1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * uvc_video.c -- USB Video Class driver - Video handling 4 * 5 * Copyright (C) 2005-2010 6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com) 7 */ 8 9 #include <linux/dma-mapping.h> 10 #include <linux/highmem.h> 11 #include <linux/kernel.h> 12 #include <linux/list.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <linux/usb.h> 16 #include <linux/usb/hcd.h> 17 #include <linux/videodev2.h> 18 #include <linux/vmalloc.h> 19 #include <linux/wait.h> 20 #include <linux/atomic.h> 21 #include <linux/unaligned.h> 22 23 #include <media/v4l2-common.h> 24 25 #include "uvcvideo.h" 26 27 /* ------------------------------------------------------------------------ 28 * UVC Controls 29 */ 30 31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 32 u8 intfnum, u8 cs, void *data, u16 size, 33 int timeout) 34 { 35 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE; 36 unsigned int pipe; 37 38 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0) 39 : usb_sndctrlpipe(dev->udev, 0); 40 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT; 41 42 return usb_control_msg(dev->udev, pipe, query, type, cs << 8, 43 unit << 8 | intfnum, data, size, timeout); 44 } 45 46 static const char *uvc_query_name(u8 query) 47 { 48 switch (query) { 49 case UVC_SET_CUR: 50 return "SET_CUR"; 51 case UVC_GET_CUR: 52 return "GET_CUR"; 53 case UVC_GET_MIN: 54 return "GET_MIN"; 55 case UVC_GET_MAX: 56 return "GET_MAX"; 57 case UVC_GET_RES: 58 return "GET_RES"; 59 case UVC_GET_LEN: 60 return "GET_LEN"; 61 case UVC_GET_INFO: 62 return "GET_INFO"; 63 case UVC_GET_DEF: 64 return "GET_DEF"; 65 default: 66 return "<invalid>"; 67 } 68 } 69 70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit, 71 u8 intfnum, u8 cs, void *data, u16 size) 72 { 73 int ret; 74 u8 error; 75 u8 tmp; 76 77 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size, 78 UVC_CTRL_CONTROL_TIMEOUT); 79 if (likely(ret == size)) 80 return 0; 81 82 if (ret != -EPIPE) { 83 dev_err(&dev->udev->dev, 84 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n", 85 uvc_query_name(query), cs, unit, ret, size); 86 return ret < 0 ? ret : -EPIPE; 87 } 88 89 /* Reuse data[0] to request the error code. */ 90 tmp = *(u8 *)data; 91 92 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum, 93 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1, 94 UVC_CTRL_CONTROL_TIMEOUT); 95 96 error = *(u8 *)data; 97 *(u8 *)data = tmp; 98 99 if (ret != 1) 100 return ret < 0 ? ret : -EPIPE; 101 102 uvc_dbg(dev, CONTROL, "Control error %u\n", error); 103 104 switch (error) { 105 case 0: 106 /* Cannot happen - we received a STALL */ 107 return -EPIPE; 108 case 1: /* Not ready */ 109 return -EBUSY; 110 case 2: /* Wrong state */ 111 return -EACCES; 112 case 3: /* Power */ 113 return -EREMOTE; 114 case 4: /* Out of range */ 115 return -ERANGE; 116 case 5: /* Invalid unit */ 117 case 6: /* Invalid control */ 118 case 7: /* Invalid Request */ 119 /* 120 * The firmware has not properly implemented 121 * the control or there has been a HW error. 122 */ 123 return -EIO; 124 case 8: /* Invalid value within range */ 125 return -EINVAL; 126 default: /* reserved or unknown */ 127 break; 128 } 129 130 return -EPIPE; 131 } 132 133 static const struct usb_device_id elgato_cam_link_4k = { 134 USB_DEVICE(0x0fd9, 0x0066) 135 }; 136 137 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream, 138 struct uvc_streaming_control *ctrl) 139 { 140 const struct uvc_format *format = NULL; 141 const struct uvc_frame *frame = NULL; 142 unsigned int i; 143 144 /* 145 * The response of the Elgato Cam Link 4K is incorrect: The second byte 146 * contains bFormatIndex (instead of being the second byte of bmHint). 147 * The first byte is always zero. The third byte is always 1. 148 * 149 * The UVC 1.5 class specification defines the first five bits in the 150 * bmHint bitfield. The remaining bits are reserved and should be zero. 151 * Therefore a valid bmHint will be less than 32. 152 * 153 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix. 154 * MCU: 20.02.19, FPGA: 67 155 */ 156 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) && 157 ctrl->bmHint > 255) { 158 u8 corrected_format_index = ctrl->bmHint >> 8; 159 160 uvc_dbg(stream->dev, VIDEO, 161 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n", 162 ctrl->bmHint, ctrl->bFormatIndex, 163 1, corrected_format_index); 164 ctrl->bmHint = 1; 165 ctrl->bFormatIndex = corrected_format_index; 166 } 167 168 for (i = 0; i < stream->nformats; ++i) { 169 if (stream->formats[i].index == ctrl->bFormatIndex) { 170 format = &stream->formats[i]; 171 break; 172 } 173 } 174 175 if (format == NULL) 176 return; 177 178 for (i = 0; i < format->nframes; ++i) { 179 if (format->frames[i].bFrameIndex == ctrl->bFrameIndex) { 180 frame = &format->frames[i]; 181 break; 182 } 183 } 184 185 if (frame == NULL) 186 return; 187 188 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) || 189 (ctrl->dwMaxVideoFrameSize == 0 && 190 stream->dev->uvc_version < 0x0110)) 191 ctrl->dwMaxVideoFrameSize = 192 frame->dwMaxVideoFrameBufferSize; 193 194 /* 195 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to 196 * compute the bandwidth on 16 bits and erroneously sign-extend it to 197 * 32 bits, resulting in a huge bandwidth value. Detect and fix that 198 * condition by setting the 16 MSBs to 0 when they're all equal to 1. 199 */ 200 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000) 201 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000; 202 203 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) && 204 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH && 205 stream->intf->num_altsetting > 1) { 206 u32 interval; 207 u32 bandwidth; 208 209 interval = (ctrl->dwFrameInterval > 100000) 210 ? ctrl->dwFrameInterval 211 : frame->dwFrameInterval[0]; 212 213 /* 214 * Compute a bandwidth estimation by multiplying the frame 215 * size by the number of video frames per second, divide the 216 * result by the number of USB frames (or micro-frames for 217 * high- and super-speed devices) per second and add the UVC 218 * header size (assumed to be 12 bytes long). 219 */ 220 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp; 221 bandwidth *= 10000000 / interval + 1; 222 bandwidth /= 1000; 223 if (stream->dev->udev->speed >= USB_SPEED_HIGH) 224 bandwidth /= 8; 225 bandwidth += 12; 226 227 /* 228 * The bandwidth estimate is too low for many cameras. Don't use 229 * maximum packet sizes lower than 1024 bytes to try and work 230 * around the problem. According to measurements done on two 231 * different camera models, the value is high enough to get most 232 * resolutions working while not preventing two simultaneous 233 * VGA streams at 15 fps. 234 */ 235 bandwidth = max_t(u32, bandwidth, 1024); 236 237 ctrl->dwMaxPayloadTransferSize = bandwidth; 238 } 239 } 240 241 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream) 242 { 243 /* 244 * Return the size of the video probe and commit controls, which depends 245 * on the protocol version. 246 */ 247 if (stream->dev->uvc_version < 0x0110) 248 return 26; 249 else if (stream->dev->uvc_version < 0x0150) 250 return 34; 251 else 252 return 48; 253 } 254 255 static int uvc_get_video_ctrl(struct uvc_streaming *stream, 256 struct uvc_streaming_control *ctrl, int probe, u8 query) 257 { 258 u16 size = uvc_video_ctrl_size(stream); 259 u8 *data; 260 int ret; 261 262 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) && 263 query == UVC_GET_DEF) 264 return -EIO; 265 266 data = kmalloc(size, GFP_KERNEL); 267 if (data == NULL) 268 return -ENOMEM; 269 270 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum, 271 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 272 size, uvc_timeout_param); 273 274 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) { 275 /* 276 * Some cameras, mostly based on Bison Electronics chipsets, 277 * answer a GET_MIN or GET_MAX request with the wCompQuality 278 * field only. 279 */ 280 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non " 281 "compliance - GET_MIN/MAX(PROBE) incorrectly " 282 "supported. Enabling workaround.\n"); 283 memset(ctrl, 0, sizeof(*ctrl)); 284 ctrl->wCompQuality = le16_to_cpup((__le16 *)data); 285 ret = 0; 286 goto out; 287 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) { 288 /* 289 * Many cameras don't support the GET_DEF request on their 290 * video probe control. Warn once and return, the caller will 291 * fall back to GET_CUR. 292 */ 293 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non " 294 "compliance - GET_DEF(PROBE) not supported. " 295 "Enabling workaround.\n"); 296 ret = -EIO; 297 goto out; 298 } else if (ret != size) { 299 dev_err(&stream->intf->dev, 300 "Failed to query (%u) UVC %s control : %d (exp. %u).