1 /* 2 * Memory-to-memory device framework for Video for Linux 2 and videobuf. 3 * 4 * Helper functions for devices that use videobuf buffers for both their 5 * source and destination. 6 * 7 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd. 8 * Pawel Osciak, <pawel@osciak.com> 9 * Marek Szyprowski, <m.szyprowski@samsung.com> 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 */ 16 #include <linux/module.h> 17 #include <linux/sched.h> 18 #include <linux/slab.h> 19 20 #include <media/media-device.h> 21 #include <media/videobuf2-v4l2.h> 22 #include <media/v4l2-mem2mem.h> 23 #include <media/v4l2-dev.h> 24 #include <media/v4l2-device.h> 25 #include <media/v4l2-fh.h> 26 #include <media/v4l2-event.h> 27 28 MODULE_DESCRIPTION("Mem to mem device framework for videobuf"); 29 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>"); 30 MODULE_LICENSE("GPL"); 31 32 static bool debug; 33 module_param(debug, bool, 0644); 34 35 #define dprintk(fmt, arg...) \ 36 do { \ 37 if (debug) \ 38 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\ 39 } while (0) 40 41 42 /* Instance is already queued on the job_queue */ 43 #define TRANS_QUEUED (1 << 0) 44 /* Instance is currently running in hardware */ 45 #define TRANS_RUNNING (1 << 1) 46 /* Instance is currently aborting */ 47 #define TRANS_ABORT (1 << 2) 48 49 50 /* Offset base for buffers on the destination queue - used to distinguish 51 * between source and destination buffers when mmapping - they receive the same 52 * offsets but for different queues */ 53 #define DST_QUEUE_OFF_BASE (1 << 30) 54 55 enum v4l2_m2m_entity_type { 56 MEM2MEM_ENT_TYPE_SOURCE, 57 MEM2MEM_ENT_TYPE_SINK, 58 MEM2MEM_ENT_TYPE_PROC 59 }; 60 61 static const char * const m2m_entity_name[] = { 62 "source", 63 "sink", 64 "proc" 65 }; 66 67 /** 68 * struct v4l2_m2m_dev - per-device context 69 * @source: &struct media_entity pointer with the source entity 70 * Used only when the M2M device is registered via 71 * v4l2_m2m_unregister_media_controller(). 72 * @source_pad: &struct media_pad with the source pad. 73 * Used only when the M2M device is registered via 74 * v4l2_m2m_unregister_media_controller(). 75 * @sink: &struct media_entity pointer with the sink entity 76 * Used only when the M2M device is registered via 77 * v4l2_m2m_unregister_media_controller(). 78 * @sink_pad: &struct media_pad with the sink pad. 79 * Used only when the M2M device is registered via 80 * v4l2_m2m_unregister_media_controller(). 81 * @proc: &struct media_entity pointer with the M2M device itself. 82 * @proc_pads: &struct media_pad with the @proc pads. 83 * Used only when the M2M device is registered via 84 * v4l2_m2m_unregister_media_controller(). 85 * @intf_devnode: &struct media_intf devnode pointer with the interface 86 * with controls the M2M device. 87 * @curr_ctx: currently running instance 88 * @job_queue: instances queued to run 89 * @job_spinlock: protects job_queue 90 * @m2m_ops: driver callbacks 91 */ 92 struct v4l2_m2m_dev { 93 struct v4l2_m2m_ctx *curr_ctx; 94 #ifdef CONFIG_MEDIA_CONTROLLER 95 struct media_entity *source; 96 struct media_pad source_pad; 97 struct media_entity sink; 98 struct media_pad sink_pad; 99 struct media_entity proc; 100 struct media_pad proc_pads[2]; 101 struct media_intf_devnode *intf_devnode; 102 #endif 103 104 struct list_head job_queue; 105 spinlock_t job_spinlock; 106 107 const struct v4l2_m2m_ops *m2m_ops; 108 }; 109 110 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx, 111 enum v4l2_buf_type type) 112 { 113 if (V4L2_TYPE_IS_OUTPUT(type)) 114 return &m2m_ctx->out_q_ctx; 115 else 116 return &m2m_ctx->cap_q_ctx; 117 } 118 119 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx, 120 enum v4l2_buf_type type) 121 { 122 struct v4l2_m2m_queue_ctx *q_ctx; 123 124 q_ctx = get_queue_ctx(m2m_ctx, type); 125 if (!q_ctx) 126 return NULL; 127 128 return &q_ctx->q; 129 } 130 EXPORT_SYMBOL(v4l2_m2m_get_vq); 131 132 void *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx) 133 { 134 struct v4l2_m2m_buffer *b; 135 unsigned long flags; 136 137 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 138 139 if (list_empty(&q_ctx->rdy_queue)) { 140 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 141 return NULL; 142 } 143 144 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 145 