1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * uvc_video.c -- USB Video Class driver - Video handling 4 * 5 * Copyright (C) 2005-2010 6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/highmem.h> 11 #include <linux/kernel.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/usb.h> 16 #include <linux/usb/hcd.h> 17 #include <linux/videodev2.h> 18 #include <linux/vmalloc.h> 19 #include <linux/wait.h> 20 #include <linux/atomic.h> 21 #include <linux/unaligned.h> 22 23 #include <media/jpeg.h> 24 #include <media/v4l2-common.h> 25 26 #include "uvcvideo.h" 27 28 /* ------------------------------------------------------------------------ 29 * UVC Controls 30 */ 31 32 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 33 u8 intfnum, u8 cs, void *data, u16 size, 34 int timeout) 35 { 36 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 37 unsigned int pipe; 38 39 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 40 : usb_sndctrlpipe(dev->udev, 0); 41 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 42 43 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 44 unit << 8 | intfnum, data, size, timeout); 45 } 46 47 static const char *uvc_query_name(u8 query) 48 { 49 switch (query) { 50 case UVC_SET_CUR: 51 return "SET_CUR"; 52 case UVC_GET_CUR: 53 return "GET_CUR"; 54 case UVC_GET_MIN: 55 return "GET_MIN"; 56 case UVC_GET_MAX: 57 return "GET_MAX"; 58 case UVC_GET_RES: 59 return "GET_RES"; 60 case UVC_GET_LEN: 61 return "GET_LEN"; 62 case UVC_GET_INFO: 63 return "GET_INFO"; 64 case UVC_GET_DEF: 65 return "GET_DEF"; 66 default: 67 return "<invalid>"; 68 } 69 } 70 71 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 72 u8 intfnum, u8 cs, void *data, u16 size) 73 { 74 int ret; 75 u8 error; 76 u8 tmp; 77 78 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 79 UVC_CTRL_CONTROL_TIMEOUT); 80 if (likely(ret == size)) 81 return 0; 82 83 /* 84 * Some devices return shorter USB control packets than expected if the 85 * returned value can fit in less bytes. Zero all the bytes that the 86 * device has not written. 87 * 88 * This quirk is applied to all controls, regardless of their data type. 89 * Most controls are little-endian integers, in which case the missing 90 * bytes become 0 MSBs. For other data types, a different heuristic 91 * could be implemented if a device is found needing it. 92 * 93 * We exclude UVC_GET_INFO from the quirk. UVC_GET_LEN does not need 94 * to be excluded because its size is always 1. 95 */ 96 if (ret > 0 && query != UVC_GET_INFO) { 97 memset(data + ret, 0, size - ret); 98 dev_warn_once(&dev->udev->dev, 99 "UVC non compliance: %s control %u on unit %u returned %d bytes when we expected %u.\n", 100 uvc_query_name(query), cs, unit, ret, size); 101 return 0; 102 } 103 104 if (ret != -EPIPE) { 105 dev_err(&dev->udev->dev, 106 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 107 uvc_query_name(query), cs, unit, ret, size); 108 return ret < 0 ? ret : -EPIPE; 109 } 110 111 /* Reuse data[0] to request the error code. */ 112 tmp = *(u8 *)data; 113 114 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 115 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 116 UVC_CTRL_CONTROL_TIMEOUT); 117 118 error = *(u8 *)data; 119 *(u8 *)data = tmp; 120 121 if (ret != 1) { 122 dev_err_ratelimited(&dev->udev->dev, 123 "Failed to query (%s) UVC error code control %u on unit %u: %d (exp. 1).\n", 124 uvc_query_name(query), cs, unit, ret); 125 return ret < 0 ? ret : -EPIPE; 126 } 127 128 uvc_dbg(dev, CONTROL, "Control error %u\n", error); 129 130 switch (error) { 131 case 0: 132 /* Cannot happen - we received a STALL */ 133 return -EPIPE; 134 case 1: /* Not ready */ 135 return -EBUSY; 136 case 2: /* Wrong state */ 137 return -EACCES; 138 case 3: /* Power */ 139 return -EREMOTE; 140 case 4: /* Out of range */ 141 return -ERANGE; 142 case 5: /* Invalid unit */ 143 case 6: /* Invalid control */ 144 case 7: /* Invalid Request */ 145 /* 146 * The firmware has not properly implemented 147 * the control or there has been a HW error. 148 */ 149 return -EIO; 150 case 8: /* Invalid value within range */ 151 return -EINVAL; 152 default: /* reserved or unknown */ 153 break; 154 } 155 156 return -EPIPE; 157 } 158 159 static const struct usb_device_id elgato_cam_link_4k = { 160 USB_DEVICE(0x0fd9, 0x0066) 161 }; 162 163 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 164 struct uvc_streaming_control *ctrl) 165 { 166 const struct uvc_format *format = NULL; 167 const struct uvc_frame *frame = NULL; 168 unsigned int i; 169 170 /* 171 * The response of the Elgato Cam Link 4K is incorrect: The second byte 172 * contains bFormatIndex (instead of being the second byte of bmHint). 173 * The first byte is always zero. The third byte is always 1. 174 * 175 * The UVC 1.5 class specification defines the first five bits in the 176 * bmHint bitfield. The remaining bits are reserved and should be zero. 177 * Therefore a valid bmHint will be less than 32. 178 * 179 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix. 180 * MCU: 20.02.19, FPGA: 67 181 */ 182 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) && 183 ctrl->bmHint > 255) { 184 u8 corrected_format_index = ctrl->bmHint >> 8; 185 186 uvc_dbg(stream->dev, VIDEO, 187 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n", 188 ctrl->bmHint, ctrl->bFormatIndex, 189 1, corrected_format_index); 190 ctrl->bmHint = 1; 191 ctrl->bFormatIndex = corrected_format_index; 192 } 193 194 for (i = 0; i < stream->nformats; ++i) { 195 if (stream->formats[i].index == ctrl->bFormatIndex) { 196 format = &stream->formats[i]; 197 break; 198 } 199 } 200 201 if (format == NULL) 202 return; 203 204 for (i = 0; i < format->nframes; ++i) { 205 if (format->frames[i].bFrameIndex == ctrl->bFrameIndex) { 206 frame = &format->frames[i]; 207 break; 208 } 209 } 210 211 if (frame == NULL) 212 return; 213 214 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 215 (ctrl->dwMaxVideoFrameSize == 0 && 216 stream->dev->uvc_version < 0x0110)) 217 ctrl->dwMaxVideoFrameSize = 218 frame->dwMaxVideoFrameBufferSize; 219 220 /* 221 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 222 * compute the bandwidth on 16 bits and erroneously sign-extend it to 223 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 224 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 225 */ 226 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 227 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 228 229 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 230 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 231 stream->intf->num_altsetting > 1) { 232 u32 interval; 233 u32 bandwidth; 234 235 interval = (ctrl->dwFrameInterval > 100000) 236 ? ctrl->dwFrameInterval 237 : frame->dwFrameInterval[0]; 238 239 /* 240 * Compute a bandwidth estimation by multiplying the frame 241 * size by the number of video frames per second, divide the 242 * result by the number of USB frames (or micro-frames for 243 * high- and super-speed devices) per second and add the UVC 244 * header size (assumed to be 12 bytes long). 245 */ 246 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 247 bandwidth *= 10000000 / interval + 1; 248 bandwidth /= 1000; 249 if (stream->dev->udev->speed >= USB_SPEED_HIGH) 250 bandwidth /= 8; 251 bandwidth += 12; 252 253 /* 254 * The bandwidth estimate is too low for many cameras. Don't use 255 * maximum packet sizes lower than 1024 bytes to try and work 256 * around the problem. According to measurements done on two 257 * different camera models, the value is high enough to get most 258 * resolutions working while not preventing two simultaneous 259 * VGA streams at 15 fps. 260 */ 261 bandwidth = max_t(u32, bandwidth, 1024); 262 263 ctrl->dwMaxPayloadTransferSize = bandwidth; 264 } 265 } 266 267 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 268 { 269 /* 270 * Return the size of the video probe and commit controls, which depends 271 * on the protocol version. 272 */ 273 if (stream->dev->uvc_version < 0x0110) 274 return 26; 275 else if (stream->dev->uvc_version < 0x0150) 276 return 34; 277 else 278 return 48; 279 } 280 281 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 282 struct uvc_streaming_control *ctrl, int probe, u8 query) 283 { 284 u16 size = uvc_video_ctrl_size(stream); 285 u8 *data; 286 int ret; 287 288 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 289 query == UVC_GET_DEF) 290 return -EIO; 291 292 data = kmalloc(size, GFP_KERNEL); 293 if (data == NULL) 294 return -ENOMEM; 295 296 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 297 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 298 size, uvc_timeout_param); 299 300 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 301 /* 302 * Some cameras, mostly based on Bison Electronics chipsets, 303 * answer a GET_MIN or GET_MAX request with the wCompQuality 304 * field only. 305 */ 306 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 307 "compliance - GET_MIN/MAX(PROBE) incorrectly " 308 "supported. Enabling workaround.\n"); 309 memset(ctrl, 0, sizeof(*ctrl)); 310 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 311 ret = 0; 312 goto out; 313 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 314 /* 315 * Many cameras don't support the GET_DEF request on their 316 * video probe control. Warn once and return, the caller will 317 * fall back to GET_CUR. 318 */ 319 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 320 "compliance - GET_DEF(PROBE) not supported. " 321 "Enabling workaround.