xref: /linux/drivers/media/usb/uvc/uvc_video.c (revision 50f2944009a25bb39a09f2f7bab64a73ce928bef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      uvc_video.c  --  USB Video Class driver - Video handling
4  *
5  *      Copyright (C) 2005-2010
6  *          Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  */
8 
9 #include <linux/dma-mapping.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/usb.h>
16 #include <linux/usb/hcd.h>
17 #include <linux/videodev2.h>
18 #include <linux/vmalloc.h>
19 #include <linux/wait.h>
20 #include <linux/atomic.h>
21 #include <asm/unaligned.h>
22 
23 #include <media/v4l2-common.h>
24 
25 #include "uvcvideo.h"
26 
27 /* ------------------------------------------------------------------------
28  * UVC Controls
29  */
30 
31 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
32 			u8 intfnum, u8 cs, void *data, u16 size,
33 			int timeout)
34 {
35 	u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
36 	unsigned int pipe;
37 
38 	pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
39 			      : usb_sndctrlpipe(dev->udev, 0);
40 	type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
41 
42 	return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
43 			unit << 8 | intfnum, data, size, timeout);
44 }
45 
46 static const char *uvc_query_name(u8 query)
47 {
48 	switch (query) {
49 	case UVC_SET_CUR:
50 		return "SET_CUR";
51 	case UVC_GET_CUR:
52 		return "GET_CUR";
53 	case UVC_GET_MIN:
54 		return "GET_MIN";
55 	case UVC_GET_MAX:
56 		return "GET_MAX";
57 	case UVC_GET_RES:
58 		return "GET_RES";
59 	case UVC_GET_LEN:
60 		return "GET_LEN";
61 	case UVC_GET_INFO:
62 		return "GET_INFO";
63 	case UVC_GET_DEF:
64 		return "GET_DEF";
65 	default:
66 		return "<invalid>";
67 	}
68 }
69 
70 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
71 			u8 intfnum, u8 cs, void *data, u16 size)
72 {
73 	int ret;
74 	u8 error;
75 	u8 tmp;
76 
77 	ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
78 				UVC_CTRL_CONTROL_TIMEOUT);
79 	if (likely(ret == size))
80 		return 0;
81 
82 	dev_err(&dev->udev->dev,
83 		"Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
84 		uvc_query_name(query), cs, unit, ret, size);
85 
86 	if (ret != -EPIPE)
87 		return ret;
88 
89 	tmp = *(u8 *)data;
90 
91 	ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum,
92 			       UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1,
93 			       UVC_CTRL_CONTROL_TIMEOUT);
94 
95 	error = *(u8 *)data;
96 	*(u8 *)data = tmp;
97 
98 	if (ret != 1)
99 		return ret < 0 ? ret : -EPIPE;
100 
101 	uvc_dbg(dev, CONTROL, "Control error %u\n", error);
102 
103 	switch (error) {
104 	case 0:
105 		/* Cannot happen - we received a STALL */
106 		return -EPIPE;
107 	case 1: /* Not ready */
108 		return -EBUSY;
109 	case 2: /* Wrong state */
110 		return -EILSEQ;
111 	case 3: /* Power */
112 		return -EREMOTE;
113 	case 4: /* Out of range */
114 		return -ERANGE;
115 	case 5: /* Invalid unit */
116 	case 6: /* Invalid control */
117 	case 7: /* Invalid Request */
118 		/*
119 		 * The firmware has not properly implemented
120 		 * the control or there has been a HW error.
121 		 */
122 		return -EIO;
123 	case 8: /* Invalid value within range */
124 		return -EINVAL;
125 	default: /* reserved or unknown */
126 		break;
127 	}
128 
129 	return -EPIPE;
130 }
131 
132 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
133 	struct uvc_streaming_control *ctrl)
134 {
135 	static const struct usb_device_id elgato_cam_link_4k = {
136 		USB_DEVICE(0x0fd9, 0x0066)
137 	};
138 	struct uvc_format *format = NULL;
139 	struct uvc_frame *frame = NULL;
140 	unsigned int i;
141 
142 	/*
143 	 * The response of the Elgato Cam Link 4K is incorrect: The second byte
144 	 * contains bFormatIndex (instead of being the second byte of bmHint).
