xref: /linux/drivers/media/v4l2-core/v4l2-fwnode.c (revision 58d416351e6df1a41d415958ccdd8eb9c2173fed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * V4L2 fwnode binding parsing library
4  *
5  * The origins of the V4L2 fwnode library are in V4L2 OF library that
6  * formerly was located in v4l2-of.c.
7  *
8  * Copyright (c) 2016 Intel Corporation.
9  * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
10  *
11  * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12  * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
13  *
14  * Copyright (C) 2012 Renesas Electronics Corp.
15  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
16  */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30 
31 static const struct v4l2_fwnode_bus_conv {
32 	enum v4l2_fwnode_bus_type fwnode_bus_type;
33 	enum v4l2_mbus_type mbus_type;
34 	const char *name;
35 } buses[] = {
36 	{
37 		V4L2_FWNODE_BUS_TYPE_GUESS,
38 		V4L2_MBUS_UNKNOWN,
39 		"not specified",
40 	}, {
41 		V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
42 		V4L2_MBUS_CSI2_CPHY,
43 		"MIPI CSI-2 C-PHY",
44 	}, {
45 		V4L2_FWNODE_BUS_TYPE_CSI1,
46 		V4L2_MBUS_CSI1,
47 		"MIPI CSI-1",
48 	}, {
49 		V4L2_FWNODE_BUS_TYPE_CCP2,
50 		V4L2_MBUS_CCP2,
51 		"compact camera port 2",
52 	}, {
53 		V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
54 		V4L2_MBUS_CSI2_DPHY,
55 		"MIPI CSI-2 D-PHY",
56 	}, {
57 		V4L2_FWNODE_BUS_TYPE_PARALLEL,
58 		V4L2_MBUS_PARALLEL,
59 		"parallel",
60 	}, {
61 		V4L2_FWNODE_BUS_TYPE_BT656,
62 		V4L2_MBUS_BT656,
63 		"Bt.656",
64 	}
65 };
66 
67 static const struct v4l2_fwnode_bus_conv *
68 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
69 {
70 	unsigned int i;
71 
72 	for (i = 0; i < ARRAY_SIZE(buses); i++)
73 		if (buses[i].fwnode_bus_type == type)
74 			return &buses[i];
75 
76 	return NULL;
77 }
78 
79 static enum v4l2_mbus_type
80 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
81 {
82 	const struct v4l2_fwnode_bus_conv *conv =
83 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
84 
85 	return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
86 }
87 
88 static const char *
89 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
90 {
91 	const struct v4l2_fwnode_bus_conv *conv =
92 		get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
93 
94 	return conv ? conv->name : "not found";
95 }
96 
97 static const struct v4l2_fwnode_bus_conv *
98 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
99 {
100 	unsigned int i;
101 
102 	for (i = 0; i < ARRAY_SIZE(buses); i++)
103 		if (buses[i].mbus_type == type)
104 			return &buses[i];
105 
106 	return NULL;
107 }
108 
109 static const char *
110 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
111 {
112 	const struct v4l2_fwnode_bus_conv *conv =
113 		get_v4l2_fwnode_bus_conv_by_mbus(type);
114 
115 	return conv ? conv->name : "not found";
116 }
117 
118 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
119 					       struct v4l2_fwnode_endpoint *vep,
120 					       enum v4l2_mbus_type bus_type)
121 {
122 	struct v4l2_mbus_config_mipi_csi2 *bus = &vep->bus.mipi_csi2;
123 	bool have_clk_lane = false, have_data_lanes = false,
124 		have_lane_polarities = false;
125 	unsigned int flags = 0, lanes_used = 0;
126 	u32 array[1 + V4L2_MBUS_CSI2_MAX_DATA_LANES];
127 	u32 clock_lane = 0;
128 	unsigned int num_data_lanes = 0;
129 	bool use_default_lane_mapping = false;
130 	unsigned int i;
131 	u32 v;
132 	int rval;
133 
134 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
135 	    bus_type == V4L2_MBUS_CSI2_CPHY) {
136 		use_default_lane_mapping = true;
137 
138 		num_data_lanes = min_t(u32, bus->num_data_lanes,
139 				       V4L2_MBUS_CSI2_MAX_DATA_LANES);
140 
141 		clock_lane = bus->clock_lane;
142 		if (clock_lane)
143 			use_default_lane_mapping = false;
144 
145 		for (i = 0; i < num_data_lanes; i++) {
146 			array[i] = bus->data_lanes[i];
147 			if (array[i])
148 				use_default_lane_mapping = false;
149 		}
150 
151 		if (use_default_lane_mapping)
152 			pr_debug("no lane mapping given, using defaults\n");
153 	}
154 
155 	rval = fwnode_property_count_u32(fwnode, "data-lanes");
156 	if (rval > 0) {
157 		num_data_lanes =
158 			min_t(int, V4L2_MBUS_CSI2_MAX_DATA_LANES, rval);
159 
160 		fwnode_property_read_u32_array(fwnode, "data-lanes", array,
161 					       num_data_lanes);
162 
163 		have_data_lanes = true;
164 		if (use_default_lane_mapping) {
165 			pr_debug("data-lanes property exists; disabling default mapping\n");
166 			use_default_lane_mapping = false;
167 		}
168 	}
169 
170 	for (i = 0; i < num_data_lanes; i++) {
171 		if (lanes_used & BIT(array[i])) {
172 			if (have_data_lanes || !use_default_lane_mapping)
173 				pr_warn("duplicated lane %u in data-lanes, using defaults\n",