\n"); 322 ret = -EIO; 323 goto out; 324 } else if (ret != size) { 325 dev_err(&stream->intf->dev, 326 "Failed to query (%s) UVC %s control : %d (exp. %u).\n", 327 uvc_query_name(query), probe ? "probe" : "commit", 328 ret, size); 329 ret = (ret == -EPROTO) ? -EPROTO : -EIO; 330 goto out; 331 } 332 333 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 334 ctrl->bFormatIndex = data[2]; 335 ctrl->bFrameIndex = data[3]; 336 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 337 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 338 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 339 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 340 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 341 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 342 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 343 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 344 345 if (size >= 34) { 346 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 347 ctrl->bmFramingInfo = data[30]; 348 ctrl->bPreferedVersion = data[31]; 349 ctrl->bMinVersion = data[32]; 350 ctrl->bMaxVersion = data[33]; 351 } else { 352 ctrl->dwClockFrequency = stream->dev->clock_frequency; 353 ctrl->bmFramingInfo = 0; 354 ctrl->bPreferedVersion = 0; 355 ctrl->bMinVersion = 0; 356 ctrl->bMaxVersion = 0; 357 } 358 359 /* 360 * Some broken devices return null or wrong dwMaxVideoFrameSize and 361 * dwMaxPayloadTransferSize fields. Try to get the value from the 362 * format and frame descriptors. 363 */ 364 uvc_fixup_video_ctrl(stream, ctrl); 365 ret = 0; 366 367 out: 368 kfree(data); 369 return ret; 370 } 371 372 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 373 struct uvc_streaming_control *ctrl, int probe) 374 { 375 u16 size = uvc_video_ctrl_size(stream); 376 u8 *data; 377 int ret; 378 379 data = kzalloc(size, GFP_KERNEL); 380 if (data == NULL) 381 return -ENOMEM; 382 383 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 384 data[2] = ctrl->bFormatIndex; 385 data[3] = ctrl->bFrameIndex; 386 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 387 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 388 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 389 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 390 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 391 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 392 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 393 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 394 395 if (size >= 34) { 396 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 397 data[30] = ctrl->bmFramingInfo; 398 data[31] = ctrl->bPreferedVersion; 399 data[32] = ctrl->bMinVersion; 400 data[33] = ctrl->bMaxVersion; 401 } 402 403 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 404 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 405 size, uvc_timeout_param); 406 if (ret != size) { 407 dev_err(&stream->intf->dev, 408 "Failed to set UVC %s control : %d (exp. %u).\n", 409 probe ? "probe" : "commit", ret, size); 410 ret = -EIO; 411 } 412 413 kfree(data); 414 return ret; 415 } 416 417 int uvc_probe_video(struct uvc_streaming *stream, 418 struct uvc_streaming_control *probe) 419 { 420 struct uvc_streaming_control probe_min, probe_max; 421 unsigned int i; 422 int ret; 423 424 /* 425 * Perform probing. The device should adjust the requested values 426 * according to its capabilities. However, some devices, namely the 427 * first generation UVC Logitech webcams, don't implement the Video 428 * Probe control properly, and just return the needed bandwidth. For 429 * that reason, if the needed bandwidth exceeds the maximum available 430 * bandwidth, try to lower the quality. 431 */ 432 ret = uvc_set_video_ctrl(stream, probe, 1); 433 if (ret < 0) 434 goto done; 435 436 /* Get the minimum and maximum values for compression settings. */ 437 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 438 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 439 if (ret < 0) 440 goto done; 441 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 442 if (ret < 0) 443 goto done; 444 445 probe->wCompQuality = probe_max.wCompQuality; 446 } 447 448 for (i = 0; i < 2; ++i) { 449 ret = uvc_set_video_ctrl(stream, probe, 1); 450 if (ret < 0) 451 goto done; 452 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 453 if (ret < 0) 454 goto done; 455 456 if (stream->intf->num_altsetting == 1) 457 break; 458 459 if (probe->dwMaxPayloadTransferSize <= stream->maxpsize) 460 break; 461 462 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 463 ret = -ENOSPC; 464 goto done; 465 } 466 467 /* TODO: negotiate compression parameters */ 468 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 469 probe->wPFrameRate = probe_min.wPFrameRate; 470 probe->wCompQuality = probe_max.wCompQuality; 471 probe->wCompWindowSize = probe_min.wCompWindowSize; 472 } 473 474 done: 475 return ret; 476 } 477 478 static int uvc_commit_video(struct uvc_streaming *stream, 479 struct uvc_streaming_control *probe) 480 { 481 return uvc_set_video_ctrl(stream, probe, 0); 482 } 483 484 /* ----------------------------------------------------------------------------- 485 * Clocks and timestamps 486 */ 487 488 static inline ktime_t uvc_video_get_time(void) 489 { 490 if (uvc_clock_param == CLOCK_MONOTONIC) 491 return ktime_get(); 492 else 493 return ktime_get_real(); 494 } 495 496 static void uvc_video_clock_add_sample(struct uvc_clock *clock, 497 const struct uvc_clock_sample *sample) 498 { 499 unsigned long flags; 500 501 /* 502 * If we write new data on the position where we had the last 503 * overflow, remove the overflow pointer. There is no SOF overflow 504 * in the whole circular buffer. 505 */ 506 if (clock->head == clock->last_sof_overflow) 507 clock->last_sof_overflow = -1; 508 509 spin_lock_irqsave(&clock->lock, flags); 510 511 if (clock->count > 0 && clock->last_sof > sample->dev_sof) { 512 /* 513 * Remove data from the circular buffer that is older than the 514 * last SOF overflow. We only support one SOF overflow per 515 * circular buffer. 516 */ 517 if (clock->last_sof_overflow != -1) 518 clock->count = (clock->head - clock->last_sof_overflow 519 + clock->size) % clock->size; 520 clock->last_sof_overflow = clock->head; 521 } 522 523 /* Add sample. */ 524 clock->samples[clock->head] = *sample; 525 clock->head = (clock->head + 1) % clock->size; 526 clock->count = min(clock->count + 1, clock->size); 527 528 spin_unlock_irqrestore(&clock->lock, flags); 529 } 530 531 static void 532 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 533 const u8 *data, int len) 534 { 535 struct uvc_clock_sample sample; 536 unsigned int header_size; 537 bool has_pts = false; 538 bool has_scr = false; 539 540 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 541 case UVC_STREAM_PTS | UVC_STREAM_SCR: 542 header_size = 12; 543 has_pts = true; 544 has_scr = true; 545 break; 546 case UVC_STREAM_PTS: 547 header_size = 6; 548 has_pts = true; 549 break; 550 case UVC_STREAM_SCR: 551 header_size = 8; 552 has_scr = true; 553 break; 554 default: 555 header_size = 2; 556 break; 557 } 558 559 /* Check for invalid headers. */ 560 if (len < header_size) 561 return; 562 563 /* 564 * Extract the timestamps: 565 * 566 * - store the frame PTS in the buffer structure 567 * - if the SCR field is present, retrieve the host SOF counter and 568 * kernel timestamps and store them with the SCR STC and SOF fields 569 * in the ring buffer 570 */ 571 if (has_pts && buf != NULL) 572 buf->pts = get_unaligned_le32(&data[2]); 573 574 if (!has_scr) 575 return; 576 577 /* 578 * To limit the amount of data, drop SCRs with an SOF identical to the 579 * previous one. This filtering is also needed to support UVC 1.5, where 580 * all the data packets of the same frame contains the same SOF. In that 581 * case only the first one will match the host_sof. 582 */ 583 sample.dev_sof = get_unaligned_le16(&data[header_size - 2]); 584 if (sample.dev_sof == stream->clock.last_sof) 585 return; 586 587 sample.dev_stc = get_unaligned_le32(&data[header_size - 6]); 588 589 /* 590 * STC (Source Time Clock) is the clock used by the camera. The UVC 1.5 591 * standard states that it "must be captured when the first video data 592 * of a video frame is put on the USB bus". This is generally understood 593 * as requiring devices to clear the payload header's SCR bit before 594 * the first packet containing video data. 595 * 596 * Most vendors follow that interpretation, but some (namely SunplusIT 597 * on some devices) always set the `UVC_STREAM_SCR` bit, fill the SCR 598 * field with 0's,and expect that the driver only processes the SCR if 599 * there is data in the packet. 600 * 601 * Ignore all the hardware timestamp information if we haven't received 602 * any data for this frame yet, the packet contains no data, and both 603 * STC and SOF are zero. This heuristics should be safe on compliant 604 * devices. This should be safe with compliant devices, as in the very 605 * unlikely case where a UVC 1.1 device would send timing information 606 * only before the first packet containing data, and both STC and SOF 607 * happen to be zero for a particular frame, we would only miss one 608 * clock sample from many and the clock recovery algorithm wouldn't 609 * suffer from this condition. 610 */ 611 if (buf && buf->bytesused == 0 && len == header_size && 612 sample.dev_stc == 0 && sample.dev_sof == 0) 613 return; 614 615 sample.host_sof = usb_get_current_frame_number(stream->dev->udev); 616 617 /* 618 * On some devices, like the Logitech C922, the device SOF does not run 619 * at a stable rate of 1kHz. For those devices use the host SOF instead. 