1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * EMIF driver
4 *
5 * Copyright (C) 2012 Texas Instruments, Inc.
6 *
7 * Aneesh V <aneesh@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 */
10 #include <linux/cleanup.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/reboot.h>
14 #include <linux/platform_data/emif_plat.h>
15 #include <linux/io.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
18 #include <linux/interrupt.h>
19 #include <linux/slab.h>
20 #include <linux/of.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/spinlock.h>
26 #include <linux/pm.h>
27
28 #include "emif.h"
29 #include "jedec_ddr.h"
30 #include "of_memory.h"
31
32 /**
33 * struct emif_data - Per device static data for driver's use
34 * @duplicate: Whether the DDR devices attached to this EMIF
35 * instance are exactly same as that on EMIF1. In
36 * this case we can save some memory and processing
37 * @temperature_level: Maximum temperature of LPDDR2 devices attached
38 * to this EMIF - read from MR4 register. If there
39 * are two devices attached to this EMIF, this
40 * value is the maximum of the two temperature
41 * levels.
42 * @node: node in the device list
43 * @base: base address of memory-mapped IO registers.
44 * @dev: device pointer.
45 * @regs_cache: An array of 'struct emif_regs' that stores
46 * calculated register values for different
47 * frequencies, to avoid re-calculating them on
48 * each DVFS transition.
49 * @curr_regs: The set of register values used in the last
50 * frequency change (i.e. corresponding to the
51 * frequency in effect at the moment)
52 * @plat_data: Pointer to saved platform data.
53 * @debugfs_root: dentry to the root folder for EMIF in debugfs
54 * @np_ddr: Pointer to ddr device tree node
55 */
56 struct emif_data {
57 u8 duplicate;
58 u8 temperature_level;
59 u8 lpmode;
60 struct list_head node;
61 void __iomem *base;
62 struct device *dev;
63 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
64 struct emif_regs *curr_regs;
65 struct emif_platform_data *plat_data;
66 struct dentry *debugfs_root;
67 struct device_node *np_ddr;
68 };
69
70 static struct emif_data *emif1;
71 static DEFINE_SPINLOCK(emif_lock);
72 static LIST_HEAD(device_list);
73
do_emif_regdump_show(struct seq_file * s,struct emif_data * emif,struct emif_regs * regs)74 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
75 struct emif_regs *regs)
76 {
77 u32 type = emif->plat_data->device_info->type;
78 u32 ip_rev = emif->plat_data->ip_rev;
79
80 seq_printf(s, "EMIF register cache dump for %dMHz\n",
81 regs->freq/1000000);
82
83 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
84 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
85 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
86 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
87
88 if (ip_rev == EMIF_4D) {
89 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
90 regs->read_idle_ctrl_shdw_normal);
91 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
92 regs->read_idle_ctrl_shdw_volt_ramp);
93 } else if (ip_rev == EMIF_4D5) {
94 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
95 regs->dll_calib_ctrl_shdw_normal);
96 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 regs->dll_calib_ctrl_shdw_volt_ramp);
98 }
99
100 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
101 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
102 regs->ref_ctrl_shdw_derated);
103 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
104 regs->sdram_tim1_shdw_derated);
105 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
106 regs->sdram_tim3_shdw_derated);
107 }
108 }
109
emif_regdump_show(struct seq_file * s,void * unused)110 static int emif_regdump_show(struct seq_file *s, void *unused)
111 {
112 struct emif_data *emif = s->private;
113 struct emif_regs **regs_cache;
114 int i;
115
116 if (emif->duplicate)
117 regs_cache = emif1->regs_cache;
118 else
119 regs_cache = emif->regs_cache;
120
121 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
122 do_emif_regdump_show(s, emif, regs_cache[i]);
123 seq_putc(s, '\n');
124 }
125
126 return 0;
127 }
128
129 DEFINE_SHOW_ATTRIBUTE(emif_regdump);
130