145 	 * The first byte is always zero. The third byte is always 1.
146 	 *
147 	 * The UVC 1.5 class specification defines the first five bits in the
148 	 * bmHint bitfield. The remaining bits are reserved and should be zero.
149 	 * Therefore a valid bmHint will be less than 32.
150 	 *
151 	 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
152 	 * MCU: 20.02.19, FPGA: 67
153 	 */
154 	if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) &&
155 	    ctrl->bmHint > 255) {
156 		u8 corrected_format_index = ctrl->bmHint >> 8;
157 
158 		uvc_dbg(stream->dev, VIDEO,
159 			"Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
160 			ctrl->bmHint, ctrl->bFormatIndex,
161 			1, corrected_format_index);
162 		ctrl->bmHint = 1;
163 		ctrl->bFormatIndex = corrected_format_index;
164 	}
165 
166 	for (i = 0; i < stream->nformats; ++i) {
167 		if (stream->format[i].index == ctrl->bFormatIndex) {
168 			format = &stream->format[i];
169 			break;
170 		}
171 	}
172 
173 	if (format == NULL)
174 		return;
175 
176 	for (i = 0; i < format->nframes; ++i) {
177 		if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
178 			frame = &format->frame[i];
179 			break;
180 		}
181 	}
182 
183 	if (frame == NULL)
184 		return;
185 
186 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
187 	     (ctrl->dwMaxVideoFrameSize == 0 &&
188 	      stream->dev->uvc_version < 0x0110))
189 		ctrl->dwMaxVideoFrameSize =
190 			frame->dwMaxVideoFrameBufferSize;
191 
192 	/* The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
193 	 * compute the bandwidth on 16 bits and erroneously sign-extend it to
194 	 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
195 	 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
196 	 */
197 	if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
198 		ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
199 
200 	if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
201 	    stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
202 	    stream->intf->num_altsetting > 1) {
203 		u32 interval;
204 		u32 bandwidth;
205 
206 		interval = (ctrl->dwFrameInterval > 100000)
207 			 ? ctrl->dwFrameInterval
208 			 : frame->dwFrameInterval[0];
209 
210 		/* Compute a bandwidth estimation by multiplying the frame
211 		 * size by the number of video frames per second, divide the
212 		 * result by the number of USB frames (or micro-frames for
213 		 * high-speed devices) per second and add the UVC header size
214 		 * (assumed to be 12 bytes long).
215 		 */
216 		bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
217 		bandwidth *= 10000000 / interval + 1;
218 		bandwidth /= 1000;
219 		if (stream->dev->udev->speed == USB_SPEED_HIGH)
220 			bandwidth /= 8;
221 		bandwidth += 12;
222 
223 		/* The bandwidth estimate is too low for many cameras. Don't use
224 		 * maximum packet sizes lower than 1024 bytes to try and work
225 		 * around the problem. According to measurements done on two
226 		 * different camera models, the value is high enough to get most
227 		 * resolutions working while not preventing two simultaneous
228 		 * VGA streams at 15 fps.
229 		 */
230 		bandwidth = max_t(u32, bandwidth, 1024);
231 
232 		ctrl->dwMaxPayloadTransferSize = bandwidth;
233 	}
234 }
235 
236 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
237 {
238 	/*
239 	 * Return the size of the video probe and commit controls, which depends
240 	 * on the protocol version.
241 	 */
242 	if (stream->dev->uvc_version < 0x0110)
243 		return 26;
244 	else if (stream->dev->uvc_version < 0x0150)
245 		return 34;
246 	else
247 		return 48;
248 }
249 
250 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
251 	struct uvc_streaming_control *ctrl, int probe, u8 query)
252 {
253 	u16 size = uvc_video_ctrl_size(stream);
254 	u8 *data;
255 	int ret;
256 
257 	if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
258 			query == UVC_GET_DEF)
259 		return -EIO;
260 
261 	data = kmalloc(size, GFP_KERNEL);
262 	if (data == NULL)
263 		return -ENOMEM;
264 
265 	ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
266 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
267 		size, uvc_timeout_param);
268 
269 	if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
270 		/* Some cameras, mostly based on Bison Electronics chipsets,
271 		 * answer a GET_MIN or GET_MAX request with the wCompQuality
272 		 * field only.
