xref: /linux/drivers/media/usb/uvc/uvc_video.c (revision 6b8a024d25ebf7535eb4a3e926309aa693cfe1bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      uvc_video.c  --  USB Video Class driver - Video handling
4  *
5  *      Copyright (C) 2005-2010
6  *          Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/usb.h>
16 #include <linux/usb/hcd.h>
17 #include <linux/videodev2.h>
18 #include <linux/vmalloc.h>
19 #include <linux/wait.h>
20 #include <linux/atomic.h>
21 #include <asm/unaligned.h>
22 
23 #include <media/v4l2-common.h>
24 
25 #include "uvcvideo.h"
26 
27 /* ------------------------------------------------------------------------
28  * UVC Controls
29  */
30 
31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
32 			u8 intfnum, u8 cs, void *data, u16 size,
33 			int timeout)
34 {
35 	u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
36 	unsigned int pipe;
37 
38 	pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
39 			      : usb_sndctrlpipe(dev->udev, 0);
40 	type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
41 
42 	return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
43 			unit << 8 | intfnum, data, size, timeout);
44 }
45 
46 static const char *uvc_query_name(u8 query)
47 {
48 	switch (query) {
49 	case UVC_SET_CUR:
50 		return "SET_CUR";
51 	case UVC_GET_CUR:
52 		return "GET_CUR";
53 	case UVC_GET_MIN:
54 		return "GET_MIN";
55 	case UVC_GET_MAX:
56 		return "GET_MAX";
57 	case UVC_GET_RES:
58 		return "GET_RES";
59 	case UVC_GET_LEN:
60 		return "GET_LEN";
61 	case UVC_GET_INFO:
62 		return "GET_INFO";
63 	case UVC_GET_DEF:
64 		return "GET_DEF";
65 	default:
66 		return "<invalid>";
67 	}
68 }
69 
70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
71 			u8 intfnum, u8 cs, void *data, u16 size)
72 {
73 	int ret;
74 	u8 error;
75 	u8 tmp;
76 
77 	ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 				UVC_CTRL_CONTROL_TIMEOUT);
79 	if (likely(ret == size))
80 		return 0;
81 
82 	if (ret != -EPIPE) {
83 		dev_err(&dev->udev->dev,
84 			"Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
85 			uvc_query_name(query), cs, unit, ret, size);
86 		return ret < 0 ? ret : -EPIPE;
87 	}
88 
89 	/* Reuse data[0] to request the error code. */
90 	tmp = *(u8 *)data;
91 
92 	ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum,
93 			       UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1,
94 			       UVC_CTRL_CONTROL_TIMEOUT);
95 
96 	error = *(u8 *)data;
97 	*(u8 *)data = tmp;
98 
99 	if (ret != 1)
100 		return ret < 0 ? ret : -EPIPE;
101 
102 	uvc_dbg(dev, CONTROL, "Control error %u\n", error);
103 
104 	switch (error) {
105 	case 0:
106 		/* Cannot happen - we received a STALL */
107 		return -EPIPE;
108 	case 1: /* Not ready */
109 		return -EBUSY;
110 	case 2: /* Wrong state */
111 		return -EACCES;
112 	case 3: /* Power */
113 		return -EREMOTE;
114 	case 4: /* Out of range */
115 		return -ERANGE;
116 	case 5: /* Invalid unit */
117 	case 6: /* Invalid control */
118 	case 7: /* Invalid Request */
119 		/*
120 		 * The firmware has not properly implemented
121 		 * the control or there has been a HW error.
122 		 */
123 		return -EIO;
124 	case 8: /* Invalid value within range */
125 		return -EINVAL;
126 	default: /* reserved or unknown */
127 		break;
128 	}
129 
130 	return -EPIPE;
131 }
132 
133 static const struct usb_device_id elgato_cam_link_4k = {
134 	USB_DEVICE(0x0fd9, 0x0066)
135 };
136 
137 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
138 	struct uvc_streaming_control *ctrl)
139 {
140 	const struct uvc_format *format = NULL;
141 	const struct uvc_frame *frame = NULL;
142 	unsigned int i;
143 
144 	/*
145 	 * The response of the Elgato Cam Link 4K is incorrect: The second byte
146 	 * contains bFormatIndex (instead of being the second byte of bmHint).
147 	 * The first byte is always zero. The third byte is always 1.
148 	 *
149 	 * The UVC 1.5 class specification defines the first five bits in the
150 	 * bmHint bitfield. The remaining bits are reserved and should be zero.
151 	 * Therefore a valid bmHint will be less than 32.
152 	 *
153 	 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
154 	 * MCU: 20.02.19, FPGA: 67
155 	 */
156 	if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) &&
157 	    ctrl->bmHint > 255) {
158 		u8 corrected_format_index = ctrl->bmHint >> 8;
159 
160 		uvc_dbg(stream->dev, VIDEO,
161 			"Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
162 			ctrl->bmHint, ctrl->bFormatIndex,
163 			1, corrected_format_index);
164 		ctrl->bmHint = 1;
165 		ctrl->bFormatIndex = corrected_format_index;
166 	}
167 
168 	for (i = 0; i < stream->nformats; ++i) {
169 		if (stream->formats[i].index == ctrl->bFormatIndex) {
170 			format = &stream->formats[i];
171 			break;
172 		}
173 	}
174 
175 	if (format == NULL)
176 		return;
177 
178 	for (i = 0; i < format->nframes; ++i) {
179 		if (format->frames[i].bFrameIndex == ctrl->bFrameIndex) {
180 			frame = &format->frames[i];
181 			break;
182 		}
183 	}
184 
185 	if (frame == NULL)
186 		return;
187 
188 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
189 	     (ctrl->dwMaxVideoFrameSize == 0 &&
190 	      stream->dev->uvc_version < 0x0110))
191 		ctrl->dwMaxVideoFrameSize =
192 			frame->dwMaxVideoFrameBufferSize;
193 
194 	/*
195 	 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
196 	 * compute the bandwidth on 16 bits and erroneously sign-extend it to
197 	 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
198 	 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
199 	 */
200 	if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
201 		ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
202 
203 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
204 	    stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
205 	    stream->intf->num_altsetting > 1) {
206 		u32 interval;
207 		u32 bandwidth;
208 
209 		interval = (ctrl->dwFrameInterval > 100000)
210 			 ? ctrl->dwFrameInterval
211 			 : frame->dwFrameInterval[0];
212 
213 		/*
214 		 * Compute a bandwidth estimation by multiplying the frame
215 		 * size by the number of video frames per second, divide the
216 		 * result by the number of USB frames (or micro-frames for
217 		 * high- and super-speed devices) per second and add the UVC
218 		 * header size (assumed to be 12 bytes long).
219 		 */
220 		bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
221 		bandwidth *= 10000000 / interval + 1;
222 		bandwidth /= 1000;
223 		if (stream->dev->udev->speed >= USB_SPEED_HIGH)
224 			bandwidth /= 8;
225 		bandwidth += 12;
226 
227 		/*
228 		 * The bandwidth estimate is too low for many cameras. Don't use
229 		 * maximum packet sizes lower than 1024 bytes to try and work
230 		 * around the problem. According to measurements done on two
231 		 * different camera models, the value is high enough to get most
232 		 * resolutions working while not preventing two simultaneous
233 		 * VGA streams at 15 fps.
234 		 */
235 		bandwidth = max_t(u32, bandwidth, 1024);
236 
237 		ctrl->dwMaxPayloadTransferSize = bandwidth;
238 	}
239 }
240 
241 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
242 {
243 	/*
244 	 * Return the size of the video probe and commit controls, which depends
245 	 * on the protocol version.
246 	 */
247 	if (stream->dev->uvc_version < 0x0110)
248 		return 26;
249 	else if (stream->dev->uvc_version < 0x0150)
250 		return 34;
251 	else
252 		return 48;
253 }
254 
255 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
256 	struct uvc_streaming_control *ctrl, int probe, u8 query)
257 {
258 	u16 size = uvc_video_ctrl_size(stream);
259 	u8 *data;
260 	int ret;
261 
262 	if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
263 			query == UVC_GET_DEF)
264 		return -EIO;
265 
266 	data = kmalloc(size, GFP_KERNEL);
267 	if (data == NULL)
268 		return -ENOMEM;
269 
270 	ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
271 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
272 		size, uvc_timeout_param);
273 
274 	if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
275 		/*
276 		 * Some cameras, mostly based on Bison Electronics chipsets,
277 		 * answer a GET_MIN or GET_MAX request with the wCompQuality
278 		 * field only.
279 		 */
280 		uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
281 			"compliance - GET_MIN/MAX(PROBE) incorrectly "
282 			"supported. Enabling workaround.\n");
283 		memset(ctrl, 0, sizeof(*ctrl));
284 		ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
285 		ret = 0;
286 		goto out;
287 	} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
288 		/*
289 		 * Many cameras don't support the GET_DEF request on their
290 		 * video probe control. Warn once and return, the caller will
291 		 * fall back to GET_CUR.
292 		 */
293 		uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
294 			"compliance - GET_DEF(PROBE) not supported. "
295 			"Enabling workaround.\n");
296 		ret = -EIO;
297 		goto out;
298 	} else if (ret != size) {
299 		dev_err(&stream->intf->dev,
300 			"Failed to query (%u) UVC %s control : %d (exp. %u).\n",
301 			query, probe ? "probe" : "commit", ret, size);
302 		ret = (ret == -EPROTO) ? -EPROTO : -EIO;
303 		goto out;
304 	}
305 
306 	ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
307 	ctrl->bFormatIndex = data[2];
308 	ctrl->bFrameIndex = data[3];
309 	ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
310 	ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
311 	ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
312 	ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
313 	ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
314 	ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
315 	ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
316 	ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
317 
318 	if (size >= 34) {
319 		ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
320 		ctrl->bmFramingInfo = data[30];
321 		ctrl->bPreferedVersion = data[31];
322 		ctrl->bMinVersion = data[32];
323 		ctrl->bMaxVersion = data[33];
324 	} else {
325 		ctrl->dwClockFrequency = stream->dev->clock_frequency;
326 		ctrl->bmFramingInfo = 0;
327 		ctrl->bPreferedVersion = 0;
328 		ctrl->bMinVersion = 0;
329 		ctrl->bMaxVersion = 0;
330 	}
331 
332 	/*
333 	 * Some broken devices return null or wrong dwMaxVideoFrameSize and
334 	 * dwMaxPayloadTransferSize fields. Try to get the value from the
335 	 * format and frame descriptors.