174 					array[i]);
175 			use_default_lane_mapping = true;
176 		}
177 		lanes_used |= BIT(array[i]);
178 
179 		if (have_data_lanes)
180 			pr_debug("lane %u position %u\n", i, array[i]);
181 	}
182 
183 	rval = fwnode_property_count_u32(fwnode, "lane-polarities");
184 	if (rval > 0) {
185 		if (rval != 1 + num_data_lanes /* clock+data */) {
186 			pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
187 				1 + num_data_lanes, rval);
188 			return -EINVAL;
189 		}
190 
191 		have_lane_polarities = true;
192 	}
193 
194 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
195 		clock_lane = v;
196 		pr_debug("clock lane position %u\n", v);
197 		have_clk_lane = true;
198 	}
199 
200 	if (have_clk_lane && lanes_used & BIT(clock_lane) &&
201 	    !use_default_lane_mapping) {
202 		pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
203 			v);
204 		use_default_lane_mapping = true;
205 	}
206 
207 	if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
208 		flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
209 		pr_debug("non-continuous clock\n");
210 	}
211 
212 	if (bus_type == V4L2_MBUS_CSI2_DPHY ||
213 	    bus_type == V4L2_MBUS_CSI2_CPHY ||
214 	    lanes_used || have_clk_lane || flags) {
215 		/* Only D-PHY has a clock lane. */
216 		unsigned int dfl_data_lane_index =
217 			bus_type == V4L2_MBUS_CSI2_DPHY;
218 
219 		bus->flags = flags;
220 		if (bus_type == V4L2_MBUS_UNKNOWN)
221 			vep->bus_type = V4L2_MBUS_CSI2_DPHY;
222 		bus->num_data_lanes = num_data_lanes;
223 
224 		if (use_default_lane_mapping) {
225 			bus->clock_lane = 0;
226 			for (i = 0; i < num_data_lanes; i++)
227 				bus->data_lanes[i] = dfl_data_lane_index + i;
228 		} else {
229 			bus->clock_lane = clock_lane;
230 			for (i = 0; i < num_data_lanes; i++)
231 				bus->data_lanes[i] = array[i];
232 		}
233 
234 		if (have_lane_polarities) {
235 			fwnode_property_read_u32_array(fwnode,
236 						       "lane-polarities", array,
237 						       1 + num_data_lanes);
238 
239 			for (i = 0; i < 1 + num_data_lanes; i++) {
240 				bus->lane_polarities[i] = array[i];
241 				pr_debug("lane %u polarity %sinverted",
242 					 i, array[i] ? "" : "not ");
243 			}
244 		} else {
245 			pr_debug("no lane polarities defined, assuming not inverted\n");
246 		}
247 	}
248 
249 	return 0;
250 }
251 
252 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH |	\
253 			     V4L2_MBUS_HSYNC_ACTIVE_LOW |	\
254 			     V4L2_MBUS_VSYNC_ACTIVE_HIGH |	\
255 			     V4L2_MBUS_VSYNC_ACTIVE_LOW |	\
256 			     V4L2_MBUS_FIELD_EVEN_HIGH |	\
257 			     V4L2_MBUS_FIELD_EVEN_LOW)
258 
259 static void
260 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
261 					struct v4l2_fwnode_endpoint *vep,
262 					enum v4l2_mbus_type bus_type)
263 {
264 	struct v4l2_mbus_config_parallel *bus = &vep->bus.parallel;
265 	unsigned int flags = 0;
266 	u32 v;
267 
268 	if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
269 		flags = bus->flags;
270 
271 	if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
272 		flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
273 			   V4L2_MBUS_HSYNC_ACTIVE_LOW);
274 		flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
275 			V4L2_MBUS_HSYNC_ACTIVE_LOW;
276 		pr_debug("hsync-active %s\n", v ? "high" : "low");
277 	}
278 
279 	if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
280 		flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
281 			   V4L2_MBUS_VSYNC_ACTIVE_LOW);
282 		flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
283 			V4L2_MBUS_VSYNC_ACTIVE_LOW;
284 		pr_debug("vsync-active %s\n", v ? "high" : "low");
285 	}
286 
287 	if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
288 		flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
289 			   V4L2_MBUS_FIELD_EVEN_LOW);
290 		flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
291 			V4L2_MBUS_FIELD_EVEN_LOW;
292 		pr_debug("field-even-active %s\n", v ? "high" : "low");
293 	}
294 
295 	if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
296 		flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
297 			   V4L2_MBUS_PCLK_SAMPLE_FALLING);
298 		flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
299 			V4L2_MBUS_PCLK_SAMPLE_FALLING;
300 		pr_debug("pclk-sample %s\n", v ? "high" : "low");
301 	}
302 
303 	if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
304 		flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
305 			   V4L2_MBUS_DATA_ACTIVE_LOW);
306 		flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
307 			V4L2_MBUS_DATA_ACTIVE_LOW;
308 		pr_debug("data-active %s\n", v ? "high" : "low");
309 	}
310 
311 	if (fwnode_property_present(fwnode, "slave-mode")) {
312 		pr_debug("slave mode\n");
313 		flags &= ~V4L2_MBUS_MASTER;
314 		flags |= V4L2_MBUS_SLAVE;