273 		 */
274 		uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
275 			"compliance - GET_MIN/MAX(PROBE) incorrectly "
276 			"supported. Enabling workaround.\n");
277 		memset(ctrl, 0, sizeof(*ctrl));
278 		ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
279 		ret = 0;
280 		goto out;
281 	} else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
282 		/* Many cameras don't support the GET_DEF request on their
283 		 * video probe control. Warn once and return, the caller will
284 		 * fall back to GET_CUR.
285 		 */
286 		uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
287 			"compliance - GET_DEF(PROBE) not supported. "
288 			"Enabling workaround.\n");
289 		ret = -EIO;
290 		goto out;
291 	} else if (ret != size) {
292 		dev_err(&stream->intf->dev,
293 			"Failed to query (%u) UVC %s control : %d (exp. %u).\n",
294 			query, probe ? "probe" : "commit", ret, size);
295 		ret = -EIO;
296 		goto out;
297 	}
298 
299 	ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
300 	ctrl->bFormatIndex = data[2];
301 	ctrl->bFrameIndex = data[3];
302 	ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
303 	ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
304 	ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
305 	ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
306 	ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
307 	ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
308 	ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
309 	ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
310 
311 	if (size >= 34) {
312 		ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
313 		ctrl->bmFramingInfo = data[30];
314 		ctrl->bPreferedVersion = data[31];
315 		ctrl->bMinVersion = data[32];
316 		ctrl->bMaxVersion = data[33];
317 	} else {
318 		ctrl->dwClockFrequency = stream->dev->clock_frequency;
319 		ctrl->bmFramingInfo = 0;
320 		ctrl->bPreferedVersion = 0;
321 		ctrl->bMinVersion = 0;
322 		ctrl->bMaxVersion = 0;
323 	}
324 
325 	/* Some broken devices return null or wrong dwMaxVideoFrameSize and
326 	 * dwMaxPayloadTransferSize fields. Try to get the value from the
327 	 * format and frame descriptors.
328 	 */
329 	uvc_fixup_video_ctrl(stream, ctrl);
330 	ret = 0;
331 
332 out:
333 	kfree(data);
334 	return ret;
335 }
336 
337 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
338 	struct uvc_streaming_control *ctrl, int probe)
339 {
340 	u16 size = uvc_video_ctrl_size(stream);
341 	u8 *data;
342 	int ret;
343 
344 	data = kzalloc(size, GFP_KERNEL);
345 	if (data == NULL)
346 		return -ENOMEM;
347 
348 	*(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
349 	data[2] = ctrl->bFormatIndex;
350 	data[3] = ctrl->bFrameIndex;
351 	*(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
352 	*(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
353 	*(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
354 	*(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
355 	*(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
356 	*(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
357 	put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
358 	put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
359 
360 	if (size >= 34) {
361 		put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
362 		data[30] = ctrl->bmFramingInfo;
363 		data[31] = ctrl->bPreferedVersion;
364 		data[32] = ctrl->bMinVersion;
365 		data[33] = ctrl->bMaxVersion;
366 	}
367 
368 	ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
369 		probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
370 		size, uvc_timeout_param);
371 	if (ret != size) {
372 		dev_err(&stream->intf->dev,
373 			"Failed to set UVC %s control : %d (exp. %u).\n",
374 			probe ? "probe" : "commit", ret, size);
375 		ret = -EIO;
376 	}
377 
378 	kfree(data);
379 	return ret;
380 }
381 
382 int uvc_probe_video(struct uvc_streaming *stream,
383 	struct uvc_streaming_control *probe)
384 {
385 	struct uvc_streaming_control probe_min, probe_max;
386 	unsigned int i;
387 	int ret;
388 
389 	/* Perform probing. The device should adjust the requested values
390 	 * according to its capabilities. However, some devices, namely the
391 	 * first generation UVC Logitech webcams, don't implement the Video
392 	 * Probe control properly, and just return the needed bandwidth. For
393 	 * that reason, if the needed bandwidth exceeds the maximum available
394 	 * bandwidth, try to lower the quality.
