1 /* 2 * uvc_video.c -- USB Video Class driver - Video handling 3 * 4 * Copyright (C) 2005-2010 5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/list.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/usb.h> 19 #include <linux/videodev2.h> 20 #include <linux/vmalloc.h> 21 #include <linux/wait.h> 22 #include <linux/atomic.h> 23 #include <asm/unaligned.h> 24 25 #include <media/v4l2-common.h> 26 27 #include "uvcvideo.h" 28 29 /* ------------------------------------------------------------------------ 30 * UVC Controls 31 */ 32 33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 34 __u8 intfnum, __u8 cs, void *data, __u16 size, 35 int timeout) 36 { 37 __u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 38 unsigned int pipe; 39 40 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 41 : usb_sndctrlpipe(dev->udev, 0); 42 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 43 44 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 45 unit << 8 | intfnum, data, size, timeout); 46 } 47 48 static const char *uvc_query_name(__u8 query) 49 { 50 switch (query) { 51 case UVC_SET_CUR: 52 return "SET_CUR"; 53 case UVC_GET_CUR: 54 return "GET_CUR"; 55 case UVC_GET_MIN: 56 return "GET_MIN"; 57 case UVC_GET_MAX: 58 return "GET_MAX"; 59 case UVC_GET_RES: 60 return "GET_RES"; 61 case UVC_GET_LEN: 62 return "GET_LEN"; 63 case UVC_GET_INFO: 64 return "GET_INFO"; 65 case UVC_GET_DEF: 66 return "GET_DEF"; 67 default: 68 return "<invalid>"; 69 } 70 } 71 72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit, 73 __u8 intfnum, __u8 cs, void *data, __u16 size) 74 { 75 int ret; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (ret != size) { 80 uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on " 81 "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs, 82 unit, ret, size); 83 return -EIO; 84 } 85 86 return 0; 87 } 88 89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 90 struct uvc_streaming_control *ctrl) 91 { 92 struct uvc_format *format = NULL; 93 struct uvc_frame *frame = NULL; 94 unsigned int i; 95 96 for (i = 0; i < stream->nformats; ++i) { 97 if (stream->format[i].index == ctrl->bFormatIndex) { 98 format = &stream->format[i]; 99 break; 100 } 101 } 102 103 if (format == NULL) 104 return; 105 106 for (i = 0; i < format->nframes; ++i) { 107 if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) { 108 frame = &format->frame[i]; 109 break; 110 } 111 } 112 113 if (frame == NULL) 114 return; 115 116 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 117 (ctrl->dwMaxVideoFrameSize == 0 && 118 stream->dev->uvc_version < 0x0110)) 119 ctrl->dwMaxVideoFrameSize = 120 frame->dwMaxVideoFrameBufferSize; 121 122 /* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 123 * compute the bandwidth on 16 bits and erroneously sign-extend it to 124 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 125 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 126 */ 127 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 128 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 129 130 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 131 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 132 stream->intf->num_altsetting > 1) { 133 u32 interval; 134 u32 bandwidth; 135 136 interval = (ctrl->dwFrameInterval > 100000) 137 ? ctrl->dwFrameInterval 138 : frame->dwFrameInterval[0]; 139 140 /* Compute a bandwidth estimation by multiplying the frame 141 * size by the number of video frames per second, divide the 142 * result by the number of USB frames (or micro-frames for 143 * high-speed devices) per second and add the UVC header size 144 * (assumed to be 12 bytes long). 145 */ 146 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 147 bandwidth *= 10000000 / interval + 1; 148 bandwidth /= 1000; 149 if (stream->dev->udev->speed == USB_SPEED_HIGH) 150 bandwidth /= 8; 151 bandwidth += 12; 152 153 /* The bandwidth estimate is too low for many cameras. Don't use 154 * maximum packet sizes lower than 1024 bytes to try and work 155 * around the problem. According to measurements done on two 156 * different camera models, the value is high enough to get most 157 * resolutions working while not preventing two simultaneous 158 * VGA streams at 15 fps. 159 */ 160 bandwidth = max_t(u32, bandwidth, 1024); 161 162 ctrl->dwMaxPayloadTransferSize = bandwidth; 163 } 164 } 165 166 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 167 struct uvc_streaming_control *ctrl, int probe, __u8 query) 168 { 169 __u8 *data; 170 __u16 size; 171 int ret; 172 173 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 174 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 175 query == UVC_GET_DEF) 176 return -EIO; 177 178 data = kmalloc(size, GFP_KERNEL); 179 if (data == NULL) 180 return -ENOMEM; 181 182 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 183 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 184 size, uvc_timeout_param); 185 186 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 187 /* Some cameras, mostly based on Bison Electronics chipsets, 188 * answer a GET_MIN or GET_MAX request with the wCompQuality 189 * field only. 190 */ 191 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 192 "compliance - GET_MIN/MAX(PROBE) incorrectly " 193 "supported. Enabling workaround.\n"); 194 memset(ctrl, 0, sizeof *ctrl); 195 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 196 ret = 0; 197 goto out; 198 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 199 /* Many cameras don't support the GET_DEF request on their 200 * video probe control. Warn once and return, the caller will 201 * fall back to GET_CUR. 202 */ 203 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 204 "compliance - GET_DEF(PROBE) not supported. " 205 "Enabling workaround.\n"); 206 ret = -EIO; 207 goto out; 208 } else if (ret != size) { 209 uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : " 210 "%d (exp. %u).\n", query, probe ? "probe" : "commit", 211 ret, size); 212 ret = -EIO; 213 goto out; 214 } 215 216 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 217 ctrl->bFormatIndex = data[2]; 218 ctrl->bFrameIndex = data[3]; 219 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 220 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 221 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 222 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 223 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 224 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 225 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 226 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 227 228 if (size == 34) { 229 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 230 ctrl->bmFramingInfo = data[30]; 231 ctrl->bPreferedVersion = data[31]; 232 ctrl->bMinVersion = data[32]; 233 ctrl->bMaxVersion = data[33]; 234 } else { 235 ctrl->dwClockFrequency = stream->dev->clock_frequency; 236 ctrl->bmFramingInfo = 0; 237 ctrl->bPreferedVersion = 0; 238 ctrl->bMinVersion = 0; 239 ctrl->bMaxVersion = 0; 240 } 241 242 /* Some broken devices return null or wrong dwMaxVideoFrameSize and 243 * dwMaxPayloadTransferSize fields. Try to get the value from the 244 * format and frame descriptors. 245 */ 246 uvc_fixup_video_ctrl(stream, ctrl); 247 ret = 0; 248 249 out: 250 kfree(data); 251 return ret; 252 } 253 254 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 255 struct uvc_streaming_control *ctrl, int probe) 256 { 257 __u8 *data; 258 __u16 size; 259 int ret; 260 261 size = stream->dev->uvc_version >= 0x0110 ? 