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 146 return &b->vb; 147 } 148 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf); 149 150 void *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx) 151 { 152 struct v4l2_m2m_buffer *b; 153 unsigned long flags; 154 155 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 156 157 if (list_empty(&q_ctx->rdy_queue)) { 158 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 159 return NULL; 160 } 161 162 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 163 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 164 return &b->vb; 165 } 166 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf); 167 168 void *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx) 169 { 170 struct v4l2_m2m_buffer *b; 171 unsigned long flags; 172 173 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 174 if (list_empty(&q_ctx->rdy_queue)) { 175 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 176 return NULL; 177 } 178 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list); 179 list_del(&b->list); 180 q_ctx->num_rdy--; 181 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 182 183 return &b->vb; 184 } 185 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove); 186 187 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx, 188 struct vb2_v4l2_buffer *vbuf) 189 { 190 struct v4l2_m2m_buffer *b; 191 unsigned long flags; 192 193 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 194 b = container_of(vbuf, struct v4l2_m2m_buffer, vb); 195 list_del(&b->list); 196 q_ctx->num_rdy--; 197 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 198 } 199 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf); 200 201 struct vb2_v4l2_buffer * 202 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx) 203 204 { 205 struct v4l2_m2m_buffer *b, *tmp; 206 struct vb2_v4l2_buffer *ret = NULL; 207 unsigned long flags; 208 209 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 210 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) { 211 if (b->vb.vb2_buf.index == idx) { 212 list_del(&b->list); 213 q_ctx->num_rdy--; 214 ret = &b->vb; 215 break; 216 } 217 } 218 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 219 220 return ret; 221 } 222 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx); 223 224 /* 225 * Scheduling handlers 226 */ 227 228 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev) 229 { 230 unsigned long flags; 231 void *ret = NULL; 232 233 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 234 if (m2m_dev->curr_ctx) 235 ret = m2m_dev->curr_ctx->priv; 236 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 237 238 return ret; 239 } 240 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv); 241 242 /** 243 * v4l2_m2m_try_run() - select next job to perform and run it if possible 244 * @m2m_dev: per-device context 245 * 246 * Get next transaction (if present) from the waiting jobs list and run it. 247 */ 248 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev) 249 { 250 unsigned long flags; 251 252 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 253 if (NULL != m2m_dev->curr_ctx) { 254 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 255 dprintk("Another instance is running, won't run now\n"); 256 return; 257 } 258 259 if (list_empty(&m2m_dev->job_queue)) { 260 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 261 dprintk("No job pending\n"); 262 return; 263 } 264 265 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue, 266 struct v4l2_m2m_ctx, queue); 267 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING; 268 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 269 270 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx); 271 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv); 272 } 273 274 /* 275 * __v4l2_m2m_try_queue() - queue a job 276 * @m2m_dev: m2m device 277 * @m2m_ctx: m2m context 278 * 279 * Check if this context is ready to queue a job. 280 * 281 * This function can run in interrupt context. 