336 	 */
337 	uvc_fixup_video_ctrl(stream, ctrl);
338 	ret = 0;
339 
340 out:
341 	kfree(data);
342 	return ret;
343 }
344 
345 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
346 	struct uvc_streaming_control *ctrl, int probe)
347 {
348 	u16 size = uvc_video_ctrl_size(stream);
349 	u8 *data;
350 	int ret;
351 
352 	data = kzalloc(size, GFP_KERNEL);
353 	if (data == NULL)
354 		return -ENOMEM;
355 
356 	*(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
357 	data[2] = ctrl->bFormatIndex;
358 	data[3] = ctrl->bFrameIndex;
359 	*(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
360 	*(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
361 	*(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
362 	*(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
363 	*(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
364 	*(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
365 	put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
366 	put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
367 
368 	if (size >= 34) {
369 		put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
370 		data[30] = ctrl->bmFramingInfo;
371 		data[31] = ctrl->bPreferedVersion;
372 		data[32] = ctrl->bMinVersion;
373 		data[33] = ctrl->bMaxVersion;
374 	}
375 
376 	ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
377 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
378 		size, uvc_timeout_param);
379 	if (ret != size) {
380 		dev_err(&stream->intf->dev,
381 			"Failed to set UVC %s control : %d (exp. %u).\n",
382 			probe ? "probe" : "commit", ret, size);
383 		ret = -EIO;
384 	}
385 
386 	kfree(data);
387 	return ret;
388 }
389 
390 int uvc_probe_video(struct uvc_streaming *stream,
391 	struct uvc_streaming_control *probe)
392 {
393 	struct uvc_streaming_control probe_min, probe_max;
394 	unsigned int i;
395 	int ret;
396 
397 	/*
398 	 * Perform probing. The device should adjust the requested values
399 	 * according to its capabilities. However, some devices, namely the
400 	 * first generation UVC Logitech webcams, don't implement the Video
401 	 * Probe control properly, and just return the needed bandwidth. For
402 	 * that reason, if the needed bandwidth exceeds the maximum available
403 	 * bandwidth, try to lower the quality.
404 	 */
405 	ret = uvc_set_video_ctrl(stream, probe, 1);
406 	if (ret < 0)
407 		goto done;
408 
409 	/* Get the minimum and maximum values for compression settings. */
410 	if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
411 		ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
412 		if (ret < 0)
413 			goto done;
414 		ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
415 		if (ret < 0)
416 			goto done;
417 
418 		probe->wCompQuality = probe_max.wCompQuality;
419 	}
420 
421 	for (i = 0; i < 2; ++i) {
422 		ret = uvc_set_video_ctrl(stream, probe, 1);
423 		if (ret < 0)
424 			goto done;
425 		ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
426 		if (ret < 0)
427 			goto done;
428 
429 		if (stream->intf->num_altsetting == 1)
430 			break;
431 
432 		if (probe->dwMaxPayloadTransferSize <= stream->maxpsize)
433 			break;
434 
435 		if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
436 			ret = -ENOSPC;
437 			goto done;
438 		}
439 
440 		/* TODO: negotiate compression parameters */
441 		probe->wKeyFrameRate = probe_min.wKeyFrameRate;
442 		probe->wPFrameRate = probe_min.wPFrameRate;
443 		probe->wCompQuality = probe_max.wCompQuality;
444 		probe->wCompWindowSize = probe_min.wCompWindowSize;
445 	}
446 
447 done:
448 	return ret;
449 }
450 
451 static int uvc_commit_video(struct uvc_streaming *stream,
452 			    struct uvc_streaming_control *probe)
453 {
454 	return uvc_set_video_ctrl(stream, probe, 0);
455 }
456 
457 /* -----------------------------------------------------------------------------
458  * Clocks and timestamps
459  */
460 
461 static inline ktime_t uvc_video_get_time(void)
462 {
463 	if (uvc_clock_param == CLOCK_MONOTONIC)
464 		return ktime_get();
465 	else
466 		return ktime_get_real();
467 }
468 
469 static void uvc_video_clock_add_sample(struct uvc_clock *clock,
470 				       const struct uvc_clock_sample *sample)
471 {
472 	unsigned long flags;
473 
474 	/*
475 	 * If we write new data on the position where we had the last
476 	 * overflow, remove the overflow pointer. There is no SOF overflow
477 	 * in the whole circular buffer.
478 	 */
479 	if (clock->head == clock->last_sof_overflow)
480 		clock->last_sof_overflow = -1;
481 
482 	spin_lock_irqsave(&clock->lock, flags);
483 
484 	if (clock->count > 0 && clock->last_sof > sample->dev_sof) {
485 		/*
486 		 * Remove data from the circular buffer that is older than the
487 		 * last SOF overflow. We only support one SOF overflow per
488 		 * circular buffer.
489 		 */
490 		if (clock->last_sof_overflow != -1)
491 			clock->count = (clock->head - clock->last_sof_overflow
492 					+ clock->size) % clock->size;
493 		clock->last_sof_overflow = clock->head;
494 	}
495 
496 	/* Add sample. */
497 	clock->samples[clock->head] = *sample;
498 	clock->head = (clock->head + 1) % clock->size;
499 	clock->count = min(clock->count + 1, clock->size);
500 
501 	spin_unlock_irqrestore(&clock->lock, flags);
502 }
503 
504 static void
505 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
506 		       const u8 *data, int len)
507 {
508 	struct uvc_clock_sample sample;
509 	unsigned int header_size;
510 	bool has_pts = false;
511 	bool has_scr = false;
512 
513 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
514 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
515 		header_size = 12;
516 		has_pts = true;
517 		has_scr = true;
518 		break;
519 	case UVC_STREAM_PTS:
520 		header_size = 6;
521 		has_pts = true;
522 		break;
523 	case UVC_STREAM_SCR:
524 		header_size = 8;
525 		has_scr = true;
526 		break;
527 	default:
528 		header_size = 2;
529 		break;
530 	}
531 
532 	/* Check for invalid headers. */
533 	if (len < header_size)
534 		return;
535 
536 	/*
537 	 * Extract the timestamps:
538 	 *
539 	 * - store the frame PTS in the buffer structure
540 	 * - if the SCR field is present, retrieve the host SOF counter and
541 	 *   kernel timestamps and store them with the SCR STC and SOF fields
542 	 *   in the ring buffer
543 	 */
544 	if (has_pts && buf != NULL)
545 		buf->pts = get_unaligned_le32(&data[2]);
546 
547 	if (!has_scr)
548 		return;
549 
550 	/*
551 	 * To limit the amount of data, drop SCRs with an SOF identical to the
552 	 * previous one. This filtering is also needed to support UVC 1.5, where
553 	 * all the data packets of the same frame contains the same SOF. In that
554 	 * case only the first one will match the host_sof.
555 	 */
556 	sample.dev_sof = get_unaligned_le16(&data[header_size - 2]);
557 	if (sample.dev_sof == stream->clock.last_sof)
558 		return;
559 
560 	sample.dev_stc = get_unaligned_le32(&data[header_size - 6]);
561 
562 	/*
563 	 * STC (Source Time Clock) is the clock used by the camera. The UVC 1.5
564 	 * standard states that it "must be captured when the first video data
565 	 * of a video frame is put on the USB bus". This is generally understood
566 	 * as requiring devices to clear the payload header's SCR bit before
567 	 * the first packet containing video data.
568 	 *
569 	 * Most vendors follow that interpretation, but some (namely SunplusIT
570 	 * on some devices) always set the `UVC_STREAM_SCR` bit, fill the SCR
571 	 * field with 0's,and expect that the driver only processes the SCR if
572 	 * there is data in the packet.
573 	 *
574 	 * Ignore all the hardware timestamp information if we haven't received
575 	 * any data for this frame yet, the packet contains no data, and both
576 	 * STC and SOF are zero. This heuristics should be safe on compliant
577 	 * devices. This should be safe with compliant devices, as in the very
578 	 * unlikely case where a UVC 1.1 device would send timing information
579 	 * only before the first packet containing data, and both STC and SOF
580 	 * happen to be zero for a particular frame, we would only miss one
581 	 * clock sample from many and the clock recovery algorithm wouldn't
582 	 * suffer from this condition.
583 	 */
584 	if (buf && buf->bytesused == 0 && len == header_size &&
585 	    sample.dev_stc == 0 && sample.dev_sof == 0)
586 		return;
587 
588 	sample.host_sof = usb_get_current_frame_number(stream->dev->udev);
589 
590 	/*
591 	 * On some devices, like the Logitech C922, the device SOF does not run
592 	 * at a stable rate of 1kHz. For those devices use the host SOF instead.
593 	 * In the tests performed so far, this improves the timestamp precision.
594 	 * This is probably explained by a small packet handling jitter from the
595 	 * host, but the exact reason hasn't been fully determined.
596 	 */
597 	if (stream->dev->quirks & UVC_QUIRK_INVALID_DEVICE_SOF)
598 		sample.dev_sof = sample.host_sof;
599 
600 	sample.host_time = uvc_video_get_time();
601 
602 	/*
603 	 * The UVC specification allows device implementations that can't obtain
604 	 * the USB frame number to keep their own frame counters as long as they
605 	 * match the size and frequency of the frame number associated with USB
606 	 * SOF tokens. The SOF values sent by such devices differ from the USB
607 	 * SOF tokens by a fixed offset that needs to be estimated and accounted
608 	 * for to make timestamp recovery as accurate as possible.
609 	 *
610 	 * The offset is estimated the first time a device SOF value is received
611 	 * as the difference between the host and device SOF values. As the two
612 	 * SOF values can differ slightly due to transmission delays, consider
613 	 * that the offset is null if the difference is not higher than 10 ms
614 	 * (negative differences can not happen and are thus considered as an
615 	 * offset). The video commit control wDelay field should be used to
616 	 * compute a dynamic threshold instead of using a fixed 10 ms value, but
617 	 * devices don't report reliable wDelay values.
618 	 *
619 	 * See uvc_video_clock_host_sof() for an explanation regarding why only
620 	 * the 8 LSBs of the delta are kept.