\n", 301 query, probe ? "probe" : "commit", ret, size); 302 ret = (ret == -EPROTO) ? -EPROTO : -EIO; 303 goto out; 304 } 305 306 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]); 307 ctrl->bFormatIndex = data[2]; 308 ctrl->bFrameIndex = data[3]; 309 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]); 310 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]); 311 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]); 312 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]); 313 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]); 314 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]); 315 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]); 316 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]); 317 318 if (size >= 34) { 319 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]); 320 ctrl->bmFramingInfo = data[30]; 321 ctrl->bPreferedVersion = data[31]; 322 ctrl->bMinVersion = data[32]; 323 ctrl->bMaxVersion = data[33]; 324 } else { 325 ctrl->dwClockFrequency = stream->dev->clock_frequency; 326 ctrl->bmFramingInfo = 0; 327 ctrl->bPreferedVersion = 0; 328 ctrl->bMinVersion = 0; 329 ctrl->bMaxVersion = 0; 330 } 331 332 /* 333 * Some broken devices return null or wrong dwMaxVideoFrameSize and 334 * dwMaxPayloadTransferSize fields. Try to get the value from the 335 * format and frame descriptors. 336 */ 337 uvc_fixup_video_ctrl(stream, ctrl); 338 ret = 0; 339 340 out: 341 kfree(data); 342 return ret; 343 } 344 345 static int uvc_set_video_ctrl(struct uvc_streaming *stream, 346 struct uvc_streaming_control *ctrl, int probe) 347 { 348 u16 size = uvc_video_ctrl_size(stream); 349 u8 *data; 350 int ret; 351 352 data = kzalloc(size, GFP_KERNEL); 353 if (data == NULL) 354 return -ENOMEM; 355 356 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint); 357 data[2] = ctrl->bFormatIndex; 358 data[3] = ctrl->bFrameIndex; 359 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval); 360 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate); 361 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate); 362 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality); 363 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize); 364 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay); 365 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]); 366 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]); 367 368 if (size >= 34) { 369 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]); 370 data[30] = ctrl->bmFramingInfo; 371 data[31] = ctrl->bPreferedVersion; 372 data[32] = ctrl->bMinVersion; 373 data[33] = ctrl->bMaxVersion; 374 } 375 376 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum, 377 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data, 378 size, uvc_timeout_param); 379 if (ret != size) { 380 dev_err(&stream->intf->dev, 381 "Failed to set UVC %s control : %d (exp. %u).\n", 382 probe ? "probe" : "commit", ret, size); 383 ret = -EIO; 384 } 385 386 kfree(data); 387 return ret; 388 } 389 390 int uvc_probe_video(struct uvc_streaming *stream, 391 struct uvc_streaming_control *probe) 392 { 393 struct uvc_streaming_control probe_min, probe_max; 394 unsigned int i; 395 int ret; 396 397 /* 398 * Perform probing. The device should adjust the requested values 399 * according to its capabilities. However, some devices, namely the 400 * first generation UVC Logitech webcams, don't implement the Video 401 * Probe control properly, and just return the needed bandwidth. For 402 * that reason, if the needed bandwidth exceeds the maximum available 403 * bandwidth, try to lower the quality. 404 */ 405 ret = uvc_set_video_ctrl(stream, probe, 1); 406 if (ret < 0) 407 goto done; 408 409 /* Get the minimum and maximum values for compression settings. */ 410 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) { 411 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN); 412 if (ret < 0) 413 goto done; 414 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX); 415 if (ret < 0) 416 goto done; 417 418 probe->wCompQuality = probe_max.wCompQuality; 419 } 420 421 for (i = 0; i < 2; ++i) { 422 ret = uvc_set_video_ctrl(stream, probe, 1); 423 if (ret < 0) 424 goto done; 425 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 426 if (ret < 0) 427 goto done; 428 429 if (stream->intf->num_altsetting == 1) 430 break; 431 432 if (probe->dwMaxPayloadTransferSize <= stream->maxpsize) 433 break; 434 435 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) { 436 ret = -ENOSPC; 437 goto done; 438 } 439 440 /* TODO: negotiate compression parameters */ 441 probe->wKeyFrameRate = probe_min.wKeyFrameRate; 442 probe->wPFrameRate = probe_min.wPFrameRate; 443 probe->wCompQuality = probe_max.wCompQuality; 444 probe->wCompWindowSize = probe_min.wCompWindowSize; 445 } 446 447 done: 448 return ret; 449 } 450 451 static int uvc_commit_video(struct uvc_streaming *stream, 452 struct uvc_streaming_control *probe) 453 { 454 return uvc_set_video_ctrl(stream, probe, 0); 455 } 456 457 /* ----------------------------------------------------------------------------- 458 * Clocks and timestamps 459 */ 460 461 static inline ktime_t uvc_video_get_time(void) 462 { 463 if (uvc_clock_param == CLOCK_MONOTONIC) 464 return ktime_get(); 465 else 466 return ktime_get_real(); 467 } 468 469 static void uvc_video_clock_add_sample(struct uvc_clock *clock, 470 const struct uvc_clock_sample *sample) 471 { 472 unsigned long flags; 473 474 /* 475 * If we write new data on the position where we had the last 476 * overflow, remove the overflow pointer. There is no SOF overflow 477 * in the whole circular buffer. 478 */ 479 if (clock->head == clock->last_sof_overflow) 480 clock->last_sof_overflow = -1; 481 482 spin_lock_irqsave(&clock->lock, flags); 483 484 if (clock->count > 0 && clock->last_sof > sample->dev_sof) { 485 /* 486 * Remove data from the circular buffer that is older than the 487 * last SOF overflow. We only support one SOF overflow per 488 * circular buffer. 489 */ 490 if (clock->last_sof_overflow != -1) 491 clock->count = (clock->head - clock->last_sof_overflow 492 + clock->size) % clock->size; 493 clock->last_sof_overflow = clock->head; 494 } 495 496 /* Add sample. */ 497 clock->samples[clock->head] = *sample; 498 clock->head = (clock->head + 1) % clock->size; 499 clock->count = min(clock->count + 1, clock->size); 500 501 spin_unlock_irqrestore(&clock->lock, flags); 502 } 503 504 static void 505 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf, 506 const u8 *data, int len) 507 { 508 struct uvc_clock_sample sample; 509 unsigned int header_size; 510 bool has_pts = false; 511 bool has_scr = false; 512 513 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 514 case UVC_STREAM_PTS | UVC_STREAM_SCR: 515 header_size = 12; 516 has_pts = true; 517 has_scr = true; 518 break; 519 case UVC_STREAM_PTS: 520 header_size = 6; 521 has_pts = true; 522 break; 523 case UVC_STREAM_SCR: 524 header_size = 8; 525 has_scr = true; 526 break; 527 default: 528 header_size = 2; 529 break; 530 } 531 532 /* Check for invalid headers. */ 533 if (len < header_size) 534 return; 535 536 /* 537 * Extract the timestamps: 538 * 539 * - store the frame PTS in the buffer structure 540 * - if the SCR field is present, retrieve the host SOF counter and 541 * kernel timestamps and store them with the SCR STC and SOF fields 542 * in the ring buffer 543 */ 544 if (has_pts && buf != NULL) 545 buf->pts = get_unaligned_le32(&data[2]); 546 547 if (!has_scr) 548 return; 549 550 /* 551 * To limit the amount of data, drop SCRs with an SOF identical to the 552 * previous one. This filtering is also needed to support UVC 1.5, where 553 * all the data packets of the same frame contains the same SOF. In that 554 * case only the first one will match the host_sof. 555 */ 556 sample.dev_sof = get_unaligned_le16(&data[header_size - 2]); 557 if (sample.dev_sof == stream->clock.last_sof) 558 return; 559 560 sample.dev_stc = get_unaligned_le32(&data[header_size - 6]); 561 562 /* 563 * STC (Source Time Clock) is the clock used by the camera. The UVC 1.5 564 * standard states that it "must be captured when the first video data 565 * of a video frame is put on the USB bus". This is generally understood 566 * as requiring devices to clear the payload header's SCR bit before 567 * the first packet containing video data. 568 * 569 * Most vendors follow that interpretation, but some (namely SunplusIT 570 * on some devices) always set the `UVC_STREAM_SCR` bit, fill the SCR 571 * field with 0's,and expect that the driver only processes the SCR if 572 * there is data in the packet. 573 * 574 * Ignore all the hardware timestamp information if we haven't received 575 * any data for this frame yet, the packet contains no data, and both 576 * STC and SOF are zero. This heuristics should be safe on compliant 577 * devices. This should be safe with compliant devices, as in the very 578 * unlikely case where a UVC 1.1 device would send timing information 579 * only before the first packet containing data, and both STC and SOF 580 * happen to be zero for a particular frame, we would only miss one 581 * clock sample from many and the clock recovery algorithm wouldn't 582 * suffer from this condition. 583 */ 584 if (buf && buf->bytesused == 0 && len == header_size && 585 sample.dev_stc == 0 && sample.dev_sof == 0) 586 return; 587 588 sample.host_sof = usb_get_current_frame_number(stream->dev->udev); 589 590 /* 591 * On some devices, like the Logitech C922, the device SOF does not run 592 * at a stable rate of 1kHz. For those devices use the host SOF instead. 593 * In the tests performed so far, this improves the timestamp precision. 594 * This is probably explained by a small packet handling jitter from the 595 * host, but the exact reason hasn't been fully determined. 