315 	} else {
316 		flags &= ~V4L2_MBUS_SLAVE;
317 		flags |= V4L2_MBUS_MASTER;
318 	}
319 
320 	if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
321 		bus->bus_width = v;
322 		pr_debug("bus-width %u\n", v);
323 	}
324 
325 	if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
326 		bus->data_shift = v;
327 		pr_debug("data-shift %u\n", v);
328 	}
329 
330 	if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
331 		flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
332 			   V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
333 		flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
334 			V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
335 		pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
336 	}
337 
338 	if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
339 		flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
340 			   V4L2_MBUS_DATA_ENABLE_LOW);
341 		flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
342 			V4L2_MBUS_DATA_ENABLE_LOW;
343 		pr_debug("data-enable-active %s\n", v ? "high" : "low");
344 	}
345 
346 	switch (bus_type) {
347 	default:
348 		bus->flags = flags;
349 		if (flags & PARALLEL_MBUS_FLAGS)
350 			vep->bus_type = V4L2_MBUS_PARALLEL;
351 		else
352 			vep->bus_type = V4L2_MBUS_BT656;
353 		break;
354 	case V4L2_MBUS_PARALLEL:
355 		vep->bus_type = V4L2_MBUS_PARALLEL;
356 		bus->flags = flags;
357 		break;
358 	case V4L2_MBUS_BT656:
359 		vep->bus_type = V4L2_MBUS_BT656;
360 		bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
361 		break;
362 	}
363 }
364 
365 static void
366 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
367 				    struct v4l2_fwnode_endpoint *vep,
368 				    enum v4l2_mbus_type bus_type)
369 {
370 	struct v4l2_mbus_config_mipi_csi1 *bus = &vep->bus.mipi_csi1;
371 	u32 v;
372 
373 	if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
374 		bus->clock_inv = v;
375 		pr_debug("clock-inv %u\n", v);
376 	}
377 
378 	if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
379 		bus->strobe = v;
380 		pr_debug("strobe %u\n", v);
381 	}
382 
383 	if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
384 		bus->data_lane = v;
385 		pr_debug("data-lanes %u\n", v);
386 	}
387 
388 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
389 		bus->clock_lane = v;
390 		pr_debug("clock-lanes %u\n", v);
391 	}
392 
393 	if (bus_type == V4L2_MBUS_CCP2)
394 		vep->bus_type = V4L2_MBUS_CCP2;
395 	else
396 		vep->bus_type = V4L2_MBUS_CSI1;
397 }
398 
399 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
400 					struct v4l2_fwnode_endpoint *vep)
401 {
402 	u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
403 	enum v4l2_mbus_type mbus_type;
404 	int rval;
405 
406 	pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
407 
408 	fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
409 	pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
410 		 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
411 		 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
412 		 vep->bus_type);
413 	mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
414 	if (mbus_type == V4L2_MBUS_INVALID) {
415 		pr_debug("unsupported bus type %u\n", bus_type);
416 		return -EINVAL;
417 	}
418 
419 	if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
420 		if (mbus_type != V4L2_MBUS_UNKNOWN &&
421 		    vep->bus_type != mbus_type) {
422 			pr_debug("expecting bus type %s\n",
423 				 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
424 			return -ENXIO;
425 		}
426 	} else {
427 		vep->bus_type = mbus_type;
428 	}
429 
430 	switch (vep->bus_type) {
431 	case V4L2_MBUS_UNKNOWN:
432 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
433 							   V4L2_MBUS_UNKNOWN);
434 		if (rval)
435 			return rval;
436 
437 		if (vep->bus_type == V4L2_MBUS_UNKNOWN)
438 			v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
439 								V4L2_MBUS_UNKNOWN);
440 
441 		pr_debug("assuming media bus type %s (%u)\n",
442 			 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
443 			 vep->bus_type);
444 
445 		break;
446 	case V4L2_MBUS_CCP2:
447 	case V4L2_MBUS_CSI1:
448 		v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
449 
450 		break;
451 	case V4L2_MBUS_CSI2_DPHY:
452 	case V4L2_MBUS_CSI2_CPHY:
453 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
454 							   vep->bus_type);
455 		if (rval)
456 			return rval;
457 
458 		break;
459 	case V4L2_MBUS_PARALLEL:
460 	case V4L2_MBUS_BT656:
461 		v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
462 							vep->bus_type);
463 
464 		break;
465 	default:
466 		pr_warn("unsupported bus type %u\n", mbus_type);
467 		return -EINVAL;
468 	}
469 
470 	fwnode_graph_parse_endpoint(fwnode, &vep->base);
471 
472 	return 0;