282 */ 283 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev, 284 struct v4l2_m2m_ctx *m2m_ctx) 285 { 286 unsigned long flags_job, flags_out, flags_cap; 287 288 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx); 289 290 if (!m2m_ctx->out_q_ctx.q.streaming 291 || !m2m_ctx->cap_q_ctx.q.streaming) { 292 dprintk("Streaming needs to be on for both queues\n"); 293 return; 294 } 295 296 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 297 298 /* If the context is aborted then don't schedule it */ 299 if (m2m_ctx->job_flags & TRANS_ABORT) { 300 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 301 dprintk("Aborted context\n"); 302 return; 303 } 304 305 if (m2m_ctx->job_flags & TRANS_QUEUED) { 306 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 307 dprintk("On job queue already\n"); 308 return; 309 } 310 311 spin_lock_irqsave(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); 312 if (list_empty(&m2m_ctx->out_q_ctx.rdy_queue) 313 && !m2m_ctx->out_q_ctx.buffered) { 314 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, 315 flags_out); 316 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 317 dprintk("No input buffers available\n"); 318 return; 319 } 320 spin_lock_irqsave(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); 321 if (list_empty(&m2m_ctx->cap_q_ctx.rdy_queue) 322 && !m2m_ctx->cap_q_ctx.buffered) { 323 spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, 324 flags_cap); 325 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, 326 flags_out); 327 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 328 dprintk("No output buffers available\n"); 329 return; 330 } 331 spin_unlock_irqrestore(&m2m_ctx->cap_q_ctx.rdy_spinlock, flags_cap); 332 spin_unlock_irqrestore(&m2m_ctx->out_q_ctx.rdy_spinlock, flags_out); 333 334 if (m2m_dev->m2m_ops->job_ready 335 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) { 336 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 337 dprintk("Driver not ready\n"); 338 return; 339 } 340 341 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue); 342 m2m_ctx->job_flags |= TRANS_QUEUED; 343 344 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 345 } 346 347 /** 348 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context 349 * @m2m_ctx: m2m context 350 * 351 * Check if this context is ready to queue a job. If suitable, 352 * run the next queued job on the mem2mem device. 353 * 354 * This function shouldn't run in interrupt context. 355 * 356 * Note that v4l2_m2m_try_schedule() can schedule one job for this context, 357 * and then run another job for another context. 358 */ 359 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx) 360 { 361 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev; 362 363 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx); 364 v4l2_m2m_try_run(m2m_dev); 365 } 366 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule); 367 368 /** 369 * v4l2_m2m_cancel_job() - cancel pending jobs for the context 370 * @m2m_ctx: m2m context with jobs to be canceled 371 * 372 * In case of streamoff or release called on any context, 373 * 1] If the context is currently running, then abort job will be called 374 * 2] If the context is queued, then the context will be removed from 375 * the job_queue 376 */ 377 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx) 378 { 379 struct v4l2_m2m_dev *m2m_dev; 380 unsigned long flags; 381 382 m2m_dev = m2m_ctx->m2m_dev; 383 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 384 385 m2m_ctx->job_flags |= TRANS_ABORT; 386 if (m2m_ctx->job_flags & TRANS_RUNNING) { 387 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 388 if (m2m_dev->m2m_ops->job_abort) 389 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv); 390 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx); 391 wait_event(m2m_ctx->finished, 392 !(m2m_ctx->job_flags & TRANS_RUNNING)); 393 } else if (m2m_ctx->job_flags & TRANS_QUEUED) { 394 list_del(&m2m_ctx->queue); 395 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 396 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 397 dprintk("m2m_ctx: %p had been on queue and was removed\n", 398 m2m_ctx); 399 } else { 400 /* Do nothing, was not on queue/running */ 401 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 402 } 403 } 404 405 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev, 406 struct v4l2_m2m_ctx *m2m_ctx) 407 { 408 unsigned long flags; 409 410 spin_lock_irqsave(&m2m_dev->job_spinlock, flags); 411 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) { 412 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 413 dprintk("Called by an instance