596 */ 597 if (stream->dev->quirks & UVC_QUIRK_INVALID_DEVICE_SOF) 598 sample.dev_sof = sample.host_sof; 599 600 sample.host_time = uvc_video_get_time(); 601 602 /* 603 * The UVC specification allows device implementations that can't obtain 604 * the USB frame number to keep their own frame counters as long as they 605 * match the size and frequency of the frame number associated with USB 606 * SOF tokens. The SOF values sent by such devices differ from the USB 607 * SOF tokens by a fixed offset that needs to be estimated and accounted 608 * for to make timestamp recovery as accurate as possible. 609 * 610 * The offset is estimated the first time a device SOF value is received 611 * as the difference between the host and device SOF values. As the two 612 * SOF values can differ slightly due to transmission delays, consider 613 * that the offset is null if the difference is not higher than 10 ms 614 * (negative differences can not happen and are thus considered as an 615 * offset). The video commit control wDelay field should be used to 616 * compute a dynamic threshold instead of using a fixed 10 ms value, but 617 * devices don't report reliable wDelay values. 618 * 619 * See uvc_video_clock_host_sof() for an explanation regarding why only 620 * the 8 LSBs of the delta are kept. 621 */ 622 if (stream->clock.sof_offset == (u16)-1) { 623 u16 delta_sof = (sample.host_sof - sample.dev_sof) & 255; 624 if (delta_sof >= 10) 625 stream->clock.sof_offset = delta_sof; 626 else 627 stream->clock.sof_offset = 0; 628 } 629 630 sample.dev_sof = (sample.dev_sof + stream->clock.sof_offset) & 2047; 631 uvc_video_clock_add_sample(&stream->clock, &sample); 632 stream->clock.last_sof = sample.dev_sof; 633 } 634 635 static void uvc_video_clock_reset(struct uvc_clock *clock) 636 { 637 clock->head = 0; 638 clock->count = 0; 639 clock->last_sof = -1; 640 clock->last_sof_overflow = -1; 641 clock->sof_offset = -1; 642 } 643 644 static int uvc_video_clock_init(struct uvc_clock *clock) 645 { 646 spin_lock_init(&clock->lock); 647 clock->size = 32; 648 649 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples), 650 GFP_KERNEL); 651 if (clock->samples == NULL) 652 return -ENOMEM; 653 654 uvc_video_clock_reset(clock); 655 656 return 0; 657 } 658 659 static void uvc_video_clock_cleanup(struct uvc_clock *clock) 660 { 661 kfree(clock->samples); 662 clock->samples = NULL; 663 } 664 665 /* 666 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample 667 * 668 * Host SOF counters reported by usb_get_current_frame_number() usually don't 669 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame 670 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host 671 * controller and its configuration. 672 * 673 * We thus need to recover the SOF value corresponding to the host frame number. 674 * As the device and host frame numbers are sampled in a short interval, the 675 * difference between their values should be equal to a small delta plus an 676 * integer multiple of 256 caused by the host frame number limited precision. 677 * 678 * To obtain the recovered host SOF value, compute the small delta by masking 679 * the high bits of the host frame counter and device SOF difference and add it 680 * to the device SOF value. 681 */ 682 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample) 683 { 684 /* The delta value can be negative. */ 685 s8 delta_sof; 686 687 delta_sof = (sample->host_sof - sample->dev_sof) & 255; 688 689 return (sample->dev_sof + delta_sof) & 2047; 690 } 691 692 /* 693 * uvc_video_clock_update - Update the buffer timestamp 694 * 695 * This function converts the buffer PTS timestamp to the host clock domain by 696 * going through the USB SOF clock domain and stores the result in the V4L2 697 * buffer timestamp field. 698 * 699 * The relationship between the device clock and the host clock isn't known. 700 * However, the device and the host share the common USB SOF clock which can be 701 * used to recover that relationship. 702 * 703 * The relationship between the device clock and the USB SOF clock is considered 704 * to be linear over the clock samples sliding window and is given by 705 * 706 * SOF = m * PTS + p 707 * 708 * Several methods to compute the slope (m) and intercept (p) can be used. As 709 * the clock drift should be small compared to the sliding window size, we 710 * assume that the line that goes through the points at both ends of the window 711 * is a good approximation. Naming those points P1 and P2, we get 712 * 713 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS 714 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) 715 * 716 * or 717 * 718 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1) 719 * 720 * to avoid losing precision in the division. Similarly, the host timestamp is 721 * computed with 722 * 723 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2) 724 * 725 * SOF values are coded on 11 bits by USB. We extend their precision with 16 726 * decimal bits, leading to a 11.16 coding. 727 * 728 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should 729 * be normalized using the nominal device clock frequency reported through the 730 * UVC descriptors. 731 * 732 * Both the PTS/STC and SOF counters roll over, after a fixed but device 733 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the 734 * sliding window size is smaller than the rollover period, differences computed 735 * on unsigned integers will produce the correct result. However, the p term in 736 * the linear relations will be miscomputed. 737 * 738 * To fix the issue, we subtract a constant from the PTS and STC values to bring 739 * PTS to half the 32 bit STC range. The sliding window STC values then fit into 740 * the 32 bit range without any rollover. 741 * 742 * Similarly, we add 2048 to the device SOF values to make sure that the SOF 743 * computed by (1) will never be smaller than 0. This offset is then compensated 744 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent 745 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly 746 * lower than 4096, and the host SOF counters can have rolled over to 2048. This 747 * case is handled by subtracting 2048 from the SOF value if it exceeds the host 748 * SOF value at the end of the sliding window. 749 * 750 * Finally we subtract a constant from the host timestamps to bring the first 751 * timestamp of the sliding window to 1s. 752 */ 753 void uvc_video_clock_update(struct uvc_streaming *stream, 754 struct vb2_v4l2_buffer *vbuf, 755 struct uvc_buffer *buf) 756 { 757 struct uvc_clock *clock = &stream->clock; 758 struct uvc_clock_sample *first; 759 struct uvc_clock_sample *last; 760 unsigned long flags; 761 u64 timestamp; 762 u32 delta_stc; 763 u32 y1; 764 u32 x1, x2; 765 u32 mean; 766 u32 sof; 767 u64 y, y2; 768 769 if (!uvc_hw_timestamps_param) 770 return; 771 772 /* 773 * We will get called from __vb2_queue_cancel() if there are buffers 774 * done but not dequeued by the user, but the sample array has already 775 * been released at that time. Just bail out in that case. 776 */ 777 if (!clock->samples) 778 return; 779 780 spin_lock_irqsave(&clock->lock, flags); 781 782 if (clock->count < 2) 783 goto done; 784 785 first = &clock->samples[(clock->head - clock->count + clock->size) % clock->size]; 786 last = &clock->samples[(clock->head - 1 + clock->size) % clock->size]; 787 788 /* First step, PTS to SOF conversion. */ 789 delta_stc = buf->pts - (1UL << 31); 790 x1 = first->dev_stc - delta_stc; 791 x2 = last->dev_stc - delta_stc; 792 if (x1 == x2) 793 goto done; 794 795 y1 = (first->dev_sof + 2048) << 16; 796 y2 = (last->dev_sof + 2048) << 16; 797 if (y2 < y1) 798 y2 += 2048 << 16; 799 800 /* 801 * Have at least 1/4 of a second of timestamps before we 802 * try to do any calculation. Otherwise we do not have enough 803 * precision. This value was determined by running Android CTS 804 * on different devices. 805 * 806 * dev_sof runs at 1KHz, and we have a fixed point precision of 807 * 16 bits. 808 */ 809 if ((y2 - y1) < ((1000 / 4) << 16)) 810 goto done; 811 812 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2 813 - (u64)y2 * (u64)x1; 814 y = div_u64(y, x2 - x1); 815 816 sof = y; 817 818 uvc_dbg(stream->dev, CLOCK, 819 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %llu SOF offset %u)\n", 820 stream->dev->name, buf->pts, 821 y >> 16, div_u64((y & 0xffff) * 1000000, 65536), 822 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 823 x1, x2, y1, y2, clock->sof_offset); 824 825 /* Second step, SOF to host clock conversion. */ 826 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16; 827 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16; 828 if (x2 < x1) 829 x2 += 2048 << 16; 830 if (x1 == x2) 831 goto done; 832 833 y1 = NSEC_PER_SEC; 834 y2 = ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1; 835 836 /* 837 * Interpolated and host SOF timestamps can wrap around at slightly 838 * different times. Handle this by adding or removing 2048 to or from 839 * the computed SOF value to keep it close to the SOF samples mean 840 * value. 