34 : 26; 262 data = kzalloc(size, GFP_KERNEL); 263 if (data == NULL) 264 return -ENOMEM; 265 266 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 267 data[2] = ctrl->bFormatIndex; 268 data[3] = ctrl->bFrameIndex; 269 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 270 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 271 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 272 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 273 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 274 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 275 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 276 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 277 278 if (size == 34) { 279 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 280 data[30] = ctrl->bmFramingInfo; 281 data[31] = ctrl->bPreferedVersion; 282 data[32] = ctrl->bMinVersion; 283 data[33] = ctrl->bMaxVersion; 284 } 285 286 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 287 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 288 size, uvc_timeout_param); 289 if (ret != size) { 290 uvc_printk(KERN_ERR, "Failed to set UVC %s control : " 291 "%d (exp. %u).\n", probe ? "probe" : "commit", 292 ret, size); 293 ret = -EIO; 294 } 295 296 kfree(data); 297 return ret; 298 } 299 300 int uvc_probe_video(struct uvc_streaming *stream, 301 struct uvc_streaming_control *probe) 302 { 303 struct uvc_streaming_control probe_min, probe_max; 304 __u16 bandwidth; 305 unsigned int i; 306 int ret; 307 308 /* Perform probing. The device should adjust the requested values 309 * according to its capabilities. However, some devices, namely the 310 * first generation UVC Logitech webcams, don't implement the Video 311 * Probe control properly, and just return the needed bandwidth. For 312 * that reason, if the needed bandwidth exceeds the maximum available 313 * bandwidth, try to lower the quality. 314 */ 315 ret = uvc_set_video_ctrl(stream, probe, 1); 316 if (ret < 0) 317 goto done; 318 319 /* Get the minimum and maximum values for compression settings. */ 320 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 321 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 322 if (ret < 0) 323 goto done; 324 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 325 if (ret < 0) 326 goto done; 327 328 probe->wCompQuality = probe_max.wCompQuality; 329 } 330 331 for (i = 0; i < 2; ++i) { 332 ret = uvc_set_video_ctrl(stream, probe, 1); 333 if (ret < 0) 334 goto done; 335 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 336 if (ret < 0) 337 goto done; 338 339 if (stream->intf->num_altsetting == 1) 340 break; 341 342 bandwidth = probe->dwMaxPayloadTransferSize; 343 if (bandwidth <= stream->maxpsize) 344 break; 345 346 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 347 ret = -ENOSPC; 348 goto done; 349 } 350 351 /* TODO: negotiate compression parameters */ 352 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 353 probe->wPFrameRate = probe_min.wPFrameRate; 354 probe->wCompQuality = probe_max.wCompQuality; 355 probe->wCompWindowSize = probe_min.wCompWindowSize; 356 } 357 358 done: 359 return ret; 360 } 361 362 static int uvc_commit_video(struct uvc_streaming *stream, 363 struct uvc_streaming_control *probe) 364 { 365 return uvc_set_video_ctrl(stream, probe, 0); 366 } 367 368 /* ----------------------------------------------------------------------------- 369 * Clocks and timestamps 370 */ 371 372 static inline void uvc_video_get_ts(struct timespec *ts) 373 { 374 if (uvc_clock_param == CLOCK_MONOTONIC) 375 ktime_get_ts(ts); 376 else 377 ktime_get_real_ts(ts); 378 } 379 380 static void 381 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 382 const __u8 *data, int len) 383 { 384 struct uvc_clock_sample *sample; 385 unsigned int header_size; 386 bool has_pts = false; 387 bool has_scr = false; 388 unsigned long flags; 389 struct timespec ts; 390 u16 host_sof; 391 u16 dev_sof; 392 393 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 394 case UVC_STREAM_PTS | UVC_STREAM_SCR: 395 header_size = 12; 396 has_pts = true; 397 has_scr = true; 398 break; 399 case UVC_STREAM_PTS: 400 header_size = 6; 401 has_pts = true; 402 break; 403 case UVC_STREAM_SCR: 404 header_size = 8; 405 has_scr = true; 406 break; 407 default: 408 header_size = 2; 409 break; 410 } 411 412 /* Check for invalid headers. */ 413 if (len < header_size) 414 return; 415 416 /* Extract the timestamps: 417 * 418 * - store the frame PTS in the buffer structure 419 * - if the SCR field is present, retrieve the host SOF counter and 420 * kernel timestamps and store them with the SCR STC and SOF fields 421 * in the ring buffer 422 */ 423 if (has_pts && buf != NULL) 424 buf->pts = get_unaligned_le32(&data[2]); 425 426 if (!has_scr) 427 return; 428 429 /* To limit the amount of data, drop SCRs with an SOF identical to the 430 * previous one. 431 */ 432 dev_sof = get_unaligned_le16(&data[header_size - 2]); 433 if (dev_sof == stream->clock.last_sof) 434 return; 435 436 stream->clock.last_sof = dev_sof; 437 438 host_sof = usb_get_current_frame_number(stream->dev->udev); 439 uvc_video_get_ts(&ts); 440 441 /* The UVC specification allows device implementations that can't obtain 442 * the USB frame number to keep their own frame counters as long as they 443 * match the size and frequency of the frame number associated with USB 444 * SOF tokens. The SOF values sent by such devices differ from the USB 445 * SOF tokens by a fixed offset that needs to be estimated and accounted 446 * for to make timestamp recovery as accurate as possible. 447 * 448 * The offset is estimated the first time a device SOF value is received 449 * as the difference between the host and device SOF values. As the two 450 * SOF values can differ slightly due to transmission delays, consider 451 * that the offset is null if the difference is not higher than 10 ms 452 * (negative differences can not happen and are thus considered as an 453 * offset). The video commit control wDelay field should be used to 454 * compute a dynamic threshold instead of using a fixed 10 ms value, but 455 * devices don't report reliable wDelay values. 456 * 457 * See uvc_video_clock_host_sof() for an explanation regarding why only 458 * the 8 LSBs of the delta are kept. 459 */ 460 if (stream->clock.sof_offset == (u16)-1) { 461 u16 delta_sof = (host_sof - dev_sof) & 255; 462 if (delta_sof >= 10) 463 stream->clock.sof_offset = delta_sof; 464 else 465 stream->clock.sof_offset = 0; 466 } 467 468 dev_sof = (dev_sof + stream->clock.sof_offset) & 2047; 469 470 spin_lock_irqsave(&stream->clock.lock, flags); 471 472 sample = &stream->clock.samples[stream->clock.head]; 473 sample->dev_stc = get_unaligned_le32(&data[header_size - 6]); 474 sample->dev_sof = dev_sof; 475 sample->host_sof = host_sof; 476 sample->host_ts = ts; 477 478 /* Update the sliding window head and count. */ 479 stream->clock.head = (stream->clock.head + 1) % stream->clock.size; 480 481 if (stream->clock.count < stream->clock.size) 482 stream->clock.count++; 483 484 spin_unlock_irqrestore(&stream->clock.lock, flags); 485 } 486 487 static void uvc_video_clock_reset(struct uvc_streaming *stream) 488 { 489 struct uvc_clock *clock = &stream->clock; 490 491 clock->head = 0; 492 clock->count = 0; 493 clock->last_sof = -1; 494 clock->sof_offset = -1; 495 } 496 497 static int uvc_video_clock_init(struct uvc_streaming *stream) 498 { 499 struct uvc_clock *clock = &stream->clock; 500 501 spin_lock_init(&clock->lock); 502 clock->size = 32; 503 504 clock->samples = kmalloc(clock->size * sizeof(*clock->samples), 505 GFP_KERNEL); 506 if (clock->samples == NULL) 507 return -ENOMEM; 508 509 uvc_video_clock_reset(stream); 510 511 return 0; 512 } 513 514 static void uvc_video_clock_cleanup(struct uvc_streaming *stream) 515 { 516 kfree(stream->clock.samples); 517 stream->clock.samples = NULL; 518 } 519 520 /* 521 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 522 * 523 * Host SOF counters reported by usb_get_current_frame_number() usually don't 524 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 525 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 526 * controller and its configuration. 