not currently running\n"); 414 return; 415 } 416 417 list_del(&m2m_dev->curr_ctx->queue); 418 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING); 419 wake_up(&m2m_dev->curr_ctx->finished); 420 m2m_dev->curr_ctx = NULL; 421 422 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags); 423 424 /* This instance might have more buffers ready, but since we do not 425 * allow more than one job on the job_queue per instance, each has 426 * to be scheduled separately after the previous one finishes. */ 427 v4l2_m2m_try_schedule(m2m_ctx); 428 } 429 EXPORT_SYMBOL(v4l2_m2m_job_finish); 430 431 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 432 struct v4l2_requestbuffers *reqbufs) 433 { 434 struct vb2_queue *vq; 435 int ret; 436 437 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type); 438 ret = vb2_reqbufs(vq, reqbufs); 439 /* If count == 0, then the owner has released all buffers and he 440 is no longer owner of the queue. Otherwise we have an owner. */ 441 if (ret == 0) 442 vq->owner = reqbufs->count ? file->private_data : NULL; 443 444 return ret; 445 } 446 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs); 447 448 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 449 struct v4l2_buffer *buf) 450 { 451 struct vb2_queue *vq; 452 int ret = 0; 453 unsigned int i; 454 455 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 456 ret = vb2_querybuf(vq, buf); 457 458 /* Adjust MMAP memory offsets for the CAPTURE queue */ 459 if (buf->memory == V4L2_MEMORY_MMAP && !V4L2_TYPE_IS_OUTPUT(vq->type)) { 460 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) { 461 for (i = 0; i < buf->length; ++i) 462 buf->m.planes[i].m.mem_offset 463 += DST_QUEUE_OFF_BASE; 464 } else { 465 buf->m.offset += DST_QUEUE_OFF_BASE; 466 } 467 } 468 469 return ret; 470 } 471 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf); 472 473 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 474 struct v4l2_buffer *buf) 475 { 476 struct video_device *vdev = video_devdata(file); 477 struct vb2_queue *vq; 478 int ret; 479 480 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 481 if (!V4L2_TYPE_IS_OUTPUT(vq->type) && 482 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) { 483 dprintk("%s: requests cannot be used with capture buffers\n", 484 __func__); 485 return -EPERM; 486 } 487 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf); 488 if (!ret && !(buf->flags & V4L2_BUF_FLAG_IN_REQUEST)) 489 v4l2_m2m_try_schedule(m2m_ctx); 490 491 return ret; 492 } 493 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf); 494 495 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 496 struct v4l2_buffer *buf) 497 { 498 struct vb2_queue *vq; 499 500 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 501 return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK); 502 } 503 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf); 504 505 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 506 struct v4l2_buffer *buf) 507 { 508 struct video_device *vdev = video_devdata(file); 509 struct vb2_queue *vq; 510 511 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type); 512 return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf); 513 } 514 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf); 515 516 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 517 struct v4l2_create_buffers *create) 518 { 519 struct vb2_queue *vq; 520 521 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type); 522 return vb2_create_bufs(vq, create); 523 } 524 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs); 525 526 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 527 struct v4l2_exportbuffer *eb) 528 { 529 struct vb2_queue *vq; 530 531 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type); 532 return vb2_expbuf(vq, eb); 533 } 534 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf); 535 536 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 537 enum v4l2_buf_type type) 538 { 539 struct vb2_queue *vq; 540 int ret; 541 542 vq = v4l2_m2m_get_vq(m2m_ctx, type); 543 ret = vb2_streamon(vq, type); 544 if (!ret) 545 v4l2_m2m_try_schedule(m2m_ctx); 546 547 return ret; 548 } 549 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon); 550 551 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 552 enum v4l2_buf_type type) 