620 * In the tests performed so far, this improves the timestamp precision. 621 * This is probably explained by a small packet handling jitter from the 622 * host, but the exact reason hasn't been fully determined. 623 */ 624 if (stream->dev->quirks & UVC_QUIRK_INVALID_DEVICE_SOF) 625 sample.dev_sof = sample.host_sof; 626 627 sample.host_time = uvc_video_get_time(); 628 629 /* 630 * The UVC specification allows device implementations that can't obtain 631 * the USB frame number to keep their own frame counters as long as they 632 * match the size and frequency of the frame number associated with USB 633 * SOF tokens. The SOF values sent by such devices differ from the USB 634 * SOF tokens by a fixed offset that needs to be estimated and accounted 635 * for to make timestamp recovery as accurate as possible. 636 * 637 * The offset is estimated the first time a device SOF value is received 638 * as the difference between the host and device SOF values. As the two 639 * SOF values can differ slightly due to transmission delays, consider 640 * that the offset is null if the difference is not higher than 10 ms 641 * (negative differences can not happen and are thus considered as an 642 * offset). The video commit control wDelay field should be used to 643 * compute a dynamic threshold instead of using a fixed 10 ms value, but 644 * devices don't report reliable wDelay values. 645 * 646 * See uvc_video_clock_host_sof() for an explanation regarding why only 647 * the 8 LSBs of the delta are kept. 648 */ 649 if (stream->clock.sof_offset == (u16)-1) { 650 u16 delta_sof = (sample.host_sof - sample.dev_sof) & 255; 651 if (delta_sof >= 10) 652 stream->clock.sof_offset = delta_sof; 653 else 654 stream->clock.sof_offset = 0; 655 } 656 657 sample.dev_sof = (sample.dev_sof + stream->clock.sof_offset) & 2047; 658 uvc_video_clock_add_sample(&stream->clock, &sample); 659 stream->clock.last_sof = sample.dev_sof; 660 } 661 662 static void uvc_video_clock_reset(struct uvc_clock *clock) 663 { 664 clock->head = 0; 665 clock->count = 0; 666 clock->last_sof = -1; 667 clock->last_sof_overflow = -1; 668 clock->sof_offset = -1; 669 } 670 671 static int uvc_video_clock_init(struct uvc_clock *clock) 672 { 673 spin_lock_init(&clock->lock); 674 clock->size = 32; 675 676 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 677 GFP_KERNEL); 678 if (clock->samples == NULL) 679 return -ENOMEM; 680 681 uvc_video_clock_reset(clock); 682 683 return 0; 684 } 685 686 static void uvc_video_clock_cleanup(struct uvc_clock *clock) 687 { 688 kfree(clock->samples); 689 clock->samples = NULL; 690 } 691 692 /* 693 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 694 * 695 * Host SOF counters reported by usb_get_current_frame_number() usually don't 696 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 697 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 698 * controller and its configuration. 699 * 700 * We thus need to recover the SOF value corresponding to the host frame number. 701 * As the device and host frame numbers are sampled in a short interval, the 702 * difference between their values should be equal to a small delta plus an 703 * integer multiple of 256 caused by the host frame number limited precision. 704 * 705 * To obtain the recovered host SOF value, compute the small delta by masking 706 * the high bits of the host frame counter and device SOF difference and add it 707 * to the device SOF value. 708 */ 709 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 710 { 711 /* The delta value can be negative. */ 712 s8 delta_sof; 713 714 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 715 716 return (sample->dev_sof + delta_sof) & 2047; 717 } 718 719 /* 720 * uvc_video_clock_update - Update the buffer timestamp 721 * 722 * This function converts the buffer PTS timestamp to the host clock domain by 723 * going through the USB SOF clock domain and stores the result in the V4L2 724 * buffer timestamp field. 725 * 726 * The relationship between the device clock and the host clock isn't known. 727 * However, the device and the host share the common USB SOF clock which can be 728 * used to recover that relationship. 729 * 730 * The relationship between the device clock and the USB SOF clock is considered 731 * to be linear over the clock samples sliding window and is given by 732 * 733 * SOF = m * PTS + p 734 * 735 * Several methods to compute the slope (m) and intercept (p) can be used. As 736 * the clock drift should be small compared to the sliding window size, we 737 * assume that the line that goes through the points at both ends of the window 738 * is a good approximation. Naming those points P1 and P2, we get 739 * 740 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 741 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 742 * 743 * or 744 * 745 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 746 * 747 * to avoid losing precision in the division. Similarly, the host timestamp is 748 * computed with 749 * 750 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 751 * 752 * SOF values are coded on 11 bits by USB. We extend their precision with 16 753 * decimal bits, leading to a 11.16 coding. 754 * 755 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 756 * be normalized using the nominal device clock frequency reported through the 757 * UVC descriptors. 758 * 759 * Both the PTS/STC and SOF counters roll over, after a fixed but device 760 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 761 * sliding window size is smaller than the rollover period, differences computed 762 * on unsigned integers will produce the correct result. However, the p term in 763 * the linear relations will be miscomputed. 764 * 765 * To fix the issue, we subtract a constant from the PTS and STC values to bring 766 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 767 * the 32 bit range without any rollover. 768 * 769 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 770 * computed by (1) will never be smaller than 0. This offset is then compensated 771 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 772 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 773 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 774 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 775 * SOF value at the end of the sliding window. 776 * 777 * Finally we subtract a constant from the host timestamps to bring the first 778 * timestamp of the sliding window to 1s. 779 */ 780 void uvc_video_clock_update(struct uvc_streaming *stream, 781 struct vb2_v4l2_buffer *vbuf, 782 struct uvc_buffer *buf) 783 { 784 struct uvc_clock *clock = &stream->clock; 785 struct uvc_clock_sample *first; 786 struct uvc_clock_sample *last; 787 unsigned long flags; 788 u64 timestamp; 789 u32 delta_stc; 790 u32 y1; 791 u32 x1, x2; 792 u32 mean; 793 u32 sof; 794 u64 y, y2; 795 796 if (!uvc_hw_timestamps_param) 797 return; 798 799 /* 800 * We will get called from __vb2_queue_cancel() if there are buffers 801 * done but not dequeued by the user, but the sample array has already 802 * been released at that time. Just bail out in that case. 803 */ 804 if (!clock->samples) 805 return; 806 807 spin_lock_irqsave(&clock->lock, flags); 808 809 if (clock->count < 2) 810 goto done; 811 812 first = &clock->samples[(clock->head - clock->count + clock->size) % clock->size]; 813 last = &clock->samples[(clock->head - 1 + clock->size) % clock->size]; 814 815 /* First step, PTS to SOF conversion. */ 816 delta_stc = buf->pts - (1UL << 31); 817 x1 = first->dev_stc - delta_stc; 818 x2 = last->dev_stc - delta_stc; 819 if (x1 == x2) 820 goto done; 821 822 y1 = (first->dev_sof + 2048) << 16; 823 y2 = (last->dev_sof + 2048) << 16; 824 if (y2 < y1) 825 y2 += 2048 << 16; 826 827 /* 828 * Have at least 1/4 of a second of timestamps before we 829 * try to do any calculation. Otherwise we do not have enough 830 * precision. This value was determined by running Android CTS 831 * on different devices. 832 * 833 * dev_sof runs at 1KHz, and we have a fixed point precision of 834 * 16 bits. 835 */ 836 if ((y2 - y1) < ((1000 / 4) << 16)) 837 goto done; 838 839 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 840 - (u64)y2 * (u64)x1; 841 y = div_u64(y, x2 - x1); 842 843 sof = y; 844 845 uvc_dbg(stream->dev, CLOCK, 846 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %llu SOF offset %u)\n", 847 stream->dev->name, buf->pts, 848 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 849 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 850 x1, x2, y1, y2, clock->sof_offset); 851 852 /* Second step, SOF to host clock conversion. */ 853 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 854 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 855 if (x2 < x1) 856 x2 += 2048 << 16; 857 if (x1 == x2) 858 goto done; 859 860 y1 = NSEC_PER_SEC; 861 y2 = ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 862 863 /* 864 * Interpolated and host SOF timestamps can wrap around at slightly 865 * different times. Handle this by adding or removing 2048 to or from 866 * the computed SOF value to keep it close to the SOF samples mean 867 * value. 