841 */ 842 mean = (x1 + x2) / 2; 843 if (mean - (1024 << 16) > sof) 844 sof += 2048 << 16; 845 else if (sof > mean + (1024 << 16)) 846 sof -= 2048 << 16; 847 848 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2 849 - (u64)y2 * (u64)x1; 850 y = div_u64(y, x2 - x1); 851 852 timestamp = ktime_to_ns(first->host_time) + y - y1; 853 854 uvc_dbg(stream->dev, CLOCK, 855 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %llu)\n", 856 stream->dev->name, 857 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536), 858 y, timestamp, vbuf->vb2_buf.timestamp, 859 x1, first->host_sof, first->dev_sof, 860 x2, last->host_sof, last->dev_sof, y1, y2); 861 862 /* Update the V4L2 buffer. */ 863 vbuf->vb2_buf.timestamp = timestamp; 864 865 done: 866 spin_unlock_irqrestore(&clock->lock, flags); 867 } 868 869 /* ------------------------------------------------------------------------ 870 * Stream statistics 871 */ 872 873 static void uvc_video_stats_decode(struct uvc_streaming *stream, 874 const u8 *data, int len) 875 { 876 unsigned int header_size; 877 bool has_pts = false; 878 bool has_scr = false; 879 u16 scr_sof; 880 u32 scr_stc; 881 u32 pts; 882 883 if (stream->stats.stream.nb_frames == 0 && 884 stream->stats.frame.nb_packets == 0) 885 stream->stats.stream.start_ts = ktime_get(); 886 887 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) { 888 case UVC_STREAM_PTS | UVC_STREAM_SCR: 889 header_size = 12; 890 has_pts = true; 891 has_scr = true; 892 break; 893 case UVC_STREAM_PTS: 894 header_size = 6; 895 has_pts = true; 896 break; 897 case UVC_STREAM_SCR: 898 header_size = 8; 899 has_scr = true; 900 break; 901 default: 902 header_size = 2; 903 break; 904 } 905 906 /* Check for invalid headers. */ 907 if (len < header_size || data[0] < header_size) { 908 stream->stats.frame.nb_invalid++; 909 return; 910 } 911 912 /* Extract the timestamps. */ 913 if (has_pts) 914 pts = get_unaligned_le32(&data[2]); 915 916 if (has_scr) { 917 scr_stc = get_unaligned_le32(&data[header_size - 6]); 918 scr_sof = get_unaligned_le16(&data[header_size - 2]); 919 } 920 921 /* Is PTS constant through the whole frame ? */ 922 if (has_pts && stream->stats.frame.nb_pts) { 923 if (stream->stats.frame.pts != pts) { 924 stream->stats.frame.nb_pts_diffs++; 925 stream->stats.frame.last_pts_diff = 926 stream->stats.frame.nb_packets; 927 } 928 } 929 930 if (has_pts) { 931 stream->stats.frame.nb_pts++; 932 stream->stats.frame.pts = pts; 933 } 934 935 /* 936 * Do all frames have a PTS in their first non-empty packet, or before 937 * their first empty packet ? 938 */ 939 if (stream->stats.frame.size == 0) { 940 if (len > header_size) 941 stream->stats.frame.has_initial_pts = has_pts; 942 if (len == header_size && has_pts) 943 stream->stats.frame.has_early_pts = true; 944 } 945 946 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */ 947 if (has_scr && stream->stats.frame.nb_scr) { 948 if (stream->stats.frame.scr_stc != scr_stc) 949 stream->stats.frame.nb_scr_diffs++; 950 } 951 952 if (has_scr) { 953 /* Expand the SOF counter to 32 bits and store its value. */ 954 if (stream->stats.stream.nb_frames > 0 || 955 stream->stats.frame.nb_scr > 0) 956 stream->stats.stream.scr_sof_count += 957 (scr_sof - stream->stats.stream.scr_sof) % 2048; 958 stream->stats.stream.scr_sof = scr_sof; 959 960 stream->stats.frame.nb_scr++; 961 stream->stats.frame.scr_stc = scr_stc; 962 stream->stats.frame.scr_sof = scr_sof; 963 964 if (scr_sof < stream->stats.stream.min_sof) 965 stream->stats.stream.min_sof = scr_sof; 966 if (scr_sof > stream->stats.stream.max_sof) 967 stream->stats.stream.max_sof = scr_sof; 968 } 969 970 /* Record the first non-empty packet number. */ 971 if (stream->stats.frame.size == 0 && len > header_size) 972 stream->stats.frame.first_data = stream->stats.frame.nb_packets; 973 974 /* Update the frame size. */ 975 stream->stats.frame.size += len - header_size; 976 977 /* Update the packets counters. */ 978 stream->stats.frame.nb_packets++; 979 if (len <= header_size) 980 stream->stats.frame.nb_empty++; 981 982 if (data[1] & UVC_STREAM_ERR) 983 stream->stats.frame.nb_errors++; 984 } 985 986 static void uvc_video_stats_update(struct uvc_streaming *stream) 987 { 988 struct uvc_stats_frame *frame = &stream->stats.frame; 989 990 uvc_dbg(stream->dev, STATS, 991 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n", 992 stream->sequence, frame->first_data, 993 frame->nb_packets - frame->nb_empty, frame->nb_packets, 994 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts, 995 frame->has_early_pts ? "" : "!", 996 frame->has_initial_pts ? "" : "!", 997 frame->nb_scr_diffs, frame->nb_scr, 998 frame->pts, frame->scr_stc, frame->scr_sof); 999 1000 stream->stats.stream.nb_frames++; 1001 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets; 1002 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty; 1003 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors; 1004 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid; 1005 1006 if (frame->has_early_pts) 1007 stream->stats.stream.nb_pts_early++; 1008 if (frame->has_initial_pts) 1009 stream->stats.stream.nb_pts_initial++; 1010 if (frame->last_pts_diff <= frame->first_data) 1011 stream->stats.stream.nb_pts_constant++; 1012 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty) 1013 stream->stats.stream.nb_scr_count_ok++; 1014 if (frame->nb_scr_diffs + 1 == frame->nb_scr) 1015 stream->stats.stream.nb_scr_diffs_ok++; 1016 1017 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame)); 1018 } 1019 1020 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf, 1021 size_t size) 1022 { 1023 unsigned int scr_sof_freq; 1024 unsigned int duration; 1025 size_t count = 0; 1026 1027 /* 1028 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF 1029 * frequency this will not overflow before more than 1h. 1030 */ 1031 duration = ktime_ms_delta(stream->stats.stream.stop_ts, 1032 stream->stats.stream.start_ts); 1033 if (duration != 0) 1034 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000 1035 / duration; 1036 else 1037 scr_sof_freq = 0; 1038 1039 count += scnprintf(buf + count, size - count, 1040 "frames: %u\npackets: %u\nempty: %u\n" 1041 "errors: %u\ninvalid: %u\n", 1042 stream->stats.stream.nb_frames, 1043 stream->stats.stream.nb_packets, 1044 stream->stats.stream.nb_empty, 1045 stream->stats.stream.nb_errors, 1046 stream->stats.stream.nb_invalid); 1047 count += scnprintf(buf + count, size - count, 1048 "pts: %u early, %u initial, %u ok\n", 1049 stream->stats.stream.nb_pts_early, 1050 stream->stats.stream.nb_pts_initial, 1051 stream->stats.stream.nb_pts_constant); 1052 count += scnprintf(buf + count, size - count, 1053 "scr: %u count ok, %u diff ok\n", 1054 stream->stats.stream.nb_scr_count_ok, 1055 stream->stats.stream.nb_scr_diffs_ok); 1056 count += scnprintf(buf + count, size - count, 1057 "sof: %u <= sof <= %u, freq %u.%03u kHz\n", 1058 stream->stats.stream.min_sof, 1059 stream->stats.stream.max_sof, 1060 scr_sof_freq / 1000, scr_sof_freq % 1000); 1061 1062 return count; 1063 } 1064 1065 static void uvc_video_stats_start(struct uvc_streaming *stream) 1066 { 1067 memset(&stream->stats, 0, sizeof(stream->stats)); 1068 stream->stats.stream.min_sof = 2048; 1069 } 1070 1071 static void uvc_video_stats_stop(struct uvc_streaming *stream) 1072 { 1073 stream->stats.stream.stop_ts = ktime_get(); 1074 } 1075 1076 /* ------------------------------------------------------------------------ 1077 * Video codecs 1078 */ 1079 1080 /* 1081 * Video payload decoding is handled by uvc_video_decode_start(), 1082 * uvc_video_decode_data() and uvc_video_decode_end(). 1083 * 1084 * uvc_video_decode_start is called with URB data at the start of a bulk or 1085 * isochronous payload. It processes header data and returns the header size 1086 * in bytes if successful. If an error occurs, it returns a negative error 1087 * code. The following error codes have special meanings. 1088 * 1089 * - EAGAIN informs the caller that the current video buffer should be marked 1090 * as done, and that the function should be called again with the same data 1091 * and a new video buffer. This is used when end of frame conditions can be 1092 * reliably detected at the beginning of the next frame only. 1093 * 1094 * If an error other than -EAGAIN is returned, the caller will drop the current 1095 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be 1096 * made until the next payload. -ENODATA can be used to drop the current 1097 * payload if no other error code is appropriate. 1098 * 1099 * uvc_video_decode_data is called for every URB with URB data. It copies the 1100 * data to the video buffer. 1101 * 1102 * uvc_video_decode_end is called with header data at the end of a bulk or 1103 * isochronous payload. It performs any additional header data processing and 1104 * returns 0 or a negative error code if an error occurred. As header data have 1105 * already been processed by uvc_video_decode_start, this functions isn't 1106 * required to perform sanity checks a second time. 1107 * 1108 * For isochronous transfers where a payload is always transferred in a single 1109 * URB, the three functions will be called in a row. 1110 * 1111 * To let the decoder process header data and update its internal state even 1112 * when no video buffer is available, uvc_video_decode_start must be prepared 1113 * to be called with a NULL buf parameter. uvc_video_decode_data and 1114 * uvc_video_decode_end will never be called with a NULL buffer. 