527 * 528 * We thus need to recover the SOF value corresponding to the host frame number. 529 * As the device and host frame numbers are sampled in a short interval, the 530 * difference between their values should be equal to a small delta plus an 531 * integer multiple of 256 caused by the host frame number limited precision. 532 * 533 * To obtain the recovered host SOF value, compute the small delta by masking 534 * the high bits of the host frame counter and device SOF difference and add it 535 * to the device SOF value. 536 */ 537 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 538 { 539 /* The delta value can be negative. */ 540 s8 delta_sof; 541 542 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 543 544 return (sample->dev_sof + delta_sof) & 2047; 545 } 546 547 /* 548 * uvc_video_clock_update - Update the buffer timestamp 549 * 550 * This function converts the buffer PTS timestamp to the host clock domain by 551 * going through the USB SOF clock domain and stores the result in the V4L2 552 * buffer timestamp field. 553 * 554 * The relationship between the device clock and the host clock isn't known. 555 * However, the device and the host share the common USB SOF clock which can be 556 * used to recover that relationship. 557 * 558 * The relationship between the device clock and the USB SOF clock is considered 559 * to be linear over the clock samples sliding window and is given by 560 * 561 * SOF = m * PTS + p 562 * 563 * Several methods to compute the slope (m) and intercept (p) can be used. As 564 * the clock drift should be small compared to the sliding window size, we 565 * assume that the line that goes through the points at both ends of the window 566 * is a good approximation. Naming those points P1 and P2, we get 567 * 568 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 569 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 570 * 571 * or 572 * 573 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 574 * 575 * to avoid losing precision in the division. Similarly, the host timestamp is 576 * computed with 577 * 578 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 579 * 580 * SOF values are coded on 11 bits by USB. We extend their precision with 16 581 * decimal bits, leading to a 11.16 coding. 582 * 583 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 584 * be normalized using the nominal device clock frequency reported through the 585 * UVC descriptors. 586 * 587 * Both the PTS/STC and SOF counters roll over, after a fixed but device 588 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 589 * sliding window size is smaller than the rollover period, differences computed 590 * on unsigned integers will produce the correct result. However, the p term in 591 * the linear relations will be miscomputed. 592 * 593 * To fix the issue, we subtract a constant from the PTS and STC values to bring 594 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 595 * the 32 bit range without any rollover. 596 * 597 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 598 * computed by (1) will never be smaller than 0. This offset is then compensated 599 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 600 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 601 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 602 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 603 * SOF value at the end of the sliding window. 604 * 605 * Finally we subtract a constant from the host timestamps to bring the first 606 * timestamp of the sliding window to 1s. 607 */ 608 void uvc_video_clock_update(struct uvc_streaming *stream, 609 struct v4l2_buffer *v4l2_buf, 610 struct uvc_buffer *buf) 611 { 612 struct uvc_clock *clock = &stream->clock; 613 struct uvc_clock_sample *first; 614 struct uvc_clock_sample *last; 615 unsigned long flags; 616 struct timespec ts; 617 u32 delta_stc; 618 u32 y1, y2; 619 u32 x1, x2; 620 u32 mean; 621 u32 sof; 622 u32 div; 623 u32 rem; 624 u64 y; 625 626 spin_lock_irqsave(&clock->lock, flags); 627 628 if (clock->count < clock->size) 629 goto done; 630 631 first = &clock->samples[clock->head]; 632 last = &clock->samples[(clock->head - 1) % clock->size]; 633 634 /* First step, PTS to SOF conversion. */ 635 delta_stc = buf->pts - (1UL << 31); 636 x1 = first->dev_stc - delta_stc; 637 x2 = last->dev_stc - delta_stc; 638 if (x1 == x2) 639 goto done; 640 641 y1 = (first->dev_sof + 2048) << 16; 642 y2 = (last->dev_sof + 2048) << 16; 643 if (y2 < y1) 644 y2 += 2048 << 16; 645 646 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 647 - (u64)y2 * (u64)x1; 648 y = div_u64(y, x2 - x1); 649 650 sof = y; 651 652 uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu " 653 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n", 654 stream->dev->name, buf->pts, 655 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 656 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 657 x1, x2, y1, y2, clock->sof_offset); 658 659 /* Second step, SOF to host clock conversion. */ 660 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 661 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 662 if (x2 < x1) 663 x2 += 2048 << 16; 664 if (x1 == x2) 665 goto done; 666 667 ts = timespec_sub(last->host_ts, first->host_ts); 668 y1 = NSEC_PER_SEC; 669 y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec; 670 671 /* Interpolated and host SOF timestamps can wrap around at slightly 672 * different times. Handle this by adding or removing 2048 to or from 673 * the computed SOF value to keep it close to the SOF samples mean 674 * value. 675 */ 676 mean = (x1 + x2) / 2; 677 if (mean - (1024 << 16) > sof) 678 sof += 2048 << 16; 679 else if (sof > mean + (1024 << 16)) 680 sof -= 2048 << 16; 681 682 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 683 - (u64)y2 * (u64)x1; 684 y = div_u64(y, x2 - x1); 685 686 div = div_u64_rem(y, NSEC_PER_SEC, &rem); 687 ts.tv_sec = first->host_ts.tv_sec - 1 + div; 688 ts.tv_nsec = first->host_ts.tv_nsec + rem; 689 if (ts.tv_nsec >= NSEC_PER_SEC) { 690 ts.tv_sec++; 691 ts.tv_nsec -= NSEC_PER_SEC; 692 } 693 694 uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %lu.