emif_mr4_show(struct seq_file * s,void * unused)131 static int emif_mr4_show(struct seq_file *s, void *unused)
132 {
133 struct emif_data *emif = s->private;
134
135 seq_printf(s, "MR4=%d\n", emif->temperature_level);
136 return 0;
137 }
138
139 DEFINE_SHOW_ATTRIBUTE(emif_mr4);
140
emif_debugfs_init(struct emif_data * emif)141 static void emif_debugfs_init(struct emif_data *emif)
142 {
143 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
144 emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
145 debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
146 &emif_regdump_fops);
147 debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
148 &emif_mr4_fops);
149 }
150 }
151
emif_debugfs_exit(struct emif_data * emif)152 static void emif_debugfs_exit(struct emif_data *emif)
153 {
154 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
155 debugfs_remove_recursive(emif->debugfs_root);
156 emif->debugfs_root = NULL;
157 }
158 }
159
160 /*
161 * Get bus width used by EMIF. Note that this may be different from the
162 * bus width of the DDR devices used. For instance two 16-bit DDR devices
163 * may be connected to a given CS of EMIF. In this case bus width as far
164 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
165 */
get_emif_bus_width(struct emif_data * emif)166 static u32 get_emif_bus_width(struct emif_data *emif)
167 {
168 u32 width;
169 void __iomem *base = emif->base;
170
171 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
172 >> NARROW_MODE_SHIFT;
173 width = width == 0 ? 32 : 16;
174
175 return width;
176 }
177
set_lpmode(struct emif_data * emif,u8 lpmode)178 static void set_lpmode(struct emif_data *emif, u8 lpmode)
179 {
180 u32 temp;
181 void __iomem *base = emif->base;
182
183 /*
184 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
185 * Efficient
186 *
187 * i743 DESCRIPTION:
188 * The EMIF supports power-down state for low power. The EMIF
189 * automatically puts the SDRAM into power-down after the memory is
190 * not accessed for a defined number of cycles and the
191 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
192 * As the EMIF supports automatic output impedance calibration, a ZQ
193 * calibration long command is issued every time it exits active
194 * power-down and precharge power-down modes. The EMIF waits and
195 * blocks any other command during this calibration.
196 * The EMIF does not allow selective disabling of ZQ calibration upon
197 * exit of power-down mode. Due to very short periods of power-down
198 * cycles, ZQ calibration overhead creates bandwidth issues and
199 * increases overall system power consumption. On the other hand,
200 * issuing ZQ calibration long commands when exiting self-refresh is
201 * still required.
202 *
203 * WORKAROUND
204 * Because there is no power consumption benefit of the power-down due
205 * to the calibration and there is a performance risk, the guideline
206 * is to not allow power-down state and, therefore, to not have set
207 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
208 */
209 if ((emif->plat_data->ip_rev == EMIF_4D) &&
210 (lpmode == EMIF_LP_MODE_PWR_DN)) {
211 WARN_ONCE(1,
212 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
213 /* rollback LP_MODE to Self-refresh mode */
214 lpmode = EMIF_LP_MODE_SELF_REFRESH;
215 }
216
217 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
218 temp &= ~LP_MODE_MASK;
219 temp |= (lpmode << LP_MODE_SHIFT);
220 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
221 }
222
do_freq_update(void)223 static void do_freq_update(void)
224 {
225 struct emif_data *emif;
226
227 /*
228 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
229 *
230 * i728 DESCRIPTION:
231 * The EMIF automatically puts the SDRAM into self-refresh mode
232 * after the EMIF has not performed accesses during
233 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
234 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
235 * to 0x2. If during a small window the following three events
236 * occur:
237 * - The SR_TIMING counter expires
238 * - And frequency change is requested
239 * - And OCP access is requested
240 * Then it causes instable clock on the DDR interface.