1115 */ 1116 static int uvc_video_decode_start(struct uvc_streaming *stream, 1117 struct uvc_buffer *buf, const u8 *data, int len) 1118 { 1119 u8 fid; 1120 1121 /* 1122 * Sanity checks: 1123 * - packet must be at least 2 bytes long 1124 * - bHeaderLength value must be at least 2 bytes (see above) 1125 * - bHeaderLength value can't be larger than the packet size. 1126 */ 1127 if (len < 2 || data[0] < 2 || data[0] > len) { 1128 stream->stats.frame.nb_invalid++; 1129 return -EINVAL; 1130 } 1131 1132 fid = data[1] & UVC_STREAM_FID; 1133 1134 /* 1135 * Increase the sequence number regardless of any buffer states, so 1136 * that discontinuous sequence numbers always indicate lost frames. 1137 */ 1138 if (stream->last_fid != fid) { 1139 stream->sequence++; 1140 if (stream->sequence) 1141 uvc_video_stats_update(stream); 1142 } 1143 1144 uvc_video_clock_decode(stream, buf, data, len); 1145 uvc_video_stats_decode(stream, data, len); 1146 1147 /* 1148 * Store the payload FID bit and return immediately when the buffer is 1149 * NULL. 1150 */ 1151 if (buf == NULL) { 1152 stream->last_fid = fid; 1153 return -ENODATA; 1154 } 1155 1156 /* Mark the buffer as bad if the error bit is set. */ 1157 if (data[1] & UVC_STREAM_ERR) { 1158 uvc_dbg(stream->dev, FRAME, 1159 "Marking buffer as bad (error bit set)\n"); 1160 buf->error = 1; 1161 } 1162 1163 /* 1164 * Synchronize to the input stream by waiting for the FID bit to be 1165 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE. 1166 * stream->last_fid is initialized to -1, so the first isochronous 1167 * frame will always be in sync. 1168 * 1169 * If the device doesn't toggle the FID bit, invert stream->last_fid 1170 * when the EOF bit is set to force synchronisation on the next packet. 1171 */ 1172 if (buf->state != UVC_BUF_STATE_ACTIVE) { 1173 if (fid == stream->last_fid) { 1174 uvc_dbg(stream->dev, FRAME, 1175 "Dropping payload (out of sync)\n"); 1176 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) && 1177 (data[1] & UVC_STREAM_EOF)) 1178 stream->last_fid ^= UVC_STREAM_FID; 1179 return -ENODATA; 1180 } 1181 1182 buf->buf.field = V4L2_FIELD_NONE; 1183 buf->buf.sequence = stream->sequence; 1184 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time()); 1185 1186 /* TODO: Handle PTS and SCR. */ 1187 buf->state = UVC_BUF_STATE_ACTIVE; 1188 } 1189 1190 /* 1191 * Mark the buffer as done if we're at the beginning of a new frame. 1192 * End of frame detection is better implemented by checking the EOF 1193 * bit (FID bit toggling is delayed by one frame compared to the EOF 1194 * bit), but some devices don't set the bit at end of frame (and the 1195 * last payload can be lost anyway). We thus must check if the FID has 1196 * been toggled. 1197 * 1198 * stream->last_fid is initialized to -1, so the first isochronous 1199 * frame will never trigger an end of frame detection. 1200 * 1201 * Empty buffers (bytesused == 0) don't trigger end of frame detection 1202 * as it doesn't make sense to return an empty buffer. This also 1203 * avoids detecting end of frame conditions at FID toggling if the 1204 * previous payload had the EOF bit set. 1205 */ 1206 if (fid != stream->last_fid && buf->bytesused != 0) { 1207 uvc_dbg(stream->dev, FRAME, 1208 "Frame complete (FID bit toggled)\n"); 1209 buf->state = UVC_BUF_STATE_READY; 1210 return -EAGAIN; 1211 } 1212 1213 stream->last_fid = fid; 1214 1215 return data[0]; 1216 } 1217 1218 static inline enum dma_data_direction uvc_stream_dir( 1219 struct uvc_streaming *stream) 1220 { 1221 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) 1222 return DMA_FROM_DEVICE; 1223 else 1224 return DMA_TO_DEVICE; 1225 } 1226 1227 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream) 1228 { 1229 return bus_to_hcd(stream->dev->udev->bus)->self.sysdev; 1230 } 1231 1232 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags) 1233 { 1234 /* Sync DMA. */ 1235 dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream), 1236 uvc_urb->sgt, 1237 uvc_stream_dir(uvc_urb->stream)); 1238 return usb_submit_urb(uvc_urb->urb, mem_flags); 1239 } 1240 1241 /* 1242 * uvc_video_decode_data_work: Asynchronous memcpy processing 1243 * 1244 * Copy URB data to video buffers in process context, releasing buffer 1245 * references and requeuing the URB when done. 1246 */ 1247 static void uvc_video_copy_data_work(struct work_struct *work) 1248 { 1249 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work); 1250 unsigned int i; 1251 int ret; 1252 1253 for (i = 0; i < uvc_urb->async_operations; i++) { 1254 struct uvc_copy_op *op = &uvc_urb->copy_operations[i]; 1255 1256 memcpy(op->dst, op->src, op->len); 1257 1258 /* Release reference taken on this buffer. */ 1259 uvc_queue_buffer_release(op->buf); 1260 } 1261 1262 ret = uvc_submit_urb(uvc_urb, GFP_KERNEL); 1263 if (ret < 0) 1264 dev_err(&uvc_urb->stream->intf->dev, 1265 "Failed to resubmit video URB (%d).\n", ret); 1266 } 1267 1268 static void uvc_video_decode_data(struct uvc_urb *uvc_urb, 1269 struct uvc_buffer *buf, const u8 *data, int len) 1270 { 1271 unsigned int active_op = uvc_urb->async_operations; 1272 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op]; 1273 unsigned int maxlen; 1274 1275 if (len <= 0) 1276 return; 1277 1278 maxlen = buf->length - buf->bytesused; 1279 1280 /* Take a buffer reference for async work. */ 1281 kref_get(&buf->ref); 1282 1283 op->buf = buf; 1284 op->src = data; 1285 op->dst = buf->mem + buf->bytesused; 1286 op->len = min_t(unsigned int, len, maxlen); 1287 1288 buf->bytesused += op->len; 1289 1290 /* Complete the current frame if the buffer size was exceeded. */ 1291 if (len > maxlen) { 1292 uvc_dbg(uvc_urb->stream->dev, FRAME, 1293 "Frame complete (overflow)\n"); 1294 buf->error = 1; 1295 buf->state = UVC_BUF_STATE_READY; 1296 } 1297 1298 uvc_urb->async_operations++; 1299 } 1300 1301 static void uvc_video_decode_end(struct uvc_streaming *stream, 1302 struct uvc_buffer *buf, const u8 *data, int len) 1303 { 1304 /* Mark the buffer as done if the EOF marker is set. */ 1305 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) { 1306 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n"); 1307 if (data[0] == len) 1308 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n"); 1309 buf->state = UVC_BUF_STATE_READY; 1310 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) 1311 stream->last_fid ^= UVC_STREAM_FID; 1312 } 1313 } 1314 1315 /* 1316 * Video payload encoding is handled by uvc_video_encode_header() and 1317 * uvc_video_encode_data(). Only bulk transfers are currently supported. 1318 * 1319 * uvc_video_encode_header is called at the start of a payload. It adds header 1320 * data to the transfer buffer and returns the header size. As the only known 1321 * UVC output device transfers a whole frame in a single payload, the EOF bit 1322 * is always set in the header. 1323 * 1324 * uvc_video_encode_data is called for every URB and copies the data from the 1325 * video buffer to the transfer buffer. 1326 */ 1327 static int uvc_video_encode_header(struct uvc_streaming *stream, 1328 struct uvc_buffer *buf, u8 *data, int len) 1329 { 1330 data[0] = 2; /* Header length */ 1331 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF 1332 | (stream->last_fid & UVC_STREAM_FID); 1333 return 2; 1334 } 1335 1336 static int uvc_video_encode_data(struct uvc_streaming *stream, 1337 struct uvc_buffer *buf, u8 *data, int len) 1338 { 1339 struct uvc_video_queue *queue = &stream->queue; 1340 unsigned int nbytes; 1341 void *mem; 1342 1343 /* Copy video data to the URB buffer. */ 1344 mem = buf->mem + queue->buf_used; 1345 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used); 1346 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size, 1347 nbytes); 1348 memcpy(data, mem, nbytes); 1349 1350 queue->buf_used += nbytes; 1351 1352 return nbytes; 1353 } 1354 1355 /* ------------------------------------------------------------------------ 1356 * Metadata 1357 */ 1358 1359 /* 1360 * Additionally to the payload headers we also want to provide the user with USB 1361 * Frame Numbers and system time values. The resulting buffer is thus composed 1362 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame 1363 * Number, and a copy of the payload header. 1364 * 1365 * Ideally we want to capture all payload headers for each frame. However, their 1366 * number is unknown and unbound. We thus drop headers that contain no vendor 1367 * data and that either contain no SCR value or an SCR value identical to the 1368 * previous header. 1369 */ 1370 static void uvc_video_decode_meta(struct uvc_streaming *stream, 1371 struct uvc_buffer *meta_buf, 1372 const u8 *mem, unsigned int length) 1373 { 1374 struct uvc_meta_buf *meta; 1375 size_t len_std = 2; 1376 bool has_pts, has_scr; 1377 unsigned long flags; 1378 unsigned int sof; 1379 ktime_t time; 1380 const u8 *scr; 1381 1382 if (!meta_buf || length == 2) 1383 return; 1384 1385 if (meta_buf->length - meta_buf->bytesused < 1386 length + sizeof(meta->ns) + sizeof(meta->sof)) { 1387 meta_buf->error = 1; 1388 return; 1389 } 1390 1391 has_pts = mem[1] & UVC_STREAM_PTS; 1392 has_scr = mem[1] & UVC_STREAM_SCR; 1393 1394 if (has_pts) { 1395 len_std += 4; 1396 scr = mem + 6; 1397 } else { 1398 scr = mem + 2; 1399 } 1400 1401 if (has_scr) 1402 len_std += 6; 1403 1404 if (stream->meta.format == V4L2_META_FMT_UVC) 1405 length = len_std; 1406 1407 if (length == len_std && (!has_scr || 1408 !memcmp(scr, stream->clock.last_scr, 6))) 1409 return; 1410 1411 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused); 1412 local_irq_save(flags); 1413 time = uvc_video_get_time(); 1414 sof = usb_get_current_frame_number(stream->dev->udev); 1415 local_irq_restore(flags); 1416 put_unaligned(ktime_to_ns(time), &meta->ns); 1417 put_unaligned(sof, &meta->sof); 1418 1419 if (has_scr) 1420 memcpy(stream->clock.last_scr, scr, 6); 1421 1422 meta->length = mem[0]; 1423 meta->flags = mem[1]; 1424 memcpy(meta->buf, &mem[2], length - 2); 1425 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof); 1426 1427 uvc_dbg(stream->dev, FRAME, 1428 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n", 1429 __func__, ktime_to_ns(time), meta->sof, meta->length, 1430 meta->flags, 1431 has_pts ? *(u32 *)meta->buf : 0, 1432 has_scr ? *(u32 *)scr : 0, 1433 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0); 1434 } 1435 1436 /* ------------------------------------------------------------------------ 1437 * URB handling 1438 */ 1439 1440 /* 1441 * Set error flag for incomplete buffer. 