%06lu " 695 "buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n", 696 stream->dev->name, 697 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 698 y, ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC, 699 v4l2_buf->timestamp.tv_sec, 700 (unsigned long)v4l2_buf->timestamp.tv_usec, 701 x1, first->host_sof, first->dev_sof, 702 x2, last->host_sof, last->dev_sof, y1, y2); 703 704 /* Update the V4L2 buffer. */ 705 v4l2_buf->timestamp.tv_sec = ts.tv_sec; 706 v4l2_buf->timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC; 707 708 done: 709 spin_unlock_irqrestore(&stream->clock.lock, flags); 710 } 711 712 /* ------------------------------------------------------------------------ 713 * Stream statistics 714 */ 715 716 static void uvc_video_stats_decode(struct uvc_streaming *stream, 717 const __u8 *data, int len) 718 { 719 unsigned int header_size; 720 bool has_pts = false; 721 bool has_scr = false; 722 u16 uninitialized_var(scr_sof); 723 u32 uninitialized_var(scr_stc); 724 u32 uninitialized_var(pts); 725 726 if (stream->stats.stream.nb_frames == 0 && 727 stream->stats.frame.nb_packets == 0) 728 ktime_get_ts(&stream->stats.stream.start_ts); 729 730 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 731 case UVC_STREAM_PTS | UVC_STREAM_SCR: 732 header_size = 12; 733 has_pts = true; 734 has_scr = true; 735 break; 736 case UVC_STREAM_PTS: 737 header_size = 6; 738 has_pts = true; 739 break; 740 case UVC_STREAM_SCR: 741 header_size = 8; 742 has_scr = true; 743 break; 744 default: 745 header_size = 2; 746 break; 747 } 748 749 /* Check for invalid headers. */ 750 if (len < header_size || data[0] < header_size) { 751 stream->stats.frame.nb_invalid++; 752 return; 753 } 754 755 /* Extract the timestamps. */ 756 if (has_pts) 757 pts = get_unaligned_le32(&data[2]); 758 759 if (has_scr) { 760 scr_stc = get_unaligned_le32(&data[header_size - 6]); 761 scr_sof = get_unaligned_le16(&data[header_size - 2]); 762 } 763 764 /* Is PTS constant through the whole frame ? */ 765 if (has_pts && stream->stats.frame.nb_pts) { 766 if (stream->stats.frame.pts != pts) { 767 stream->stats.frame.nb_pts_diffs++; 768 stream->stats.frame.last_pts_diff = 769 stream->stats.frame.nb_packets; 770 } 771 } 772 773 if (has_pts) { 774 stream->stats.frame.nb_pts++; 775 stream->stats.frame.pts = pts; 776 } 777 778 /* Do all frames have a PTS in their first non-empty packet, or before 779 * their first empty packet ? 780 */ 781 if (stream->stats.frame.size == 0) { 782 if (len > header_size) 783 stream->stats.frame.has_initial_pts = has_pts; 784 if (len == header_size && has_pts) 785 stream->stats.frame.has_early_pts = true; 786 } 787 788 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 789 if (has_scr && stream->stats.frame.nb_scr) { 790 if (stream->stats.frame.scr_stc != scr_stc) 791 stream->stats.frame.nb_scr_diffs++; 792 } 793 794 if (has_scr) { 795 /* Expand the SOF counter to 32 bits and store its value. */ 796 if (stream->stats.stream.nb_frames > 0 || 797 stream->stats.frame.nb_scr > 0) 798 stream->stats.stream.scr_sof_count += 799 (scr_sof - stream->stats.stream.scr_sof) % 2048; 800 stream->stats.stream.scr_sof = scr_sof; 801 802 stream->stats.frame.nb_scr++; 803 stream->stats.frame.scr_stc = scr_stc; 804 stream->stats.frame.scr_sof = scr_sof; 805 806 if (scr_sof < stream->stats.stream.min_sof) 807 stream->stats.stream.min_sof = scr_sof; 808 if (scr_sof > stream->stats.stream.max_sof) 809 stream->stats.stream.max_sof = scr_sof; 810 } 811 812 /* Record the first non-empty packet number. */ 813 if (stream->stats.frame.size == 0 && len > header_size) 814 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 815 816 /* Update the frame size. */ 817 stream->stats.frame.size += len - header_size; 818 819 /* Update the packets counters. */ 820 stream->stats.frame.nb_packets++; 821 if (len > header_size) 822 stream->stats.frame.nb_empty++; 823 824 if (data[1] & UVC_STREAM_ERR) 825 stream->stats.frame.nb_errors++; 826 } 827 828 static void uvc_video_stats_update(struct uvc_streaming *stream) 829 { 830 struct uvc_stats_frame *frame = &stream->stats.frame; 831 832 uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, " 833 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, " 834 "last pts/stc/sof %u/%u/%u\n", 835 stream->sequence, frame->first_data, 836 frame->nb_packets - frame->nb_empty, frame->nb_packets, 837 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 838 frame->has_early_pts ? "" : "!", 839 frame->has_initial_pts ? "" : "!", 840 frame->nb_scr_diffs, frame->nb_scr, 841 frame->pts, frame->scr_stc, frame->scr_sof); 842 843 stream->stats.stream.nb_frames++; 844 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 845 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 846 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 847 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 848 849 if (frame->has_early_pts) 850 stream->stats.stream.nb_pts_early++; 851 if (frame->has_initial_pts) 852 stream->stats.stream.nb_pts_initial++; 853 if (frame->last_pts_diff <= frame->first_data) 854 stream->stats.stream.nb_pts_constant++; 855 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 856 stream->stats.stream.nb_scr_count_ok++; 857 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 858 stream->stats.stream.nb_scr_diffs_ok++; 859 860 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 861 } 862 863 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 864 size_t size) 865 { 866 unsigned int scr_sof_freq; 867 unsigned int duration; 868 struct timespec ts; 869 size_t count = 0; 870 871 ts.tv_sec = stream->stats.stream.stop_ts.tv_sec 872 - stream->stats.stream.start_ts.tv_sec; 873 ts.tv_nsec = stream->stats.stream.stop_ts.tv_nsec 874 - stream->stats.stream.start_ts.tv_nsec; 875 if (ts.tv_nsec < 0) { 876 ts.tv_sec--; 877 ts.tv_nsec += 1000000000; 878 } 879 880 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 881 * frequency this will not overflow before more than 1h. 882 */ 883 duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000; 884 if (duration != 0) 885 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 886 / duration; 887 else 888 scr_sof_freq = 0; 889 890 count += scnprintf(buf + count, size - count, 891 "frames: %u\npackets: %u\nempty: %u\n" 892 "errors: %u\ninvalid: %u\n", 893 stream->stats.stream.nb_frames, 894 stream->stats.stream.nb_packets, 895 stream->stats.stream.nb_empty, 896 stream->stats.stream.nb_errors, 897 stream->stats.stream.nb_invalid); 898 count += scnprintf(buf + count, size - count, 899 "pts: %u early, %u initial, %u ok\n", 900 stream->stats.stream.nb_pts_early, 901 stream->stats.stream.nb_pts_initial, 902 stream->stats.stream.nb_pts_constant); 903 count += scnprintf(buf + count, size - count, 904 "scr: %u count ok, %u diff ok\n", 905 stream->stats.stream.nb_scr_count_ok, 906 stream->stats.stream.nb_scr_diffs_ok); 907 count += scnprintf(buf + count, size - count, 908 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 909 stream->stats.stream.min_sof, 910 stream->stats.stream.max_sof, 911 scr_sof_freq / 1000, scr_sof_freq % 1000); 912 913 return count; 914 } 915 916 static void uvc_video_stats_start(struct uvc_streaming *stream) 917 { 918 memset(&stream->stats, 0, sizeof(stream->stats)); 919 stream->stats.stream.min_sof = 2048; 920 } 921 922 static void uvc_video_stats_stop(struct uvc_streaming *stream) 923 { 924 ktime_get_ts(&stream->stats.stream.stop_ts); 925 } 926 927 /* ------------------------------------------------------------------------ 928 * Video codecs 929 */ 930 931 /* Video payload decoding is handled by uvc_video_decode_start(), 932 * uvc_video_decode_data() and uvc_video_decode_end(). 933 * 934 * uvc_video_decode_start is called with URB data at the start of a bulk or 935 * isochronous payload. It processes header data and returns the header size 936 * in bytes if successful. If an error occurs, it returns a negative error 937 * code. The following error codes have special meanings. 938 * 939 * - EAGAIN informs the caller that the current video buffer should be marked 940 * as done, and that the function should be called again with the same data 941 * and a new video buffer. This is used when end of frame conditions can be 942 * reliably detected at the beginning of the next frame only. 943 * 944 * If an error other than -EAGAIN is returned, the caller will drop the current 945 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 946 * made until the next payload. -ENODATA can be used to drop the current 947 * payload if no other error code is appropriate. 