241 *
242 * WORKAROUND
243 * To avoid the occurrence of the three events, the workaround
244 * is to disable the self-refresh when requesting a frequency
245 * change. Before requesting a frequency change the software must
246 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
247 * frequency change has been done, the software can reprogram
248 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
249 */
250 list_for_each_entry(emif, &device_list, node) {
251 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
252 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
253 }
254
255 /*
256 * TODO: Do FREQ_UPDATE here when an API
257 * is available for this as part of the new
258 * clock framework
259 */
260
261 list_for_each_entry(emif, &device_list, node) {
262 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
263 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
264 }
265 }
266
267 /* Find addressing table entry based on the device's type and density */
get_addressing_table(const struct ddr_device_info * device_info)268 static const struct lpddr2_addressing *get_addressing_table(
269 const struct ddr_device_info *device_info)
270 {
271 u32 index, type, density;
272
273 type = device_info->type;
274 density = device_info->density;
275
276 switch (type) {
277 case DDR_TYPE_LPDDR2_S4:
278 index = density - 1;
279 break;
280 case DDR_TYPE_LPDDR2_S2:
281 switch (density) {
282 case DDR_DENSITY_1Gb:
283 case DDR_DENSITY_2Gb:
284 index = density + 3;
285 break;
286 default:
287 index = density - 1;
288 }
289 break;
290 default:
291 return NULL;
292 }
293
294 return &lpddr2_jedec_addressing_table[index];
295 }
296
get_zq_config_reg(const struct lpddr2_addressing * addressing,bool cs1_used,bool cal_resistors_per_cs)297 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
298 bool cs1_used, bool cal_resistors_per_cs)
299 {
300 u32 zq = 0, val = 0;
301
302 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
303 zq |= val << ZQ_REFINTERVAL_SHIFT;
304
305 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
306 zq |= val << ZQ_ZQCL_MULT_SHIFT;
307
308 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
309 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
310
311 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
312
313 if (cal_resistors_per_cs)
314 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
315 else
316 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
317
318 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
319
320 val = cs1_used ? 1 : 0;
321 zq |= val << ZQ_CS1EN_SHIFT;
322
323 return zq;
324 }
325
get_temp_alert_config(const struct lpddr2_addressing * addressing,const struct emif_custom_configs * custom_configs,bool cs1_used,u32 sdram_io_width,u32 emif_bus_width)326 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
327 const struct emif_custom_configs *custom_configs, bool cs1_used,
328 u32 sdram_io_width, u32 emif_bus_width)
329 {
330 u32 alert = 0, interval, devcnt;
331
332 if (custom_configs && (custom_configs->mask &
333 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
334 interval = custom_configs->temp_alert_poll_interval_ms;
335 else
336 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
337
338 interval *= 1000000; /* Convert to ns */
339 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
340 alert |= (interval << TA_REFINTERVAL_SHIFT);
341
342 /*
343 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
344 * also to this form and subtract to get TA_DEVCNT, which is
345 * in log2(x) form.
346 */
347 emif_bus_width = __fls(emif_bus_width) - 1;
348 devcnt = emif_bus_width - sdram_io_width;
349 alert |= devcnt << TA_DEVCNT_SHIFT;
350
351 /* DEVWDT is in 'log2(x) - 3' form */
352 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
353
354 alert |= 1 << TA_SFEXITEN_SHIFT;
355 alert |= 1 << TA_CS0EN_SHIFT;
356 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
357
358 return alert;
359 }
360
get_pwr_mgmt_ctrl(u32 freq,struct emif_data * emif,u32 ip_rev)361 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
362 {
363 u32 pwr_mgmt_ctrl = 0, timeout;
364 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
365 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
366 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
367 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
368 u32 mask;
369 u8 shift;
370
371 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
372
373 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
374 lpmode = cust_cfgs->lpmode;
375 timeout_perf = cust_cfgs->lpmode_timeout_performance;
376 timeout_pwr = cust_cfgs->lpmode_timeout_power;
377 freq_threshold = cust_cfgs->lpmode_freq_threshold;
378 }
379
380 /* Timeout based on DDR frequency */
381 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
382
383 /*
384 * The value to be set in register is "log2(timeout) - 3"
385 * if timeout < 16 load 0 in register
386 * if timeout is not a power of 2, round to next highest power of 2
387 */
388 if (timeout < 16) {
389 timeout = 0;
390 } else {
391 if (timeout & (timeout - 1))
392 timeout <<= 1;
393 timeout = __fls(timeout) - 3;
394 }
395
396 switch (lpmode) {
397 case EMIF_LP_MODE_CLOCK_STOP:
398 shift = CS_TIM_SHIFT;
399 mask = CS_TIM_MASK;
400 break;
401 case EMIF_LP_MODE_SELF_REFRESH:
402 /* Workaround for errata i735 */
403 if (timeout < 6)
404 timeout = 6;
405
406 shift = SR_TIM_SHIFT;
407 mask = SR_TIM_MASK;
408 break;
409 case EMIF_LP_MODE_PWR_DN:
410 shift = PD_TIM_SHIFT;
411 mask = PD_TIM_MASK;
412 break;
413 case EMIF_LP_MODE_DISABLE:
414 default:
415 mask = 0;
416 shift = 0;
417 break;
418 }
419 /* Round to maximum in case of overflow, BUT warn! */
420 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
421 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
422 lpmode,
423 timeout_perf,
424 timeout_pwr,
425 freq_threshold);
426 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
427 timeout, mask >> shift);
428 timeout = mask >> shift;
429 }
430
431 /* Setup required timing */
432 pwr_mgmt_ctrl = (timeout << shift) & mask;
433 /* setup a default mask for rest of the modes */
434 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
435 ~mask;
436
437 /* No CS_TIM in EMIF_4D5 */
438 if (ip_rev == EMIF_4D5)
439 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
440
441 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
442
443 return pwr_mgmt_ctrl;
444 }
445
446 /*
447 * Get the temperature level of the EMIF instance:
448 * Reads the MR4 register of attached SDRAM parts to find out the temperature
449 * level. If there are two parts attached(one on each CS), then the temperature
450 * level for the EMIF instance is the higher of the two temperatures.