473 }
474 
475 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
476 			       struct v4l2_fwnode_endpoint *vep)
477 {
478 	int ret;
479 
480 	ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
481 
482 	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
483 
484 	return ret;
485 }
486 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
487 
488 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
489 {
490 	if (IS_ERR_OR_NULL(vep))
491 		return;
492 
493 	kfree(vep->link_frequencies);
494 	vep->link_frequencies = NULL;
495 }
496 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
497 
498 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
499 				     struct v4l2_fwnode_endpoint *vep)
500 {
501 	int rval;
502 
503 	rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
504 	if (rval < 0)
505 		return rval;
506 
507 	rval = fwnode_property_count_u64(fwnode, "link-frequencies");
508 	if (rval > 0) {
509 		unsigned int i;
510 
511 		vep->link_frequencies =
512 			kmalloc_array(rval, sizeof(*vep->link_frequencies),
513 				      GFP_KERNEL);
514 		if (!vep->link_frequencies)
515 			return -ENOMEM;
516 
517 		vep->nr_of_link_frequencies = rval;
518 
519 		rval = fwnode_property_read_u64_array(fwnode,
520 						      "link-frequencies",
521 						      vep->link_frequencies,
522 						      vep->nr_of_link_frequencies);
523 		if (rval < 0) {
524 			v4l2_fwnode_endpoint_free(vep);
525 			return rval;
526 		}
527 
528 		for (i = 0; i < vep->nr_of_link_frequencies; i++)
529 			pr_debug("link-frequencies %u value %llu\n", i,
530 				 vep->link_frequencies[i]);
531 	}
532 
533 	pr_debug("===== end parsing endpoint %pfw\n", fwnode);
534 
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
538 
539 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
540 			   struct v4l2_fwnode_link *link)
541 {
542 	struct fwnode_endpoint fwep;
543 
544 	memset(link, 0, sizeof(*link));
545 
546 	fwnode_graph_parse_endpoint(fwnode, &fwep);
547 	link->local_id = fwep.id;
548 	link->local_port = fwep.port;
549 	link->local_node = fwnode_graph_get_port_parent(fwnode);
550 
551 	fwnode = fwnode_graph_get_remote_endpoint(fwnode);
552 	if (!fwnode) {
553 		fwnode_handle_put(fwnode);
554 		return -ENOLINK;
555 	}
556 
557 	fwnode_graph_parse_endpoint(fwnode, &fwep);
558 	link->remote_id = fwep.id;
559 	link->remote_port = fwep.port;
560 	link->remote_node = fwnode_graph_get_port_parent(fwnode);
561 
562 	return 0;
563 }
564 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
565 
566 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
567 {
568 	fwnode_handle_put(link->local_node);
569 	fwnode_handle_put(link->remote_node);
570 }
571 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
572 
573 static const struct v4l2_fwnode_connector_conv {
574 	enum v4l2_connector_type type;
575 	const char *compatible;
576 } connectors[] = {
577 	{
578 		.type = V4L2_CONN_COMPOSITE,
579 		.compatible = "composite-video-connector",
580 	}, {
581 		.type = V4L2_CONN_SVIDEO,
582 		.compatible = "svideo-connector",
583 	},
584 };
585 
586 static enum v4l2_connector_type
587 v4l2_fwnode_string_to_connector_type(const char *con_str)
588 {
589 	unsigned int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(connectors); i++)
592 		if (!strcmp(con_str, connectors[i].compatible))
593 			return connectors[i].type;
594 
595 	return V4L2_CONN_UNKNOWN;
596 }
597 
598 static void
599 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
600 				   struct v4l2_fwnode_connector *vc)
601 {
602 	u32 stds;
603 	int ret;
604 
605 	ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
606 
607 	/* The property is optional. */
608 	vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
609 }
610 
611 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
612 {
613 	struct v4l2_connector_link *link, *tmp;
614 
615 	if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
616 		return;
617 
618 	list_for_each_entry_safe(link, tmp, &connector->links, head) {
619 		v4l2_fwnode_put_link(&link->fwnode_link);
620 		list_del(&link->head);
621 		kfree(link);
622 	}
623 
624 	kfree(connector->label);
625 	connector->label = NULL;
626 	connector->type = V4L2_CONN_UNKNOWN;
627 }
628 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
629 
630 static enum v4l2_connector_type
631 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
632 {
633 	const char *type_name;
634 	int err;
635 
636 	if (!fwnode)
637 		return V4L2_CONN_UNKNOWN;
638 
639 	/* The connector-type is stored within the compatible string. */
640 	err = fwnode_property_read_string(fwnode, "compatible", &type_name);
641 	if (err)
642 		return V4L2_CONN_UNKNOWN;
643 
644 	return v4l2_fwnode_string_to_connector_type(type_name);
645 }
646 