948 * 949 * uvc_video_decode_data is called for every URB with URB data. It copies the 950 * data to the video buffer. 951 * 952 * uvc_video_decode_end is called with header data at the end of a bulk or 953 * isochronous payload. It performs any additional header data processing and 954 * returns 0 or a negative error code if an error occurred. As header data have 955 * already been processed by uvc_video_decode_start, this functions isn't 956 * required to perform sanity checks a second time. 957 * 958 * For isochronous transfers where a payload is always transferred in a single 959 * URB, the three functions will be called in a row. 960 * 961 * To let the decoder process header data and update its internal state even 962 * when no video buffer is available, uvc_video_decode_start must be prepared 963 * to be called with a NULL buf parameter. uvc_video_decode_data and 964 * uvc_video_decode_end will never be called with a NULL buffer. 965 */ 966 static int uvc_video_decode_start(struct uvc_streaming *stream, 967 struct uvc_buffer *buf, const __u8 *data, int len) 968 { 969 __u8 fid; 970 971 /* Sanity checks: 972 * - packet must be at least 2 bytes long 973 * - bHeaderLength value must be at least 2 bytes (see above) 974 * - bHeaderLength value can't be larger than the packet size. 975 */ 976 if (len < 2 || data[0] < 2 || data[0] > len) { 977 stream->stats.frame.nb_invalid++; 978 return -EINVAL; 979 } 980 981 fid = data[1] & UVC_STREAM_FID; 982 983 /* Increase the sequence number regardless of any buffer states, so 984 * that discontinuous sequence numbers always indicate lost frames. 985 */ 986 if (stream->last_fid != fid) { 987 stream->sequence++; 988 if (stream->sequence) 989 uvc_video_stats_update(stream); 990 } 991 992 uvc_video_clock_decode(stream, buf, data, len); 993 uvc_video_stats_decode(stream, data, len); 994 995 /* Store the payload FID bit and return immediately when the buffer is 996 * NULL. 997 */ 998 if (buf == NULL) { 999 stream->last_fid = fid; 1000 return -ENODATA; 1001 } 1002 1003 /* Mark the buffer as bad if the error bit is set. */ 1004 if (data[1] & UVC_STREAM_ERR) { 1005 uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit " 1006 "set).\n"); 1007 buf->error = 1; 1008 } 1009 1010 /* Synchronize to the input stream by waiting for the FID bit to be 1011 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE. 1012 * stream->last_fid is initialized to -1, so the first isochronous 1013 * frame will always be in sync. 1014 * 1015 * If the device doesn't toggle the FID bit, invert stream->last_fid 1016 * when the EOF bit is set to force synchronisation on the next packet. 1017 */ 1018 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1019 struct timespec ts; 1020 1021 if (fid == stream->last_fid) { 1022 uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of " 1023 "sync).\n"); 1024 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1025 (data[1] & UVC_STREAM_EOF)) 1026 stream->last_fid ^= UVC_STREAM_FID; 1027 return -ENODATA; 1028 } 1029 1030 uvc_video_get_ts(&ts); 1031 1032 buf->buf.v4l2_buf.field = V4L2_FIELD_NONE; 1033 buf->buf.v4l2_buf.sequence = stream->sequence; 1034 buf->buf.v4l2_buf.timestamp.tv_sec = ts.tv_sec; 1035 buf->buf.v4l2_buf.timestamp.tv_usec = 1036 ts.tv_nsec / NSEC_PER_USEC; 1037 1038 /* TODO: Handle PTS and SCR. */ 1039 buf->state = UVC_BUF_STATE_ACTIVE; 1040 } 1041 1042 /* Mark the buffer as done if we're at the beginning of a new frame. 1043 * End of frame detection is better implemented by checking the EOF 1044 * bit (FID bit toggling is delayed by one frame compared to the EOF 1045 * bit), but some devices don't set the bit at end of frame (and the 1046 * last payload can be lost anyway). We thus must check if the FID has 1047 * been toggled. 1048 * 1049 * stream->last_fid is initialized to -1, so the first isochronous 1050 * frame will never trigger an end of frame detection. 1051 * 1052 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1053 * as it doesn't make sense to return an empty buffer. This also 1054 * avoids detecting end of frame conditions at FID toggling if the 1055 * previous payload had the EOF bit set. 1056 */ 1057 if (fid != stream->last_fid && buf->bytesused != 0) { 1058 uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit " 1059 "toggled).\n"); 1060 buf->state = UVC_BUF_STATE_READY; 1061 return -EAGAIN; 1062 } 1063 1064 stream->last_fid = fid; 1065 1066 return data[0]; 1067 } 1068 1069 static void uvc_video_decode_data(struct uvc_streaming *stream, 1070 struct uvc_buffer *buf, const __u8 *data, int len) 1071 { 1072 unsigned int maxlen, nbytes; 1073 void *mem; 1074 1075 if (len <= 0) 1076 return; 1077 1078 /* Copy the video data to the buffer. */ 1079 maxlen = buf->length - buf->bytesused; 1080 mem = buf->mem + buf->bytesused; 1081 nbytes = min((unsigned int)len, maxlen); 1082 memcpy(mem, data, nbytes); 1083 buf->bytesused += nbytes; 1084 1085 /* Complete the current frame if the buffer size was exceeded. */ 1086 if (len > maxlen) { 1087 uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n"); 1088 buf->state = UVC_BUF_STATE_READY; 1089 } 1090 } 1091 1092 static void uvc_video_decode_end(struct uvc_streaming *stream, 1093 struct uvc_buffer *buf, const __u8 *data, int len) 1094 { 1095 /* Mark the buffer as done if the EOF marker is set. */ 1096 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1097 uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n"); 1098 if (data[0] == len) 1099 uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n"); 1100 buf->state = UVC_BUF_STATE_READY; 1101 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1102 stream->last_fid ^= UVC_STREAM_FID; 1103 } 1104 } 1105 1106 /* Video payload encoding is handled by uvc_video_encode_header() and 1107 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1108 * 1109 * uvc_video_encode_header is called at the start of a payload. It adds header 1110 * data to the transfer buffer and returns the header size. As the only known 1111 * UVC output device transfers a whole frame in a single payload, the EOF bit 1112 * is always set in the header. 1113 * 1114 * uvc_video_encode_data is called for every URB and copies the data from the 1115 * video buffer to the transfer buffer. 1116 */ 1117 static int uvc_video_encode_header(struct uvc_streaming *stream, 1118 struct uvc_buffer *buf, __u8 *data, int len) 1119 { 1120 data[0] = 2; /* Header length */ 1121 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1122 | (stream->last_fid & UVC_STREAM_FID); 1123 return 2; 1124 } 1125 1126 static int uvc_video_encode_data(struct uvc_streaming *stream, 1127 struct uvc_buffer *buf, __u8 *data, int len) 1128 { 1129 struct uvc_video_queue *queue = &stream->queue; 1130 unsigned int nbytes; 1131 void *mem; 1132 1133 /* Copy video data to the URB buffer. */ 1134 mem = buf->mem + queue->buf_used; 1135 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1136 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1137 nbytes); 1138 memcpy(data, mem, nbytes); 1139 1140 queue->buf_used += nbytes; 1141 1142 return nbytes; 1143 } 1144 1145 /* ------------------------------------------------------------------------ 1146 * URB handling 1147 */ 1148 1149 /* 1150 * Set error flag for incomplete buffer. 