451 */
get_temperature_level(struct emif_data * emif)452 static void get_temperature_level(struct emif_data *emif)
453 {
454 u32 temp, temperature_level;
455 void __iomem *base;
456
457 base = emif->base;
458
459 /* Read mode register 4 */
460 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
461 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
462 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
463 MR4_SDRAM_REF_RATE_SHIFT;
464
465 if (emif->plat_data->device_info->cs1_used) {
466 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
467 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
468 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
469 >> MR4_SDRAM_REF_RATE_SHIFT;
470 temperature_level = max(temp, temperature_level);
471 }
472
473 /* treat everything less than nominal(3) in MR4 as nominal */
474 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
475 temperature_level = SDRAM_TEMP_NOMINAL;
476
477 /* if we get reserved value in MR4 persist with the existing value */
478 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
479 emif->temperature_level = temperature_level;
480 }
481
482 /*
483 * setup_temperature_sensitive_regs() - set the timings for temperature
484 * sensitive registers. This happens once at initialisation time based
485 * on the temperature at boot time and subsequently based on the temperature
486 * alert interrupt. Temperature alert can happen when the temperature
487 * increases or drops. So this function can have the effect of either
488 * derating the timings or going back to nominal values.
489 */
setup_temperature_sensitive_regs(struct emif_data * emif,struct emif_regs * regs)490 static void setup_temperature_sensitive_regs(struct emif_data *emif,
491 struct emif_regs *regs)
492 {
493 u32 tim1, tim3, ref_ctrl, type;
494 void __iomem *base = emif->base;
495 u32 temperature;
496
497 type = emif->plat_data->device_info->type;
498
499 tim1 = regs->sdram_tim1_shdw;
500 tim3 = regs->sdram_tim3_shdw;
501 ref_ctrl = regs->ref_ctrl_shdw;
502
503 /* No de-rating for non-lpddr2 devices */
504 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
505 goto out;
506
507 temperature = emif->temperature_level;
508 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
509 ref_ctrl = regs->ref_ctrl_shdw_derated;
510 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
511 tim1 = regs->sdram_tim1_shdw_derated;
512 tim3 = regs->sdram_tim3_shdw_derated;
513 ref_ctrl = regs->ref_ctrl_shdw_derated;
514 }
515
516 out:
517 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
518 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
519 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
520 }
521
handle_temp_alert(void __iomem * base,struct emif_data * emif)522 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
523 {
524 u32 old_temp_level;
525 irqreturn_t ret;
526 struct emif_custom_configs *custom_configs;
527
528 guard(spinlock_irqsave)(&emif_lock);
529 old_temp_level = emif->temperature_level;
530 get_temperature_level(emif);
531
532 if (unlikely(emif->temperature_level == old_temp_level)) {
533 return IRQ_HANDLED;
534 } else if (!emif->curr_regs) {
535 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
536 return IRQ_HANDLED;
537 }
538
539 custom_configs = emif->plat_data->custom_configs;
540
541 /*
542 * IF we detect higher than "nominal rating" from DDR sensor
543 * on an unsupported DDR part, shutdown system
544 */
545 if (custom_configs && !(custom_configs->mask &
546 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
547 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
548 dev_err(emif->dev,
549 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
550 __func__, emif->temperature_level);
551 /*
552 * Temperature far too high - do kernel_power_off()
553 * from thread context
554 */
555 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
556 return IRQ_WAKE_THREAD;
557 }
558 }
559
560 if (emif->temperature_level < old_temp_level ||
561 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
562 /*
563 * Temperature coming down - defer handling to thread OR
564 * Temperature far too high - do kernel_power_off() from
565 * thread context
566 */
567 ret = IRQ_WAKE_THREAD;
568 } else {
569 /* Temperature is going up - handle immediately */
570 setup_temperature_sensitive_regs(emif, emif->curr_regs);
571 do_freq_update();
572 ret = IRQ_HANDLED;
573 }
574
575 return ret;
576 }
577
emif_interrupt_handler(int irq,void * dev_id)578 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
579 {
580 u32 interrupts;
581 struct emif_data *emif = dev_id;
582 void __iomem *base = emif->base;
583 struct device *dev = emif->dev;
584 irqreturn_t ret = IRQ_HANDLED;
585
586 /* Save the status and clear it */
587 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
588 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
589
590 /*
591 * Handle temperature alert