621 	 */
622 	if (stream->clock.sof_offset == (u16)-1) {
623 		u16 delta_sof = (sample.host_sof - sample.dev_sof) & 255;
624 		if (delta_sof >= 10)
625 			stream->clock.sof_offset = delta_sof;
626 		else
627 			stream->clock.sof_offset = 0;
628 	}
629 
630 	sample.dev_sof = (sample.dev_sof + stream->clock.sof_offset) & 2047;
631 	uvc_video_clock_add_sample(&stream->clock, &sample);
632 	stream->clock.last_sof = sample.dev_sof;
633 }
634 
635 static void uvc_video_clock_reset(struct uvc_clock *clock)
636 {
637 	clock->head = 0;
638 	clock->count = 0;
639 	clock->last_sof = -1;
640 	clock->last_sof_overflow = -1;
641 	clock->sof_offset = -1;
642 }
643 
644 static int uvc_video_clock_init(struct uvc_clock *clock)
645 {
646 	spin_lock_init(&clock->lock);
647 	clock->size = 32;
648 
649 	clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples),
650 				       GFP_KERNEL);
651 	if (clock->samples == NULL)
652 		return -ENOMEM;
653 
654 	uvc_video_clock_reset(clock);
655 
656 	return 0;
657 }
658 
659 static void uvc_video_clock_cleanup(struct uvc_clock *clock)
660 {
661 	kfree(clock->samples);
662 	clock->samples = NULL;
663 }
664 
665 /*
666  * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
667  *
668  * Host SOF counters reported by usb_get_current_frame_number() usually don't
669  * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
670  * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
671  * controller and its configuration.
672  *
673  * We thus need to recover the SOF value corresponding to the host frame number.
674  * As the device and host frame numbers are sampled in a short interval, the
675  * difference between their values should be equal to a small delta plus an
676  * integer multiple of 256 caused by the host frame number limited precision.
677  *
678  * To obtain the recovered host SOF value, compute the small delta by masking
679  * the high bits of the host frame counter and device SOF difference and add it
680  * to the device SOF value.
681  */
682 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
683 {
684 	/* The delta value can be negative. */
685 	s8 delta_sof;
686 
687 	delta_sof = (sample->host_sof - sample->dev_sof) & 255;
688 
689 	return (sample->dev_sof + delta_sof) & 2047;
690 }
691 
692 /*
693  * uvc_video_clock_update - Update the buffer timestamp
694  *
695  * This function converts the buffer PTS timestamp to the host clock domain by
696  * going through the USB SOF clock domain and stores the result in the V4L2
697  * buffer timestamp field.
698  *
699  * The relationship between the device clock and the host clock isn't known.
700  * However, the device and the host share the common USB SOF clock which can be
701  * used to recover that relationship.
702  *
703  * The relationship between the device clock and the USB SOF clock is considered
704  * to be linear over the clock samples sliding window and is given by
705  *
706  * SOF = m * PTS + p
707  *
708  * Several methods to compute the slope (m) and intercept (p) can be used. As
709  * the clock drift should be small compared to the sliding window size, we
710  * assume that the line that goes through the points at both ends of the window
711  * is a good approximation. Naming those points P1 and P2, we get
712  *
713  * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
714  *     + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
715  *
716  * or
717  *
718  * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)   (1)
719  *
720  * to avoid losing precision in the division. Similarly, the host timestamp is
721  * computed with
722  *
723  * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1)	     (2)
724  *
725  * SOF values are coded on 11 bits by USB. We extend their precision with 16
726  * decimal bits, leading to a 11.16 coding.
727  *
728  * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
729  * be normalized using the nominal device clock frequency reported through the
730  * UVC descriptors.
731  *
732  * Both the PTS/STC and SOF counters roll over, after a fixed but device
733  * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
734  * sliding window size is smaller than the rollover period, differences computed
735  * on unsigned integers will produce the correct result. However, the p term in
736  * the linear relations will be miscomputed.
737  *
738  * To fix the issue, we subtract a constant from the PTS and STC values to bring
739  * PTS to half the 32 bit STC range. The sliding window STC values then fit into
740  * the 32 bit range without any rollover.
741  *
742  * Similarly, we add 2048 to the device SOF values to make sure that the SOF
743  * computed by (1) will never be smaller than 0. This offset is then compensated
744  * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
745  * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
746  * lower than 4096, and the host SOF counters can have rolled over to 2048. This
747  * case is handled by subtracting 2048 from the SOF value if it exceeds the host
748  * SOF value at the end of the sliding window.
749  *
750  * Finally we subtract a constant from the host timestamps to bring the first
751  * timestamp of the sliding window to 1s.
752  */
753 void uvc_video_clock_update(struct uvc_streaming *stream,
754 			    struct vb2_v4l2_buffer *vbuf,
755 			    struct uvc_buffer *buf)
756 {
757 	struct uvc_clock *clock = &stream->clock;
758 	struct uvc_clock_sample *first;
759 	struct uvc_clock_sample *last;
760 	unsigned long flags;
761 	u64 timestamp;
762 	u32 delta_stc;
763 	u32 y1;
764 	u32 x1, x2;
765 	u32 mean;
766 	u32 sof;
767 	u64 y, y2;
768 
769 	if (!uvc_hw_timestamps_param)
770 		return;
771 
772 	/*
773 	 * We will get called from __vb2_queue_cancel() if there are buffers
774 	 * done but not dequeued by the user, but the sample array has already
775 	 * been released at that time. Just bail out in that case.
776 	 */
777 	if (!clock->samples)
778 		return;
779 
780 	spin_lock_irqsave(&clock->lock, flags);
781 
782 	if (clock->count < 2)
783 		goto done;
784 
785 	first = &clock->samples[(clock->head - clock->count + clock->size) % clock->size];
786 	last = &clock->samples[(clock->head - 1 + clock->size) % clock->size];
787 
788 	/* First step, PTS to SOF conversion. */
789 	delta_stc = buf->pts - (1UL << 31);
790 	x1 = first->dev_stc - delta_stc;
791 	x2 = last->dev_stc - delta_stc;
792 	if (x1 == x2)
793 		goto done;
794 
795 	y1 = (first->dev_sof + 2048) << 16;
796 	y2 = (last->dev_sof + 2048) << 16;
797 	if (y2 < y1)
798 		y2 += 2048 << 16;
799 
800 	/*
801 	 * Have at least 1/4 of a second of timestamps before we
802 	 * try to do any calculation. Otherwise we do not have enough
803 	 * precision. This value was determined by running Android CTS
804 	 * on different devices.
805 	 *
806 	 * dev_sof runs at 1KHz, and we have a fixed point precision of
807 	 * 16 bits.
808 	 */
809 	if ((y2 - y1) < ((1000 / 4) << 16))
810 		goto done;
811 
812 	y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
813 	  - (u64)y2 * (u64)x1;
814 	y = div_u64(y, x2 - x1);
815 
816 	sof = y;
817 
818 	uvc_dbg(stream->dev, CLOCK,
819 		"%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %llu SOF offset %u)\n",
820 		stream->dev->name, buf->pts,
821 		y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
822 		sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
823 		x1, x2, y1, y2, clock->sof_offset);
824 
825 	/* Second step, SOF to host clock conversion. */
826 	x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
827 	x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
828 	if (x2 < x1)
829 		x2 += 2048 << 16;
830 	if (x1 == x2)
831 		goto done;
832 
833 	y1 = NSEC_PER_SEC;
834 	y2 = ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
835 
836 	/*
837 	 * Interpolated and host SOF timestamps can wrap around at slightly
838 	 * different times. Handle this by adding or removing 2048 to or from
839 	 * the computed SOF value to keep it close to the SOF samples mean
840 	 * value.
841 	 */
842 	mean = (x1 + x2) / 2;
843 	if (mean - (1024 << 16) > sof)
844 		sof += 2048 << 16;
845 	else if (sof > mean + (1024 << 16))
846 		sof -= 2048 << 16;
847 
848 	y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
849 	  - (u64)y2 * (u64)x1;
850 	y = div_u64(y, x2 - x1);
851 
852 	timestamp = ktime_to_ns(first->host_time) + y - y1;
853 
854 	uvc_dbg(stream->dev, CLOCK,
855 		"%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %llu)\n",
856 		stream->dev->name,
857 		sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
858 		y, timestamp, vbuf->vb2_buf.timestamp,
859 		x1, first->host_sof, first->dev_sof,
860 		x2, last->host_sof, last->dev_sof, y1, y2);
861 
862 	/* Update the V4L2 buffer. */
863 	vbuf->vb2_buf.timestamp = timestamp;
864 
865 done:
866 	spin_unlock_irqrestore(&clock->lock, flags);
867 }
868 
869 /* ------------------------------------------------------------------------
870  * Stream statistics
871  */
872 
873 static void uvc_video_stats_decode(struct uvc_streaming *stream,
874 		const u8 *data, int len)
875 {
876 	unsigned int header_size;
877 	bool has_pts = false;
878 	bool has_scr = false;
879 	u16 scr_sof;
880 	u32 scr_stc;
881 	u32 pts;
882 
883 	if (stream->stats.stream.nb_frames == 0 &&
884 	    stream->stats.frame.nb_packets == 0)
885 		stream->stats.stream.start_ts = ktime_get();
886 
887 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
888 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
889 		header_size = 12;
890 		has_pts = true;
891 		has_scr = true;
892 		break;
893 	case UVC_STREAM_PTS:
894 		header_size = 6;
895 		has_pts = true;
896 		break;
897 	case UVC_STREAM_SCR:
898 		header_size = 8;
899 		has_scr = true;
900 		break;
901 	default:
902 		header_size = 2;
903 		break;
904 	}
905 
906 	/* Check for invalid headers. */
907 	if (len < header_size || data[0] < header_size) {
908 		stream->stats.frame.nb_invalid++;
909 		return;
910 	}
911 
912 	/* Extract the timestamps. */
913 	if (has_pts)
914 		pts = get_unaligned_le32(&data[2]);
915 
916 	if (has_scr) {
917 		scr_stc = get_unaligned_le32(&data[header_size - 6]);
918 		scr_sof = get_unaligned_le16(&data[header_size - 2]);
919 	}
920 
921 	/* Is PTS constant through the whole frame ? */
922 	if (has_pts && stream->stats.frame.nb_pts) {
923 		if (stream->stats.frame.pts != pts) {
924 			stream->stats.frame.nb_pts_diffs++;
925 			stream->stats.frame.last_pts_diff =
926 				stream->stats.frame.nb_packets;
927 		}
928 	}
929 
930 	if (has_pts) {
931 		stream->stats.frame.nb_pts++;
932 		stream->stats.frame.pts = pts;
933 	}
934 
935 	/*
936 	 * Do all frames have a PTS in their first non-empty packet, or before
937 	 * their first empty packet ?
