emif->plat_data->custom_configs = cust_cfgs; 1210 } 1211 1212 static void __init_or_module of_get_ddr_info(struct device_node *np_emif, 1213 struct device_node *np_ddr, 1214 struct ddr_device_info *dev_info) 1215 { 1216 u32 density = 0, io_width = 0; 1217 int len; 1218 1219 if (of_find_property(np_emif, "cs1-used", &len)) 1220 dev_info->cs1_used = true; 1221 1222 if (of_find_property(np_emif, "cal-resistor-per-cs", &len)) 1223 dev_info->cal_resistors_per_cs = true; 1224 1225 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4")) 1226 dev_info->type = DDR_TYPE_LPDDR2_S4; 1227 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2")) 1228 dev_info->type = DDR_TYPE_LPDDR2_S2; 1229 1230 of_property_read_u32(np_ddr, "density", &density); 1231 of_property_read_u32(np_ddr, "io-width", &io_width); 1232 1233 /* Convert from density in Mb to the density encoding in jedc_ddr.h */ 1234 if (density & (density - 1)) 1235 dev_info->density = 0; 1236 else 1237 dev_info->density = __fls(density) - 5; 1238 1239 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */ 1240 if (io_width & (io_width - 1)) 1241 dev_info->io_width = 0; 1242 else 1243 dev_info->io_width = __fls(io_width) - 1; 1244 } 1245 1246 static struct emif_data * __init_or_module of_get_memory_device_details( 1247 struct device_node *np_emif, struct device *dev) 1248 { 1249 struct emif_data *emif = NULL; 1250 struct ddr_device_info *dev_info = NULL; 1251 struct emif_platform_data *pd = NULL; 1252 struct device_node *np_ddr; 1253 int len; 1254 1255 np_ddr = of_parse_phandle(np_emif, "device-handle", 0); 1256 if (!np_ddr) 1257 goto error; 1258 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL); 1259 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1260 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1261 1262 if (!emif || !pd || !dev_info) { 1263 dev_err(dev, "%s: Out of memory!!\n", 1264 __func__); 1265 goto error; 1266 } 1267 1268 emif->plat_data = pd; 1269 pd->device_info = dev_info; 1270 emif->dev = dev; 1271 emif->np_ddr = np_ddr; 1272 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1273 1274 if (of_device_is_compatible(np_emif, "ti,emif-4d")) 1275 emif->plat_data->ip_rev = EMIF_4D; 1276 else if (of_device_is_compatible(np_emif, "ti,emif-4d5")) 1277 emif->plat_data->ip_rev = EMIF_4D5; 1278 1279 of_property_read_u32(np_emif, "phy-type", &pd->phy_type); 1280 1281 if (of_find_property(np_emif, "hw-caps-ll-interface", &len)) 1282 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE; 1283 1284 of_get_ddr_info(np_emif, np_ddr, dev_info); 1285 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density, 1286 pd->device_info->io_width, pd->phy_type, pd->ip_rev, 1287 emif->dev)) { 1288 dev_err(dev, "%s: invalid device data!!\n", __func__); 1289 goto error; 1290 } 1291 /* 1292 * For EMIF instances other than EMIF1 see if the devices connected 1293 * are exactly same as on EMIF1(which is typically the case). If so, 1294 * mark it as a duplicate of EMIF1. This will save some memory and 1295 * computation. 1296 */ 1297 if (emif1 && emif1->np_ddr == np_ddr) { 1298 emif->duplicate = true; 1299 goto out; 1300 } else if (emif1) { 1301 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1302 __func__); 1303 } 1304 1305 of_get_custom_configs(np_emif, emif); 1306 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev, 1307 emif->plat_data->device_info->type, 1308 &emif->plat_data->timings_arr_size); 1309 1310 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev); 1311 goto out; 1312 1313 error: 1314 return NULL; 1315 out: 1316 return emif; 1317 } 1318 1319 #else 1320 1321 static struct emif_data * __init_or_module of_get_memory_device_details( 1322 struct device_node *np_emif, struct device *dev) 1323 { 1324 return NULL; 1325 } 1326 #endif 1327 1328 static struct emif_data *__init_or_module get_device_details( 1329 struct platform_device *pdev) 1330 { 1331 u32 size; 1332 struct emif_data *emif = NULL; 1333 struct ddr_device_info *dev_info; 1334 struct emif_custom_configs *cust_cfgs; 1335 struct emif_platform_data *pd; 1336 struct device *dev; 1337 void *temp; 1338 1339 pd = pdev->dev.platform_data; 1340 dev = &pdev->dev; 1341 1342 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, 1343 pd->device_info->density, pd->device_info->io_width, 1344 pd->phy_type, pd->ip_rev, dev))) { 1345 dev_err(dev, "%s: invalid device data\n", __func__); 1346 goto error; 1347 } 1348 1349 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); 1350 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); 1351 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); 1352 1353 if (!emif || !pd || !dev_info) { 1354 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); 1355 goto error; 1356 } 1357 1358 memcpy(temp, pd, sizeof(*pd)); 1359 pd = temp; 1360 memcpy(dev_info, pd->device_info, sizeof(*dev_info)); 1361 1362 pd->device_info = dev_info; 1363 emif->plat_data = pd; 1364 emif->dev = dev; 1365 emif->temperature_level = SDRAM_TEMP_NOMINAL; 1366 1367 /* 1368 * For EMIF instances other than EMIF1 see if the devices connected 1369 * are exactly same as on EMIF1(which is typically the case). If so, 1370 * mark it as a duplicate of EMIF1 and skip copying timings data. 1371 * This will save some memory and some computation later. 1372 */ 1373 emif->duplicate = emif1 && (memcmp(dev_info, 1374 emif1->plat_data->device_info, 1375 sizeof(struct ddr_device_info)) == 0); 1376 1377 if (emif->duplicate) { 1378 pd->timings = NULL; 1379 pd->min_tck = NULL; 1380 goto out; 1381 } else if (emif1) { 1382 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", 1383 __func__); 1384 } 1385 1386 /* 1387 * Copy custom configs - ignore allocation error, if any, as 1388 * custom_configs is not very critical 1389 */ 1390 cust_cfgs = pd->custom_configs; 1391 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { 1392 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); 1393 if (temp) 1394 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); 1395 else 1396 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1397 __LINE__); 1398 pd->custom_configs = temp; 1399 } 1400 1401 /* 1402 * Copy timings and min-tck values from platform data. If it is not 1403 * available or if memory allocation fails, use JEDEC defaults 1404 */ 1405 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; 1406 if (pd->timings) { 1407 temp = devm_kzalloc(dev, size, GFP_KERNEL); 1408 if (temp) { 1409 memcpy(temp, pd->timings, sizeof(*pd->timings)); 1410 pd->timings = temp; 1411 } else { 1412 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1413 __LINE__); 1414 get_default_timings(emif); 1415 } 1416 } else { 1417 get_default_timings(emif); 1418 } 1419 1420 if (pd->min_tck) { 1421 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); 1422 if (temp) { 1423 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); 1424 pd->min_tck = temp; 1425 } else { 1426 dev_warn(dev, "%s:%d: allocation error\n", __func__, 1427 __LINE__); 1428 pd->min_tck = &lpddr2_jedec_min_tck; 1429 } 1430 } else { 1431 pd->min_tck = &lpddr2_jedec_min_tck; 1432 } 1433 1434 out: 1435 return emif; 1436 1437 error: 1438 return NULL; 1439 } 1440 1441 static int __init_or_module emif_probe(struct platform_device *pdev) 1442 { 1443 struct emif_data *emif; 1444 struct resource *res; 1445 int irq; 1446 1447 if (pdev->dev.of_node) 1448 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev); 1449 else 1450 emif = get_device_details(pdev); 1451 1452 if (!emif) { 1453 pr_err("%s: error getting device data\n", __func__); 1454 goto error; 1455 } 1456 1457 list_add(&emif->node, &device_list); 1458 emif->addressing = get_addressing_table(emif->plat_data->device_info); 1459 1460 /* Save pointers to each other in emif and device structures */ 1461 emif->dev = &pdev->dev; 1462 platform_set_drvdata(pdev, emif); 1463 1464 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1465 if (!res) { 1466 dev_err(emif->dev, "%s: error getting memory resource\n", 1467 __func__); 1468 goto error; 1469 } 1470 1471 emif->base = devm_request_and_ioremap(emif->dev, res); 1472 if (!emif->base) { 1473 dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n", 1474 __func__); 1475 goto error; 1476 } 1477 1478 irq = platform_get_irq(pdev, 0); 1479 if (irq < 0) { 1480 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", 1481 __func__, irq); 1482 goto error; 1483 } 1484 1485 emif_onetime_settings(emif); 1486 emif_debugfs_init(emif); 1487 disable_and_clear_all_interrupts(emif); 1488 setup_interrupts(emif, irq); 1489 1490 /* One-time actions taken on probing the first device */ 1491 if (!emif1) { 1492 emif1 = emif; 1493 spin_lock_init(&emif_lock); 1494 1495 /* 1496 * TODO: register notifiers for frequency and voltage 1497 * change here once the respective frameworks are 1498 * available 1499 */ 1500 } 1501 1502 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", 1503 __func__, emif->base, irq); 1504 1505 return 0; 1506 error: 1507 return -ENODEV; 1508 } 1509 1510 static int __exit emif_remove(struct platform_device *pdev) 1511 { 1512 struct emif_data *emif = platform_get_drvdata(pdev); 1513 1514 emif_debugfs_exit(emif); 1515 1516 return 0; 1517 } 1518 1519 static void emif_shutdown(struct platform_device *pdev) 1520 { 1521 struct emif_data *emif = platform_get_drvdata(pdev); 1522 1523 disable_and_clear_all_interrupts(emif); 1524 } 1525 1526 static int get_emif_reg_values(struct emif_data *emif, u32 freq, 1527 struct emif_regs *regs) 1528 { 1529 u32 cs1_used, ip_rev, phy_type; 1530 u32 cl, type; 1531 const struct lpddr2_timings *timings; 1532 const struct lpddr2_min_tck *min_tck; 1533 const struct ddr_device_info *device_info; 1534 const struct lpddr2_addressing *addressing; 1535 struct emif_data *emif_for_calc; 1536 struct device *dev; 1537 const struct emif_custom_configs *custom_configs; 1538 1539 dev = emif->dev; 1540 /* 1541 * If the devices on this EMIF instance is duplicate of EMIF1, 1542 * use EMIF1 details for the calculation 1543 */ 1544 emif_for_calc = emif->duplicate ? emif1 : emif; 1545 timings = get_timings_table(emif_for_calc, freq); 1546 addressing = emif_for_calc->addressing; 1547 if (!timings || !addressing) { 1548 dev_err(dev, "%s: not enough data available for %dHz", 1549 __func__, freq); 1550 return -1; 1551 } 1552 1553 device_info = emif_for_calc->plat_data->device_info; 1554 type = device_info->type; 1555 cs1_used = device_info->cs1_used; 1556 ip_rev = emif_for_calc->plat_data->ip_rev; 1557 phy_type = emif_for_calc->plat_data->phy_type; 1558 1559 min_tck = emif_for_calc->plat_data->min_tck; 1560 custom_configs = emif_for_calc->plat_data->custom_configs; 1561 1562 set_ddr_clk_period(freq); 1563 1564 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); 1565 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, 1566 addressing); 1567 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, 1568 addressing, type); 1569 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, 1570 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); 1571 1572 cl = get_cl(emif); 1573 1574 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { 1575 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( 1576 timings, freq, cl); 1577 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { 1578 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); 1579 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); 1580 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); 1581 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); 1582 } else { 1583 return -1; 1584 } 1585 1586 /* Only timeout values in pwr_mgmt_ctrl_shdw register */ 1587 regs->pwr_mgmt_ctrl_shdw = 1588 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & 1589 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); 1590 1591 if (ip_rev & EMIF_4D) { 1592 regs->read_idle_ctrl_shdw_normal = 1593 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); 1594 1595 regs->read_idle_ctrl_shdw_volt_ramp = 1596 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1597 } else if (ip_rev & EMIF_4D5) { 1598 regs->dll_calib_ctrl_shdw_normal = 1599 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); 1600 1601 regs->dll_calib_ctrl_shdw_volt_ramp = 1602 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); 1603 } 1604 1605 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { 1606 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, 1607 addressing); 1608 1609 regs->sdram_tim1_shdw_derated = 1610 get_sdram_tim_1_shdw_derated(timings, min_tck, 1611 addressing); 1612 1613 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, 1614 min_tck, addressing, type, ip_rev, 1615 EMIF_DERATED_TIMINGS); 1616 } 1617 1618 regs->freq = freq; 1619 1620 return 0; 1621 } 1622 1623 /* 1624 * get_regs() - gets the cached emif_regs structure for a given EMIF instance 1625 * given frequency(freq): 1626 * 1627 * As an optimisation, every EMIF instance other than EMIF1 shares the 1628 * register cache with EMIF1 if the devices connected on this instance 1629 * are same as that on EMIF1(indicated by the duplicate flag) 1630 * 1631 * If we do not have an entry corresponding to the frequency given, we 1632 * allocate a new entry and calculate the values 1633 * 1634 * Upon finding the right reg dump, save it in curr_regs. It can be 1635 * directly used for thermal de-rating and voltage ramping changes. 1636 */ 1637 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) 1638 { 1639 int i; 1640 struct emif_regs **regs_cache; 1641 struct emif_regs *regs = NULL; 1642 struct device *dev; 1643 1644 dev = emif->dev; 1645 if (emif->curr_regs && emif->curr_regs->freq == freq) { 1646 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); 1647 return emif->curr_regs; 1648 } 1649 1650 if (emif->duplicate) 1651 regs_cache = emif1->regs_cache; 1652 else 1653 regs_cache = emif->regs_cache; 1654 1655 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { 1656 if (regs_cache[i]->freq == freq) { 1657 regs = regs_cache[i]; 1658 dev_dbg(dev, 1659 "%s: reg dump found in reg cache for %u Hz\n", 1660 __func__, freq); 1661 break; 1662 } 1663 } 1664 1665 /* 1666 * If we don't have an entry for this frequency in the cache create one 1667 * and calculate the values 1668 */ 1669 if (!regs) { 1670 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); 1671 if (!regs) 1672 return NULL; 1673 1674 if (get_emif_reg_values(emif, freq, regs)) { 1675 devm_kfree(emif->dev, regs); 1676 return NULL; 1677 } 1678 1679 /* 1680 * Now look for an un-used entry in the cache and save the 1681 * newly created struct. If there are no free entries 1682 * over-write the last entry 1683 */ 1684 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) 1685 ; 1686 1687 if (i >= EMIF_MAX_NUM_FREQUENCIES) { 1688 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", 1689 __func__); 1690 i = EMIF_MAX_NUM_FREQUENCIES - 1; 1691 devm_kfree(emif->dev, regs_cache[i]); 1692 } 1693 regs_cache[i] = regs; 1694 } 1695 1696 return regs; 1697 } 1698 1699 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) 1700 { 1701 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, 1702 volt_state); 1703 1704 if (!emif->curr_regs) { 1705 dev_err(emif->dev, 1706 "%s: volt-notify before registers are ready: %d\n", 1707 __func__, volt_state); 1708 return; 1709 } 1710 1711 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); 1712 } 1713 1714 /* 1715 * TODO: voltage notify handling should be hooked up to 1716 * regulator framework as soon as the necessary support 1717 * is available in mainline kernel. This function is un-used 1718 * right now. 1719 */ 1720 static void __attribute__((unused)) volt_notify_handling(u32 volt_state) 1721 { 1722 struct emif_data *emif; 1723 1724 spin_lock_irqsave(&emif_lock, irq_state); 1725 1726 list_for_each_entry(emif, &device_list, node) 1727 do_volt_notify_handling(emif, volt_state); 1728 do_freq_update(); 1729 1730 spin_unlock_irqrestore(&emif_lock, irq_state); 1731 } 1732 1733 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) 1734 { 1735 struct emif_regs *regs; 1736 1737 regs = get_regs(emif, new_freq); 1738 if (!regs) 