1151 */ 1152 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1153 struct uvc_buffer *buf) 1154 { 1155 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1156 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1157 buf->error = 1; 1158 } 1159 1160 /* 1161 * Completion handler for video URBs. 1162 */ 1163 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream, 1164 struct uvc_buffer *buf) 1165 { 1166 u8 *mem; 1167 int ret, i; 1168 1169 for (i = 0; i < urb->number_of_packets; ++i) { 1170 if (urb->iso_frame_desc[i].status < 0) { 1171 uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame " 1172 "lost (%d).\n", urb->iso_frame_desc[i].status); 1173 /* Mark the buffer as faulty. */ 1174 if (buf != NULL) 1175 buf->error = 1; 1176 continue; 1177 } 1178 1179 /* Decode the payload header. */ 1180 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1181 do { 1182 ret = uvc_video_decode_start(stream, buf, mem, 1183 urb->iso_frame_desc[i].actual_length); 1184 if (ret == -EAGAIN) { 1185 uvc_video_validate_buffer(stream, buf); 1186 buf = uvc_queue_next_buffer(&stream->queue, 1187 buf); 1188 } 1189 } while (ret == -EAGAIN); 1190 1191 if (ret < 0) 1192 continue; 1193 1194 /* Decode the payload data. */ 1195 uvc_video_decode_data(stream, buf, mem + ret, 1196 urb->iso_frame_desc[i].actual_length - ret); 1197 1198 /* Process the header again. */ 1199 uvc_video_decode_end(stream, buf, mem, 1200 urb->iso_frame_desc[i].actual_length); 1201 1202 if (buf->state == UVC_BUF_STATE_READY) { 1203 uvc_video_validate_buffer(stream, buf); 1204 buf = uvc_queue_next_buffer(&stream->queue, buf); 1205 } 1206 } 1207 } 1208 1209 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream, 1210 struct uvc_buffer *buf) 1211 { 1212 u8 *mem; 1213 int len, ret; 1214 1215 /* 1216 * Ignore ZLPs if they're not part of a frame, otherwise process them 1217 * to trigger the end of payload detection. 1218 */ 1219 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1220 return; 1221 1222 mem = urb->transfer_buffer; 1223 len = urb->actual_length; 1224 stream->bulk.payload_size += len; 1225 1226 /* If the URB is the first of its payload, decode and save the 1227 * header. 1228 */ 1229 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1230 do { 1231 ret = uvc_video_decode_start(stream, buf, mem, len); 1232 if (ret == -EAGAIN) 1233 buf = uvc_queue_next_buffer(&stream->queue, 1234 buf); 1235 } while (ret == -EAGAIN); 1236 1237 /* If an error occurred skip the rest of the payload. */ 1238 if (ret < 0 || buf == NULL) { 1239 stream->bulk.skip_payload = 1; 1240 } else { 1241 memcpy(stream->bulk.header, mem, ret); 1242 stream->bulk.header_size = ret; 1243 1244 mem += ret; 1245 len -= ret; 1246 } 1247 } 1248 1249 /* The buffer queue might have been cancelled while a bulk transfer 1250 * was in progress, so we can reach here with buf equal to NULL. Make 1251 * sure buf is never dereferenced if NULL. 1252 */ 1253 1254 /* Process video data. */ 1255 if (!stream->bulk.skip_payload && buf != NULL) 1256 uvc_video_decode_data(stream, buf, mem, len); 1257 1258 /* Detect the payload end by a URB smaller than the maximum size (or 1259 * a payload size equal to the maximum) and process the header again. 1260 */ 1261 if (urb->actual_length < urb->transfer_buffer_length || 1262 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1263 if (!stream->bulk.skip_payload && buf != NULL) { 1264 uvc_video_decode_end(stream, buf, stream->bulk.header, 1265 stream->bulk.payload_size); 1266 if (buf->state == UVC_BUF_STATE_READY) 1267 buf = uvc_queue_next_buffer(&stream->queue, 1268 buf); 1269 } 1270 1271 stream->bulk.header_size = 0; 1272 stream->bulk.skip_payload = 0; 1273 stream->bulk.payload_size = 0; 1274 } 1275 } 1276 1277 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream, 1278 struct uvc_buffer *buf) 1279 { 1280 u8 *mem = urb->transfer_buffer; 1281 int len = stream->urb_size, ret; 1282 1283 if (buf == NULL) { 1284 urb->transfer_buffer_length = 0; 1285 return; 1286 } 1287 1288 /* If the URB is the first of its payload, add the header. */ 1289 if (stream->bulk.header_size == 0) { 1290 ret = uvc_video_encode_header(stream, buf, mem, len); 1291 stream->bulk.header_size = ret; 1292 stream->bulk.payload_size += ret; 1293 mem += ret; 1294 len -= ret; 1295 } 1296 1297 /* Process video data. */ 1298 ret = uvc_video_encode_data(stream, buf, mem, len); 1299 1300 stream->bulk.payload_size += ret; 1301 len -= ret; 1302 1303 if (buf->bytesused == stream->queue.buf_used || 1304 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1305 if (buf->bytesused == stream->queue.buf_used) { 1306 stream->queue.buf_used = 0; 1307 buf->state = UVC_BUF_STATE_READY; 1308 buf->buf.v4l2_buf.sequence = ++stream->sequence; 1309 uvc_queue_next_buffer(&stream->queue, buf); 1310 stream->last_fid ^= UVC_STREAM_FID; 1311 } 1312 1313 stream->bulk.header_size = 0; 1314 stream->bulk.payload_size = 0; 1315 } 1316 1317 urb->transfer_buffer_length = stream->urb_size - len; 1318 } 1319 1320 static void uvc_video_complete(struct urb *urb) 1321 { 1322 struct uvc_streaming *stream = urb->context; 1323 struct uvc_video_queue *queue = &stream->queue; 1324 struct uvc_buffer *buf = NULL; 1325 unsigned long flags; 1326 int ret; 1327 1328 switch (urb->status) { 1329 case 0: 1330 break; 1331 1332 default: 1333 uvc_printk(KERN_WARNING, "Non-zero status (%d) in video " 1334 "completion handler.\n", urb->status); 1335 1336 case -ENOENT: /* usb_kill_urb() called. */ 1337 if (stream->frozen) 1338 return; 1339 1340 case -ECONNRESET: /* usb_unlink_urb() called. */ 1341 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1342 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1343 return; 1344 } 1345 1346 spin_lock_irqsave(&queue->irqlock, flags); 1347 if (!list_empty(&queue->irqqueue)) 1348 buf = list_first_entry(&queue->irqqueue, struct uvc_buffer, 1349 queue); 1350 spin_unlock_irqrestore(&queue->irqlock, flags); 1351 1352 stream->decode(urb, stream, buf); 1353 1354 if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) { 1355 uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n", 1356 ret); 1357 } 1358 } 1359 1360 /* 1361 * Free transfer buffers. 1362 */ 1363 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1364 { 1365 unsigned int i; 1366 1367 for (i = 0; i < UVC_URBS; ++i) { 1368 if (stream->urb_buffer[i]) { 1369 #ifndef CONFIG_DMA_NONCOHERENT 1370 usb_free_coherent(stream->dev->udev, stream->urb_size, 1371 stream->urb_buffer[i], stream->urb_dma[i]); 1372 #else 1373 kfree(stream->urb_buffer[i]); 1374 #endif 1375 stream->urb_buffer[i] = NULL; 1376 } 1377 } 1378 1379 stream->urb_size = 0; 1380 } 1381 1382 /* 1383 * Allocate transfer buffers. This function can be called with buffers 1384 * already allocated when resuming from suspend, in which case it will 1385 * return without touching the buffers. 1386 * 1387 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1388 * system is too low on memory try successively smaller numbers of packets 1389 * until allocation succeeds. 1390 * 1391 * Return the number of allocated packets on success or 0 when out of memory. 