938 	 */
939 	if (stream->stats.frame.size == 0) {
940 		if (len > header_size)
941 			stream->stats.frame.has_initial_pts = has_pts;
942 		if (len == header_size && has_pts)
943 			stream->stats.frame.has_early_pts = true;
944 	}
945 
946 	/* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
947 	if (has_scr && stream->stats.frame.nb_scr) {
948 		if (stream->stats.frame.scr_stc != scr_stc)
949 			stream->stats.frame.nb_scr_diffs++;
950 	}
951 
952 	if (has_scr) {
953 		/* Expand the SOF counter to 32 bits and store its value. */
954 		if (stream->stats.stream.nb_frames > 0 ||
955 		    stream->stats.frame.nb_scr > 0)
956 			stream->stats.stream.scr_sof_count +=
957 				(scr_sof - stream->stats.stream.scr_sof) % 2048;
958 		stream->stats.stream.scr_sof = scr_sof;
959 
960 		stream->stats.frame.nb_scr++;
961 		stream->stats.frame.scr_stc = scr_stc;
962 		stream->stats.frame.scr_sof = scr_sof;
963 
964 		if (scr_sof < stream->stats.stream.min_sof)
965 			stream->stats.stream.min_sof = scr_sof;
966 		if (scr_sof > stream->stats.stream.max_sof)
967 			stream->stats.stream.max_sof = scr_sof;
968 	}
969 
970 	/* Record the first non-empty packet number. */
971 	if (stream->stats.frame.size == 0 && len > header_size)
972 		stream->stats.frame.first_data = stream->stats.frame.nb_packets;
973 
974 	/* Update the frame size. */
975 	stream->stats.frame.size += len - header_size;
976 
977 	/* Update the packets counters. */
978 	stream->stats.frame.nb_packets++;
979 	if (len <= header_size)
980 		stream->stats.frame.nb_empty++;
981 
982 	if (data[1] & UVC_STREAM_ERR)
983 		stream->stats.frame.nb_errors++;
984 }
985 
986 static void uvc_video_stats_update(struct uvc_streaming *stream)
987 {
988 	struct uvc_stats_frame *frame = &stream->stats.frame;
989 
990 	uvc_dbg(stream->dev, STATS,
991 		"frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n",
992 		stream->sequence, frame->first_data,
993 		frame->nb_packets - frame->nb_empty, frame->nb_packets,
994 		frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
995 		frame->has_early_pts ? "" : "!",
996 		frame->has_initial_pts ? "" : "!",
997 		frame->nb_scr_diffs, frame->nb_scr,
998 		frame->pts, frame->scr_stc, frame->scr_sof);
999 
1000 	stream->stats.stream.nb_frames++;
1001 	stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
1002 	stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
1003 	stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
1004 	stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
1005 
1006 	if (frame->has_early_pts)
1007 		stream->stats.stream.nb_pts_early++;
1008 	if (frame->has_initial_pts)
1009 		stream->stats.stream.nb_pts_initial++;
1010 	if (frame->last_pts_diff <= frame->first_data)
1011 		stream->stats.stream.nb_pts_constant++;
1012 	if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
1013 		stream->stats.stream.nb_scr_count_ok++;
1014 	if (frame->nb_scr_diffs + 1 == frame->nb_scr)
1015 		stream->stats.stream.nb_scr_diffs_ok++;
1016 
1017 	memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
1018 }
1019 
1020 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
1021 			    size_t size)
1022 {
1023 	unsigned int scr_sof_freq;
1024 	unsigned int duration;
1025 	size_t count = 0;
1026 
1027 	/*
1028 	 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
1029 	 * frequency this will not overflow before more than 1h.
1030 	 */
1031 	duration = ktime_ms_delta(stream->stats.stream.stop_ts,
1032 				  stream->stats.stream.start_ts);
1033 	if (duration != 0)
1034 		scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
1035 			     / duration;
1036 	else
1037 		scr_sof_freq = 0;
1038 
1039 	count += scnprintf(buf + count, size - count,
1040 			   "frames:  %u\npackets: %u\nempty:   %u\n"
1041 			   "errors:  %u\ninvalid: %u\n",
1042 			   stream->stats.stream.nb_frames,
1043 			   stream->stats.stream.nb_packets,
1044 			   stream->stats.stream.nb_empty,
1045 			   stream->stats.stream.nb_errors,
1046 			   stream->stats.stream.nb_invalid);
1047 	count += scnprintf(buf + count, size - count,
1048 			   "pts: %u early, %u initial, %u ok\n",
1049 			   stream->stats.stream.nb_pts_early,
1050 			   stream->stats.stream.nb_pts_initial,
1051 			   stream->stats.stream.nb_pts_constant);
1052 	count += scnprintf(buf + count, size - count,
1053 			   "scr: %u count ok, %u diff ok\n",
1054 			   stream->stats.stream.nb_scr_count_ok,
1055 			   stream->stats.stream.nb_scr_diffs_ok);
1056 	count += scnprintf(buf + count, size - count,
1057 			   "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
1058 			   stream->stats.stream.min_sof,
1059 			   stream->stats.stream.max_sof,
1060 			   scr_sof_freq / 1000, scr_sof_freq % 1000);
1061 
1062 	return count;
1063 }
1064 
1065 static void uvc_video_stats_start(struct uvc_streaming *stream)
1066 {
1067 	memset(&stream->stats, 0, sizeof(stream->stats));
1068 	stream->stats.stream.min_sof = 2048;
1069 }
1070 
1071 static void uvc_video_stats_stop(struct uvc_streaming *stream)
1072 {
1073 	stream->stats.stream.stop_ts = ktime_get();
1074 }
1075 
1076 /* ------------------------------------------------------------------------
1077  * Video codecs
1078  */
1079 
1080 /*
1081  * Video payload decoding is handled by uvc_video_decode_start(),
1082  * uvc_video_decode_data() and uvc_video_decode_end().
1083  *
1084  * uvc_video_decode_start is called with URB data at the start of a bulk or
1085  * isochronous payload. It processes header data and returns the header size
1086  * in bytes if successful. If an error occurs, it returns a negative error
1087  * code. The following error codes have special meanings.
1088  *
1089  * - EAGAIN informs the caller that the current video buffer should be marked
1090  *   as done, and that the function should be called again with the same data
1091  *   and a new video buffer. This is used when end of frame conditions can be
1092  *   reliably detected at the beginning of the next frame only.
1093  *
1094  * If an error other than -EAGAIN is returned, the caller will drop the current
1095  * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
1096  * made until the next payload. -ENODATA can be used to drop the current
1097  * payload if no other error code is appropriate.
1098  *
1099  * uvc_video_decode_data is called for every URB with URB data. It copies the
1100  * data to the video buffer.
1101  *
1102  * uvc_video_decode_end is called with header data at the end of a bulk or
1103  * isochronous payload. It performs any additional header data processing and
1104  * returns 0 or a negative error code if an error occurred. As header data have
1105  * already been processed by uvc_video_decode_start, this functions isn't
1106  * required to perform sanity checks a second time.
1107  *
1108  * For isochronous transfers where a payload is always transferred in a single
1109  * URB, the three functions will be called in a row.
1110  *
1111  * To let the decoder process header data and update its internal state even
1112  * when no video buffer is available, uvc_video_decode_start must be prepared
1113  * to be called with a NULL buf parameter. uvc_video_decode_data and
1114  * uvc_video_decode_end will never be called with a NULL buffer.
1115  */
1116 static int uvc_video_decode_start(struct uvc_streaming *stream,
1117 		struct uvc_buffer *buf, const u8 *data, int len)
1118 {
1119 	u8 fid;
1120 
1121 	/*
1122 	 * Sanity checks:
1123 	 * - packet must be at least 2 bytes long
1124 	 * - bHeaderLength value must be at least 2 bytes (see above)
1125 	 * - bHeaderLength value can't be larger than the packet size.
1126 	 */
1127 	if (len < 2 || data[0] < 2 || data[0] > len) {
1128 		stream->stats.frame.nb_invalid++;
1129 		return -EINVAL;
1130 	}
1131 
1132 	fid = data[1] & UVC_STREAM_FID;
1133 
1134 	/*
1135 	 * Increase the sequence number regardless of any buffer states, so
1136 	 * that discontinuous sequence numbers always indicate lost frames.
1137 	 */
1138 	if (stream->last_fid != fid) {
1139 		stream->sequence++;
1140 		if (stream->sequence)
1141 			uvc_video_stats_update(stream);
1142 	}
1143 
1144 	uvc_video_clock_decode(stream, buf, data, len);
1145 	uvc_video_stats_decode(stream, data, len);
1146 
1147 	/*
1148 	 * Store the payload FID bit and return immediately when the buffer is
1149 	 * NULL.
1150 	 */
1151 	if (buf == NULL) {
1152 		stream->last_fid = fid;
1153 		return -ENODATA;
1154 	}
1155 
1156 	/* Mark the buffer as bad if the error bit is set. */
1157 	if (data[1] & UVC_STREAM_ERR) {
1158 		uvc_dbg(stream->dev, FRAME,
1159 			"Marking buffer as bad (error bit set)\n");
1160 		buf->error = 1;
1161 	}
1162 
1163 	/*
1164 	 * Synchronize to the input stream by waiting for the FID bit to be
1165 	 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE.
1166 	 * stream->last_fid is initialized to -1, so the first isochronous
1167 	 * frame will always be in sync.
1168 	 *
1169 	 * If the device doesn't toggle the FID bit, invert stream->last_fid
1170 	 * when the EOF bit is set to force synchronisation on the next packet.