647 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
648 				struct v4l2_fwnode_connector *connector)
649 {
650 	struct fwnode_handle *connector_node;
651 	enum v4l2_connector_type connector_type;
652 	const char *label;
653 	int err;
654 
655 	if (!fwnode)
656 		return -EINVAL;
657 
658 	memset(connector, 0, sizeof(*connector));
659 
660 	INIT_LIST_HEAD(&connector->links);
661 
662 	connector_node = fwnode_graph_get_port_parent(fwnode);
663 	connector_type = v4l2_fwnode_get_connector_type(connector_node);
664 	if (connector_type == V4L2_CONN_UNKNOWN) {
665 		fwnode_handle_put(connector_node);
666 		connector_node = fwnode_graph_get_remote_port_parent(fwnode);
667 		connector_type = v4l2_fwnode_get_connector_type(connector_node);
668 	}
669 
670 	if (connector_type == V4L2_CONN_UNKNOWN) {
671 		pr_err("Unknown connector type\n");
672 		err = -ENOTCONN;
673 		goto out;
674 	}
675 
676 	connector->type = connector_type;
677 	connector->name = fwnode_get_name(connector_node);
678 	err = fwnode_property_read_string(connector_node, "label", &label);
679 	connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
680 
681 	/* Parse the connector specific properties. */
682 	switch (connector->type) {
683 	case V4L2_CONN_COMPOSITE:
684 	case V4L2_CONN_SVIDEO:
685 		v4l2_fwnode_connector_parse_analog(connector_node, connector);
686 		break;
687 	/* Avoid compiler warnings */
688 	case V4L2_CONN_UNKNOWN:
689 		break;
690 	}
691 
692 out:
693 	fwnode_handle_put(connector_node);
694 
695 	return err;
696 }
697 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
698 
699 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
700 				   struct v4l2_fwnode_connector *connector)
701 {
702 	struct fwnode_handle *connector_ep;
703 	struct v4l2_connector_link *link;
704 	int err;
705 
706 	if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
707 		return -EINVAL;
708 
709 	connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
710 	if (!connector_ep)
711 		return -ENOTCONN;
712 
713 	link = kzalloc(sizeof(*link), GFP_KERNEL);
714 	if (!link) {
715 		err = -ENOMEM;
716 		goto err;
717 	}
718 
719 	err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
720 	if (err)
721 		goto err;
722 
723 	fwnode_handle_put(connector_ep);
724 
725 	list_add(&link->head, &connector->links);
726 	connector->nr_of_links++;
727 
728 	return 0;
729 
730 err:
731 	kfree(link);
732 	fwnode_handle_put(connector_ep);
733 
734 	return err;
735 }
736 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
737 
738 int v4l2_fwnode_device_parse(struct device *dev,
739 			     struct v4l2_fwnode_device_properties *props)
740 {
741 	struct fwnode_handle *fwnode = dev_fwnode(dev);
742 	u32 val;
743 	int ret;
744 
745 	memset(props, 0, sizeof(*props));
746 
747 	props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
748 	ret = fwnode_property_read_u32(fwnode, "orientation", &val);
749 	if (!ret) {
750 		switch (val) {
751 		case V4L2_FWNODE_ORIENTATION_FRONT:
752 		case V4L2_FWNODE_ORIENTATION_BACK:
753 		case V4L2_FWNODE_ORIENTATION_EXTERNAL:
754 			break;
755 		default:
756 			dev_warn(dev, "Unsupported device orientation: %u\n", val);
757 			return -EINVAL;
758 		}
759 
760 		props->orientation = val;
761 		dev_dbg(dev, "device orientation: %u\n", val);
762 	}
763 
764 	props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
765 	ret = fwnode_property_read_u32(fwnode, "rotation", &val);
766 	if (!ret) {
767 		if (val >= 360) {
768 			dev_warn(dev, "Unsupported device rotation: %u\n", val);
769 			return -EINVAL;
770 		}
771 
772 		props->rotation = val;
773 		dev_dbg(dev, "device rotation: %u\n", val);
774 	}
775 
776 	return 0;
777 }
778 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
779 
780 static int
781 v4l2_async_nf_fwnode_parse_endpoint(struct device *dev,
782 				    struct v4l2_async_notifier *notifier,
783 				    struct fwnode_handle *endpoint,
784 				    unsigned int asd_struct_size,
785 				    parse_endpoint_func parse_endpoint)
786 {
787 	struct v4l2_fwnode_endpoint vep = { .bus_type = 0 };
788 	struct v4l2_async_subdev *asd;
789 	int ret;
790 
791 	asd = kzalloc(asd_struct_size, GFP_KERNEL);
792 	if (!asd)
793 		return -ENOMEM;
794 
795 	asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
796 	asd->match.fwnode =
797 		fwnode_graph_get_remote_port_parent(endpoint);
798 	if (!asd->match.fwnode) {
799 		dev_dbg(dev, "no remote endpoint found\n");
800 		ret = -ENOTCONN;
801 		goto out_err;
802 	}
803 
804 	ret = v4l2_fwnode_endpoint_alloc_parse(endpoint, &vep);
805 	if (ret) {
806 		dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
807 			 ret);
808 		goto out_err;
809 	}
810 
811 	ret = parse_endpoint ? parse_endpoint(dev, &vep, asd) : 0;
812 	if (ret == -ENOTCONN)