868 */ 869 mean = (x1 + x2) / 2; 870 if (mean - (1024 << 16) > sof) 871 sof += 2048 << 16; 872 else if (sof > mean + (1024 << 16)) 873 sof -= 2048 << 16; 874 875 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 876 - (u64)y2 * (u64)x1; 877 y = div_u64(y, x2 - x1); 878 879 timestamp = ktime_to_ns(first->host_time) + y - y1; 880 881 uvc_dbg(stream->dev, CLOCK, 882 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %llu)\n", 883 stream->dev->name, 884 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 885 y, timestamp, vbuf->vb2_buf.timestamp, 886 x1, first->host_sof, first->dev_sof, 887 x2, last->host_sof, last->dev_sof, y1, y2); 888 889 /* Update the V4L2 buffer. */ 890 vbuf->vb2_buf.timestamp = timestamp; 891 892 done: 893 spin_unlock_irqrestore(&clock->lock, flags); 894 } 895 896 /* ------------------------------------------------------------------------ 897 * Stream statistics 898 */ 899 900 static void uvc_video_stats_decode(struct uvc_streaming *stream, 901 const u8 *data, int len) 902 { 903 unsigned int header_size; 904 bool has_pts = false; 905 bool has_scr = false; 906 u16 scr_sof; 907 u32 scr_stc; 908 u32 pts; 909 910 if (stream->stats.stream.nb_frames == 0 && 911 stream->stats.frame.nb_packets == 0) 912 stream->stats.stream.start_ts = ktime_get(); 913 914 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 915 case UVC_STREAM_PTS | UVC_STREAM_SCR: 916 header_size = 12; 917 has_pts = true; 918 has_scr = true; 919 break; 920 case UVC_STREAM_PTS: 921 header_size = 6; 922 has_pts = true; 923 break; 924 case UVC_STREAM_SCR: 925 header_size = 8; 926 has_scr = true; 927 break; 928 default: 929 header_size = 2; 930 break; 931 } 932 933 /* Check for invalid headers. */ 934 if (len < header_size || data[0] < header_size) { 935 stream->stats.frame.nb_invalid++; 936 return; 937 } 938 939 /* Extract the timestamps. */ 940 if (has_pts) 941 pts = get_unaligned_le32(&data[2]); 942 943 if (has_scr) { 944 scr_stc = get_unaligned_le32(&data[header_size - 6]); 945 scr_sof = get_unaligned_le16(&data[header_size - 2]); 946 } 947 948 /* Is PTS constant through the whole frame ? */ 949 if (has_pts && stream->stats.frame.nb_pts) { 950 if (stream->stats.frame.pts != pts) { 951 stream->stats.frame.nb_pts_diffs++; 952 stream->stats.frame.last_pts_diff = 953 stream->stats.frame.nb_packets; 954 } 955 } 956 957 if (has_pts) { 958 stream->stats.frame.nb_pts++; 959 stream->stats.frame.pts = pts; 960 } 961 962 /* 963 * Do all frames have a PTS in their first non-empty packet, or before 964 * their first empty packet ? 965 */ 966 if (stream->stats.frame.size == 0) { 967 if (len > header_size) 968 stream->stats.frame.has_initial_pts = has_pts; 969 if (len == header_size && has_pts) 970 stream->stats.frame.has_early_pts = true; 971 } 972 973 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 974 if (has_scr && stream->stats.frame.nb_scr) { 975 if (stream->stats.frame.scr_stc != scr_stc) 976 stream->stats.frame.nb_scr_diffs++; 977 } 978 979 if (has_scr) { 980 /* Expand the SOF counter to 32 bits and store its value. */ 981 if (stream->stats.stream.nb_frames > 0 || 982 stream->stats.frame.nb_scr > 0) 983 stream->stats.stream.scr_sof_count += 984 (scr_sof - stream->stats.stream.scr_sof) % 2048; 985 stream->stats.stream.scr_sof = scr_sof; 986 987 stream->stats.frame.nb_scr++; 988 stream->stats.frame.scr_stc = scr_stc; 989 stream->stats.frame.scr_sof = scr_sof; 990 991 if (scr_sof < stream->stats.stream.min_sof) 992 stream->stats.stream.min_sof = scr_sof; 993 if (scr_sof > stream->stats.stream.max_sof) 994 stream->stats.stream.max_sof = scr_sof; 995 } 996 997 /* Record the first non-empty packet number. */ 998 if (stream->stats.frame.size == 0 && len > header_size) 999 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 1000 1001 /* Update the frame size. */ 1002 stream->stats.frame.size += len - header_size; 1003 1004 /* Update the packets counters. */ 1005 stream->stats.frame.nb_packets++; 1006 if (len <= header_size) 1007 stream->stats.frame.nb_empty++; 1008 1009 if (data[1] & UVC_STREAM_ERR) 1010 stream->stats.frame.nb_errors++; 1011 } 1012 1013 static void uvc_video_stats_update(struct uvc_streaming *stream) 1014 { 1015 struct uvc_stats_frame *frame = &stream->stats.frame; 1016 1017 uvc_dbg(stream->dev, STATS, 1018 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n", 1019 stream->sequence, frame->first_data, 1020 frame->nb_packets - frame->nb_empty, frame->nb_packets, 1021 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 1022 frame->has_early_pts ? "" : "!", 1023 frame->has_initial_pts ? "" : "!", 1024 frame->nb_scr_diffs, frame->nb_scr, 1025 frame->pts, frame->scr_stc, frame->scr_sof); 1026 1027 stream->stats.stream.nb_frames++; 1028 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 1029 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 1030 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 1031 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 1032 1033 if (frame->has_early_pts) 1034 stream->stats.stream.nb_pts_early++; 1035 if (frame->has_initial_pts) 1036 stream->stats.stream.nb_pts_initial++; 1037 if (frame->last_pts_diff <= frame->first_data) 1038 stream->stats.stream.nb_pts_constant++; 1039 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 1040 stream->stats.stream.nb_scr_count_ok++; 1041 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 1042 stream->stats.stream.nb_scr_diffs_ok++; 1043 1044 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 1045 } 1046 1047 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 1048 size_t size) 1049 { 1050 unsigned int scr_sof_freq; 1051 unsigned int duration; 1052 size_t count = 0; 1053 1054 /* 1055 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 1056 * frequency this will not overflow before more than 1h. 1057 */ 1058 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 1059 stream->stats.stream.start_ts); 1060 if (duration != 0) 1061 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 1062 / duration; 1063 else 1064 scr_sof_freq = 0; 1065 1066 count += scnprintf(buf + count, size - count, 1067 "frames: %u\npackets: %u\nempty: %u\n" 1068 "errors: %u\ninvalid: %u\n", 1069 stream->stats.stream.nb_frames, 1070 stream->stats.stream.nb_packets, 1071 stream->stats.stream.nb_empty, 1072 stream->stats.stream.nb_errors, 1073 stream->stats.stream.nb_invalid); 1074 count += scnprintf(buf + count, size - count, 1075 "pts: %u early, %u initial, %u ok\n", 1076 stream->stats.stream.nb_pts_early, 1077 stream->stats.stream.nb_pts_initial, 1078 stream->stats.stream.nb_pts_constant); 1079 count += scnprintf(buf + count, size - count, 1080 "scr: %u count ok, %u diff ok\n", 1081 stream->stats.stream.nb_scr_count_ok, 1082 stream->stats.stream.nb_scr_diffs_ok); 1083 count += scnprintf(buf + count, size - count, 1084 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 1085 stream->stats.stream.min_sof, 1086 stream->stats.stream.max_sof, 1087 scr_sof_freq / 1000, scr_sof_freq % 1000); 1088 1089 return count; 1090 } 1091 1092 static void uvc_video_stats_start(struct uvc_streaming *stream) 1093 { 1094 memset(&stream->stats, 0, sizeof(stream->stats)); 1095 stream->stats.stream.min_sof = 2048; 1096 } 1097 1098 static void uvc_video_stats_stop(struct uvc_streaming *stream) 1099 { 1100 stream->stats.stream.stop_ts = ktime_get(); 1101 } 1102 1103 /* ------------------------------------------------------------------------ 1104 * Video codecs 1105 */ 1106 1107 /* 1108 * Video payload decoding is handled by uvc_video_decode_start(), 1109 * uvc_video_decode_data() and uvc_video_decode_end(). 1110 * 1111 * uvc_video_decode_start is called with URB data at the start of a bulk or 1112 * isochronous payload. It processes header data and returns the header size 1113 * in bytes if successful. If an error occurs, it returns a negative error 1114 * code. The following error codes have special meanings. 1115 * 1116 * - EAGAIN informs the caller that the current video buffer should be marked 1117 * as done, and that the function should be called again with the same data 1118 * and a new video buffer. This is used when end of frame conditions can be 1119 * reliably detected at the beginning of the next frame only. 1120 * 1121 * If an error other than -EAGAIN is returned, the caller will drop the current 1122 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 1123 * made until the next payload. -ENODATA can be used to drop the current 1124 * payload if no other error code is appropriate. 1125 * 1126 * uvc_video_decode_data is called for every URB with URB data. It copies the 1127 * data to the video buffer. 1128 * 1129 * uvc_video_decode_end is called with header data at the end of a bulk or 1130 * isochronous payload. It performs any additional header data processing and 1131 * returns 0 or a negative error code if an error occurred. As header data have 1132 * already been processed by uvc_video_decode_start, this functions isn't 1133 * required to perform sanity checks a second time. 1134 * 1135 * For isochronous transfers where a payload is always transferred in a single 1136 * URB, the three functions will be called in a row. 1137 * 1138 * To let the decoder process header data and update its internal state even 1139 * when no video buffer is available, uvc_video_decode_start must be prepared 1140 * to be called with a NULL buf parameter. uvc_video_decode_data and 1141 * uvc_video_decode_end will never be called with a NULL buffer. 