553 { 554 struct v4l2_m2m_dev *m2m_dev; 555 struct v4l2_m2m_queue_ctx *q_ctx; 556 unsigned long flags_job, flags; 557 int ret; 558 559 /* wait until the current context is dequeued from job_queue */ 560 v4l2_m2m_cancel_job(m2m_ctx); 561 562 q_ctx = get_queue_ctx(m2m_ctx, type); 563 ret = vb2_streamoff(&q_ctx->q, type); 564 if (ret) 565 return ret; 566 567 m2m_dev = m2m_ctx->m2m_dev; 568 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job); 569 /* We should not be scheduled anymore, since we're dropping a queue. */ 570 if (m2m_ctx->job_flags & TRANS_QUEUED) 571 list_del(&m2m_ctx->queue); 572 m2m_ctx->job_flags = 0; 573 574 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 575 /* Drop queue, since streamoff returns device to the same state as after 576 * calling reqbufs. */ 577 INIT_LIST_HEAD(&q_ctx->rdy_queue); 578 q_ctx->num_rdy = 0; 579 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 580 581 if (m2m_dev->curr_ctx == m2m_ctx) { 582 m2m_dev->curr_ctx = NULL; 583 wake_up(&m2m_ctx->finished); 584 } 585 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job); 586 587 return 0; 588 } 589 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff); 590 591 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 592 struct poll_table_struct *wait) 593 { 594 struct video_device *vfd = video_devdata(file); 595 __poll_t req_events = poll_requested_events(wait); 596 struct vb2_queue *src_q, *dst_q; 597 struct vb2_buffer *src_vb = NULL, *dst_vb = NULL; 598 __poll_t rc = 0; 599 unsigned long flags; 600 601 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) { 602 struct v4l2_fh *fh = file->private_data; 603 604 if (v4l2_event_pending(fh)) 605 rc = EPOLLPRI; 606 else if (req_events & EPOLLPRI) 607 poll_wait(file, &fh->wait, wait); 608 if (!(req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))) 609 return rc; 610 } 611 612 src_q = v4l2_m2m_get_src_vq(m2m_ctx); 613 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx); 614 615 /* 616 * There has to be at least one buffer queued on each queued_list, which 617 * means either in driver already or waiting for driver to claim it 618 * and start processing. 619 */ 620 if ((!src_q->streaming || list_empty(&src_q->queued_list)) 621 && (!dst_q->streaming || list_empty(&dst_q->queued_list))) { 622 rc |= EPOLLERR; 623 goto end; 624 } 625 626 spin_lock_irqsave(&src_q->done_lock, flags); 627 if (list_empty(&src_q->done_list)) 628 poll_wait(file, &src_q->done_wq, wait); 629 spin_unlock_irqrestore(&src_q->done_lock, flags); 630 631 spin_lock_irqsave(&dst_q->done_lock, flags); 632 if (list_empty(&dst_q->done_list)) { 633 /* 634 * If the last buffer was dequeued from the capture queue, 635 * return immediately. DQBUF will return -EPIPE. 636 */ 637 if (dst_q->last_buffer_dequeued) { 638 spin_unlock_irqrestore(&dst_q->done_lock, flags); 639 return rc | EPOLLIN | EPOLLRDNORM; 640 } 641 642 poll_wait(file, &dst_q->done_wq, wait); 643 } 644 spin_unlock_irqrestore(&dst_q->done_lock, flags); 645 646 spin_lock_irqsave(&src_q->done_lock, flags); 647 if (!list_empty(&src_q->done_list)) 648 src_vb = list_first_entry(&src_q->done_list, struct vb2_buffer, 649 done_entry); 650 if (src_vb && (src_vb->state == VB2_BUF_STATE_DONE 651 || src_vb->state == VB2_BUF_STATE_ERROR)) 652 rc |= EPOLLOUT | EPOLLWRNORM; 653 spin_unlock_irqrestore(&src_q->done_lock, flags); 654 655 spin_lock_irqsave(&dst_q->done_lock, flags); 656 if (!list_empty(&dst_q->done_list)) 657 dst_vb = list_first_entry(&dst_q->done_list, struct vb2_buffer, 658 done_entry); 659 if (dst_vb && (dst_vb->state == VB2_BUF_STATE_DONE 660 || dst_vb->state == VB2_BUF_STATE_ERROR)) 661 rc |= EPOLLIN | EPOLLRDNORM; 662 spin_unlock_irqrestore(&dst_q->done_lock, flags); 663 664 end: 665 return rc; 666 } 667 EXPORT_SYMBOL_GPL(v4l2_m2m_poll); 668 669 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx, 670 struct vm_area_struct *vma) 671 { 672 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 673 struct vb2_queue *vq; 674 675 if (offset < DST_QUEUE_OFF_BASE) { 676 vq = v4l2_m2m_get_src_vq(m2m_ctx); 677 } else { 678 vq = v4l2_m2m_get_dst_vq(m2m_ctx); 679 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT); 680 } 681 682 return vb2_mmap(vq, vma); 683 } 684 EXPORT_SYMBOL(v4l2_m2m_mmap); 685 686 #if defined(CONFIG_MEDIA_CONTROLLER) 687 