1442 */ 1443 static void uvc_video_validate_buffer(const struct uvc_streaming *stream, 1444 struct uvc_buffer *buf) 1445 { 1446 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused && 1447 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED)) 1448 buf->error = 1; 1449 } 1450 1451 /* 1452 * Completion handler for video URBs. 1453 */ 1454 1455 static void uvc_video_next_buffers(struct uvc_streaming *stream, 1456 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf) 1457 { 1458 uvc_video_validate_buffer(stream, *video_buf); 1459 1460 if (*meta_buf) { 1461 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf; 1462 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf; 1463 1464 vb2_meta->sequence = vb2_video->sequence; 1465 vb2_meta->field = vb2_video->field; 1466 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp; 1467 1468 (*meta_buf)->state = UVC_BUF_STATE_READY; 1469 if (!(*meta_buf)->error) 1470 (*meta_buf)->error = (*video_buf)->error; 1471 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue, 1472 *meta_buf); 1473 } 1474 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf); 1475 } 1476 1477 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb, 1478 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1479 { 1480 struct urb *urb = uvc_urb->urb; 1481 struct uvc_streaming *stream = uvc_urb->stream; 1482 u8 *mem; 1483 int ret, i; 1484 1485 for (i = 0; i < urb->number_of_packets; ++i) { 1486 if (urb->iso_frame_desc[i].status < 0) { 1487 uvc_dbg(stream->dev, FRAME, 1488 "USB isochronous frame lost (%d)\n", 1489 urb->iso_frame_desc[i].status); 1490 /* Mark the buffer as faulty. */ 1491 if (buf != NULL) 1492 buf->error = 1; 1493 continue; 1494 } 1495 1496 /* Decode the payload header. */ 1497 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset; 1498 do { 1499 ret = uvc_video_decode_start(stream, buf, mem, 1500 urb->iso_frame_desc[i].actual_length); 1501 if (ret == -EAGAIN) 1502 uvc_video_next_buffers(stream, &buf, &meta_buf); 1503 } while (ret == -EAGAIN); 1504 1505 if (ret < 0) 1506 continue; 1507 1508 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1509 1510 /* Decode the payload data. */ 1511 uvc_video_decode_data(uvc_urb, buf, mem + ret, 1512 urb->iso_frame_desc[i].actual_length - ret); 1513 1514 /* Process the header again. */ 1515 uvc_video_decode_end(stream, buf, mem, 1516 urb->iso_frame_desc[i].actual_length); 1517 1518 if (buf->state == UVC_BUF_STATE_READY) 1519 uvc_video_next_buffers(stream, &buf, &meta_buf); 1520 } 1521 } 1522 1523 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb, 1524 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1525 { 1526 struct urb *urb = uvc_urb->urb; 1527 struct uvc_streaming *stream = uvc_urb->stream; 1528 u8 *mem; 1529 int len, ret; 1530 1531 /* 1532 * Ignore ZLPs if they're not part of a frame, otherwise process them 1533 * to trigger the end of payload detection. 1534 */ 1535 if (urb->actual_length == 0 && stream->bulk.header_size == 0) 1536 return; 1537 1538 mem = urb->transfer_buffer; 1539 len = urb->actual_length; 1540 stream->bulk.payload_size += len; 1541 1542 /* 1543 * If the URB is the first of its payload, decode and save the 1544 * header. 1545 */ 1546 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) { 1547 do { 1548 ret = uvc_video_decode_start(stream, buf, mem, len); 1549 if (ret == -EAGAIN) 1550 uvc_video_next_buffers(stream, &buf, &meta_buf); 1551 } while (ret == -EAGAIN); 1552 1553 /* If an error occurred skip the rest of the payload. */ 1554 if (ret < 0 || buf == NULL) { 1555 stream->bulk.skip_payload = 1; 1556 } else { 1557 memcpy(stream->bulk.header, mem, ret); 1558 stream->bulk.header_size = ret; 1559 1560 uvc_video_decode_meta(stream, meta_buf, mem, ret); 1561 1562 mem += ret; 1563 len -= ret; 1564 } 1565 } 1566 1567 /* 1568 * The buffer queue might have been cancelled while a bulk transfer 1569 * was in progress, so we can reach here with buf equal to NULL. Make 1570 * sure buf is never dereferenced if NULL. 1571 */ 1572 1573 /* Prepare video data for processing. */ 1574 if (!stream->bulk.skip_payload && buf != NULL) 1575 uvc_video_decode_data(uvc_urb, buf, mem, len); 1576 1577 /* 1578 * Detect the payload end by a URB smaller than the maximum size (or 1579 * a payload size equal to the maximum) and process the header again. 1580 */ 1581 if (urb->actual_length < urb->transfer_buffer_length || 1582 stream->bulk.payload_size >= stream->bulk.max_payload_size) { 1583 if (!stream->bulk.skip_payload && buf != NULL) { 1584 uvc_video_decode_end(stream, buf, stream->bulk.header, 1585 stream->bulk.payload_size); 1586 if (buf->state == UVC_BUF_STATE_READY) 1587 uvc_video_next_buffers(stream, &buf, &meta_buf); 1588 } 1589 1590 stream->bulk.header_size = 0; 1591 stream->bulk.skip_payload = 0; 1592 stream->bulk.payload_size = 0; 1593 } 1594 } 1595 1596 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb, 1597 struct uvc_buffer *buf, struct uvc_buffer *meta_buf) 1598 { 1599 struct urb *urb = uvc_urb->urb; 1600 struct uvc_streaming *stream = uvc_urb->stream; 1601 1602 u8 *mem = urb->transfer_buffer; 1603 int len = stream->urb_size, ret; 1604 1605 if (buf == NULL) { 1606 urb->transfer_buffer_length = 0; 1607 return; 1608 } 1609 1610 /* If the URB is the first of its payload, add the header. */ 1611 if (stream->bulk.header_size == 0) { 1612 ret = uvc_video_encode_header(stream, buf, mem, len); 1613 stream->bulk.header_size = ret; 1614 stream->bulk.payload_size += ret; 1615 mem += ret; 1616 len -= ret; 1617 } 1618 1619 /* Process video data. */ 1620 ret = uvc_video_encode_data(stream, buf, mem, len); 1621 1622 stream->bulk.payload_size += ret; 1623 len -= ret; 1624 1625 if (buf->bytesused == stream->queue.buf_used || 1626 stream->bulk.payload_size == stream->bulk.max_payload_size) { 1627 if (buf->bytesused == stream->queue.buf_used) { 1628 stream->queue.buf_used = 0; 1629 buf->state = UVC_BUF_STATE_READY; 1630 buf->buf.sequence = ++stream->sequence; 1631 uvc_queue_next_buffer(&stream->queue, buf); 1632 stream->last_fid ^= UVC_STREAM_FID; 1633 } 1634 1635 stream->bulk.header_size = 0; 1636 stream->bulk.payload_size = 0; 1637 } 1638 1639 urb->transfer_buffer_length = stream->urb_size - len; 1640 } 1641 1642 static void uvc_video_complete(struct urb *urb) 1643 { 1644 struct uvc_urb *uvc_urb = urb->context; 1645 struct uvc_streaming *stream = uvc_urb->stream; 1646 struct uvc_video_queue *queue = &stream->queue; 1647 struct uvc_video_queue *qmeta = &stream->meta.queue; 1648 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue; 1649 struct uvc_buffer *buf = NULL; 1650 struct uvc_buffer *buf_meta = NULL; 1651 unsigned long flags; 1652 int ret; 1653 1654 switch (urb->status) { 1655 case 0: 1656 break; 1657 1658 default: 1659 dev_warn(&stream->intf->dev, 1660 "Non-zero status (%d) in video completion handler.\n", 1661 urb->status); 1662 fallthrough; 1663 case -ENOENT: /* usb_poison_urb() called. */ 1664 if (stream->frozen) 1665 return; 1666 fallthrough; 1667 case -ECONNRESET: /* usb_unlink_urb() called. */ 1668 case -ESHUTDOWN: /* The endpoint is being disabled. */ 1669 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN); 1670 if (vb2_qmeta) 1671 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN); 1672 return; 1673 } 1674 1675 buf = uvc_queue_get_current_buffer(queue); 1676 1677 if (vb2_qmeta) { 1678 spin_lock_irqsave(&qmeta->irqlock, flags); 1679 if (!list_empty(&qmeta->irqqueue)) 1680 buf_meta = list_first_entry(&qmeta->irqqueue, 1681 struct uvc_buffer, queue); 1682 spin_unlock_irqrestore(&qmeta->irqlock, flags); 1683 } 1684 1685 /* Re-initialise the URB async work. */ 1686 uvc_urb->async_operations = 0; 1687 1688 /* Sync DMA and invalidate vmap range. */ 1689 dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream), 1690 uvc_urb->sgt, uvc_stream_dir(stream)); 1691 invalidate_kernel_vmap_range(uvc_urb->buffer, 1692 uvc_urb->stream->urb_size); 1693 1694 /* 1695 * Process the URB headers, and optionally queue expensive memcpy tasks 1696 * to be deferred to a work queue. 1697 */ 1698 stream->decode(uvc_urb, buf, buf_meta); 1699 1700 /* If no async work is needed, resubmit the URB immediately. */ 1701 if (!uvc_urb->async_operations) { 1702 ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC); 1703 if (ret < 0) 1704 dev_err(&stream->intf->dev, 1705 "Failed to resubmit video URB (%d).\n", ret); 1706 return; 1707 } 1708 1709 queue_work(stream->async_wq, &uvc_urb->work); 1710 } 1711 1712 /* 1713 * Free transfer buffers. 