1142 */ 1143 static int uvc_video_decode_start(struct uvc_streaming *stream, 1144 struct uvc_buffer *buf, const u8 *data, int len) 1145 { 1146 u8 header_len; 1147 u8 fid; 1148 1149 /* 1150 * Sanity checks: 1151 * - packet must be at least 2 bytes long 1152 * - bHeaderLength value must be at least 2 bytes (see above) 1153 * - bHeaderLength value can't be larger than the packet size. 1154 */ 1155 if (len < 2 || data[0] < 2 || data[0] > len) { 1156 stream->stats.frame.nb_invalid++; 1157 return -EINVAL; 1158 } 1159 1160 header_len = data[0]; 1161 fid = data[1] & UVC_STREAM_FID; 1162 1163 /* 1164 * Increase the sequence number regardless of any buffer states, so 1165 * that discontinuous sequence numbers always indicate lost frames. 1166 */ 1167 if (stream->last_fid != fid) { 1168 stream->sequence++; 1169 if (stream->sequence) 1170 uvc_video_stats_update(stream); 1171 } 1172 1173 uvc_video_clock_decode(stream, buf, data, len); 1174 uvc_video_stats_decode(stream, data, len); 1175 1176 /* 1177 * Store the payload FID bit and return immediately when the buffer is 1178 * NULL. 1179 */ 1180 if (buf == NULL) { 1181 stream->last_fid = fid; 1182 return -ENODATA; 1183 } 1184 1185 /* Mark the buffer as bad if the error bit is set. */ 1186 if (data[1] & UVC_STREAM_ERR) { 1187 uvc_dbg(stream->dev, FRAME, 1188 "Marking buffer as bad (error bit set)\n"); 1189 buf->error = 1; 1190 } 1191 1192 /* 1193 * Synchronize to the input stream by waiting for the FID bit to be 1194 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE. 1195 * stream->last_fid is initialized to -1, so the first isochronous 1196 * frame will always be in sync. 1197 * 1198 * If the device doesn't toggle the FID bit, invert stream->last_fid 1199 * when the EOF bit is set to force synchronisation on the next packet. 1200 */ 1201 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1202 if (fid == stream->last_fid) { 1203 uvc_dbg(stream->dev, FRAME, 1204 "Dropping payload (out of sync)\n"); 1205 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1206 (data[1] & UVC_STREAM_EOF)) 1207 stream->last_fid ^= UVC_STREAM_FID; 1208 return -ENODATA; 1209 } 1210 1211 buf->buf.field = V4L2_FIELD_NONE; 1212 buf->buf.sequence = stream->sequence; 1213 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1214 1215 /* TODO: Handle PTS and SCR. */ 1216 buf->state = UVC_BUF_STATE_ACTIVE; 1217 } 1218 1219 /* 1220 * Mark the buffer as done if we're at the beginning of a new frame. 1221 * End of frame detection is better implemented by checking the EOF 1222 * bit (FID bit toggling is delayed by one frame compared to the EOF 1223 * bit), but some devices don't set the bit at end of frame (and the 1224 * last payload can be lost anyway). We thus must check if the FID has 1225 * been toggled. 1226 * 1227 * stream->last_fid is initialized to -1, so the first isochronous 1228 * frame will never trigger an end of frame detection. 1229 * 1230 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1231 * as it doesn't make sense to return an empty buffer. This also 1232 * avoids detecting end of frame conditions at FID toggling if the 1233 * previous payload had the EOF bit set. 1234 */ 1235 if (fid != stream->last_fid && buf->bytesused != 0) { 1236 uvc_dbg(stream->dev, FRAME, 1237 "Frame complete (FID bit toggled)\n"); 1238 buf->state = UVC_BUF_STATE_READY; 1239 return -EAGAIN; 1240 } 1241 1242 /* 1243 * Some cameras, when running two parallel streams (one MJPEG alongside 1244 * another non-MJPEG stream), are known to lose the EOF packet for a frame. 1245 * We can detect the end of a frame by checking for a new SOI marker, as 1246 * the SOI always lies on the packet boundary between two frames for 1247 * these devices. 1248 */ 1249 if (stream->dev->quirks & UVC_QUIRK_MJPEG_NO_EOF && 1250 (stream->cur_format->fcc == V4L2_PIX_FMT_MJPEG || 1251 stream->cur_format->fcc == V4L2_PIX_FMT_JPEG)) { 1252 const u8 *packet = data + header_len; 1253 1254 if (len >= header_len + 2 && 1255 packet[0] == 0xff && packet[1] == JPEG_MARKER_SOI && 1256 buf->bytesused != 0) { 1257 buf->state = UVC_BUF_STATE_READY; 1258 buf->error = 1; 1259 stream->last_fid ^= UVC_STREAM_FID; 1260 return -EAGAIN; 1261 } 1262 } 1263 1264 stream->last_fid = fid; 1265 1266 return header_len; 1267 } 1268 1269 static inline enum dma_data_direction uvc_stream_dir( 1270 struct uvc_streaming *stream) 1271 { 1272 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1273 return DMA_FROM_DEVICE; 1274 else 1275 return DMA_TO_DEVICE; 1276 } 1277 1278 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream) 1279 { 1280 return bus_to_hcd(stream->dev->udev->bus)->self.sysdev; 1281 } 1282 1283 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags) 1284 { 1285 /* Sync DMA. */ 1286 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream), 1287 uvc_urb->sgt, 1288 uvc_stream_dir(uvc_urb->stream)); 1289 return usb_submit_urb(uvc_urb->urb, mem_flags); 1290 } 1291 1292 /* 1293 * uvc_video_decode_data_work: Asynchronous memcpy processing 1294 * 1295 * Copy URB data to video buffers in process context, releasing buffer 1296 * references and requeuing the URB when done. 1297 */ 1298 static void uvc_video_copy_data_work(struct work_struct *work) 1299 { 1300 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1301 unsigned int i; 1302 int ret; 1303 1304 for (i = 0; i < uvc_urb->async_operations; i++) { 1305 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1306 1307 memcpy(op->dst, op->src, op->len); 1308 1309 /* Release reference taken on this buffer. */ 1310 uvc_queue_buffer_release(op->buf); 1311 } 1312 1313 ret = uvc_submit_urb(uvc_urb, GFP_KERNEL); 1314 if (ret < 0) 1315 dev_err(&uvc_urb->stream->intf->dev, 1316 "Failed to resubmit video URB (%d).\n", ret); 1317 } 1318 1319 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1320 struct uvc_buffer *buf, const u8 *data, int len) 1321 { 1322 unsigned int active_op = uvc_urb->async_operations; 1323 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1324 unsigned int maxlen; 1325 1326 if (len <= 0) 1327 return; 1328 1329 maxlen = buf->length - buf->bytesused; 1330 1331 /* Take a buffer reference for async work. */ 1332 kref_get(&buf->ref); 1333 1334 op->buf = buf; 1335 op->src = data; 1336 op->dst = buf->mem + buf->bytesused; 1337 op->len = min_t(unsigned int, len, maxlen); 1338 1339 buf->bytesused += op->len; 1340 1341 /* Complete the current frame if the buffer size was exceeded. */ 1342 if (len > maxlen) { 1343 uvc_dbg(uvc_urb->stream->dev, FRAME, 1344 "Frame complete (overflow)\n"); 1345 buf->error = 1; 1346 buf->state = UVC_BUF_STATE_READY; 1347 } 1348 1349 uvc_urb->async_operations++; 1350 } 1351 1352 static void uvc_video_decode_end(struct uvc_streaming *stream, 1353 struct uvc_buffer *buf, const u8 *data, int len) 1354 { 1355 /* Mark the buffer as done if the EOF marker is set. */ 1356 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1357 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n"); 1358 if (data[0] == len) 1359 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n"); 1360 buf->state = UVC_BUF_STATE_READY; 1361 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1362 stream->last_fid ^= UVC_STREAM_FID; 1363 } 1364 } 1365 1366 /* 1367 * Video payload encoding is handled by uvc_video_encode_header() and 1368 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1369 * 1370 * uvc_video_encode_header is called at the start of a payload. It adds header 1371 * data to the transfer buffer and returns the header size. As the only known 1372 * UVC output device transfers a whole frame in a single payload, the EOF bit 1373 * is always set in the header. 1374 * 1375 * uvc_video_encode_data is called for every URB and copies the data from the 1376 * video buffer to the transfer buffer. 1377 */ 1378 static int uvc_video_encode_header(struct uvc_streaming *stream, 1379 struct uvc_buffer *buf, u8 *data, int len) 1380 { 1381 data[0] = 2; /* Header length */ 1382 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1383 | (stream->last_fid & UVC_STREAM_FID); 1384 return 2; 1385 } 1386 1387 static int uvc_video_encode_data(struct uvc_streaming *stream, 1388 struct uvc_buffer *buf, u8 *data, int len) 1389 { 1390 struct uvc_video_queue *queue = &stream->queue; 1391 unsigned int nbytes; 1392 void *mem; 1393 1394 /* Copy video data to the URB buffer. */ 1395 mem = buf->mem + queue->buf_used; 1396 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1397 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1398 nbytes); 1399 memcpy(data, mem, nbytes); 1400 1401 queue->buf_used += nbytes; 1402 1403 return nbytes; 1404 } 1405 1406 /* ------------------------------------------------------------------------ 1407 * Metadata 1408 */ 1409 1410 /* 1411 * Additionally to the payload headers we also want to provide the user with USB 1412 * Frame Numbers and system time values. The resulting buffer is thus composed 1413 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1414 * Number, and a copy of the payload header. 1415 * 1416 * Ideally we want to capture all payload headers for each frame. However, their 1417 * number is unknown and unbound. We thus drop headers that contain no vendor 1418 * data and that either contain no SCR value or an SCR value identical to the 1419 * previous header. 