592 * Temperature alert should be same for all ports
593 * So, it's enough to process it only for one of the ports
594 */
595 if (interrupts & TA_SYS_MASK)
596 ret = handle_temp_alert(base, emif);
597
598 if (interrupts & ERR_SYS_MASK)
599 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
600
601 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
602 /* Save the status and clear it */
603 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
604 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
605
606 if (interrupts & ERR_LL_MASK)
607 dev_err(dev, "Access error from LL port - %x\n",
608 interrupts);
609 }
610
611 return ret;
612 }
613
emif_threaded_isr(int irq,void * dev_id)614 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
615 {
616 struct emif_data *emif = dev_id;
617 unsigned long irq_state;
618
619 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
620 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
621
622 /* If we have Power OFF ability, use it, else try restarting */
623 if (kernel_can_power_off()) {
624 kernel_power_off();
625 } else {
626 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
627 kernel_restart("SDRAM Over-temp Emergency restart");
628 }
629 return IRQ_HANDLED;
630 }
631
632 spin_lock_irqsave(&emif_lock, irq_state);
633
634 if (emif->curr_regs) {
635 setup_temperature_sensitive_regs(emif, emif->curr_regs);
636 do_freq_update();
637 } else {
638 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
639 }
640
641 spin_unlock_irqrestore(&emif_lock, irq_state);
642
643 return IRQ_HANDLED;
644 }
645
clear_all_interrupts(struct emif_data * emif)646 static void clear_all_interrupts(struct emif_data *emif)
647 {
648 void __iomem *base = emif->base;
649
650 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
651 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
652 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
653 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
654 base + EMIF_LL_OCP_INTERRUPT_STATUS);
655 }
656
disable_and_clear_all_interrupts(struct emif_data * emif)657 static void disable_and_clear_all_interrupts(struct emif_data *emif)
658 {
659 void __iomem *base = emif->base;
660
661 /* Disable all interrupts */
662 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
663 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
664 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
665 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
666 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
667
668 /* Clear all interrupts */
669 clear_all_interrupts(emif);
670 }
671
setup_interrupts(struct emif_data * emif,u32 irq)672 static int setup_interrupts(struct emif_data *emif, u32 irq)
673 {
674 u32 interrupts, type;
675 void __iomem *base = emif->base;
676
677 type = emif->plat_data->device_info->type;
678
679 clear_all_interrupts(emif);
680
681 /* Enable interrupts for SYS interface */
682 interrupts = EN_ERR_SYS_MASK;
683 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
684 interrupts |= EN_TA_SYS_MASK;
685 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
686
687 /* Enable interrupts for LL interface */
688 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
689 /* TA need not be enabled for LL */
690 interrupts = EN_ERR_LL_MASK;
691 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
692 }
693
694 /* setup IRQ handlers */
695 return devm_request_threaded_irq(emif->dev, irq,
696 emif_interrupt_handler,
697 emif_threaded_isr,
698 0, dev_name(emif->dev),
699 emif);
700
701 }
702
emif_onetime_settings(struct emif_data * emif)703 static void emif_onetime_settings(struct emif_data *emif)
704 {
705 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
706 void __iomem *base = emif->base;
707 const struct lpddr2_addressing *addressing;
708 const struct ddr_device_info *device_info;
709
710 device_info = emif->plat_data->device_info;
711 addressing = get_addressing_table(device_info);
712
713 /*
714 * Init power management settings
715 * We don't know the frequency yet. Use a high frequency
716 * value for a conservative timeout setting
717 */
718 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
719 emif->plat_data->ip_rev);
720 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
721 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
722
723 /* Init ZQ calibration settings */
724 zq = get_zq_config_reg(addressing, device_info->cs1_used,
725 device_info->cal_resistors_per_cs);
726 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
727
728 /* Check temperature level temperature level*/
729 get_temperature_level(emif);
730 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
731 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
732
733 /* Init temperature polling */
734 temp_alert_cfg = get_temp_alert_config(addressing,
735 emif->plat_data->custom_configs, device_info->cs1_used,