395 	 */
396 	ret = uvc_set_video_ctrl(stream, probe, 1);
397 	if (ret < 0)
398 		goto done;
399 
400 	/* Get the minimum and maximum values for compression settings. */
401 	if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
402 		ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
403 		if (ret < 0)
404 			goto done;
405 		ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
406 		if (ret < 0)
407 			goto done;
408 
409 		probe->wCompQuality = probe_max.wCompQuality;
410 	}
411 
412 	for (i = 0; i < 2; ++i) {
413 		ret = uvc_set_video_ctrl(stream, probe, 1);
414 		if (ret < 0)
415 			goto done;
416 		ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
417 		if (ret < 0)
418 			goto done;
419 
420 		if (stream->intf->num_altsetting == 1)
421 			break;
422 
423 		if (probe->dwMaxPayloadTransferSize <= stream->maxpsize)
424 			break;
425 
426 		if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
427 			ret = -ENOSPC;
428 			goto done;
429 		}
430 
431 		/* TODO: negotiate compression parameters */
432 		probe->wKeyFrameRate = probe_min.wKeyFrameRate;
433 		probe->wPFrameRate = probe_min.wPFrameRate;
434 		probe->wCompQuality = probe_max.wCompQuality;
435 		probe->wCompWindowSize = probe_min.wCompWindowSize;
436 	}
437 
438 done:
439 	return ret;
440 }
441 
442 static int uvc_commit_video(struct uvc_streaming *stream,
443 			    struct uvc_streaming_control *probe)
444 {
445 	return uvc_set_video_ctrl(stream, probe, 0);
446 }
447 
448 /* -----------------------------------------------------------------------------
449  * Clocks and timestamps
450  */
451 
452 static inline ktime_t uvc_video_get_time(void)
453 {
454 	if (uvc_clock_param == CLOCK_MONOTONIC)
455 		return ktime_get();
456 	else
457 		return ktime_get_real();
458 }
459 
460 static void
461 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
462 		       const u8 *data, int len)
463 {
464 	struct uvc_clock_sample *sample;
465 	unsigned int header_size;
466 	bool has_pts = false;
467 	bool has_scr = false;
468 	unsigned long flags;
469 	ktime_t time;
470 	u16 host_sof;
471 	u16 dev_sof;
472 
473 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
474 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
475 		header_size = 12;
476 		has_pts = true;
477 		has_scr = true;
478 		break;
479 	case UVC_STREAM_PTS:
480 		header_size = 6;
481 		has_pts = true;
482 		break;
483 	case UVC_STREAM_SCR:
484 		header_size = 8;
485 		has_scr = true;
486 		break;
487 	default:
488 		header_size = 2;
489 		break;
490 	}
491 
492 	/* Check for invalid headers. */
493 	if (len < header_size)
494 		return;
495 
496 	/* Extract the timestamps:
497 	 *
498 	 * - store the frame PTS in the buffer structure
499 	 * - if the SCR field is present, retrieve the host SOF counter and
500 	 *   kernel timestamps and store them with the SCR STC and SOF fields
501 	 *   in the ring buffer
502 	 */
503 	if (has_pts && buf != NULL)
504 		buf->pts = get_unaligned_le32(&data[2]);
505 
506 	if (!has_scr)
507 		return;
508 
509 	/* To limit the amount of data, drop SCRs with an SOF identical to the
510 	 * previous one.
511 	 */
512 	dev_sof = get_unaligned_le16(&data[header_size - 2]);
513 	if (dev_sof == stream->clock.last_sof)
514 		return;
515 
516 	stream->clock.last_sof = dev_sof;
517 
518 	host_sof = usb_get_current_frame_number(stream->dev->udev);
519 	time = uvc_video_get_time();
520 
521 	/* The UVC specification allows device implementations that can't obtain
522 	 * the USB frame number to keep their own frame counters as long as they
523 	 * match the size and frequency of the frame number associated with USB
524 	 * SOF tokens. The SOF values sent by such devices differ from the USB
525 	 * SOF tokens by a fixed offset that needs to be estimated and accounted
526 	 * for to make timestamp recovery as accurate as possible.
527 	 *
528 	 * The offset is estimated the first time a device SOF value is received
529 	 * as the difference between the host and device SOF values. As the two
530 	 * SOF values can differ slightly due to transmission delays, consider
531 	 * that the offset is null if the difference is not higher than 10 ms
532 	 * (negative differences can not happen and are thus considered as an
533 	 * offset). The video commit control wDelay field should be used to
534 	 * compute a dynamic threshold instead of using a fixed 10 ms value, but
535 	 * devices don't report reliable wDelay values.