1392 */ 1393 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1394 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1395 { 1396 unsigned int npackets; 1397 unsigned int i; 1398 1399 /* Buffers are already allocated, bail out. */ 1400 if (stream->urb_size) 1401 return stream->urb_size / psize; 1402 1403 /* Compute the number of packets. Bulk endpoints might transfer UVC 1404 * payloads across multiple URBs. 1405 */ 1406 npackets = DIV_ROUND_UP(size, psize); 1407 if (npackets > UVC_MAX_PACKETS) 1408 npackets = UVC_MAX_PACKETS; 1409 1410 /* Retry allocations until one succeed. */ 1411 for (; npackets > 1; npackets /= 2) { 1412 for (i = 0; i < UVC_URBS; ++i) { 1413 stream->urb_size = psize * npackets; 1414 #ifndef CONFIG_DMA_NONCOHERENT 1415 stream->urb_buffer[i] = usb_alloc_coherent( 1416 stream->dev->udev, stream->urb_size, 1417 gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]); 1418 #else 1419 stream->urb_buffer[i] = 1420 kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN); 1421 #endif 1422 if (!stream->urb_buffer[i]) { 1423 uvc_free_urb_buffers(stream); 1424 break; 1425 } 1426 } 1427 1428 if (i == UVC_URBS) { 1429 uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers " 1430 "of %ux%u bytes each.\n", UVC_URBS, npackets, 1431 psize); 1432 return npackets; 1433 } 1434 } 1435 1436 uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes " 1437 "per packet).\n", psize); 1438 return 0; 1439 } 1440 1441 /* 1442 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1443 */ 1444 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers) 1445 { 1446 struct urb *urb; 1447 unsigned int i; 1448 1449 uvc_video_stats_stop(stream); 1450 1451 for (i = 0; i < UVC_URBS; ++i) { 1452 urb = stream->urb[i]; 1453 if (urb == NULL) 1454 continue; 1455 1456 usb_kill_urb(urb); 1457 usb_free_urb(urb); 1458 stream->urb[i] = NULL; 1459 } 1460 1461 if (free_buffers) 1462 uvc_free_urb_buffers(stream); 1463 } 1464 1465 /* 1466 * Compute the maximum number of bytes per interval for an endpoint. 1467 */ 1468 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev, 1469 struct usb_host_endpoint *ep) 1470 { 1471 u16 psize; 1472 1473 switch (dev->speed) { 1474 case USB_SPEED_SUPER: 1475 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1476 case USB_SPEED_HIGH: 1477 psize = usb_endpoint_maxp(&ep->desc); 1478 return (psize & 0x07ff) * (1 + ((psize >> 11) & 3)); 1479 case USB_SPEED_WIRELESS: 1480 psize = usb_endpoint_maxp(&ep->desc); 1481 return psize; 1482 default: 1483 psize = usb_endpoint_maxp(&ep->desc); 1484 return psize & 0x07ff; 1485 } 1486 } 1487 1488 /* 1489 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1490 * is given by the endpoint. 1491 */ 1492 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1493 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1494 { 1495 struct urb *urb; 1496 unsigned int npackets, i, j; 1497 u16 psize; 1498 u32 size; 1499 1500 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1501 size = stream->ctrl.dwMaxVideoFrameSize; 1502 1503 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1504 if (npackets == 0) 1505 return -ENOMEM; 1506 1507 size = npackets * psize; 1508 1509 for (i = 0; i < UVC_URBS; ++i) { 1510 urb = usb_alloc_urb(npackets, gfp_flags); 1511 if (urb == NULL) { 1512 uvc_uninit_video(stream, 1); 1513 return -ENOMEM; 1514 } 1515 1516 urb->dev = stream->dev->udev; 1517 urb->context = stream; 1518 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1519 ep->desc.bEndpointAddress); 1520 #ifndef CONFIG_DMA_NONCOHERENT 1521 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1522 urb->transfer_dma = stream->urb_dma[i]; 1523 #else 1524 urb->transfer_flags = URB_ISO_ASAP; 1525 #endif 1526 urb->interval = ep->desc.bInterval; 1527 urb->transfer_buffer = stream->urb_buffer[i]; 1528 urb->complete = uvc_video_complete; 1529 urb->number_of_packets = npackets; 1530 urb->transfer_buffer_length = size; 1531 1532 for (j = 0; j < npackets; ++j) { 1533 urb->iso_frame_desc[j].offset = j * psize; 1534 urb->iso_frame_desc[j].length = psize; 1535 } 1536 1537 stream->urb[i] = urb; 1538 } 1539 1540 return 0; 1541 } 1542 1543 /* 1544 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1545 * given by the endpoint. 1546 */ 1547 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1548 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1549 { 1550 struct urb *urb; 1551 unsigned int npackets, pipe, i; 1552 u16 psize; 1553 u32 size; 1554 1555 psize = usb_endpoint_maxp(&ep->desc) & 0x7ff; 1556 size = stream->ctrl.dwMaxPayloadTransferSize; 1557 stream->bulk.max_payload_size = size; 1558 1559 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1560 if (npackets == 0) 1561 return -ENOMEM; 1562 1563 size = npackets * psize; 1564 1565 if (usb_endpoint_dir_in(&ep->desc)) 1566 pipe = usb_rcvbulkpipe(stream->dev->udev, 1567 ep->desc.bEndpointAddress); 1568 else 1569 pipe = usb_sndbulkpipe(stream->dev->udev, 1570 ep->desc.bEndpointAddress); 1571 1572 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1573 size = 0; 1574 1575 for (i = 0; i < UVC_URBS; ++i) { 1576 urb = usb_alloc_urb(0, gfp_flags); 1577 if (urb == NULL) { 1578 uvc_uninit_video(stream, 1); 1579 return -ENOMEM; 1580 } 1581 1582 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, 1583 stream->urb_buffer[i], size, uvc_video_complete, 1584 stream); 1585 #ifndef CONFIG_DMA_NONCOHERENT 1586 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1587 urb->transfer_dma = stream->urb_dma[i]; 1588 #endif 1589 1590 stream->urb[i] = urb; 1591 } 1592 1593 return 0; 1594 } 1595 1596 /* 1597 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1598 */ 1599 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags) 1600 { 1601 struct usb_interface *intf = stream->intf; 1602 struct usb_host_endpoint *ep; 1603 unsigned int i; 1604 int ret; 1605 1606 stream->sequence = -1; 1607 stream->last_fid = -1; 1608 stream->bulk.header_size = 0; 1609 stream->bulk.skip_payload = 0; 1610 stream->bulk.payload_size = 0; 1611 1612 uvc_video_stats_start(stream); 1613 1614 if (intf->num_altsetting > 1) { 1615 struct usb_host_endpoint *best_ep = NULL; 1616 unsigned int best_psize = UINT_MAX; 1617 unsigned int bandwidth; 1618 unsigned int uninitialized_var(altsetting); 1619 int intfnum = stream->intfnum; 1620 1621 /* Isochronous endpoint, select the alternate setting. */ 1622 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1623 1624 if (bandwidth == 0) { 1625 uvc_trace(UVC_TRACE_VIDEO, "Device requested null " 1626 "bandwidth, defaulting to lowest.\n"); 1627 bandwidth = 1; 1628 } else { 1629 uvc_trace(UVC_TRACE_VIDEO, "Device requested %u " 1630 "B/frame bandwidth.\n", bandwidth); 1631 } 1632 1633 for (i = 0; i < intf->num_altsetting; ++i) { 1634 struct usb_host_interface *alts; 1635 unsigned int psize; 1636 1637 alts = &intf->altsetting[i]; 1638 ep = uvc_find_endpoint(alts, 1639 stream->header.bEndpointAddress); 1640 if (ep == NULL) 1641 continue; 1642 1643 /* Check if the bandwidth is high enough. */ 1644 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1645 if (psize >= bandwidth && psize <= best_psize) { 1646 altsetting = alts->desc.bAlternateSetting; 1647 best_psize = psize; 1648 best_ep = ep; 1649 } 1650 } 1651 1652 if (best_ep == NULL) { 1653 uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting " 1654 "for requested bandwidth.\n"); 1655 return -EIO; 1656 } 1657 1658 uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u " 1659 "(%u B/frame bandwidth).\n", altsetting, best_psize); 1660 1661 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 1662 if (ret < 0) 1663 return ret; 1664 1665 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 1666 } else { 1667 /* Bulk endpoint, proceed to URB initialization. */ 1668 ep = uvc_find_endpoint(&intf->altsetting[0], 1669 stream->header.bEndpointAddress); 1670 if (ep == NULL) 1671 return -EIO; 1672 1673 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 1674 } 1675 1676 if (ret < 0) 1677 return ret; 1678 1679 /* Submit the URBs. */ 1680 for (i = 0; i < UVC_URBS; ++i) { 1681 ret = usb_submit_urb(stream->urb[i], gfp_flags); 1682 if (ret < 0) { 1683 uvc_printk(KERN_ERR, "Failed to submit URB %u " 1684 "(%d).