1420 */ 1421 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1422 struct uvc_buffer *meta_buf, 1423 const u8 *mem, unsigned int length) 1424 { 1425 struct uvc_meta_buf *meta; 1426 size_t len_std = 2; 1427 bool has_pts, has_scr; 1428 unsigned long flags; 1429 unsigned int sof; 1430 ktime_t time; 1431 const u8 *scr; 1432 1433 if (!meta_buf || length == 2) 1434 return; 1435 1436 if (meta_buf->length - meta_buf->bytesused < 1437 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1438 meta_buf->error = 1; 1439 return; 1440 } 1441 1442 has_pts = mem[1] & UVC_STREAM_PTS; 1443 has_scr = mem[1] & UVC_STREAM_SCR; 1444 1445 if (has_pts) { 1446 len_std += 4; 1447 scr = mem + 6; 1448 } else { 1449 scr = mem + 2; 1450 } 1451 1452 if (has_scr) 1453 len_std += 6; 1454 1455 if (stream->meta.format == V4L2_META_FMT_UVC) 1456 length = len_std; 1457 1458 if (length == len_std && (!has_scr || 1459 !memcmp(scr, stream->clock.last_scr, 6))) 1460 return; 1461 1462 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1463 local_irq_save(flags); 1464 time = uvc_video_get_time(); 1465 sof = usb_get_current_frame_number(stream->dev->udev); 1466 local_irq_restore(flags); 1467 put_unaligned(ktime_to_ns(time), &meta->ns); 1468 put_unaligned(sof, &meta->sof); 1469 1470 if (has_scr) 1471 memcpy(stream->clock.last_scr, scr, 6); 1472 1473 meta->length = mem[0]; 1474 meta->flags = mem[1]; 1475 memcpy(meta->buf, &mem[2], length - 2); 1476 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1477 1478 uvc_dbg(stream->dev, FRAME, 1479 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1480 __func__, ktime_to_ns(time), meta->sof, meta->length, 1481 meta->flags, 1482 has_pts ? *(u32 *)meta->buf : 0, 1483 has_scr ? *(u32 *)scr : 0, 1484 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1485 } 1486 1487 /* ------------------------------------------------------------------------ 1488 * URB handling 1489 */ 1490 1491 /* 1492 * Set error flag for incomplete buffer. 1493 */ 1494 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1495 struct uvc_buffer *buf) 1496 { 1497 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1498 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1499 buf->error = 1; 1500 } 1501 1502 /* 1503 * Completion handler for video URBs. 1504 */ 1505 1506 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1507 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1508 { 1509 uvc_video_validate_buffer(stream, *video_buf); 1510 1511 if (*meta_buf) { 1512 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1513 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1514 1515 vb2_meta->sequence = vb2_video->sequence; 1516 vb2_meta->field = vb2_video->field; 1517 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1518 1519 (*meta_buf)->state = UVC_BUF_STATE_READY; 1520 if (!(*meta_buf)->error) 1521 (*meta_buf)->error = (*video_buf)->error; 1522 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1523 *meta_buf); 1524 } 1525 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1526 } 1527 1528 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1529 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1530 { 1531 struct urb *urb = uvc_urb->urb; 1532 struct uvc_streaming *stream = uvc_urb->stream; 1533 u8 *mem; 1534 int ret, i; 1535 1536 for (i = 0; i < urb->number_of_packets; ++i) { 1537 if (urb->iso_frame_desc[i].status < 0) { 1538 uvc_dbg(stream->dev, FRAME, 1539 "USB isochronous frame lost (%d)\n", 1540 urb->iso_frame_desc[i].status); 1541 /* Mark the buffer as faulty. */ 1542 if (buf != NULL) 1543 buf->error = 1; 1544 continue; 1545 } 1546 1547 /* Decode the payload header. */ 1548 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1549 do { 1550 ret = uvc_video_decode_start(stream, buf, mem, 1551 urb->iso_frame_desc[i].actual_length); 1552 if (ret == -EAGAIN) 1553 uvc_video_next_buffers(stream, &buf, &meta_buf); 1554 } while (ret == -EAGAIN); 1555 1556 if (ret < 0) 1557 continue; 1558 1559 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1560 1561 /* Decode the payload data. */ 1562 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1563 urb->iso_frame_desc[i].actual_length - ret); 1564 1565 /* Process the header again. */ 1566 uvc_video_decode_end(stream, buf, mem, 1567 urb->iso_frame_desc[i].actual_length); 1568 1569 if (buf->state == UVC_BUF_STATE_READY) 1570 uvc_video_next_buffers(stream, &buf, &meta_buf); 1571 } 1572 } 1573 1574 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1575 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1576 { 1577 struct urb *urb = uvc_urb->urb; 1578 struct uvc_streaming *stream = uvc_urb->stream; 1579 u8 *mem; 1580 int len, ret; 1581 1582 /* 1583 * Ignore ZLPs if they're not part of a frame, otherwise process them 1584 * to trigger the end of payload detection. 1585 */ 1586 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1587 return; 1588 1589 mem = urb->transfer_buffer; 1590 len = urb->actual_length; 1591 stream->bulk.payload_size += len; 1592 1593 /* 1594 * If the URB is the first of its payload, decode and save the 1595 * header. 1596 */ 1597 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1598 do { 1599 ret = uvc_video_decode_start(stream, buf, mem, len); 1600 if (ret == -EAGAIN) 1601 uvc_video_next_buffers(stream, &buf, &meta_buf); 1602 } while (ret == -EAGAIN); 1603 1604 /* If an error occurred skip the rest of the payload. */ 1605 if (ret < 0 || buf == NULL) { 1606 stream->bulk.skip_payload = 1; 1607 } else { 1608 memcpy(stream->bulk.header, mem, ret); 1609 stream->bulk.header_size = ret; 1610 1611 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1612 1613 mem += ret; 1614 len -= ret; 1615 } 1616 } 1617 1618 /* 1619 * The buffer queue might have been cancelled while a bulk transfer 1620 * was in progress, so we can reach here with buf equal to NULL. Make 1621 * sure buf is never dereferenced if NULL. 1622 */ 1623 1624 /* Prepare video data for processing. */ 1625 if (!stream->bulk.skip_payload && buf != NULL) 1626 uvc_video_decode_data(uvc_urb, buf, mem, len); 1627 1628 /* 1629 * Detect the payload end by a URB smaller than the maximum size (or 1630 * a payload size equal to the maximum) and process the header again. 1631 */ 1632 if (urb->actual_length < urb->transfer_buffer_length || 1633 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1634 if (!stream->bulk.skip_payload && buf != NULL) { 1635 uvc_video_decode_end(stream, buf, stream->bulk.header, 1636 stream->bulk.payload_size); 1637 if (buf->state == UVC_BUF_STATE_READY) 1638 uvc_video_next_buffers(stream, &buf, &meta_buf); 1639 } 1640 1641 stream->bulk.header_size = 0; 1642 stream->bulk.skip_payload = 0; 1643 stream->bulk.payload_size = 0; 1644 } 1645 } 1646 1647 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1648 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1649 { 1650 struct urb *urb = uvc_urb->urb; 1651 struct uvc_streaming *stream = uvc_urb->stream; 1652 1653 u8 *mem = urb->transfer_buffer; 1654 int len = stream->urb_size, ret; 1655 1656 if (buf == NULL) { 1657 urb->transfer_buffer_length = 0; 1658 return; 1659 } 1660 1661 /* If the URB is the first of its payload, add the header. */ 1662 if (stream->bulk.header_size == 0) { 1663 ret = uvc_video_encode_header(stream, buf, mem, len); 1664 stream->bulk.header_size = ret; 1665 stream->bulk.payload_size += ret; 1666 mem += ret; 1667 len -= ret; 1668 } 1669 1670 /* Process video data. */ 1671 ret = uvc_video_encode_data(stream, buf, mem, len); 1672 1673 stream->bulk.payload_size += ret; 1674 len -= ret; 1675 1676 if (buf->bytesused == stream->queue.buf_used || 1677 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1678 if (buf->bytesused == stream->queue.buf_used) { 1679 stream->queue.buf_used = 0; 1680 buf->state = UVC_BUF_STATE_READY; 1681 buf->buf.sequence = ++stream->sequence; 1682 uvc_queue_next_buffer(&stream->queue, buf); 1683 stream->last_fid ^= UVC_STREAM_FID; 1684 } 1685 1686 stream->bulk.header_size = 0; 1687 stream->bulk.payload_size = 0; 1688 } 1689 1690 urb->transfer_buffer_length = stream->urb_size - len; 1691 } 1692 1693 static void uvc_video_complete(struct urb *urb) 1694 { 1695 struct uvc_urb *uvc_urb = urb->context; 1696 struct uvc_streaming *stream = uvc_urb->stream; 1697 struct uvc_video_queue *queue = &stream->queue; 1698 struct uvc_video_queue *qmeta = &stream->meta.queue; 1699 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1700 struct uvc_buffer *buf = NULL; 1701 struct uvc_buffer *buf_meta = NULL; 1702 unsigned long flags; 1703 int ret; 1704 1705 switch (urb->status) { 1706 case 0: 1707 break; 1708 1709 default: 1710 dev_warn(&stream->intf->dev, 1711 "Non-zero status (%d) in video completion handler.\n", 1712 urb->status); 1713 fallthrough; 1714 case -ENOENT: /* usb_poison_urb() called. */ 1715 if (stream->frozen) 1716 return; 1717 fallthrough; 1718 case -ECONNRESET: /* usb_unlink_urb() called. */ 1719 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1720 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1721 if (vb2_qmeta) 1722 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1723 return; 1724 } 1725 1726 buf = uvc_queue_get_current_buffer(queue); 1727 1728 if (vb2_qmeta) { 1729 spin_lock_irqsave(&qmeta->irqlock, flags); 1730 if (!list_empty(&qmeta->irqqueue)) 1731 buf_meta = list_first_entry(&qmeta->irqqueue, 1732 struct uvc_buffer, queue); 1733 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1734 } 1735 1736 /* Re-initialise the URB async work. */ 1737 uvc_urb->async_operations = 0; 1738 1739 /* Sync DMA and invalidate vmap range. */ 1740 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream), 1741 uvc_urb->sgt, uvc_stream_dir(stream)); 1742 invalidate_kernel_vmap_range(uvc_urb->buffer, 1743 uvc_urb->stream->urb_size); 1744 1745 /* 1746 * Process the URB headers, and optionally queue expensive memcpy tasks 1747 * to be deferred to a work queue. 