1714 */ 1715 static void uvc_free_urb_buffers(struct uvc_streaming *stream) 1716 { 1717 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1718 struct uvc_urb *uvc_urb; 1719 1720 for_each_uvc_urb(uvc_urb, stream) { 1721 if (!uvc_urb->buffer) 1722 continue; 1723 1724 dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer); 1725 dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt, 1726 uvc_stream_dir(stream)); 1727 1728 uvc_urb->buffer = NULL; 1729 uvc_urb->sgt = NULL; 1730 } 1731 1732 stream->urb_size = 0; 1733 } 1734 1735 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream, 1736 struct uvc_urb *uvc_urb, gfp_t gfp_flags) 1737 { 1738 struct device *dma_dev = uvc_stream_to_dmadev(stream); 1739 1740 uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size, 1741 uvc_stream_dir(stream), 1742 gfp_flags, 0); 1743 if (!uvc_urb->sgt) 1744 return false; 1745 uvc_urb->dma = uvc_urb->sgt->sgl->dma_address; 1746 1747 uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size, 1748 uvc_urb->sgt); 1749 if (!uvc_urb->buffer) { 1750 dma_free_noncontiguous(dma_dev, stream->urb_size, 1751 uvc_urb->sgt, 1752 uvc_stream_dir(stream)); 1753 uvc_urb->sgt = NULL; 1754 return false; 1755 } 1756 1757 return true; 1758 } 1759 1760 /* 1761 * Allocate transfer buffers. This function can be called with buffers 1762 * already allocated when resuming from suspend, in which case it will 1763 * return without touching the buffers. 1764 * 1765 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the 1766 * system is too low on memory try successively smaller numbers of packets 1767 * until allocation succeeds. 1768 * 1769 * Return the number of allocated packets on success or 0 when out of memory. 1770 */ 1771 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream, 1772 unsigned int size, unsigned int psize, gfp_t gfp_flags) 1773 { 1774 unsigned int npackets; 1775 unsigned int i; 1776 1777 /* Buffers are already allocated, bail out. */ 1778 if (stream->urb_size) 1779 return stream->urb_size / psize; 1780 1781 /* 1782 * Compute the number of packets. Bulk endpoints might transfer UVC 1783 * payloads across multiple URBs. 1784 */ 1785 npackets = DIV_ROUND_UP(size, psize); 1786 if (npackets > UVC_MAX_PACKETS) 1787 npackets = UVC_MAX_PACKETS; 1788 1789 /* Retry allocations until one succeed. */ 1790 for (; npackets > 1; npackets /= 2) { 1791 stream->urb_size = psize * npackets; 1792 1793 for (i = 0; i < UVC_URBS; ++i) { 1794 struct uvc_urb *uvc_urb = &stream->uvc_urb[i]; 1795 1796 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) { 1797 uvc_free_urb_buffers(stream); 1798 break; 1799 } 1800 1801 uvc_urb->stream = stream; 1802 } 1803 1804 if (i == UVC_URBS) { 1805 uvc_dbg(stream->dev, VIDEO, 1806 "Allocated %u URB buffers of %ux%u bytes each\n", 1807 UVC_URBS, npackets, psize); 1808 return npackets; 1809 } 1810 } 1811 1812 uvc_dbg(stream->dev, VIDEO, 1813 "Failed to allocate URB buffers (%u bytes per packet)\n", 1814 psize); 1815 return 0; 1816 } 1817 1818 /* 1819 * Uninitialize isochronous/bulk URBs and free transfer buffers. 1820 */ 1821 static void uvc_video_stop_transfer(struct uvc_streaming *stream, 1822 int free_buffers) 1823 { 1824 struct uvc_urb *uvc_urb; 1825 1826 uvc_video_stats_stop(stream); 1827 1828 /* 1829 * We must poison the URBs rather than kill them to ensure that even 1830 * after the completion handler returns, any asynchronous workqueues 1831 * will be prevented from resubmitting the URBs. 1832 */ 1833 for_each_uvc_urb(uvc_urb, stream) 1834 usb_poison_urb(uvc_urb->urb); 1835 1836 flush_workqueue(stream->async_wq); 1837 1838 for_each_uvc_urb(uvc_urb, stream) { 1839 usb_free_urb(uvc_urb->urb); 1840 uvc_urb->urb = NULL; 1841 } 1842 1843 if (free_buffers) 1844 uvc_free_urb_buffers(stream); 1845 } 1846 1847 /* 1848 * Compute the maximum number of bytes per interval for an endpoint. 1849 */ 1850 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep) 1851 { 1852 u16 psize; 1853 1854 switch (dev->speed) { 1855 case USB_SPEED_SUPER: 1856 case USB_SPEED_SUPER_PLUS: 1857 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1858 default: 1859 psize = usb_endpoint_maxp(&ep->desc); 1860 psize *= usb_endpoint_maxp_mult(&ep->desc); 1861 return psize; 1862 } 1863 } 1864 1865 /* 1866 * Initialize isochronous URBs and allocate transfer buffers. The packet size 1867 * is given by the endpoint. 1868 */ 1869 static int uvc_init_video_isoc(struct uvc_streaming *stream, 1870 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1871 { 1872 struct urb *urb; 1873 struct uvc_urb *uvc_urb; 1874 unsigned int npackets, i; 1875 u16 psize; 1876 u32 size; 1877 1878 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 1879 size = stream->ctrl.dwMaxVideoFrameSize; 1880 1881 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1882 if (npackets == 0) 1883 return -ENOMEM; 1884 1885 size = npackets * psize; 1886 1887 for_each_uvc_urb(uvc_urb, stream) { 1888 urb = usb_alloc_urb(npackets, gfp_flags); 1889 if (urb == NULL) { 1890 uvc_video_stop_transfer(stream, 1); 1891 return -ENOMEM; 1892 } 1893 1894 urb->dev = stream->dev->udev; 1895 urb->context = uvc_urb; 1896 urb->pipe = usb_rcvisocpipe(stream->dev->udev, 1897 ep->desc.bEndpointAddress); 1898 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP; 1899 urb->transfer_dma = uvc_urb->dma; 1900 urb->interval = ep->desc.bInterval; 1901 urb->transfer_buffer = uvc_urb->buffer; 1902 urb->complete = uvc_video_complete; 1903 urb->number_of_packets = npackets; 1904 urb->transfer_buffer_length = size; 1905 1906 for (i = 0; i < npackets; ++i) { 1907 urb->iso_frame_desc[i].offset = i * psize; 1908 urb->iso_frame_desc[i].length = psize; 1909 } 1910 1911 uvc_urb->urb = urb; 1912 } 1913 1914 return 0; 1915 } 1916 1917 /* 1918 * Initialize bulk URBs and allocate transfer buffers. The packet size is 1919 * given by the endpoint. 1920 */ 1921 static int uvc_init_video_bulk(struct uvc_streaming *stream, 1922 struct usb_host_endpoint *ep, gfp_t gfp_flags) 1923 { 1924 struct urb *urb; 1925 struct uvc_urb *uvc_urb; 1926 unsigned int npackets, pipe; 1927 u16 psize; 1928 u32 size; 1929 1930 psize = usb_endpoint_maxp(&ep->desc); 1931 size = stream->ctrl.dwMaxPayloadTransferSize; 1932 stream->bulk.max_payload_size = size; 1933 1934 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags); 1935 if (npackets == 0) 1936 return -ENOMEM; 1937 1938 size = npackets * psize; 1939 1940 if (usb_endpoint_dir_in(&ep->desc)) 1941 pipe = usb_rcvbulkpipe(stream->dev->udev, 1942 ep->desc.bEndpointAddress); 1943 else 1944 pipe = usb_sndbulkpipe(stream->dev->udev, 1945 ep->desc.bEndpointAddress); 1946 1947 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) 1948 size = 0; 1949 1950 for_each_uvc_urb(uvc_urb, stream) { 1951 urb = usb_alloc_urb(0, gfp_flags); 1952 if (urb == NULL) { 1953 uvc_video_stop_transfer(stream, 1); 1954 return -ENOMEM; 1955 } 1956 1957 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer, 1958 size, uvc_video_complete, uvc_urb); 1959 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP; 1960 urb->transfer_dma = uvc_urb->dma; 1961 1962 uvc_urb->urb = urb; 1963 } 1964 1965 return 0; 1966 } 1967 1968 /* 1969 * Initialize isochronous/bulk URBs and allocate transfer buffers. 1970 */ 1971 static int uvc_video_start_transfer(struct uvc_streaming *stream, 1972 gfp_t gfp_flags) 1973 { 1974 struct usb_interface *intf = stream->intf; 1975 struct usb_host_endpoint *ep; 1976 struct uvc_urb *uvc_urb; 1977 unsigned int i; 1978 int ret; 1979 1980 stream->sequence = -1; 1981 stream->last_fid = -1; 1982 stream->bulk.header_size = 0; 1983 stream->bulk.skip_payload = 0; 1984 stream->bulk.payload_size = 0; 1985 1986 uvc_video_stats_start(stream); 1987 1988 if (intf->num_altsetting > 1) { 1989 struct usb_host_endpoint *best_ep = NULL; 1990 unsigned int best_psize = UINT_MAX; 1991 unsigned int bandwidth; 1992 unsigned int altsetting; 1993 int intfnum = stream->intfnum; 1994 1995 /* Isochronous endpoint, select the alternate setting. */ 1996 bandwidth = stream->ctrl.dwMaxPayloadTransferSize; 1997 1998 if (bandwidth == 0) { 1999 uvc_dbg(stream->dev, VIDEO, 2000 "Device requested null bandwidth, defaulting to lowest\n"); 2001 bandwidth = 1; 2002 } else { 2003 uvc_dbg(stream->dev, VIDEO, 2004 "Device requested %u B/frame bandwidth\n", 2005 bandwidth); 2006 } 2007 2008 for (i = 0; i < intf->num_altsetting; ++i) { 2009 struct usb_host_interface *alts; 2010 unsigned int psize; 2011 2012 alts = &intf->altsetting[i]; 2013 ep = uvc_find_endpoint(alts, 2014 stream->header.bEndpointAddress); 2015 if (ep == NULL) 2016 continue; 2017 2018 /* Check if the bandwidth is high enough. */ 2019 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep); 2020 if (psize >= bandwidth && psize < best_psize) { 2021 altsetting = alts->desc.bAlternateSetting; 2022 best_psize = psize; 2023 best_ep = ep; 2024 } 2025 } 2026 2027 if (best_ep == NULL) { 2028 uvc_dbg(stream->dev, VIDEO, 2029 "No fast enough alt setting for requested bandwidth\n"); 2030 return -EIO; 2031 } 2032 2033 uvc_dbg(stream->dev, VIDEO, 2034 "Selecting alternate setting %u (%u B/frame bandwidth)\n", 2035 altsetting, best_psize); 2036 2037 /* 2038 * Some devices, namely the Logitech C910 and B910, are unable 2039 * to recover from a USB autosuspend, unless the alternate 2040 * setting of the streaming interface is toggled. 