1171 	 */
1172 	if (buf->state != UVC_BUF_STATE_ACTIVE) {
1173 		if (fid == stream->last_fid) {
1174 			uvc_dbg(stream->dev, FRAME,
1175 				"Dropping payload (out of sync)\n");
1176 			if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1177 			    (data[1] & UVC_STREAM_EOF))
1178 				stream->last_fid ^= UVC_STREAM_FID;
1179 			return -ENODATA;
1180 		}
1181 
1182 		buf->buf.field = V4L2_FIELD_NONE;
1183 		buf->buf.sequence = stream->sequence;
1184 		buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time());
1185 
1186 		/* TODO: Handle PTS and SCR. */
1187 		buf->state = UVC_BUF_STATE_ACTIVE;
1188 	}
1189 
1190 	/*
1191 	 * Mark the buffer as done if we're at the beginning of a new frame.
1192 	 * End of frame detection is better implemented by checking the EOF
1193 	 * bit (FID bit toggling is delayed by one frame compared to the EOF
1194 	 * bit), but some devices don't set the bit at end of frame (and the
1195 	 * last payload can be lost anyway). We thus must check if the FID has
1196 	 * been toggled.
1197 	 *
1198 	 * stream->last_fid is initialized to -1, so the first isochronous
1199 	 * frame will never trigger an end of frame detection.
1200 	 *
1201 	 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1202 	 * as it doesn't make sense to return an empty buffer. This also
1203 	 * avoids detecting end of frame conditions at FID toggling if the
1204 	 * previous payload had the EOF bit set.
1205 	 */
1206 	if (fid != stream->last_fid && buf->bytesused != 0) {
1207 		uvc_dbg(stream->dev, FRAME,
1208 			"Frame complete (FID bit toggled)\n");
1209 		buf->state = UVC_BUF_STATE_READY;
1210 		return -EAGAIN;
1211 	}
1212 
1213 	stream->last_fid = fid;
1214 
1215 	return data[0];
1216 }
1217 
1218 static inline enum dma_data_direction uvc_stream_dir(
1219 				struct uvc_streaming *stream)
1220 {
1221 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1222 		return DMA_FROM_DEVICE;
1223 	else
1224 		return DMA_TO_DEVICE;
1225 }
1226 
1227 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream)
1228 {
1229 	return bus_to_hcd(stream->dev->udev->bus)->self.sysdev;
1230 }
1231 
1232 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags)
1233 {
1234 	/* Sync DMA. */
1235 	dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream),
1236 				    uvc_urb->sgt,
1237 				    uvc_stream_dir(uvc_urb->stream));
1238 	return usb_submit_urb(uvc_urb->urb, mem_flags);
1239 }
1240 
1241 /*
1242  * uvc_video_decode_data_work: Asynchronous memcpy processing
1243  *
1244  * Copy URB data to video buffers in process context, releasing buffer
1245  * references and requeuing the URB when done.
1246  */
1247 static void uvc_video_copy_data_work(struct work_struct *work)
1248 {
1249 	struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work);
1250 	unsigned int i;
1251 	int ret;
1252 
1253 	for (i = 0; i < uvc_urb->async_operations; i++) {
1254 		struct uvc_copy_op *op = &uvc_urb->copy_operations[i];
1255 
1256 		memcpy(op->dst, op->src, op->len);
1257 
1258 		/* Release reference taken on this buffer. */
1259 		uvc_queue_buffer_release(op->buf);
1260 	}
1261 
1262 	ret = uvc_submit_urb(uvc_urb, GFP_KERNEL);
1263 	if (ret < 0)
1264 		dev_err(&uvc_urb->stream->intf->dev,
1265 			"Failed to resubmit video URB (%d).\n", ret);
1266 }
1267 
1268 static void uvc_video_decode_data(struct uvc_urb *uvc_urb,
1269 		struct uvc_buffer *buf, const u8 *data, int len)
1270 {
1271 	unsigned int active_op = uvc_urb->async_operations;
1272 	struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op];
1273 	unsigned int maxlen;
1274 
1275 	if (len <= 0)
1276 		return;
1277 
1278 	maxlen = buf->length - buf->bytesused;
1279 
1280 	/* Take a buffer reference for async work. */
1281 	kref_get(&buf->ref);
1282 
1283 	op->buf = buf;
1284 	op->src = data;
1285 	op->dst = buf->mem + buf->bytesused;
1286 	op->len = min_t(unsigned int, len, maxlen);
1287 
1288 	buf->bytesused += op->len;
1289 
1290 	/* Complete the current frame if the buffer size was exceeded. */
1291 	if (len > maxlen) {
1292 		uvc_dbg(uvc_urb->stream->dev, FRAME,
1293 			"Frame complete (overflow)\n");
1294 		buf->error = 1;
1295 		buf->state = UVC_BUF_STATE_READY;
1296 	}
1297 
1298 	uvc_urb->async_operations++;
1299 }
1300 
1301 static void uvc_video_decode_end(struct uvc_streaming *stream,
1302 		struct uvc_buffer *buf, const u8 *data, int len)
1303 {
1304 	/* Mark the buffer as done if the EOF marker is set. */
1305 	if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1306 		uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n");
1307 		if (data[0] == len)
1308 			uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n");
1309 		buf->state = UVC_BUF_STATE_READY;
1310 		if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1311 			stream->last_fid ^= UVC_STREAM_FID;
1312 	}
1313 }
1314 
1315 /*
1316  * Video payload encoding is handled by uvc_video_encode_header() and
1317  * uvc_video_encode_data(). Only bulk transfers are currently supported.
1318  *
1319  * uvc_video_encode_header is called at the start of a payload. It adds header
1320  * data to the transfer buffer and returns the header size. As the only known
1321  * UVC output device transfers a whole frame in a single payload, the EOF bit
1322  * is always set in the header.
1323  *
1324  * uvc_video_encode_data is called for every URB and copies the data from the
1325  * video buffer to the transfer buffer.
1326  */
1327 static int uvc_video_encode_header(struct uvc_streaming *stream,
1328 		struct uvc_buffer *buf, u8 *data, int len)
1329 {
1330 	data[0] = 2;	/* Header length */
1331 	data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1332 		| (stream->last_fid & UVC_STREAM_FID);
1333 	return 2;
1334 }
1335 
1336 static int uvc_video_encode_data(struct uvc_streaming *stream,
1337 		struct uvc_buffer *buf, u8 *data, int len)
1338 {
1339 	struct uvc_video_queue *queue = &stream->queue;
1340 	unsigned int nbytes;
1341 	void *mem;
1342 
1343 	/* Copy video data to the URB buffer. */
1344 	mem = buf->mem + queue->buf_used;
1345 	nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1346 	nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1347 			nbytes);
1348 	memcpy(data, mem, nbytes);
1349 
1350 	queue->buf_used += nbytes;
1351 
1352 	return nbytes;
1353 }
1354 
1355 /* ------------------------------------------------------------------------
1356  * Metadata
1357  */
1358 
1359 /*
1360  * Additionally to the payload headers we also want to provide the user with USB
1361  * Frame Numbers and system time values. The resulting buffer is thus composed
1362  * of blocks, containing a 64-bit timestamp in  nanoseconds, a 16-bit USB Frame
1363  * Number, and a copy of the payload header.
1364  *
1365  * Ideally we want to capture all payload headers for each frame. However, their
1366  * number is unknown and unbound. We thus drop headers that contain no vendor
1367  * data and that either contain no SCR value or an SCR value identical to the
1368  * previous header.
1369  */
1370 static void uvc_video_decode_meta(struct uvc_streaming *stream,
1371 				  struct uvc_buffer *meta_buf,
1372 				  const u8 *mem, unsigned int length)
1373 {
1374 	struct uvc_meta_buf *meta;
1375 	size_t len_std = 2;
1376 	bool has_pts, has_scr;
1377 	unsigned long flags;
1378 	unsigned int sof;
1379 	ktime_t time;
1380 	const u8 *scr;
1381 
1382 	if (!meta_buf || length == 2)
1383 		return;
1384 
1385 	if (meta_buf->length - meta_buf->bytesused <
1386 	    length + sizeof(meta->ns) + sizeof(meta->sof)) {
1387 		meta_buf->error = 1;
1388 		return;
1389 	}
1390 
1391 	has_pts = mem[1] & UVC_STREAM_PTS;
1392 	has_scr = mem[1] & UVC_STREAM_SCR;
1393 
1394 	if (has_pts) {
1395 		len_std += 4;
1396 		scr = mem + 6;
1397 	} else {
1398 		scr = mem + 2;
1399 	}
1400 
1401 	if (has_scr)
1402 		len_std += 6;
1403 
1404 	if (stream->meta.format == V4L2_META_FMT_UVC)
1405 		length = len_std;
1406 
1407 	if (length == len_std && (!has_scr ||
1408 				  !memcmp(scr, stream->clock.last_scr, 6)))
1409 		return;
1410 
1411 	meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
1412 	local_irq_save(flags);
1413 	time = uvc_video_get_time();
1414 	sof = usb_get_current_frame_number(stream->dev->udev);
1415 	local_irq_restore(flags);
1416 	put_unaligned(ktime_to_ns(time), &meta->ns);
1417 	put_unaligned(sof, &meta->sof);
1418 
1419 	if (has_scr)
1420 		memcpy(stream->clock.last_scr, scr, 6);
1421 
1422 	meta->length = mem[0];
1423 	meta->flags  = mem[1];
1424 	memcpy(meta->buf, &mem[2], length - 2);
1425 	meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
1426 
1427 	uvc_dbg(stream->dev, FRAME,
1428 		"%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1429 		__func__, ktime_to_ns(time), meta->sof, meta->length,
1430 		meta->flags,
1431 		has_pts ? *(u32 *)meta->buf : 0,
1432 		has_scr ? *(u32 *)scr : 0,
1433 		has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
1434 }
1435 
1436 /* ------------------------------------------------------------------------
1437  * URB handling
1438  */
1439 
1440 /*
1441  * Set error flag for incomplete buffer.
1442  */
1443 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1444 				      struct uvc_buffer *buf)
1445 {
1446 	if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1447 	    !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1448 		buf->error = 1;
1449 }
1450 
1451 /*
1452  * Completion handler for video URBs.