736 device_info->io_width, get_emif_bus_width(emif));
737 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
738
739 /*
740 * Program external PHY control registers that are not frequency
741 * dependent
742 */
743 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
744 return;
745 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
746 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
747 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
748 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
749 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
750 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
751 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
752 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
753 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
754 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
755 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
756 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
757 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
758 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
759 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
760 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
761 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
762 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
763 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
764 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
765 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
766 }
767
get_default_timings(struct emif_data * emif)768 static void get_default_timings(struct emif_data *emif)
769 {
770 struct emif_platform_data *pd = emif->plat_data;
771
772 pd->timings = lpddr2_jedec_timings;
773 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
774
775 dev_warn(emif->dev, "%s: using default timings\n", __func__);
776 }
777
is_dev_data_valid(u32 type,u32 density,u32 io_width,u32 phy_type,u32 ip_rev,struct device * dev)778 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
779 u32 ip_rev, struct device *dev)
780 {
781 int valid;
782
783 valid = (type == DDR_TYPE_LPDDR2_S4 ||
784 type == DDR_TYPE_LPDDR2_S2)
785 && (density >= DDR_DENSITY_64Mb
786 && density <= DDR_DENSITY_8Gb)
787 && (io_width >= DDR_IO_WIDTH_8
788 && io_width <= DDR_IO_WIDTH_32);
789
790 /* Combinations of EMIF and PHY revisions that we support today */
791 switch (ip_rev) {
792 case EMIF_4D:
793 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
794 break;
795 case EMIF_4D5:
796 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
797 break;
798 default:
799 valid = 0;
800 }
801
802 if (!valid)
803 dev_err(dev, "%s: invalid DDR details\n", __func__);
804 return valid;
805 }
806
is_custom_config_valid(struct emif_custom_configs * cust_cfgs,struct device * dev)807 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
808 struct device *dev)
809 {
810 int valid = 1;
811
812 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
813 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
814 valid = cust_cfgs->lpmode_freq_threshold &&
815 cust_cfgs->lpmode_timeout_performance &&
816 cust_cfgs->lpmode_timeout_power;
817
818 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
819 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
820
821 if (!valid)
822 dev_warn(dev, "%s: invalid custom configs\n", __func__);
823
824 return valid;
825 }
826
of_get_custom_configs(struct device_node * np_emif,struct emif_data * emif)827 static void of_get_custom_configs(struct device_node *np_emif,
828 struct emif_data *emif)
829 {
830 struct emif_custom_configs *cust_cfgs = NULL;
831 int len;
832 const __be32 *lpmode, *poll_intvl;
833
834 lpmode = of_get_property(np_emif, "low-power-mode", &len);
835 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
836
837 if (lpmode || poll_intvl)
838 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
839 GFP_KERNEL);
840
841 if (!cust_cfgs)
842 return;
843
844 if (lpmode) {
845 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
846 cust_cfgs->lpmode = be32_to_cpup(lpmode);
847 of_property_read_u32(np_emif,
848 "low-power-mode-timeout-performance",
849 &cust_cfgs->lpmode_timeout_performance);
850 of_property_read_u32(np_emif,
851 "low-power-mode-timeout-power",
852 &cust_cfgs->lpmode_timeout_power);
853 of_property_read_u32(np_emif,
854 "low-power-mode-freq-threshold",
855 &cust_cfgs->lpmode_freq_threshold);
856 }
857
858 if (poll_intvl) {
859 cust_cfgs->mask |=
860 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
861 cust_cfgs->temp_alert_poll_interval_ms =
862 be32_to_cpup(poll_intvl);
863 }
864
865 if (of_property_read_bool(np_emif, "extended-temp-part"))
866 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
867
868 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
869 devm_kfree(emif->dev, cust_cfgs);
870 return;
871 }
872
873 emif->plat_data->custom_configs = cust_cfgs;
874 }
875