813 		dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep.base.port,
814 			vep.base.id);
815 	else if (ret < 0)
816 		dev_warn(dev,
817 			 "driver could not parse port@%u/endpoint@%u (%d)\n",
818 			 vep.base.port, vep.base.id, ret);
819 	v4l2_fwnode_endpoint_free(&vep);
820 	if (ret < 0)
821 		goto out_err;
822 
823 	ret = __v4l2_async_nf_add_subdev(notifier, asd);
824 	if (ret < 0) {
825 		/* not an error if asd already exists */
826 		if (ret == -EEXIST)
827 			ret = 0;
828 		goto out_err;
829 	}
830 
831 	return 0;
832 
833 out_err:
834 	fwnode_handle_put(asd->match.fwnode);
835 	kfree(asd);
836 
837 	return ret == -ENOTCONN ? 0 : ret;
838 }
839 
840 int
841 v4l2_async_nf_parse_fwnode_endpoints(struct device *dev,
842 				     struct v4l2_async_notifier *notifier,
843 				     size_t asd_struct_size,
844 				     parse_endpoint_func parse_endpoint)
845 {
846 	struct fwnode_handle *fwnode;
847 	int ret = 0;
848 
849 	if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
850 		return -EINVAL;
851 
852 	fwnode_graph_for_each_endpoint(dev_fwnode(dev), fwnode) {
853 		struct fwnode_handle *dev_fwnode;
854 		bool is_available;
855 
856 		dev_fwnode = fwnode_graph_get_port_parent(fwnode);
857 		is_available = fwnode_device_is_available(dev_fwnode);
858 		fwnode_handle_put(dev_fwnode);
859 		if (!is_available)
860 			continue;
861 
862 
863 		ret = v4l2_async_nf_fwnode_parse_endpoint(dev, notifier,
864 							  fwnode,
865 							  asd_struct_size,
866 							  parse_endpoint);
867 		if (ret < 0)
868 			break;
869 	}
870 
871 	fwnode_handle_put(fwnode);
872 
873 	return ret;
874 }
875 EXPORT_SYMBOL_GPL(v4l2_async_nf_parse_fwnode_endpoints);
876 
877 /*
878  * v4l2_fwnode_reference_parse - parse references for async sub-devices
879  * @dev: the device node the properties of which are parsed for references
880  * @notifier: the async notifier where the async subdevs will be added
881  * @prop: the name of the property
882  *
883  * Return: 0 on success
884  *	   -ENOENT if no entries were found
885  *	   -ENOMEM if memory allocation failed
886  *	   -EINVAL if property parsing failed
887  */
888 static int v4l2_fwnode_reference_parse(struct device *dev,
889 				       struct v4l2_async_notifier *notifier,
890 				       const char *prop)
891 {
892 	struct fwnode_reference_args args;
893 	unsigned int index;
894 	int ret;
895 
896 	for (index = 0;
897 	     !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), prop,
898 							NULL, 0, index, &args));
899 	     index++) {
900 		struct v4l2_async_subdev *asd;
901 
902 		asd = v4l2_async_nf_add_fwnode(notifier, args.fwnode,
903 					       struct v4l2_async_subdev);
904 		fwnode_handle_put(args.fwnode);
905 		if (IS_ERR(asd)) {
906 			/* not an error if asd already exists */
907 			if (PTR_ERR(asd) == -EEXIST)
908 				continue;
909 
910 			return PTR_ERR(asd);
911 		}
912 	}
913 
914 	/* -ENOENT here means successful parsing */
915 	if (ret != -ENOENT)
916 		return ret;
917 
918 	/* Return -ENOENT if no references were found */
919 	return index ? 0 : -ENOENT;
920 }
921 
922 /*
923  * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
924  *					arguments
925  * @fwnode: fwnode to read @prop from
926  * @notifier: notifier for @dev
927  * @prop: the name of the property
928  * @index: the index of the reference to get
929  * @props: the array of integer property names
930  * @nprops: the number of integer property names in @nprops
931  *
932  * First find an fwnode referred to by the reference at @index in @prop.
933  *
934  * Then under that fwnode, @nprops times, for each property in @props,
935  * iteratively follow child nodes starting from fwnode such that they have the
936  * property in @props array at the index of the child node distance from the
937  * root node and the value of that property matching with the integer argument
938  * of the reference, at the same index.
939  *
940  * The child fwnode reached at the end of the iteration is then returned to the
941  * caller.
942  *
943  * The core reason for this is that you cannot refer to just any node in ACPI.
944  * So to refer to an endpoint (easy in DT) you need to refer to a device, then
945  * provide a list of (property name, property value) tuples where each tuple
946  * uniquely identifies a child node. The first tuple identifies a child directly
947  * underneath the device fwnode, the next tuple identifies a child node
948  * underneath the fwnode identified by the previous tuple, etc. until you
949  * reached the fwnode you need.
950  *
951  * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
952  * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
953  * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
954  * data-node-references.txt and leds.txt .