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev) 688 { 689 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 690 media_devnode_remove(m2m_dev->intf_devnode); 691 692 media_entity_remove_links(m2m_dev->source); 693 media_entity_remove_links(&m2m_dev->sink); 694 media_entity_remove_links(&m2m_dev->proc); 695 media_device_unregister_entity(m2m_dev->source); 696 media_device_unregister_entity(&m2m_dev->sink); 697 media_device_unregister_entity(&m2m_dev->proc); 698 kfree(m2m_dev->source->name); 699 kfree(m2m_dev->sink.name); 700 kfree(m2m_dev->proc.name); 701 } 702 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller); 703 704 static int v4l2_m2m_register_entity(struct media_device *mdev, 705 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type, 706 struct video_device *vdev, int function) 707 { 708 struct media_entity *entity; 709 struct media_pad *pads; 710 char *name; 711 unsigned int len; 712 int num_pads; 713 int ret; 714 715 switch (type) { 716 case MEM2MEM_ENT_TYPE_SOURCE: 717 entity = m2m_dev->source; 718 pads = &m2m_dev->source_pad; 719 pads[0].flags = MEDIA_PAD_FL_SOURCE; 720 num_pads = 1; 721 break; 722 case MEM2MEM_ENT_TYPE_SINK: 723 entity = &m2m_dev->sink; 724 pads = &m2m_dev->sink_pad; 725 pads[0].flags = MEDIA_PAD_FL_SINK; 726 num_pads = 1; 727 break; 728 case MEM2MEM_ENT_TYPE_PROC: 729 entity = &m2m_dev->proc; 730 pads = m2m_dev->proc_pads; 731 pads[0].flags = MEDIA_PAD_FL_SINK; 732 pads[1].flags = MEDIA_PAD_FL_SOURCE; 733 num_pads = 2; 734 break; 735 default: 736 return -EINVAL; 737 } 738 739 entity->obj_type = MEDIA_ENTITY_TYPE_BASE; 740 if (type != MEM2MEM_ENT_TYPE_PROC) { 741 entity->info.dev.major = VIDEO_MAJOR; 742 entity->info.dev.minor = vdev->minor; 743 } 744 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]); 745 name = kmalloc(len, GFP_KERNEL); 746 if (!name) 747 return -ENOMEM; 748 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]); 749 entity->name = name; 750 entity->function = function; 751 752 ret = media_entity_pads_init(entity, num_pads, pads); 753 if (ret) 754 return ret; 755 ret = media_device_register_entity(mdev, entity); 756 if (ret) 757 return ret; 758 759 return 0; 760 } 761 762 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev, 763 struct video_device *vdev, int function) 764 { 765 struct media_device *mdev = vdev->v4l2_dev->mdev; 766 struct media_link *link; 767 int ret; 768 769 if (!mdev) 770 return 0; 771 772 /* A memory-to-memory device consists in two 773 * DMA engine and one video processing entities. 774 * The DMA engine entities are linked to a V4L interface 775 */ 776 777 /* Create the three entities with their pads */ 778 m2m_dev->source = &vdev->entity; 779 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 780 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L); 781 if (ret) 782 return ret; 783 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 784 MEM2MEM_ENT_TYPE_PROC, vdev, function); 785 if (ret) 786 goto err_rel_entity0; 787 ret = v4l2_m2m_register_entity(mdev, m2m_dev, 788 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L); 789 if (ret) 790 goto err_rel_entity1; 791 792 /* Connect the three entities */ 793 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 1, 794 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 795 if (ret) 796 goto err_rel_entity2; 797 798 ret = media_create_pad_link(&m2m_dev->proc, 0, &m2m_dev->sink, 0, 799 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 800 if (ret) 801 goto err_rm_links0; 802 803 /* Create video interface */ 804 m2m_dev->intf_devnode = media_devnode_create(mdev, 805 MEDIA_INTF_T_V4L_VIDEO, 0, 806 VIDEO_MAJOR, vdev->minor); 807 if (!m2m_dev->intf_devnode) { 808 ret = -ENOMEM; 809 goto err_rm_links1; 810 } 811 812 /* Connect the two DMA engines to the interface */ 813 link = media_create_intf_link(m2m_dev->source, 814 &m2m_dev->intf_devnode->intf, 815 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 816 if (!link) { 817 ret = -ENOMEM; 818 goto err_rm_devnode; 819 } 820 821 link = media_create_intf_link(&m2m_dev->sink, 822 &m2m_dev->intf_devnode->intf, 823 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED); 824 if (!link) { 825 ret = -ENOMEM; 826 goto err_rm_intf_link; 827 } 828 return 0; 829 830 err_rm_intf_link: 831 media_remove_intf_links(&m2m_dev->intf_devnode->intf); 