of_get_ddr_info(struct device_node * np_emif,struct device_node * np_ddr,struct ddr_device_info * dev_info)876 static void of_get_ddr_info(struct device_node *np_emif,
877 struct device_node *np_ddr,
878 struct ddr_device_info *dev_info)
879 {
880 u32 density = 0, io_width = 0;
881
882 dev_info->cs1_used = of_property_read_bool(np_emif, "cs1-used");
883 dev_info->cal_resistors_per_cs = of_property_read_bool(np_emif, "cal-resistor-per-cs");
884
885 if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
886 dev_info->type = DDR_TYPE_LPDDR2_S4;
887 else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
888 dev_info->type = DDR_TYPE_LPDDR2_S2;
889
890 of_property_read_u32(np_ddr, "density", &density);
891 of_property_read_u32(np_ddr, "io-width", &io_width);
892
893 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
894 if (density & (density - 1))
895 dev_info->density = 0;
896 else
897 dev_info->density = __fls(density) - 5;
898
899 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
900 if (io_width & (io_width - 1))
901 dev_info->io_width = 0;
902 else
903 dev_info->io_width = __fls(io_width) - 1;
904 }
905
of_get_memory_device_details(struct device_node * np_emif,struct device * dev)906 static struct emif_data *of_get_memory_device_details(
907 struct device_node *np_emif, struct device *dev)
908 {
909 struct emif_data *emif = NULL;
910 struct ddr_device_info *dev_info = NULL;
911 struct emif_platform_data *pd = NULL;
912 struct device_node *np_ddr;
913
914 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
915 if (!np_ddr)
916 goto error;
917 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
918 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
919 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
920
921 if (!emif || !pd || !dev_info) {
922 dev_err(dev, "%s: Out of memory!!\n",
923 __func__);
924 goto error;
925 }
926
927 emif->plat_data = pd;
928 pd->device_info = dev_info;
929 emif->dev = dev;
930 emif->np_ddr = np_ddr;
931 emif->temperature_level = SDRAM_TEMP_NOMINAL;
932
933 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
934 emif->plat_data->ip_rev = EMIF_4D;
935 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
936 emif->plat_data->ip_rev = EMIF_4D5;
937
938 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
939
940 if (of_property_read_bool(np_emif, "hw-caps-ll-interface"))
941 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
942
943 of_get_ddr_info(np_emif, np_ddr, dev_info);
944 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
945 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
946 emif->dev)) {
947 dev_err(dev, "%s: invalid device data!!\n", __func__);
948 goto error;
949 }
950 /*
951 * For EMIF instances other than EMIF1 see if the devices connected
952 * are exactly same as on EMIF1(which is typically the case). If so,
953 * mark it as a duplicate of EMIF1. This will save some memory and
954 * computation.
955 */
956 if (emif1 && emif1->np_ddr == np_ddr) {
957 emif->duplicate = true;
958 goto out;
959 } else if (emif1) {
960 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
961 __func__);
962 }
963
964 of_get_custom_configs(np_emif, emif);
965 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
966 emif->plat_data->device_info->type,
967 &emif->plat_data->timings_arr_size);
968
969 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
970 goto out;
971
972 error:
973 return NULL;
974 out:
975 return emif;
976 }
977
get_device_details(struct platform_device * pdev)978 static struct emif_data *get_device_details(
979 struct platform_device *pdev)
980 {
981 u32 size;
982 struct emif_data *emif = NULL;
983 struct ddr_device_info *dev_info;
984 struct emif_custom_configs *cust_cfgs;
985 struct emif_platform_data *pd;
986 struct device *dev;
987 void *temp;
988
989 pd = pdev->dev.platform_data;
990 dev = &pdev->dev;
991
992 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
993 pd->device_info->density, pd->device_info->io_width,
994 pd->phy_type, pd->ip_rev, dev))) {
995 dev_err(dev, "%s: invalid device data\n", __func__);
996 goto error;
997 }
998
999 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1000 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1001 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1002
1003 if (!emif || !temp || !dev_info)
1004 goto error;
1005
1006 memcpy(temp, pd, sizeof(*pd));
1007 pd = temp;
1008 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1009
1010 pd->device_info = dev_info;
1011 emif->plat_data = pd;
1012 emif->dev = dev;
1013 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1014
1015 /*
1016 * For EMIF instances other than EMIF1 see if the devices connected
1017 * are exactly same as on EMIF1(which is typically the case). If so,
1018 * mark it as a duplicate of EMIF1 and skip copying timings data.
1019 * This will save some memory and some computation later.