\n", i, ret); 1685 uvc_uninit_video(stream, 1); 1686 return ret; 1687 } 1688 } 1689 1690 /* The Logitech C920 temporarily forgets that it should not be adjusting 1691 * Exposure Absolute during init so restore controls to stored values. 1692 */ 1693 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 1694 uvc_ctrl_restore_values(stream->dev); 1695 1696 return 0; 1697 } 1698 1699 /* -------------------------------------------------------------------------- 1700 * Suspend/resume 1701 */ 1702 1703 /* 1704 * Stop streaming without disabling the video queue. 1705 * 1706 * To let userspace applications resume without trouble, we must not touch the 1707 * video buffers in any way. We mark the device as frozen to make sure the URB 1708 * completion handler won't try to cancel the queue when we kill the URBs. 1709 */ 1710 int uvc_video_suspend(struct uvc_streaming *stream) 1711 { 1712 if (!uvc_queue_streaming(&stream->queue)) 1713 return 0; 1714 1715 stream->frozen = 1; 1716 uvc_uninit_video(stream, 0); 1717 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1718 return 0; 1719 } 1720 1721 /* 1722 * Reconfigure the video interface and restart streaming if it was enabled 1723 * before suspend. 1724 * 1725 * If an error occurs, disable the video queue. This will wake all pending 1726 * buffers, making sure userspace applications are notified of the problem 1727 * instead of waiting forever. 1728 */ 1729 int uvc_video_resume(struct uvc_streaming *stream, int reset) 1730 { 1731 int ret; 1732 1733 /* If the bus has been reset on resume, set the alternate setting to 0. 1734 * This should be the default value, but some devices crash or otherwise 1735 * misbehave if they don't receive a SET_INTERFACE request before any 1736 * other video control request. 1737 */ 1738 if (reset) 1739 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1740 1741 stream->frozen = 0; 1742 1743 uvc_video_clock_reset(stream); 1744 1745 if (!uvc_queue_streaming(&stream->queue)) 1746 return 0; 1747 1748 ret = uvc_commit_video(stream, &stream->ctrl); 1749 if (ret < 0) 1750 return ret; 1751 1752 return uvc_init_video(stream, GFP_NOIO); 1753 } 1754 1755 /* ------------------------------------------------------------------------ 1756 * Video device 1757 */ 1758 1759 /* 1760 * Initialize the UVC video device by switching to alternate setting 0 and 1761 * retrieve the default format. 1762 * 1763 * Some cameras (namely the Fuji Finepix) set the format and frame 1764 * indexes to zero. The UVC standard doesn't clearly make this a spec 1765 * violation, so try to silently fix the values if possible. 1766 * 1767 * This function is called before registering the device with V4L. 1768 */ 1769 int uvc_video_init(struct uvc_streaming *stream) 1770 { 1771 struct uvc_streaming_control *probe = &stream->ctrl; 1772 struct uvc_format *format = NULL; 1773 struct uvc_frame *frame = NULL; 1774 unsigned int i; 1775 int ret; 1776 1777 if (stream->nformats == 0) { 1778 uvc_printk(KERN_INFO, "No supported video formats found.\n"); 1779 return -EINVAL; 1780 } 1781 1782 atomic_set(&stream->active, 0); 1783 1784 /* Alternate setting 0 should be the default, yet the XBox Live Vision 1785 * Cam (and possibly other devices) crash or otherwise misbehave if 1786 * they don't receive a SET_INTERFACE request before any other video 1787 * control request. 1788 */ 1789 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1790 1791 /* Set the streaming probe control with default streaming parameters 1792 * retrieved from the device. Webcams that don't suport GET_DEF 1793 * requests on the probe control will just keep their current streaming 1794 * parameters. 1795 */ 1796 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 1797 uvc_set_video_ctrl(stream, probe, 1); 1798 1799 /* Initialize the streaming parameters with the probe control current 1800 * value. This makes sure SET_CUR requests on the streaming commit 1801 * control will always use values retrieved from a successful GET_CUR 1802 * request on the probe control, as required by the UVC specification. 1803 */ 1804 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 1805 if (ret < 0) 1806 return ret; 1807 1808 /* Check if the default format descriptor exists. Use the first 1809 * available format otherwise. 1810 */ 1811 for (i = stream->nformats; i > 0; --i) { 1812 format = &stream->format[i-1]; 1813 if (format->index == probe->bFormatIndex) 1814 break; 1815 } 1816 1817 if (format->nframes == 0) { 1818 uvc_printk(KERN_INFO, "No frame descriptor found for the " 1819 "default format.\n"); 1820 return -EINVAL; 1821 } 1822 1823 /* Zero bFrameIndex might be correct. Stream-based formats (including 1824 * MPEG-2 TS and DV) do not support frames but have a dummy frame 1825 * descriptor with bFrameIndex set to zero. If the default frame 1826 * descriptor is not found, use the first available frame. 1827 */ 1828 for (i = format->nframes; i > 0; --i) { 1829 frame = &format->frame[i-1]; 1830 if (frame->bFrameIndex == probe->bFrameIndex) 1831 break; 1832 } 1833 1834 probe->bFormatIndex = format->index; 1835 probe->bFrameIndex = frame->bFrameIndex; 1836 1837 stream->def_format = format; 1838 stream->cur_format = format; 1839 stream->cur_frame = frame; 1840 1841 /* Select the video decoding function */ 1842 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 1843 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 1844 stream->decode = uvc_video_decode_isight; 1845 else if (stream->intf->num_altsetting > 1) 1846 stream->decode = uvc_video_decode_isoc; 1847 else 1848 stream->decode = uvc_video_decode_bulk; 1849 } else { 1850 if (stream->intf->num_altsetting == 1) 1851 stream->decode = uvc_video_encode_bulk; 1852 else { 1853 uvc_printk(KERN_INFO, "Isochronous endpoints are not " 1854 "supported for video output devices.\n"); 1855 return -EINVAL; 1856 } 1857 } 1858 1859 return 0; 1860 } 1861 1862 /* 1863 * Enable or disable the video stream. 1864 */ 1865 int uvc_video_enable(struct uvc_streaming *stream, int enable) 1866 { 1867 int ret; 1868 1869 if (!enable) { 1870 uvc_uninit_video(stream, 1); 1871 if (stream->intf->num_altsetting > 1) { 1872 usb_set_interface(stream->dev->udev, 1873 stream->intfnum, 0); 1874 } else { 1875 /* UVC doesn't specify how to inform a bulk-based device 1876 * when the video stream is stopped. Windows sends a 1877 * CLEAR_FEATURE(HALT) request to the video streaming 1878 * bulk endpoint, mimic the same behaviour. 1879 */ 1880 unsigned int epnum = stream->header.bEndpointAddress 1881 & USB_ENDPOINT_NUMBER_MASK; 1882 unsigned int dir = stream->header.bEndpointAddress 1883 & USB_ENDPOINT_DIR_MASK; 1884 unsigned int pipe; 1885 1886 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 1887 usb_clear_halt(stream->dev->udev, pipe); 1888 } 1889 1890 uvc_video_clock_cleanup(stream); 1891 return 0; 1892 } 1893 1894 ret = uvc_video_clock_init(stream); 1895 if (ret < 0) 1896 return ret; 1897 1898 /* Commit the streaming parameters. */ 1899 ret = uvc_commit_video(stream, &stream->ctrl); 1900 if (ret < 0) 1901 goto error_commit; 1902 1903 ret = uvc_init_video(stream, GFP_KERNEL); 1904 if (ret < 0) 1905 goto error_video; 1906 1907 return 0; 1908 1909 error_video: 1910 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 1911 error_commit: 1912 uvc_video_clock_cleanup(stream); 1913 1914 return ret; 1915 } 1916