2041 */ 2042 if (stream->dev->quirks & UVC_QUIRK_WAKE_AUTOSUSPEND) { 2043 usb_set_interface(stream->dev->udev, intfnum, 2044 altsetting); 2045 usb_set_interface(stream->dev->udev, intfnum, 0); 2046 } 2047 2048 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting); 2049 if (ret < 0) 2050 return ret; 2051 2052 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags); 2053 } else { 2054 /* Bulk endpoint, proceed to URB initialization. */ 2055 ep = uvc_find_endpoint(&intf->altsetting[0], 2056 stream->header.bEndpointAddress); 2057 if (ep == NULL) 2058 return -EIO; 2059 2060 /* Reject broken descriptors. */ 2061 if (usb_endpoint_maxp(&ep->desc) == 0) 2062 return -EIO; 2063 2064 ret = uvc_init_video_bulk(stream, ep, gfp_flags); 2065 } 2066 2067 if (ret < 0) 2068 return ret; 2069 2070 /* Submit the URBs. */ 2071 for_each_uvc_urb(uvc_urb, stream) { 2072 ret = uvc_submit_urb(uvc_urb, gfp_flags); 2073 if (ret < 0) { 2074 dev_err(&stream->intf->dev, 2075 "Failed to submit URB %u (%d).\n", 2076 uvc_urb_index(uvc_urb), ret); 2077 uvc_video_stop_transfer(stream, 1); 2078 return ret; 2079 } 2080 } 2081 2082 /* 2083 * The Logitech C920 temporarily forgets that it should not be adjusting 2084 * Exposure Absolute during init so restore controls to stored values. 2085 */ 2086 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT) 2087 uvc_ctrl_restore_values(stream->dev); 2088 2089 return 0; 2090 } 2091 2092 /* -------------------------------------------------------------------------- 2093 * Suspend/resume 2094 */ 2095 2096 /* 2097 * Stop streaming without disabling the video queue. 2098 * 2099 * To let userspace applications resume without trouble, we must not touch the 2100 * video buffers in any way. We mark the device as frozen to make sure the URB 2101 * completion handler won't try to cancel the queue when we kill the URBs. 2102 */ 2103 int uvc_video_suspend(struct uvc_streaming *stream) 2104 { 2105 if (!uvc_queue_streaming(&stream->queue)) 2106 return 0; 2107 2108 stream->frozen = 1; 2109 uvc_video_stop_transfer(stream, 0); 2110 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2111 return 0; 2112 } 2113 2114 /* 2115 * Reconfigure the video interface and restart streaming if it was enabled 2116 * before suspend. 2117 * 2118 * If an error occurs, disable the video queue. This will wake all pending 2119 * buffers, making sure userspace applications are notified of the problem 2120 * instead of waiting forever. 2121 */ 2122 int uvc_video_resume(struct uvc_streaming *stream, int reset) 2123 { 2124 int ret; 2125 2126 /* 2127 * If the bus has been reset on resume, set the alternate setting to 0. 2128 * This should be the default value, but some devices crash or otherwise 2129 * misbehave if they don't receive a SET_INTERFACE request before any 2130 * other video control request. 2131 */ 2132 if (reset) 2133 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2134 2135 stream->frozen = 0; 2136 2137 uvc_video_clock_reset(&stream->clock); 2138 2139 if (!uvc_queue_streaming(&stream->queue)) 2140 return 0; 2141 2142 ret = uvc_commit_video(stream, &stream->ctrl); 2143 if (ret < 0) 2144 return ret; 2145 2146 return uvc_video_start_transfer(stream, GFP_NOIO); 2147 } 2148 2149 /* ------------------------------------------------------------------------ 2150 * Video device 2151 */ 2152 2153 /* 2154 * Initialize the UVC video device by switching to alternate setting 0 and 2155 * retrieve the default format. 2156 * 2157 * Some cameras (namely the Fuji Finepix) set the format and frame 2158 * indexes to zero. The UVC standard doesn't clearly make this a spec 2159 * violation, so try to silently fix the values if possible. 2160 * 2161 * This function is called before registering the device with V4L. 2162 */ 2163 int uvc_video_init(struct uvc_streaming *stream) 2164 { 2165 struct uvc_streaming_control *probe = &stream->ctrl; 2166 const struct uvc_format *format = NULL; 2167 const struct uvc_frame *frame = NULL; 2168 struct uvc_urb *uvc_urb; 2169 unsigned int i; 2170 int ret; 2171 2172 if (stream->nformats == 0) { 2173 dev_info(&stream->intf->dev, 2174 "No supported video formats found.\n"); 2175 return -EINVAL; 2176 } 2177 2178 atomic_set(&stream->active, 0); 2179 2180 /* 2181 * Alternate setting 0 should be the default, yet the XBox Live Vision 2182 * Cam (and possibly other devices) crash or otherwise misbehave if 2183 * they don't receive a SET_INTERFACE request before any other video 2184 * control request. 2185 */ 2186 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2187 2188 /* 2189 * Set the streaming probe control with default streaming parameters 2190 * retrieved from the device. Webcams that don't support GET_DEF 2191 * requests on the probe control will just keep their current streaming 2192 * parameters. 2193 */ 2194 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0) 2195 uvc_set_video_ctrl(stream, probe, 1); 2196 2197 /* 2198 * Initialize the streaming parameters with the probe control current 2199 * value. This makes sure SET_CUR requests on the streaming commit 2200 * control will always use values retrieved from a successful GET_CUR 2201 * request on the probe control, as required by the UVC specification. 2202 */ 2203 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR); 2204 2205 /* 2206 * Elgato Cam Link 4k can be in a stalled state if the resolution of 2207 * the external source has changed while the firmware initializes. 2208 * Once in this state, the device is useless until it receives a 2209 * USB reset. It has even been observed that the stalled state will 2210 * continue even after unplugging the device. 2211 */ 2212 if (ret == -EPROTO && 2213 usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k)) { 2214 dev_err(&stream->intf->dev, "Elgato Cam Link 4K firmware crash detected\n"); 2215 dev_err(&stream->intf->dev, "Resetting the device, unplug and replug to recover\n"); 2216 usb_reset_device(stream->dev->udev); 2217 } 2218 2219 if (ret < 0) 2220 return ret; 2221 2222 /* 2223 * Check if the default format descriptor exists. Use the first 2224 * available format otherwise. 2225 */ 2226 for (i = stream->nformats; i > 0; --i) { 2227 format = &stream->formats[i-1]; 2228 if (format->index == probe->bFormatIndex) 2229 break; 2230 } 2231 2232 if (format->nframes == 0) { 2233 dev_info(&stream->intf->dev, 2234 "No frame descriptor found for the default format.\n"); 2235 return -EINVAL; 2236 } 2237 2238 /* 2239 * Zero bFrameIndex might be correct. Stream-based formats (including 2240 * MPEG-2 TS and DV) do not support frames but have a dummy frame 2241 * descriptor with bFrameIndex set to zero. If the default frame 2242 * descriptor is not found, use the first available frame. 2243 */ 2244 for (i = format->nframes; i > 0; --i) { 2245 frame = &format->frames[i-1]; 2246 if (frame->bFrameIndex == probe->bFrameIndex) 2247 break; 2248 } 2249 2250 probe->bFormatIndex = format->index; 2251 probe->bFrameIndex = frame->bFrameIndex; 2252 2253 stream->def_format = format; 2254 stream->cur_format = format; 2255 stream->cur_frame = frame; 2256 2257 /* Select the video decoding function */ 2258 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) { 2259 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT) 2260 stream->decode = uvc_video_decode_isight; 2261 else if (stream->intf->num_altsetting > 1) 2262 stream->decode = uvc_video_decode_isoc; 2263 else 2264 stream->decode = uvc_video_decode_bulk; 2265 } else { 2266 if (stream->intf->num_altsetting == 1) 2267 stream->decode = uvc_video_encode_bulk; 2268 else { 2269 dev_info(&stream->intf->dev, 2270 "Isochronous endpoints are not supported for video output devices.\n"); 2271 return -EINVAL; 2272 } 2273 } 2274 2275 /* Prepare asynchronous work items. */ 2276 for_each_uvc_urb(uvc_urb, stream) 2277 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work); 2278 2279 return 0; 2280 } 2281 2282 int uvc_video_start_streaming(struct uvc_streaming *stream) 2283 { 2284 int ret; 2285 2286 ret = uvc_video_clock_init(&stream->clock); 2287 if (ret < 0) 2288 return ret; 2289 2290 /* Commit the streaming parameters. */ 2291 ret = uvc_commit_video(stream, &stream->ctrl); 2292 if (ret < 0) 2293 goto error_commit; 2294 2295 ret = uvc_video_start_transfer(stream, GFP_KERNEL); 2296 if (ret < 0) 2297 goto error_video; 2298 2299 return 0; 2300 2301 error_video: 2302 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2303 error_commit: 2304 uvc_video_clock_cleanup(&stream->clock); 2305 2306 return ret; 2307 } 2308 2309 void uvc_video_stop_streaming(struct uvc_streaming *stream) 2310 { 2311 uvc_video_stop_transfer(stream, 1); 2312 2313 if (stream->intf->num_altsetting > 1) { 2314 usb_set_interface(stream->dev->udev, stream->intfnum, 0); 2315 } else { 2316 /* 2317 * UVC doesn't specify how to inform a bulk-based device 2318 * when the video stream is stopped. Windows sends a 2319 * CLEAR_FEATURE(HALT) request to the video streaming 2320 * bulk endpoint, mimic the same behaviour. 2321 */ 2322 unsigned int epnum = stream->header.bEndpointAddress 2323 & USB_ENDPOINT_NUMBER_MASK; 2324 unsigned int dir = stream->header.bEndpointAddress 2325 & USB_ENDPOINT_DIR_MASK; 2326 unsigned int pipe; 2327 2328 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir; 2329 usb_clear_halt(stream->dev->udev, pipe); 2330 } 2331 2332 uvc_video_clock_cleanup(&stream->clock); 2333 } 2334