1739 return; 1740 1741 emif->curr_regs = regs; 1742 1743 /* 1744 * Update the shadow registers: 1745 * Temperature and voltage-ramp sensitive settings are also configured 1746 * in terms of DDR cycles. So, we need to update them too when there 1747 * is a freq change 1748 */ 1749 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", 1750 __func__, new_freq); 1751 setup_registers(emif, regs); 1752 setup_temperature_sensitive_regs(emif, regs); 1753 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); 1754 1755 /* 1756 * Part of workaround for errata i728. See do_freq_update() 1757 * for more details 1758 */ 1759 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1760 set_lpmode(emif, EMIF_LP_MODE_DISABLE); 1761 } 1762 1763 /* 1764 * TODO: frequency notify handling should be hooked up to 1765 * clock framework as soon as the necessary support is 1766 * available in mainline kernel. This function is un-used 1767 * right now. 1768 */ 1769 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) 1770 { 1771 struct emif_data *emif; 1772 1773 /* 1774 * NOTE: we are taking the spin-lock here and releases it 1775 * only in post-notifier. This doesn't look good and 1776 * Sparse complains about it, but this seems to be 1777 * un-avoidable. We need to lock a sequence of events 1778 * that is split between EMIF and clock framework. 1779 * 1780 * 1. EMIF driver updates EMIF timings in shadow registers in the 1781 * frequency pre-notify callback from clock framework 1782 * 2. clock framework sets up the registers for the new frequency 1783 * 3. clock framework initiates a hw-sequence that updates 1784 * the frequency EMIF timings synchronously. 1785 * 1786 * All these 3 steps should be performed as an atomic operation 1787 * vis-a-vis similar sequence in the EMIF interrupt handler 1788 * for temperature events. Otherwise, there could be race 1789 * conditions that could result in incorrect EMIF timings for 1790 * a given frequency 1791 */ 1792 spin_lock_irqsave(&emif_lock, irq_state); 1793 1794 list_for_each_entry(emif, &device_list, node) 1795 do_freq_pre_notify_handling(emif, new_freq); 1796 } 1797 1798 static void do_freq_post_notify_handling(struct emif_data *emif) 1799 { 1800 /* 1801 * Part of workaround for errata i728. See do_freq_update() 1802 * for more details 1803 */ 1804 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) 1805 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); 1806 } 1807 1808 /* 1809 * TODO: frequency notify handling should be hooked up to 1810 * clock framework as soon as the necessary support is 1811 * available in mainline kernel. This function is un-used 1812 * right now. 1813 */ 1814 static void __attribute__((unused)) freq_post_notify_handling(void) 1815 { 1816 struct emif_data *emif; 1817 1818 list_for_each_entry(emif, &device_list, node) 1819 do_freq_post_notify_handling(emif); 1820 1821 /* 1822 * Lock is done in pre-notify handler. See freq_pre_notify_handling() 1823 * for more details 1824 */ 1825 spin_unlock_irqrestore(&emif_lock, irq_state); 1826 } 1827 1828 #if defined(CONFIG_OF) 1829 static const struct of_device_id emif_of_match[] = { 1830 { .compatible = "ti,emif-4d" }, 1831 { .compatible = "ti,emif-4d5" }, 1832 {}, 1833 }; 1834 MODULE_DEVICE_TABLE(of, emif_of_match); 1835 #endif 1836 1837 static struct platform_driver emif_driver = { 1838 .remove = __exit_p(emif_remove), 1839 .shutdown = emif_shutdown, 1840 .driver = { 1841 .name = "emif", 1842 .of_match_table = of_match_ptr(emif_of_match), 1843 }, 1844 }; 1845 1846 static int __init_or_module emif_register(void) 1847 { 1848 return platform_driver_probe(&emif_driver, emif_probe); 1849 } 1850 1851 static void __exit emif_unregister(void) 1852 { 1853 platform_driver_unregister(&emif_driver); 1854 } 1855 1856 module_init(emif_register); 1857 module_exit(emif_unregister); 1858 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); 1859 MODULE_LICENSE("GPL"); 1860 MODULE_ALIAS("platform:emif"); 1861 MODULE_AUTHOR("Texas Instruments Inc"); 1862