832 err_rm_devnode: 833 media_devnode_remove(m2m_dev->intf_devnode); 834 err_rm_links1: 835 media_entity_remove_links(&m2m_dev->sink); 836 err_rm_links0: 837 media_entity_remove_links(&m2m_dev->proc); 838 media_entity_remove_links(m2m_dev->source); 839 err_rel_entity2: 840 media_device_unregister_entity(&m2m_dev->proc); 841 kfree(m2m_dev->proc.name); 842 err_rel_entity1: 843 media_device_unregister_entity(&m2m_dev->sink); 844 kfree(m2m_dev->sink.name); 845 err_rel_entity0: 846 media_device_unregister_entity(m2m_dev->source); 847 kfree(m2m_dev->source->name); 848 return ret; 849 return 0; 850 } 851 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller); 852 #endif 853 854 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops) 855 { 856 struct v4l2_m2m_dev *m2m_dev; 857 858 if (!m2m_ops || WARN_ON(!m2m_ops->device_run)) 859 return ERR_PTR(-EINVAL); 860 861 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL); 862 if (!m2m_dev) 863 return ERR_PTR(-ENOMEM); 864 865 m2m_dev->curr_ctx = NULL; 866 m2m_dev->m2m_ops = m2m_ops; 867 INIT_LIST_HEAD(&m2m_dev->job_queue); 868 spin_lock_init(&m2m_dev->job_spinlock); 869 870 return m2m_dev; 871 } 872 EXPORT_SYMBOL_GPL(v4l2_m2m_init); 873 874 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev) 875 { 876 kfree(m2m_dev); 877 } 878 EXPORT_SYMBOL_GPL(v4l2_m2m_release); 879 880 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev, 881 void *drv_priv, 882 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq)) 883 { 884 struct v4l2_m2m_ctx *m2m_ctx; 885 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx; 886 int ret; 887 888 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL); 889 if (!m2m_ctx) 890 return ERR_PTR(-ENOMEM); 891 892 m2m_ctx->priv = drv_priv; 893 m2m_ctx->m2m_dev = m2m_dev; 894 init_waitqueue_head(&m2m_ctx->finished); 895 896 out_q_ctx = &m2m_ctx->out_q_ctx; 897 cap_q_ctx = &m2m_ctx->cap_q_ctx; 898 899 INIT_LIST_HEAD(&out_q_ctx->rdy_queue); 900 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue); 901 spin_lock_init(&out_q_ctx->rdy_spinlock); 902 spin_lock_init(&cap_q_ctx->rdy_spinlock); 903 904 INIT_LIST_HEAD(&m2m_ctx->queue); 905 906 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q); 907 908 if (ret) 909 goto err; 910 /* 911 * If both queues use same mutex assign it as the common buffer 912 * queues lock to the m2m context. This lock is used in the 913 * v4l2_m2m_ioctl_* helpers. 914 */ 915 if (out_q_ctx->q.lock == cap_q_ctx->q.lock) 916 m2m_ctx->q_lock = out_q_ctx->q.lock; 917 918 return m2m_ctx; 919 err: 920 kfree(m2m_ctx); 921 return ERR_PTR(ret); 922 } 923 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init); 924 925 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx) 926 { 927 /* wait until the current context is dequeued from job_queue */ 928 v4l2_m2m_cancel_job(m2m_ctx); 929 930 vb2_queue_release(&m2m_ctx->cap_q_ctx.q); 931 vb2_queue_release(&m2m_ctx->out_q_ctx.q); 932 933 kfree(m2m_ctx); 934 } 935 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release); 936 937 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx, 938 struct vb2_v4l2_buffer *vbuf) 939 { 940 struct v4l2_m2m_buffer *b = container_of(vbuf, 941 struct v4l2_m2m_buffer, vb); 942 struct v4l2_m2m_queue_ctx *q_ctx; 943 unsigned long flags; 944 945 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type); 946 if (!q_ctx) 947 return; 948 949 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags); 950 list_add_tail(&b->list, &q_ctx->rdy_queue); 951 q_ctx->num_rdy++; 952 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags); 953 } 954 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue); 955 956 void vb2_m2m_request_queue(struct media_request *req) 957 { 958 struct media_request_object *obj, *obj_safe; 959 struct v4l2_m2m_ctx *m2m_ctx = NULL; 960 961 /* 962 * Queue all objects. Note that buffer objects are at the end of the 963 * objects list, after all other object types. Once buffer objects 964 * are queued, the driver might delete them immediately (if the driver 965 * processes the buffer at once), so we have to use 966 * list_for_each_entry_safe() to handle the case where the object we 967 * queue is deleted. 