1453  */
1454 
1455 static void uvc_video_next_buffers(struct uvc_streaming *stream,
1456 		struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
1457 {
1458 	uvc_video_validate_buffer(stream, *video_buf);
1459 
1460 	if (*meta_buf) {
1461 		struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
1462 		const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
1463 
1464 		vb2_meta->sequence = vb2_video->sequence;
1465 		vb2_meta->field = vb2_video->field;
1466 		vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
1467 
1468 		(*meta_buf)->state = UVC_BUF_STATE_READY;
1469 		if (!(*meta_buf)->error)
1470 			(*meta_buf)->error = (*video_buf)->error;
1471 		*meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
1472 						  *meta_buf);
1473 	}
1474 	*video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
1475 }
1476 
1477 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb,
1478 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1479 {
1480 	struct urb *urb = uvc_urb->urb;
1481 	struct uvc_streaming *stream = uvc_urb->stream;
1482 	u8 *mem;
1483 	int ret, i;
1484 
1485 	for (i = 0; i < urb->number_of_packets; ++i) {
1486 		if (urb->iso_frame_desc[i].status < 0) {
1487 			uvc_dbg(stream->dev, FRAME,
1488 				"USB isochronous frame lost (%d)\n",
1489 				urb->iso_frame_desc[i].status);
1490 			/* Mark the buffer as faulty. */
1491 			if (buf != NULL)
1492 				buf->error = 1;
1493 			continue;
1494 		}
1495 
1496 		/* Decode the payload header. */
1497 		mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1498 		do {
1499 			ret = uvc_video_decode_start(stream, buf, mem,
1500 				urb->iso_frame_desc[i].actual_length);
1501 			if (ret == -EAGAIN)
1502 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1503 		} while (ret == -EAGAIN);
1504 
1505 		if (ret < 0)
1506 			continue;
1507 
1508 		uvc_video_decode_meta(stream, meta_buf, mem, ret);
1509 
1510 		/* Decode the payload data. */
1511 		uvc_video_decode_data(uvc_urb, buf, mem + ret,
1512 			urb->iso_frame_desc[i].actual_length - ret);
1513 
1514 		/* Process the header again. */
1515 		uvc_video_decode_end(stream, buf, mem,
1516 			urb->iso_frame_desc[i].actual_length);
1517 
1518 		if (buf->state == UVC_BUF_STATE_READY)
1519 			uvc_video_next_buffers(stream, &buf, &meta_buf);
1520 	}
1521 }
1522 
1523 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb,
1524 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1525 {
1526 	struct urb *urb = uvc_urb->urb;
1527 	struct uvc_streaming *stream = uvc_urb->stream;
1528 	u8 *mem;
1529 	int len, ret;
1530 
1531 	/*
1532 	 * Ignore ZLPs if they're not part of a frame, otherwise process them
1533 	 * to trigger the end of payload detection.
1534 	 */
1535 	if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1536 		return;
1537 
1538 	mem = urb->transfer_buffer;
1539 	len = urb->actual_length;
1540 	stream->bulk.payload_size += len;
1541 
1542 	/*
1543 	 * If the URB is the first of its payload, decode and save the
1544 	 * header.
1545 	 */
1546 	if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1547 		do {
1548 			ret = uvc_video_decode_start(stream, buf, mem, len);
1549 			if (ret == -EAGAIN)
1550 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1551 		} while (ret == -EAGAIN);
1552 
1553 		/* If an error occurred skip the rest of the payload. */
1554 		if (ret < 0 || buf == NULL) {
1555 			stream->bulk.skip_payload = 1;
1556 		} else {
1557 			memcpy(stream->bulk.header, mem, ret);
1558 			stream->bulk.header_size = ret;
1559 
1560 			uvc_video_decode_meta(stream, meta_buf, mem, ret);
1561 
1562 			mem += ret;
1563 			len -= ret;
1564 		}
1565 	}
1566 
1567 	/*
1568 	 * The buffer queue might have been cancelled while a bulk transfer
1569 	 * was in progress, so we can reach here with buf equal to NULL. Make
1570 	 * sure buf is never dereferenced if NULL.
1571 	 */
1572 
1573 	/* Prepare video data for processing. */
1574 	if (!stream->bulk.skip_payload && buf != NULL)
1575 		uvc_video_decode_data(uvc_urb, buf, mem, len);
1576 
1577 	/*
1578 	 * Detect the payload end by a URB smaller than the maximum size (or
1579 	 * a payload size equal to the maximum) and process the header again.
1580 	 */
1581 	if (urb->actual_length < urb->transfer_buffer_length ||
1582 	    stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1583 		if (!stream->bulk.skip_payload && buf != NULL) {
1584 			uvc_video_decode_end(stream, buf, stream->bulk.header,
1585 				stream->bulk.payload_size);
1586 			if (buf->state == UVC_BUF_STATE_READY)
1587 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1588 		}
1589 
1590 		stream->bulk.header_size = 0;
1591 		stream->bulk.skip_payload = 0;
1592 		stream->bulk.payload_size = 0;
1593 	}
1594 }
1595 
1596 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb,
1597 	struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1598 {
1599 	struct urb *urb = uvc_urb->urb;
1600 	struct uvc_streaming *stream = uvc_urb->stream;
1601 
1602 	u8 *mem = urb->transfer_buffer;
1603 	int len = stream->urb_size, ret;
1604 
1605 	if (buf == NULL) {
1606 		urb->transfer_buffer_length = 0;
1607 		return;
1608 	}
1609 
1610 	/* If the URB is the first of its payload, add the header. */
1611 	if (stream->bulk.header_size == 0) {
1612 		ret = uvc_video_encode_header(stream, buf, mem, len);
1613 		stream->bulk.header_size = ret;
1614 		stream->bulk.payload_size += ret;
1615 		mem += ret;
1616 		len -= ret;
1617 	}
1618 
1619 	/* Process video data. */
1620 	ret = uvc_video_encode_data(stream, buf, mem, len);
1621 
1622 	stream->bulk.payload_size += ret;
1623 	len -= ret;
1624 
1625 	if (buf->bytesused == stream->queue.buf_used ||
1626 	    stream->bulk.payload_size == stream->bulk.max_payload_size) {
1627 		if (buf->bytesused == stream->queue.buf_used) {
1628 			stream->queue.buf_used = 0;
1629 			buf->state = UVC_BUF_STATE_READY;
1630 			buf->buf.sequence = ++stream->sequence;
1631 			uvc_queue_next_buffer(&stream->queue, buf);
1632 			stream->last_fid ^= UVC_STREAM_FID;
1633 		}
1634 
1635 		stream->bulk.header_size = 0;
1636 		stream->bulk.payload_size = 0;
1637 	}
1638 
1639 	urb->transfer_buffer_length = stream->urb_size - len;
1640 }
1641 
1642 static void uvc_video_complete(struct urb *urb)
1643 {
1644 	struct uvc_urb *uvc_urb = urb->context;
1645 	struct uvc_streaming *stream = uvc_urb->stream;
1646 	struct uvc_video_queue *queue = &stream->queue;
1647 	struct uvc_video_queue *qmeta = &stream->meta.queue;
1648 	struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
1649 	struct uvc_buffer *buf = NULL;
1650 	struct uvc_buffer *buf_meta = NULL;
1651 	unsigned long flags;
1652 	int ret;
1653 
1654 	switch (urb->status) {
1655 	case 0:
1656 		break;
1657 
1658 	default:
1659 		dev_warn(&stream->intf->dev,
1660 			 "Non-zero status (%d) in video completion handler.\n",
1661 			 urb->status);
1662 		fallthrough;
1663 	case -ENOENT:		/* usb_poison_urb() called. */
1664 		if (stream->frozen)
1665 			return;
1666 		fallthrough;
1667 	case -ECONNRESET:	/* usb_unlink_urb() called. */
1668 	case -ESHUTDOWN:	/* The endpoint is being disabled. */
1669 		uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1670 		if (vb2_qmeta)
1671 			uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
1672 		return;
1673 	}
1674 
1675 	buf = uvc_queue_get_current_buffer(queue);
1676 
1677 	if (vb2_qmeta) {
1678 		spin_lock_irqsave(&qmeta->irqlock, flags);
1679 		if (!list_empty(&qmeta->irqqueue))
1680 			buf_meta = list_first_entry(&qmeta->irqqueue,
1681 						    struct uvc_buffer, queue);
1682 		spin_unlock_irqrestore(&qmeta->irqlock, flags);
1683 	}
1684 
1685 	/* Re-initialise the URB async work. */
1686 	uvc_urb->async_operations = 0;
1687 
1688 	/* Sync DMA and invalidate vmap range. */
1689 	dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream),
1690 				 uvc_urb->sgt, uvc_stream_dir(stream));
1691 	invalidate_kernel_vmap_range(uvc_urb->buffer,
1692 				     uvc_urb->stream->urb_size);
1693 
1694 	/*
1695 	 * Process the URB headers, and optionally queue expensive memcpy tasks
1696 	 * to be deferred to a work queue.
1697 	 */
1698 	stream->decode(uvc_urb, buf, buf_meta);
1699 
1700 	/* If no async work is needed, resubmit the URB immediately. */
1701 	if (!uvc_urb->async_operations) {
1702 		ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC);
1703 		if (ret < 0)
1704 			dev_err(&stream->intf->dev,
1705 				"Failed to resubmit video URB (%d).\n", ret);
1706 		return;
1707 	}
1708 
1709 	queue_work(stream->async_wq, &uvc_urb->work);
1710 }
1711 
1712 /*
1713  * Free transfer buffers.
1714  */
1715 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1716 {
1717 	struct device *dma_dev = uvc_stream_to_dmadev(stream);
1718 	struct uvc_urb *uvc_urb;
1719 
1720 	for_each_uvc_urb(uvc_urb, stream) {
1721 		if (!uvc_urb->buffer)
1722 			continue;
1723 
1724 		dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer);
1725 		dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt,
1726 				       uvc_stream_dir(stream));
1727 
1728 		uvc_urb->buffer = NULL;
1729 		uvc_urb->sgt = NULL;
1730 	}
1731 
1732 	stream->urb_size = 0;
1733 }
1734 
1735 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream,
1736 				 struct uvc_urb *uvc_urb, gfp_t gfp_flags)
1737 {
1738 	struct device *dma_dev = uvc_stream_to_dmadev(stream);
1739 
1740 	uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size,
1741 					       uvc_stream_dir(stream),
1742 					       gfp_flags, 0);
1743 	if (!uvc_urb->sgt)
1744 		return false;
1745 	uvc_urb->dma = uvc_urb->sgt->sgl->dma_address;
1746 
1747 	uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size,
1748 						 uvc_urb->sgt);
1749 	if (!uvc_urb->buffer) {
1750 		dma_free_noncontiguous(dma_dev, stream->urb_size,
1751 				       uvc_urb->sgt,
1752 				       uvc_stream_dir(stream));
1753 		uvc_urb->sgt = NULL;
1754 		return false;
1755 	}
1756 
1757 	return true;
1758 }
1759 
1760 /*
1761  * Allocate transfer buffers. This function can be called with buffers
1762  * already allocated when resuming from suspend, in which case it will
1763  * return without touching the buffers.