1020 */
1021 emif->duplicate = emif1 && (memcmp(dev_info,
1022 emif1->plat_data->device_info,
1023 sizeof(struct ddr_device_info)) == 0);
1024
1025 if (emif->duplicate) {
1026 pd->timings = NULL;
1027 pd->min_tck = NULL;
1028 goto out;
1029 } else if (emif1) {
1030 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1031 __func__);
1032 }
1033
1034 /*
1035 * Copy custom configs - ignore allocation error, if any, as
1036 * custom_configs is not very critical
1037 */
1038 cust_cfgs = pd->custom_configs;
1039 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1040 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1041 if (temp)
1042 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1043 pd->custom_configs = temp;
1044 }
1045
1046 /*
1047 * Copy timings and min-tck values from platform data. If it is not
1048 * available or if memory allocation fails, use JEDEC defaults
1049 */
1050 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1051 if (pd->timings) {
1052 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1053 if (temp) {
1054 memcpy(temp, pd->timings, size);
1055 pd->timings = temp;
1056 } else {
1057 get_default_timings(emif);
1058 }
1059 } else {
1060 get_default_timings(emif);
1061 }
1062
1063 if (pd->min_tck) {
1064 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1065 if (temp) {
1066 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1067 pd->min_tck = temp;
1068 } else {
1069 pd->min_tck = &lpddr2_jedec_min_tck;
1070 }
1071 } else {
1072 pd->min_tck = &lpddr2_jedec_min_tck;
1073 }
1074
1075 out:
1076 return emif;
1077
1078 error:
1079 return NULL;
1080 }
1081
emif_probe(struct platform_device * pdev)1082 static int emif_probe(struct platform_device *pdev)
1083 {
1084 struct emif_data *emif;
1085 int irq, ret;
1086
1087 if (pdev->dev.of_node)
1088 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1089 else
1090 emif = get_device_details(pdev);
1091
1092 if (!emif) {
1093 pr_err("%s: error getting device data\n", __func__);
1094 goto error;
1095 }
1096
1097 list_add(&emif->node, &device_list);
1098
1099 /* Save pointers to each other in emif and device structures */
1100 emif->dev = &pdev->dev;
1101 platform_set_drvdata(pdev, emif);
1102
1103 emif->base = devm_platform_ioremap_resource(pdev, 0);
1104 if (IS_ERR(emif->base))
1105 goto error;
1106
1107 irq = platform_get_irq(pdev, 0);
1108 if (irq < 0)
1109 goto error;
1110
1111 emif_onetime_settings(emif);
1112 emif_debugfs_init(emif);
1113 disable_and_clear_all_interrupts(emif);
1114 ret = setup_interrupts(emif, irq);
1115 if (ret)
1116 goto error;
1117
1118 /* One-time actions taken on probing the first device */
1119 if (!emif1) {
1120 emif1 = emif;
1121
1122 /*
1123 * TODO: register notifiers for frequency and voltage
1124 * change here once the respective frameworks are
1125 * available
1126 */
1127 }
1128
1129 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1130 __func__, emif->base, irq);
1131
1132 return 0;
1133 error:
1134 return -ENODEV;
1135 }
1136
emif_remove(struct platform_device * pdev)1137 static void emif_remove(struct platform_device *pdev)
1138 {
1139 struct emif_data *emif = platform_get_drvdata(pdev);
1140
1141 emif_debugfs_exit(emif);
1142 }
1143
emif_shutdown(struct platform_device * pdev)1144 static void emif_shutdown(struct platform_device *pdev)
1145 {
1146 struct emif_data *emif = platform_get_drvdata(pdev);
1147
1148 disable_and_clear_all_interrupts(emif);
1149 }
1150
1151 #if defined(CONFIG_OF)
1152 static const struct of_device_id emif_of_match[] = {
1153 { .compatible = "ti,emif-4d" },
1154 { .compatible = "ti,emif-4d5" },
1155 {},
1156 };
1157 MODULE_DEVICE_TABLE(of, emif_of_match);
1158 #endif
1159
1160 static struct platform_driver emif_driver = {
1161 .probe = emif_probe,
1162 .remove = emif_remove,
1163 .shutdown = emif_shutdown,
1164 .driver = {
1165 .name = "emif",
1166 .of_match_table = of_match_ptr(emif_of_match),
1167 },
1168 };
1169
1170 module_platform_driver(emif_driver);
1171
1172 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1173 MODULE_LICENSE("GPL");
1174 MODULE_ALIAS("platform:emif");
1175 MODULE_AUTHOR("Texas Instruments Inc");
1176