968 */ 969 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) { 970 struct v4l2_m2m_ctx *m2m_ctx_obj; 971 struct vb2_buffer *vb; 972 973 if (!obj->ops->queue) 974 continue; 975 976 if (vb2_request_object_is_buffer(obj)) { 977 /* Sanity checks */ 978 vb = container_of(obj, struct vb2_buffer, req_obj); 979 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type)); 980 m2m_ctx_obj = container_of(vb->vb2_queue, 981 struct v4l2_m2m_ctx, 982 out_q_ctx.q); 983 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx); 984 m2m_ctx = m2m_ctx_obj; 985 } 986 987 /* 988 * The buffer we queue here can in theory be immediately 989 * unbound, hence the use of list_for_each_entry_safe() 990 * above and why we call the queue op last. 991 */ 992 obj->ops->queue(obj); 993 } 994 995 WARN_ON(!m2m_ctx); 996 997 if (m2m_ctx) 998 v4l2_m2m_try_schedule(m2m_ctx); 999 } 1000 EXPORT_SYMBOL_GPL(vb2_m2m_request_queue); 1001 1002 /* Videobuf2 ioctl helpers */ 1003 1004 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv, 1005 struct v4l2_requestbuffers *rb) 1006 { 1007 struct v4l2_fh *fh = file->private_data; 1008 1009 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb); 1010 } 1011 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs); 1012 1013 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv, 1014 struct v4l2_create_buffers *create) 1015 { 1016 struct v4l2_fh *fh = file->private_data; 1017 1018 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create); 1019 } 1020 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs); 1021 1022 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv, 1023 struct v4l2_buffer *buf) 1024 { 1025 struct v4l2_fh *fh = file->private_data; 1026 1027 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf); 1028 } 1029 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf); 1030 1031 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv, 1032 struct v4l2_buffer *buf) 1033 { 1034 struct v4l2_fh *fh = file->private_data; 1035 1036 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf); 1037 } 1038 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf); 1039 1040 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv, 1041 struct v4l2_buffer *buf) 1042 { 1043 struct v4l2_fh *fh = file->private_data; 1044 1045 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf); 1046 } 1047 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf); 1048 1049 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv, 1050 struct v4l2_buffer *buf) 1051 { 1052 struct v4l2_fh *fh = file->private_data; 1053 1054 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf); 1055 } 1056 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf); 1057 1058 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv, 1059 struct v4l2_exportbuffer *eb) 1060 { 1061 struct v4l2_fh *fh = file->private_data; 1062 1063 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb); 1064 } 1065 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf); 1066 1067 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv, 1068 enum v4l2_buf_type type) 1069 { 1070 struct v4l2_fh *fh = file->private_data; 1071 1072 return v4l2_m2m_streamon(file, fh->m2m_ctx, type); 1073 } 1074 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon); 1075 1076 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv, 1077 enum v4l2_buf_type type) 1078 { 1079 struct v4l2_fh *fh = file->private_data; 1080 1081 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type); 1082 } 1083 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff); 1084 1085 /* 1086 * v4l2_file_operations helpers. It is assumed here same lock is used 1087 * for the output and the capture buffer queue. 1088 */ 1089 1090 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma) 1091 { 1092 struct v4l2_fh *fh = file->private_data; 1093 1094 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma); 1095 } 1096 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap); 1097 1098 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait) 1099 { 1100 struct v4l2_fh *fh = file->private_data; 1101 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx; 1102 __poll_t ret; 1103 1104 if (m2m_ctx->q_lock) 1105 mutex_lock(m2m_ctx->q_lock); 1106 1107 ret = v4l2_m2m_poll(file, m2m_ctx, wait); 1108 1109 if (m2m_ctx->q_lock) 1110 mutex_unlock(m2m_ctx->q_lock); 1111 1112 return ret; 1113 } 1114 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll); 1115 1116