1764  *
1765  * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1766  * system is too low on memory try successively smaller numbers of packets
1767  * until allocation succeeds.
1768  *
1769  * Return the number of allocated packets on success or 0 when out of memory.
1770  */
1771 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1772 	unsigned int size, unsigned int psize, gfp_t gfp_flags)
1773 {
1774 	unsigned int npackets;
1775 	unsigned int i;
1776 
1777 	/* Buffers are already allocated, bail out. */
1778 	if (stream->urb_size)
1779 		return stream->urb_size / psize;
1780 
1781 	/*
1782 	 * Compute the number of packets. Bulk endpoints might transfer UVC
1783 	 * payloads across multiple URBs.
1784 	 */
1785 	npackets = DIV_ROUND_UP(size, psize);
1786 	if (npackets > UVC_MAX_PACKETS)
1787 		npackets = UVC_MAX_PACKETS;
1788 
1789 	/* Retry allocations until one succeed. */
1790 	for (; npackets > 1; npackets /= 2) {
1791 		stream->urb_size = psize * npackets;
1792 
1793 		for (i = 0; i < UVC_URBS; ++i) {
1794 			struct uvc_urb *uvc_urb = &stream->uvc_urb[i];
1795 
1796 			if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) {
1797 				uvc_free_urb_buffers(stream);
1798 				break;
1799 			}
1800 
1801 			uvc_urb->stream = stream;
1802 		}
1803 
1804 		if (i == UVC_URBS) {
1805 			uvc_dbg(stream->dev, VIDEO,
1806 				"Allocated %u URB buffers of %ux%u bytes each\n",
1807 				UVC_URBS, npackets, psize);
1808 			return npackets;
1809 		}
1810 	}
1811 
1812 	uvc_dbg(stream->dev, VIDEO,
1813 		"Failed to allocate URB buffers (%u bytes per packet)\n",
1814 		psize);
1815 	return 0;
1816 }
1817 
1818 /*
1819  * Uninitialize isochronous/bulk URBs and free transfer buffers.
1820  */
1821 static void uvc_video_stop_transfer(struct uvc_streaming *stream,
1822 				    int free_buffers)
1823 {
1824 	struct uvc_urb *uvc_urb;
1825 
1826 	uvc_video_stats_stop(stream);
1827 
1828 	/*
1829 	 * We must poison the URBs rather than kill them to ensure that even
1830 	 * after the completion handler returns, any asynchronous workqueues
1831 	 * will be prevented from resubmitting the URBs.
1832 	 */
1833 	for_each_uvc_urb(uvc_urb, stream)
1834 		usb_poison_urb(uvc_urb->urb);
1835 
1836 	flush_workqueue(stream->async_wq);
1837 
1838 	for_each_uvc_urb(uvc_urb, stream) {
1839 		usb_free_urb(uvc_urb->urb);
1840 		uvc_urb->urb = NULL;
1841 	}
1842 
1843 	if (free_buffers)
1844 		uvc_free_urb_buffers(stream);
1845 }
1846 
1847 /*
1848  * Compute the maximum number of bytes per interval for an endpoint.
1849  */
1850 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep)
1851 {
1852 	u16 psize;
1853 
1854 	switch (dev->speed) {
1855 	case USB_SPEED_SUPER:
1856 	case USB_SPEED_SUPER_PLUS:
1857 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1858 	default:
1859 		psize = usb_endpoint_maxp(&ep->desc);
1860 		psize *= usb_endpoint_maxp_mult(&ep->desc);
1861 		return psize;
1862 	}
1863 }
1864 
1865 /*
1866  * Initialize isochronous URBs and allocate transfer buffers. The packet size
1867  * is given by the endpoint.
1868  */
1869 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1870 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1871 {
1872 	struct urb *urb;
1873 	struct uvc_urb *uvc_urb;
1874 	unsigned int npackets, i;
1875 	u16 psize;
1876 	u32 size;
1877 
1878 	psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1879 	size = stream->ctrl.dwMaxVideoFrameSize;
1880 
1881 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1882 	if (npackets == 0)
1883 		return -ENOMEM;
1884 
1885 	size = npackets * psize;
1886 
1887 	for_each_uvc_urb(uvc_urb, stream) {
1888 		urb = usb_alloc_urb(npackets, gfp_flags);
1889 		if (urb == NULL) {
1890 			uvc_video_stop_transfer(stream, 1);
1891 			return -ENOMEM;
1892 		}
1893 
1894 		urb->dev = stream->dev->udev;
1895 		urb->context = uvc_urb;
1896 		urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1897 				ep->desc.bEndpointAddress);
1898 		urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1899 		urb->transfer_dma = uvc_urb->dma;
1900 		urb->interval = ep->desc.bInterval;
1901 		urb->transfer_buffer = uvc_urb->buffer;
1902 		urb->complete = uvc_video_complete;
1903 		urb->number_of_packets = npackets;
1904 		urb->transfer_buffer_length = size;
1905 
1906 		for (i = 0; i < npackets; ++i) {
1907 			urb->iso_frame_desc[i].offset = i * psize;
1908 			urb->iso_frame_desc[i].length = psize;
1909 		}
1910 
1911 		uvc_urb->urb = urb;
1912 	}
1913 
1914 	return 0;
1915 }
1916 
1917 /*
1918  * Initialize bulk URBs and allocate transfer buffers. The packet size is
1919  * given by the endpoint.
1920  */
1921 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1922 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1923 {
1924 	struct urb *urb;
1925 	struct uvc_urb *uvc_urb;
1926 	unsigned int npackets, pipe;
1927 	u16 psize;
1928 	u32 size;
1929 
1930 	psize = usb_endpoint_maxp(&ep->desc);
1931 	size = stream->ctrl.dwMaxPayloadTransferSize;
1932 	stream->bulk.max_payload_size = size;
1933 
1934 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1935 	if (npackets == 0)
1936 		return -ENOMEM;
1937 
1938 	size = npackets * psize;
1939 
1940 	if (usb_endpoint_dir_in(&ep->desc))
1941 		pipe = usb_rcvbulkpipe(stream->dev->udev,
1942 				       ep->desc.bEndpointAddress);
1943 	else
1944 		pipe = usb_sndbulkpipe(stream->dev->udev,
1945 				       ep->desc.bEndpointAddress);
1946 
1947 	if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1948 		size = 0;
1949 
1950 	for_each_uvc_urb(uvc_urb, stream) {
1951 		urb = usb_alloc_urb(0, gfp_flags);
1952 		if (urb == NULL) {
1953 			uvc_video_stop_transfer(stream, 1);
1954 			return -ENOMEM;
1955 		}
1956 
1957 		usb_fill_bulk_urb(urb, stream->dev->udev, pipe,	uvc_urb->buffer,
1958 				  size, uvc_video_complete, uvc_urb);
1959 		urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1960 		urb->transfer_dma = uvc_urb->dma;
1961 
1962 		uvc_urb->urb = urb;
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 /*
1969  * Initialize isochronous/bulk URBs and allocate transfer buffers.
1970  */
1971 static int uvc_video_start_transfer(struct uvc_streaming *stream,
1972 				    gfp_t gfp_flags)
1973 {
1974 	struct usb_interface *intf = stream->intf;
1975 	struct usb_host_endpoint *ep;
1976 	struct uvc_urb *uvc_urb;
1977 	unsigned int i;
1978 	int ret;
1979 
1980 	stream->sequence = -1;
1981 	stream->last_fid = -1;
1982 	stream->bulk.header_size = 0;
1983 	stream->bulk.skip_payload = 0;
1984 	stream->bulk.payload_size = 0;
1985 
1986 	uvc_video_stats_start(stream);
1987 
1988 	if (intf->num_altsetting > 1) {
1989 		struct usb_host_endpoint *best_ep = NULL;
1990 		unsigned int best_psize = UINT_MAX;
1991 		unsigned int bandwidth;
1992 		unsigned int altsetting;
1993 		int intfnum = stream->intfnum;
1994 
1995 		/* Isochronous endpoint, select the alternate setting. */
1996 		bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1997 
1998 		if (bandwidth == 0) {
1999 			uvc_dbg(stream->dev, VIDEO,
2000 				"Device requested null bandwidth, defaulting to lowest\n");
2001 			bandwidth = 1;
2002 		} else {
2003 			uvc_dbg(stream->dev, VIDEO,
2004 				"Device requested %u B/frame bandwidth\n",
2005 				bandwidth);
2006 		}
2007 
2008 		for (i = 0; i < intf->num_altsetting; ++i) {
2009 			struct usb_host_interface *alts;
2010 			unsigned int psize;
2011 
2012 			alts = &intf->altsetting[i];
2013 			ep = uvc_find_endpoint(alts,
2014 				stream->header.bEndpointAddress);
2015 			if (ep == NULL)
2016 				continue;
2017 
2018 			/* Check if the bandwidth is high enough. */
2019 			psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
2020 			if (psize >= bandwidth && psize < best_psize) {
2021 				altsetting = alts->desc.bAlternateSetting;
2022 				best_psize = psize;
2023 				best_ep = ep;
2024 			}
2025 		}
2026 
2027 		if (best_ep == NULL) {
2028 			uvc_dbg(stream->dev, VIDEO,
2029 				"No fast enough alt setting for requested bandwidth\n");
2030 			return -EIO;
2031 		}
2032 
2033 		uvc_dbg(stream->dev, VIDEO,
2034 			"Selecting alternate setting %u (%u B/frame bandwidth)\n",
2035 			altsetting, best_psize);
2036 
2037 		/*
2038 		 * Some devices, namely the Logitech C910 and B910, are unable
2039 		 * to recover from a USB autosuspend, unless the alternate
2040 		 * setting of the streaming interface is toggled.