1748 */ 1749 stream->decode(uvc_urb, buf, buf_meta); 1750 1751 /* If no async work is needed, resubmit the URB immediately. */ 1752 if (!uvc_urb->async_operations) { 1753 ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC); 1754 if (ret < 0) 1755 dev_err(&stream->intf->dev, 1756 "Failed to resubmit video URB (%d).\n", ret); 1757 return; 1758 } 1759 1760 queue_work(stream->async_wq, &uvc_urb->work); 1761 } 1762 1763 /* 1764 * Free transfer buffers. 1765 */ 1766 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1767 { 1768 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1769 struct uvc_urb *uvc_urb; 1770 1771 for_each_uvc_urb(uvc_urb, stream) { 1772 if (!uvc_urb->buffer) 1773 continue; 1774 1775 dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer); 1776 dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt, 1777 uvc_stream_dir(stream)); 1778 1779 uvc_urb->buffer = NULL; 1780 uvc_urb->sgt = NULL; 1781 } 1782 1783 stream->urb_size = 0; 1784 } 1785 1786 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream, 1787 struct uvc_urb *uvc_urb, gfp_t gfp_flags) 1788 { 1789 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1790 1791 uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size, 1792 uvc_stream_dir(stream), 1793 gfp_flags, 0); 1794 if (!uvc_urb->sgt) 1795 return false; 1796 uvc_urb->dma = uvc_urb->sgt->sgl->dma_address; 1797 1798 uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size, 1799 uvc_urb->sgt); 1800 if (!uvc_urb->buffer) { 1801 dma_free_noncontiguous(dma_dev, stream->urb_size, 1802 uvc_urb->sgt, 1803 uvc_stream_dir(stream)); 1804 uvc_urb->sgt = NULL; 1805 return false; 1806 } 1807 1808 return true; 1809 } 1810 1811 /* 1812 * Allocate transfer buffers. This function can be called with buffers 1813 * already allocated when resuming from suspend, in which case it will 1814 * return without touching the buffers. 1815 * 1816 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1817 * system is too low on memory try successively smaller numbers of packets 1818 * until allocation succeeds. 1819 * 1820 * Return the number of allocated packets on success or 0 when out of memory. 1821 */ 1822 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1823 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1824 { 1825 unsigned int npackets; 1826 unsigned int i; 1827 1828 /* Buffers are already allocated, bail out. */ 1829 if (stream->urb_size) 1830 return stream->urb_size / psize; 1831 1832 /* 1833 * Compute the number of packets. Bulk endpoints might transfer UVC 1834 * payloads across multiple URBs. 1835 */ 1836 npackets = DIV_ROUND_UP(size, psize); 1837 if (npackets > UVC_MAX_PACKETS) 1838 npackets = UVC_MAX_PACKETS; 1839 1840 /* Retry allocations until one succeed. */ 1841 for (; npackets > 1; npackets /= 2) { 1842 stream->urb_size = psize * npackets; 1843 1844 for (i = 0; i < UVC_URBS; ++i) { 1845 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1846 1847 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) { 1848 uvc_free_urb_buffers(stream); 1849 break; 1850 } 1851 1852 uvc_urb->stream = stream; 1853 } 1854 1855 if (i == UVC_URBS) { 1856 uvc_dbg(stream->dev, VIDEO, 1857 "Allocated %u URB buffers of %ux%u bytes each\n", 1858 UVC_URBS, npackets, psize); 1859 return npackets; 1860 } 1861 } 1862 1863 uvc_dbg(stream->dev, VIDEO, 1864 "Failed to allocate URB buffers (%u bytes per packet)\n", 1865 psize); 1866 return 0; 1867 } 1868 1869 /* 1870 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1871 */ 1872 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1873 int free_buffers) 1874 { 1875 struct uvc_urb *uvc_urb; 1876 1877 uvc_video_stats_stop(stream); 1878 1879 /* 1880 * We must poison the URBs rather than kill them to ensure that even 1881 * after the completion handler returns, any asynchronous workqueues 1882 * will be prevented from resubmitting the URBs. 1883 */ 1884 for_each_uvc_urb(uvc_urb, stream) 1885 usb_poison_urb(uvc_urb->urb); 1886 1887 flush_workqueue(stream->async_wq); 1888 1889 for_each_uvc_urb(uvc_urb, stream) { 1890 usb_free_urb(uvc_urb->urb); 1891 uvc_urb->urb = NULL; 1892 } 1893 1894 if (free_buffers) 1895 uvc_free_urb_buffers(stream); 1896 } 1897 1898 /* 1899 * Compute the maximum number of bytes per interval for an endpoint. 1900 */ 1901 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep) 1902 { 1903 u16 psize; 1904 1905 switch (dev->speed) { 1906 case USB_SPEED_SUPER: 1907 case USB_SPEED_SUPER_PLUS: 1908 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1909 default: 1910 psize = usb_endpoint_maxp(&ep->desc); 1911 psize *= usb_endpoint_maxp_mult(&ep->desc); 1912 return psize; 1913 } 1914 } 1915 1916 /* 1917 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1918 * is given by the endpoint. 1919 */ 1920 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1921 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1922 { 1923 struct urb *urb; 1924 struct uvc_urb *uvc_urb; 1925 unsigned int npackets, i; 1926 u16 psize; 1927 u32 size; 1928 1929 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1930 size = stream->ctrl.dwMaxVideoFrameSize; 1931 1932 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1933 if (npackets == 0) 1934 return -ENOMEM; 1935 1936 size = npackets * psize; 1937 1938 for_each_uvc_urb(uvc_urb, stream) { 1939 urb = usb_alloc_urb(npackets, gfp_flags); 1940 if (urb == NULL) { 1941 uvc_video_stop_transfer(stream, 1); 1942 return -ENOMEM; 1943 } 1944 1945 urb->dev = stream->dev->udev; 1946 urb->context = uvc_urb; 1947 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1948 ep->desc.bEndpointAddress); 1949 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1950 urb->transfer_dma = uvc_urb->dma; 1951 urb->interval = ep->desc.bInterval; 1952 urb->transfer_buffer = uvc_urb->buffer; 1953 urb->complete = uvc_video_complete; 1954 urb->number_of_packets = npackets; 1955 urb->transfer_buffer_length = size; 1956 1957 for (i = 0; i < npackets; ++i) { 1958 urb->iso_frame_desc[i].offset = i * psize; 1959 urb->iso_frame_desc[i].length = psize; 1960 } 1961 1962 uvc_urb->urb = urb; 1963 } 1964 1965 return 0; 1966 } 1967 1968 /* 1969 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1970 * given by the endpoint. 1971 */ 1972 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1973 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1974 { 1975 struct urb *urb; 1976 struct uvc_urb *uvc_urb; 1977 unsigned int npackets, pipe; 1978 u16 psize; 1979 u32 size; 1980 1981 psize = usb_endpoint_maxp(&ep->desc); 1982 size = stream->ctrl.dwMaxPayloadTransferSize; 1983 stream->bulk.max_payload_size = size; 1984 1985 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1986 if (npackets == 0) 1987 return -ENOMEM; 1988 1989 size = npackets * psize; 1990 1991 if (usb_endpoint_dir_in(&ep->desc)) 1992 pipe = usb_rcvbulkpipe(stream->dev->udev, 1993 ep->desc.bEndpointAddress); 1994 else 1995 pipe = usb_sndbulkpipe(stream->dev->udev, 1996 ep->desc.bEndpointAddress); 1997 1998 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1999 size = 0; 2000 2001 for_each_uvc_urb(uvc_urb, stream) { 2002 urb = usb_alloc_urb(0, gfp_flags); 2003 if (urb == NULL) { 2004 uvc_video_stop_transfer(stream, 1); 2005 return -ENOMEM; 2006 } 2007 2008 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 2009 size, uvc_video_complete, uvc_urb); 2010 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 2011 urb->transfer_dma = uvc_urb->dma; 2012 2013 uvc_urb->urb = urb; 2014 } 2015 2016 return 0; 2017 } 2018 2019 /* 2020 * Initialize isochronous/bulk URBs and allocate transfer buffers. 2021 */ 2022 static int uvc_video_start_transfer(struct uvc_streaming *stream, 2023 gfp_t gfp_flags) 2024 { 2025 struct usb_interface *intf = stream->intf; 2026 struct usb_host_endpoint *ep; 2027 struct uvc_urb *uvc_urb; 2028 unsigned int i; 2029 int ret; 2030 2031 stream->sequence = -1; 2032 stream->last_fid = -1; 2033 stream->bulk.header_size = 0; 2034 stream->bulk.skip_payload = 0; 2035 stream->bulk.payload_size = 0; 2036 2037 uvc_video_stats_start(stream); 2038 2039 if (intf->num_altsetting > 1) { 2040 struct usb_host_endpoint *best_ep = NULL; 2041 unsigned int best_psize = UINT_MAX; 2042 unsigned int bandwidth; 2043 unsigned int altsetting; 2044 int intfnum = stream->intfnum; 2045 2046 /* Isochronous endpoint, select the alternate setting. */ 2047 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 2048 2049 if (bandwidth == 0) { 2050 uvc_dbg(stream->dev, VIDEO, 2051 "Device requested null bandwidth, defaulting to lowest\n"); 2052 bandwidth = 1; 2053 } else { 2054 uvc_dbg(stream->dev, VIDEO, 2055 "Device requested %u B/frame bandwidth\n", 2056 bandwidth); 2057 } 2058 2059 for (i = 0; i < intf->num_altsetting; ++i) { 2060 struct usb_host_interface *alts; 2061 unsigned int psize; 2062 2063 alts = &intf->altsetting[i]; 2064 ep = uvc_find_endpoint(alts, 2065 stream->header.bEndpointAddress); 2066 if (ep == NULL) 2067 continue; 2068 2069 /* Check if the bandwidth is high enough. */ 2070 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 2071 if (psize >= bandwidth && psize < best_psize) { 2072 altsetting = alts->desc.bAlternateSetting; 2073 best_psize = psize; 2074 best_ep = ep; 2075 } 2076 } 2077 2078 if (best_ep == NULL) { 2079 uvc_dbg(stream->dev, VIDEO, 2080 "No fast enough alt setting for requested bandwidth\n"); 2081 return -EIO; 2082 } 2083 2084 uvc_dbg(stream->dev, VIDEO, 2085 "Selecting alternate setting %u (%u B/frame bandwidth)\n", 2086 altsetting, best_psize); 2087 2088 /* 2089 * Some devices, namely the Logitech C910 and B910, are unable 2090 * to recover from a USB autosuspend, unless the alternate 2091 * setting of the streaming interface is toggled. 