955  *
956  *	Scope (\_SB.PCI0.I2C2)
957  *	{
958  *		Device (CAM0)
959  *		{
960  *			Name (_DSD, Package () {
961  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
962  *				Package () {
963  *					Package () {
964  *						"compatible",
965  *						Package () { "nokia,smia" }
966  *					},
967  *				},
968  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
969  *				Package () {
970  *					Package () { "port0", "PRT0" },
971  *				}
972  *			})
973  *			Name (PRT0, Package() {
974  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
975  *				Package () {
976  *					Package () { "port", 0 },
977  *				},
978  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
979  *				Package () {
980  *					Package () { "endpoint0", "EP00" },
981  *				}
982  *			})
983  *			Name (EP00, Package() {
984  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
985  *				Package () {
986  *					Package () { "endpoint", 0 },
987  *					Package () {
988  *						"remote-endpoint",
989  *						Package() {
990  *							\_SB.PCI0.ISP, 4, 0
991  *						}
992  *					},
993  *				}
994  *			})
995  *		}
996  *	}
997  *
998  *	Scope (\_SB.PCI0)
999  *	{
1000  *		Device (ISP)
1001  *		{
1002  *			Name (_DSD, Package () {
1003  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1004  *				Package () {
1005  *					Package () { "port4", "PRT4" },
1006  *				}
1007  *			})
1008  *
1009  *			Name (PRT4, Package() {
1010  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1011  *				Package () {
1012  *					Package () { "port", 4 },
1013  *				},
1014  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
1015  *				Package () {
1016  *					Package () { "endpoint0", "EP40" },
1017  *				}
1018  *			})
1019  *
1020  *			Name (EP40, Package() {
1021  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
1022  *				Package () {
1023  *					Package () { "endpoint", 0 },
1024  *					Package () {
1025  *						"remote-endpoint",
1026  *						Package () {
1027  *							\_SB.PCI0.I2C2.CAM0,
1028  *							0, 0
1029  *						}
1030  *					},
1031  *				}
1032  *			})
1033  *		}
1034  *	}
1035  *
1036  * From the EP40 node under ISP device, you could parse the graph remote
1037  * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1038  *
1039  *  @fwnode: fwnode referring to EP40 under ISP.
1040  *  @prop: "remote-endpoint"
1041  *  @index: 0
1042  *  @props: "port", "endpoint"
1043  *  @nprops: 2
1044  *
1045  * And you'd get back fwnode referring to EP00 under CAM0.
1046  *
1047  * The same works the other way around: if you use EP00 under CAM0 as the
1048  * fwnode, you'll get fwnode referring to EP40 under ISP.
1049  *
1050  * The same example in DT syntax would look like this:
1051  *
1052  * cam: cam0 {
1053  *	compatible = "nokia,smia";
1054  *
1055  *	port {
1056  *		port = <0>;
1057  *		endpoint {
1058  *			endpoint = <0>;
1059  *			remote-endpoint = <&isp 4 0>;
1060  *		};
1061  *	};
1062  * };
1063  *
1064  * isp: isp {
1065  *	ports {
1066  *		port@4 {
1067  *			port = <4>;
1068  *			endpoint {
1069  *				endpoint = <0>;
1070  *				remote-endpoint = <&cam 0 0>;
1071  *			};
1072  *		};
1073  *	};
1074  * };
1075  *
1076  * Return: 0 on success
1077  *	   -ENOENT if no entries (or the property itself) were found
1078  *	   -EINVAL if property parsing otherwise failed
1079  *	   -ENOMEM if memory allocation failed
1080  */
1081 static struct fwnode_handle *
1082 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1083 				   const char *prop,
1084 				   unsigned int index,
1085 				   const char * const *props,
1086 				   unsigned int nprops)
1087 {
1088 	struct fwnode_reference_args fwnode_args;
1089 	u64 *args = fwnode_args.args;
1090 	struct fwnode_handle *child;
1091 	int ret;
1092 
1093 	/*
1094 	 * Obtain remote fwnode as well as the integer arguments.
1095 	 *
1096 	 * Note that right now both -ENODATA and -ENOENT may signal
1097 	 * out-of-bounds access. Return -ENOENT in that case.
1098 	 */
1099 	ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1100 						 index, &fwnode_args);
1101 	if (ret)
1102 		return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1103 
1104 	/*
1105 	 * Find a node in the tree under the referred fwnode corresponding to
1106 	 * the integer arguments.
1107 	 */
1108 	fwnode = fwnode_args.fwnode;
1109 	while (nprops--) {
1110 		u32 val;
1111 
1112 		/* Loop over all child nodes under fwnode. */
1113 		fwnode_for_each_child_node(fwnode, child) {
1114 			if (fwnode_property_read_u32(child, *props, &val))
1115 				continue;
1116 
1117 			/* Found property, see if its value matches. */
1118 			if (val == *args)
1119 				break;
1120 		}
1121 
1122 		fwnode_handle_put(fwnode);
1123 
1124 		/* No property found; return an error here. */
1125 		if (!child) {
1126 			fwnode = ERR_PTR(-ENOENT);
1127 			break;
1128 		}
1129 
1130 		props++;
1131 		args++;
1132 		fwnode = child;
1133 	}
1134 
1135 	return fwnode;
1136 }
1137 
1138 struct v4l2_fwnode_int_props {
1139 	const char *name;
1140 	const char * const *props;
1141 	unsigned int nprops;
1142 };
1143 
1144 /*
1145  * v4l2_fwnode_reference_parse_int_props - parse references for async
1146  *					   sub-devices
1147  * @dev: struct device pointer
1148  * @notifier: notifier for @dev
1149  * @prop: the name of the property
1150  * @props: the array of integer property names
1151  * @nprops: the number of integer properties
1152  *
1153  * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1154  * property @prop with integer arguments with child nodes matching in properties
1155  * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1156  * accordingly.