2041 		 */
2042 		if (stream->dev->quirks & UVC_QUIRK_WAKE_AUTOSUSPEND) {
2043 			usb_set_interface(stream->dev->udev, intfnum,
2044 					  altsetting);
2045 			usb_set_interface(stream->dev->udev, intfnum, 0);
2046 		}
2047 
2048 		ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
2049 		if (ret < 0)
2050 			return ret;
2051 
2052 		ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
2053 	} else {
2054 		/* Bulk endpoint, proceed to URB initialization. */
2055 		ep = uvc_find_endpoint(&intf->altsetting[0],
2056 				stream->header.bEndpointAddress);
2057 		if (ep == NULL)
2058 			return -EIO;
2059 
2060 		/* Reject broken descriptors. */
2061 		if (usb_endpoint_maxp(&ep->desc) == 0)
2062 			return -EIO;
2063 
2064 		ret = uvc_init_video_bulk(stream, ep, gfp_flags);
2065 	}
2066 
2067 	if (ret < 0)
2068 		return ret;
2069 
2070 	/* Submit the URBs. */
2071 	for_each_uvc_urb(uvc_urb, stream) {
2072 		ret = uvc_submit_urb(uvc_urb, gfp_flags);
2073 		if (ret < 0) {
2074 			dev_err(&stream->intf->dev,
2075 				"Failed to submit URB %u (%d).\n",
2076 				uvc_urb_index(uvc_urb), ret);
2077 			uvc_video_stop_transfer(stream, 1);
2078 			return ret;
2079 		}
2080 	}
2081 
2082 	/*
2083 	 * The Logitech C920 temporarily forgets that it should not be adjusting
2084 	 * Exposure Absolute during init so restore controls to stored values.
2085 	 */
2086 	if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
2087 		uvc_ctrl_restore_values(stream->dev);
2088 
2089 	return 0;
2090 }
2091 
2092 /* --------------------------------------------------------------------------
2093  * Suspend/resume
2094  */
2095 
2096 /*
2097  * Stop streaming without disabling the video queue.
2098  *
2099  * To let userspace applications resume without trouble, we must not touch the
2100  * video buffers in any way. We mark the device as frozen to make sure the URB
2101  * completion handler won't try to cancel the queue when we kill the URBs.
2102  */
2103 int uvc_video_suspend(struct uvc_streaming *stream)
2104 {
2105 	if (!uvc_queue_streaming(&stream->queue))
2106 		return 0;
2107 
2108 	stream->frozen = 1;
2109 	uvc_video_stop_transfer(stream, 0);
2110 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2111 	return 0;
2112 }
2113 
2114 /*
2115  * Reconfigure the video interface and restart streaming if it was enabled
2116  * before suspend.
2117  *
2118  * If an error occurs, disable the video queue. This will wake all pending
2119  * buffers, making sure userspace applications are notified of the problem
2120  * instead of waiting forever.
2121  */
2122 int uvc_video_resume(struct uvc_streaming *stream, int reset)
2123 {
2124 	int ret;
2125 
2126 	/*
2127 	 * If the bus has been reset on resume, set the alternate setting to 0.
2128 	 * This should be the default value, but some devices crash or otherwise
2129 	 * misbehave if they don't receive a SET_INTERFACE request before any
2130 	 * other video control request.
2131 	 */
2132 	if (reset)
2133 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2134 
2135 	stream->frozen = 0;
2136 
2137 	uvc_video_clock_reset(&stream->clock);
2138 
2139 	if (!uvc_queue_streaming(&stream->queue))
2140 		return 0;
2141 
2142 	ret = uvc_commit_video(stream, &stream->ctrl);
2143 	if (ret < 0)
2144 		return ret;
2145 
2146 	return uvc_video_start_transfer(stream, GFP_NOIO);
2147 }
2148 
2149 /* ------------------------------------------------------------------------
2150  * Video device
2151  */
2152 
2153 /*
2154  * Initialize the UVC video device by switching to alternate setting 0 and
2155  * retrieve the default format.
2156  *
2157  * Some cameras (namely the Fuji Finepix) set the format and frame
2158  * indexes to zero. The UVC standard doesn't clearly make this a spec
2159  * violation, so try to silently fix the values if possible.
2160  *
2161  * This function is called before registering the device with V4L.
2162  */
2163 int uvc_video_init(struct uvc_streaming *stream)
2164 {
2165 	struct uvc_streaming_control *probe = &stream->ctrl;
2166 	const struct uvc_format *format = NULL;
2167 	const struct uvc_frame *frame = NULL;
2168 	struct uvc_urb *uvc_urb;
2169 	unsigned int i;
2170 	int ret;
2171 
2172 	if (stream->nformats == 0) {
2173 		dev_info(&stream->intf->dev,
2174 			 "No supported video formats found.\n");
2175 		return -EINVAL;
2176 	}
2177 
2178 	atomic_set(&stream->active, 0);
2179 
2180 	/*
2181 	 * Alternate setting 0 should be the default, yet the XBox Live Vision
2182 	 * Cam (and possibly other devices) crash or otherwise misbehave if
2183 	 * they don't receive a SET_INTERFACE request before any other video
2184 	 * control request.
2185 	 */
2186 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2187 
2188 	/*
2189 	 * Set the streaming probe control with default streaming parameters
2190 	 * retrieved from the device. Webcams that don't support GET_DEF
2191 	 * requests on the probe control will just keep their current streaming
2192 	 * parameters.
2193 	 */
2194 	if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
2195 		uvc_set_video_ctrl(stream, probe, 1);
2196 
2197 	/*
2198 	 * Initialize the streaming parameters with the probe control current
2199 	 * value. This makes sure SET_CUR requests on the streaming commit
2200 	 * control will always use values retrieved from a successful GET_CUR
2201 	 * request on the probe control, as required by the UVC specification.
2202 	 */
2203 	ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
2204 
2205 	/*
2206 	 * Elgato Cam Link 4k can be in a stalled state if the resolution of
2207 	 * the external source has changed while the firmware initializes.
2208 	 * Once in this state, the device is useless until it receives a
2209 	 * USB reset. It has even been observed that the stalled state will
2210 	 * continue even after unplugging the device.
2211 	 */
2212 	if (ret == -EPROTO &&
2213 	    usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k)) {
2214 		dev_err(&stream->intf->dev, "Elgato Cam Link 4K firmware crash detected\n");
2215 		dev_err(&stream->intf->dev, "Resetting the device, unplug and replug to recover\n");
2216 		usb_reset_device(stream->dev->udev);
2217 	}
2218 
2219 	if (ret < 0)
2220 		return ret;
2221 
2222 	/*
2223 	 * Check if the default format descriptor exists. Use the first
2224 	 * available format otherwise.
2225 	 */
2226 	for (i = stream->nformats; i > 0; --i) {
2227 		format = &stream->formats[i-1];
2228 		if (format->index == probe->bFormatIndex)
2229 			break;
2230 	}
2231 
2232 	if (format->nframes == 0) {
2233 		dev_info(&stream->intf->dev,
2234 			 "No frame descriptor found for the default format.\n");
2235 		return -EINVAL;
2236 	}
2237 
2238 	/*
2239 	 * Zero bFrameIndex might be correct. Stream-based formats (including
2240 	 * MPEG-2 TS and DV) do not support frames but have a dummy frame
2241 	 * descriptor with bFrameIndex set to zero. If the default frame
2242 	 * descriptor is not found, use the first available frame.
2243 	 */
2244 	for (i = format->nframes; i > 0; --i) {
2245 		frame = &format->frames[i-1];
2246 		if (frame->bFrameIndex == probe->bFrameIndex)
2247 			break;
2248 	}
2249 
2250 	probe->bFormatIndex = format->index;
2251 	probe->bFrameIndex = frame->bFrameIndex;
2252 
2253 	stream->def_format = format;
2254 	stream->cur_format = format;
2255 	stream->cur_frame = frame;
2256 
2257 	/* Select the video decoding function */
2258 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
2259 		if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
2260 			stream->decode = uvc_video_decode_isight;
2261 		else if (stream->intf->num_altsetting > 1)
2262 			stream->decode = uvc_video_decode_isoc;
2263 		else
2264 			stream->decode = uvc_video_decode_bulk;
2265 	} else {
2266 		if (stream->intf->num_altsetting == 1)
2267 			stream->decode = uvc_video_encode_bulk;
2268 		else {
2269 			dev_info(&stream->intf->dev,
2270 				 "Isochronous endpoints are not supported for video output devices.\n");
2271 			return -EINVAL;
2272 		}
2273 	}
2274 
2275 	/* Prepare asynchronous work items. */
2276 	for_each_uvc_urb(uvc_urb, stream)
2277 		INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
2278 
2279 	return 0;
2280 }
2281 
2282 int uvc_video_start_streaming(struct uvc_streaming *stream)
2283 {
2284 	int ret;
2285 
2286 	ret = uvc_video_clock_init(&stream->clock);
2287 	if (ret < 0)
2288 		return ret;
2289 
2290 	/* Commit the streaming parameters. */
2291 	ret = uvc_commit_video(stream, &stream->ctrl);
2292 	if (ret < 0)
2293 		goto error_commit;
2294 
2295 	ret = uvc_video_start_transfer(stream, GFP_KERNEL);
2296 	if (ret < 0)
2297 		goto error_video;
2298 
2299 	return 0;
2300 
2301 error_video:
2302 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2303 error_commit:
2304 	uvc_video_clock_cleanup(&stream->clock);
2305 
2306 	return ret;
2307 }
2308 
2309 void uvc_video_stop_streaming(struct uvc_streaming *stream)
2310 {
2311 	uvc_video_stop_transfer(stream, 1);
2312 
2313 	if (stream->intf->num_altsetting > 1) {
2314 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2315 	} else {
2316 		/*
2317 		 * UVC doesn't specify how to inform a bulk-based device
2318 		 * when the video stream is stopped. Windows sends a
2319 		 * CLEAR_FEATURE(HALT) request to the video streaming
2320 		 * bulk endpoint, mimic the same behaviour.
2321 		 */
2322 		unsigned int epnum = stream->header.bEndpointAddress
2323 				   & USB_ENDPOINT_NUMBER_MASK;
2324 		unsigned int dir = stream->header.bEndpointAddress
2325 				 & USB_ENDPOINT_DIR_MASK;
2326 		unsigned int pipe;
2327 
2328 		pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
2329 		usb_clear_halt(stream->dev->udev, pipe);
2330 	}
2331 
2332 	uvc_video_clock_cleanup(&stream->clock);
2333 }
2334