2092 */ 2093 if (stream->dev->quirks & UVC_QUIRK_WAKE_AUTOSUSPEND) { 2094 usb_set_interface(stream->dev->udev, intfnum, 2095 altsetting); 2096 usb_set_interface(stream->dev->udev, intfnum, 0); 2097 } 2098 2099 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 2100 if (ret < 0) 2101 return ret; 2102 2103 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 2104 } else { 2105 /* Bulk endpoint, proceed to URB initialization. */ 2106 ep = uvc_find_endpoint(&intf->altsetting[0], 2107 stream->header.bEndpointAddress); 2108 if (ep == NULL) 2109 return -EIO; 2110 2111 /* Reject broken descriptors. */ 2112 if (usb_endpoint_maxp(&ep->desc) == 0) 2113 return -EIO; 2114 2115 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 2116 } 2117 2118 if (ret < 0) 2119 return ret; 2120 2121 /* Submit the URBs. */ 2122 for_each_uvc_urb(uvc_urb, stream) { 2123 ret = uvc_submit_urb(uvc_urb, gfp_flags); 2124 if (ret < 0) { 2125 dev_err(&stream->intf->dev, 2126 "Failed to submit URB %u (%d).\n", 2127 uvc_urb_index(uvc_urb), ret); 2128 uvc_video_stop_transfer(stream, 1); 2129 return ret; 2130 } 2131 } 2132 2133 /* 2134 * The Logitech C920 temporarily forgets that it should not be adjusting 2135 * Exposure Absolute during init so restore controls to stored values. 2136 */ 2137 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 2138 uvc_ctrl_restore_values(stream->dev); 2139 2140 return 0; 2141 } 2142 2143 /* -------------------------------------------------------------------------- 2144 * Suspend/resume 2145 */ 2146 2147 /* 2148 * Stop streaming without disabling the video queue. 2149 * 2150 * To let userspace applications resume without trouble, we must not touch the 2151 * video buffers in any way. We mark the device as frozen to make sure the URB 2152 * completion handler won't try to cancel the queue when we kill the URBs. 2153 */ 2154 int uvc_video_suspend(struct uvc_streaming *stream) 2155 { 2156 if (!uvc_queue_streaming(&stream->queue)) 2157 return 0; 2158 2159 stream->frozen = 1; 2160 uvc_video_stop_transfer(stream, 0); 2161 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2162 return 0; 2163 } 2164 2165 /* 2166 * Reconfigure the video interface and restart streaming if it was enabled 2167 * before suspend. 2168 * 2169 * If an error occurs, disable the video queue. This will wake all pending 2170 * buffers, making sure userspace applications are notified of the problem 2171 * instead of waiting forever. 2172 */ 2173 int uvc_video_resume(struct uvc_streaming *stream, int reset) 2174 { 2175 int ret; 2176 2177 /* 2178 * If the bus has been reset on resume, set the alternate setting to 0. 2179 * This should be the default value, but some devices crash or otherwise 2180 * misbehave if they don't receive a SET_INTERFACE request before any 2181 * other video control request. 2182 */ 2183 if (reset) 2184 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2185 2186 stream->frozen = 0; 2187 2188 uvc_video_clock_reset(&stream->clock); 2189 2190 if (!uvc_queue_streaming(&stream->queue)) 2191 return 0; 2192 2193 ret = uvc_commit_video(stream, &stream->ctrl); 2194 if (ret < 0) 2195 return ret; 2196 2197 return uvc_video_start_transfer(stream, GFP_NOIO); 2198 } 2199 2200 /* ------------------------------------------------------------------------ 2201 * Video device 2202 */ 2203 2204 /* 2205 * Initialize the UVC video device by switching to alternate setting 0 and 2206 * retrieve the default format. 2207 * 2208 * Some cameras (namely the Fuji Finepix) set the format and frame 2209 * indexes to zero. The UVC standard doesn't clearly make this a spec 2210 * violation, so try to silently fix the values if possible. 2211 * 2212 * This function is called before registering the device with V4L. 2213 */ 2214 int uvc_video_init(struct uvc_streaming *stream) 2215 { 2216 struct uvc_streaming_control *probe = &stream->ctrl; 2217 const struct uvc_format *format = NULL; 2218 const struct uvc_frame *frame = NULL; 2219 struct uvc_urb *uvc_urb; 2220 unsigned int i; 2221 int ret; 2222 2223 if (stream->nformats == 0) { 2224 dev_info(&stream->intf->dev, 2225 "No supported video formats found.\n"); 2226 return -EINVAL; 2227 } 2228 2229 atomic_set(&stream->active, 0); 2230 2231 /* 2232 * Alternate setting 0 should be the default, yet the XBox Live Vision 2233 * Cam (and possibly other devices) crash or otherwise misbehave if 2234 * they don't receive a SET_INTERFACE request before any other video 2235 * control request. 2236 */ 2237 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2238 2239 /* 2240 * Set the streaming probe control with default streaming parameters 2241 * retrieved from the device. Webcams that don't support GET_DEF 2242 * requests on the probe control will just keep their current streaming 2243 * parameters. 2244 */ 2245 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2246 uvc_set_video_ctrl(stream, probe, 1); 2247 2248 /* 2249 * Initialize the streaming parameters with the probe control current 2250 * value. This makes sure SET_CUR requests on the streaming commit 2251 * control will always use values retrieved from a successful GET_CUR 2252 * request on the probe control, as required by the UVC specification. 2253 */ 2254 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2255 2256 /* 2257 * Elgato Cam Link 4k can be in a stalled state if the resolution of 2258 * the external source has changed while the firmware initializes. 2259 * Once in this state, the device is useless until it receives a 2260 * USB reset. It has even been observed that the stalled state will 2261 * continue even after unplugging the device. 2262 */ 2263 if (ret == -EPROTO && 2264 usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k)) { 2265 dev_err(&stream->intf->dev, "Elgato Cam Link 4K firmware crash detected\n"); 2266 dev_err(&stream->intf->dev, "Resetting the device, unplug and replug to recover\n"); 2267 usb_reset_device(stream->dev->udev); 2268 } 2269 2270 if (ret < 0) 2271 return ret; 2272 2273 /* 2274 * Check if the default format descriptor exists. Use the first 2275 * available format otherwise. 2276 */ 2277 for (i = stream->nformats; i > 0; --i) { 2278 format = &stream->formats[i-1]; 2279 if (format->index == probe->bFormatIndex) 2280 break; 2281 } 2282 2283 if (format->nframes == 0) { 2284 dev_info(&stream->intf->dev, 2285 "No frame descriptor found for the default format.\n"); 2286 return -EINVAL; 2287 } 2288 2289 /* 2290 * Zero bFrameIndex might be correct. Stream-based formats (including 2291 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2292 * descriptor with bFrameIndex set to zero. If the default frame 2293 * descriptor is not found, use the first available frame. 2294 */ 2295 for (i = format->nframes; i > 0; --i) { 2296 frame = &format->frames[i-1]; 2297 if (frame->bFrameIndex == probe->bFrameIndex) 2298 break; 2299 } 2300 2301 probe->bFormatIndex = format->index; 2302 probe->bFrameIndex = frame->bFrameIndex; 2303 2304 stream->def_format = format; 2305 stream->cur_format = format; 2306 stream->cur_frame = frame; 2307 2308 /* Select the video decoding function */ 2309 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2310 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2311 stream->decode = uvc_video_decode_isight; 2312 else if (stream->intf->num_altsetting > 1) 2313 stream->decode = uvc_video_decode_isoc; 2314 else 2315 stream->decode = uvc_video_decode_bulk; 2316 } else { 2317 if (stream->intf->num_altsetting == 1) 2318 stream->decode = uvc_video_encode_bulk; 2319 else { 2320 dev_info(&stream->intf->dev, 2321 "Isochronous endpoints are not supported for video output devices.\n"); 2322 return -EINVAL; 2323 } 2324 } 2325 2326 /* Prepare asynchronous work items. */ 2327 for_each_uvc_urb(uvc_urb, stream) 2328 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2329 2330 return 0; 2331 } 2332 2333 int uvc_video_start_streaming(struct uvc_streaming *stream) 2334 { 2335 int ret; 2336 2337 ret = uvc_video_clock_init(&stream->clock); 2338 if (ret < 0) 2339 return ret; 2340 2341 /* Commit the streaming parameters. */ 2342 ret = uvc_commit_video(stream, &stream->ctrl); 2343 if (ret < 0) 2344 goto error_commit; 2345 2346 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2347 if (ret < 0) 2348 goto error_video; 2349 2350 return 0; 2351 2352 error_video: 2353 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2354 error_commit: 2355 uvc_video_clock_cleanup(&stream->clock); 2356 2357 return ret; 2358 } 2359 2360 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2361 { 2362 uvc_video_stop_transfer(stream, 1); 2363 2364 if (stream->intf->num_altsetting > 1) { 2365 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2366 } else { 2367 /* 2368 * UVC doesn't specify how to inform a bulk-based device 2369 * when the video stream is stopped. Windows sends a 2370 * CLEAR_FEATURE(HALT) request to the video streaming 2371 * bulk endpoint, mimic the same behaviour. 2372 */ 2373 unsigned int epnum = stream->header.bEndpointAddress 2374 & USB_ENDPOINT_NUMBER_MASK; 2375 unsigned int dir = stream->header.bEndpointAddress 2376 & USB_ENDPOINT_DIR_MASK; 2377 unsigned int pipe; 2378 2379 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2380 usb_clear_halt(stream->dev->udev, pipe); 2381 } 2382 2383 uvc_video_clock_cleanup(&stream->clock); 2384 } 2385