1157  *
1158  * While it is technically possible to use this function on DT, it is only
1159  * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1160  * on ACPI the references are limited to devices.
1161  *
1162  * Return: 0 on success
1163  *	   -ENOENT if no entries (or the property itself) were found
1164  *	   -EINVAL if property parsing otherwisefailed
1165  *	   -ENOMEM if memory allocation failed
1166  */
1167 static int
1168 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1169 				      struct v4l2_async_notifier *notifier,
1170 				      const struct v4l2_fwnode_int_props *p)
1171 {
1172 	struct fwnode_handle *fwnode;
1173 	unsigned int index;
1174 	int ret;
1175 	const char *prop = p->name;
1176 	const char * const *props = p->props;
1177 	unsigned int nprops = p->nprops;
1178 
1179 	index = 0;
1180 	do {
1181 		fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1182 							    prop, index,
1183 							    props, nprops);
1184 		if (IS_ERR(fwnode)) {
1185 			/*
1186 			 * Note that right now both -ENODATA and -ENOENT may
1187 			 * signal out-of-bounds access. Return the error in
1188 			 * cases other than that.
1189 			 */
1190 			if (PTR_ERR(fwnode) != -ENOENT &&
1191 			    PTR_ERR(fwnode) != -ENODATA)
1192 				return PTR_ERR(fwnode);
1193 			break;
1194 		}
1195 		fwnode_handle_put(fwnode);
1196 		index++;
1197 	} while (1);
1198 
1199 	for (index = 0;
1200 	     !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1201 								  prop, index,
1202 								  props,
1203 								  nprops)));
1204 	     index++) {
1205 		struct v4l2_async_subdev *asd;
1206 
1207 		asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
1208 					       struct v4l2_async_subdev);
1209 		fwnode_handle_put(fwnode);
1210 		if (IS_ERR(asd)) {
1211 			ret = PTR_ERR(asd);
1212 			/* not an error if asd already exists */
1213 			if (ret == -EEXIST)
1214 				continue;
1215 
1216 			return PTR_ERR(asd);
1217 		}
1218 	}
1219 
1220 	return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1221 }
1222 
1223 /**
1224  * v4l2_async_nf_parse_fwnode_sensor - parse common references on
1225  *					     sensors for async sub-devices
1226  * @dev: the device node the properties of which are parsed for references
1227  * @notifier: the async notifier where the async subdevs will be added
1228  *
1229  * Parse common sensor properties for remote devices related to the
1230  * sensor and set up async sub-devices for them.
1231  *
1232  * Any notifier populated using this function must be released with a call to
1233  * v4l2_async_nf_release() after it has been unregistered and the async
1234  * sub-devices are no longer in use, even in the case the function returned an
1235  * error.
1236  *
1237  * Return: 0 on success
1238  *	   -ENOMEM if memory allocation failed
1239  *	   -EINVAL if property parsing failed
1240  */
1241 static int
1242 v4l2_async_nf_parse_fwnode_sensor(struct device *dev,
1243 				  struct v4l2_async_notifier *notifier)
1244 {
1245 	static const char * const led_props[] = { "led" };
1246 	static const struct v4l2_fwnode_int_props props[] = {
1247 		{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
1248 		{ "lens-focus", NULL, 0 },
1249 	};
1250 	unsigned int i;
1251 
1252 	for (i = 0; i < ARRAY_SIZE(props); i++) {
1253 		int ret;
1254 
1255 		if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1256 			ret = v4l2_fwnode_reference_parse_int_props(dev,
1257 								    notifier,
1258 								    &props[i]);
1259 		else
1260 			ret = v4l2_fwnode_reference_parse(dev, notifier,
1261 							  props[i].name);
1262 		if (ret && ret != -ENOENT) {
1263 			dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1264 				 props[i].name, ret);
1265 			return ret;
1266 		}
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
1273 {
1274 	struct v4l2_async_notifier *notifier;
1275 	int ret;
1276 
1277 	if (WARN_ON(!sd->dev))
1278 		return -ENODEV;
1279 
1280 	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1281 	if (!notifier)
1282 		return -ENOMEM;
1283 
1284 	v4l2_async_nf_init(notifier);
1285 
1286 	ret = v4l2_async_nf_parse_fwnode_sensor(sd->dev, notifier);
1287 	if (ret < 0)
1288 		goto out_cleanup;
1289 
1290 	ret = v4l2_async_subdev_nf_register(sd, notifier);
1291 	if (ret < 0)
1292 		goto out_cleanup;
1293 
1294 	ret = v4l2_async_register_subdev(sd);
1295 	if (ret < 0)
1296 		goto out_unregister;
1297 
1298 	sd->subdev_notifier = notifier;
1299 
1300 	return 0;
1301 
1302 out_unregister:
1303 	v4l2_async_nf_unregister(notifier);
1304 
1305 out_cleanup:
1306 	v4l2_async_nf_cleanup(notifier);
1307 	kfree(notifier);
1308 
1309 	return ret;
1310 }
1311 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
1312 
1313 MODULE_LICENSE("GPL");
1314 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
1315 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
1316 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
1317