536 	 *
537 	 * See uvc_video_clock_host_sof() for an explanation regarding why only
538 	 * the 8 LSBs of the delta are kept.
539 	 */
540 	if (stream->clock.sof_offset == (u16)-1) {
541 		u16 delta_sof = (host_sof - dev_sof) & 255;
542 		if (delta_sof >= 10)
543 			stream->clock.sof_offset = delta_sof;
544 		else
545 			stream->clock.sof_offset = 0;
546 	}
547 
548 	dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
549 
550 	spin_lock_irqsave(&stream->clock.lock, flags);
551 
552 	sample = &stream->clock.samples[stream->clock.head];
553 	sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
554 	sample->dev_sof = dev_sof;
555 	sample->host_sof = host_sof;
556 	sample->host_time = time;
557 
558 	/* Update the sliding window head and count. */
559 	stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
560 
561 	if (stream->clock.count < stream->clock.size)
562 		stream->clock.count++;
563 
564 	spin_unlock_irqrestore(&stream->clock.lock, flags);
565 }
566 
567 static void uvc_video_clock_reset(struct uvc_streaming *stream)
568 {
569 	struct uvc_clock *clock = &stream->clock;
570 
571 	clock->head = 0;
572 	clock->count = 0;
573 	clock->last_sof = -1;
574 	clock->sof_offset = -1;
575 }
576 
577 static int uvc_video_clock_init(struct uvc_streaming *stream)
578 {
579 	struct uvc_clock *clock = &stream->clock;
580 
581 	spin_lock_init(&clock->lock);
582 	clock->size = 32;
583 
584 	clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples),
585 				       GFP_KERNEL);
586 	if (clock->samples == NULL)
587 		return -ENOMEM;
588 
589 	uvc_video_clock_reset(stream);
590 
591 	return 0;
592 }
593 
594 static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
595 {
596 	kfree(stream->clock.samples);
597 	stream->clock.samples = NULL;
598 }
599 
600 /*
601  * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
602  *
603  * Host SOF counters reported by usb_get_current_frame_number() usually don't
604  * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
605  * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
606  * controller and its configuration.
607  *
608  * We thus need to recover the SOF value corresponding to the host frame number.
609  * As the device and host frame numbers are sampled in a short interval, the
610  * difference between their values should be equal to a small delta plus an
611  * integer multiple of 256 caused by the host frame number limited precision.
612  *
613  * To obtain the recovered host SOF value, compute the small delta by masking
614  * the high bits of the host frame counter and device SOF difference and add it
615  * to the device SOF value.
616  */
617 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
618 {
619 	/* The delta value can be negative. */
620 	s8 delta_sof;
621 
622 	delta_sof = (sample->host_sof - sample->dev_sof) & 255;
623 
624 	return (sample->dev_sof + delta_sof) & 2047;
625 }
626 
627 /*
628  * uvc_video_clock_update - Update the buffer timestamp
629  *
630  * This function converts the buffer PTS timestamp to the host clock domain by
631  * going through the USB SOF clock domain and stores the result in the V4L2
632  * buffer timestamp field.
633  *
634  * The relationship between the device clock and the host clock isn't known.
635  * However, the device and the host share the common USB SOF clock which can be
636  * used to recover that relationship.
637  *
638  * The relationship between the device clock and the USB SOF clock is considered
639  * to be linear over the clock samples sliding window and is given by
640  *
641  * SOF = m * PTS + p
642  *
643  * Several methods to compute the slope (m) and intercept (p) can be used. As
644  * the clock drift should be small compared to the sliding window size, we
645  * assume that the line that goes through the points at both ends of the window
646  * is a good approximation. Naming those points P1 and P2, we get
647  *
648  * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
649  *     + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
650  *
651  * or
652  *
653  * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)   (1)
654  *
655  * to avoid losing precision in the division. Similarly, the host timestamp is
656  * computed with
657  *
658  * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1)	     (2)
659  *
660  * SOF values are coded on 11 bits by USB. We extend their precision with 16
661  * decimal bits, leading to a 11.16 coding.
662  *
663  * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
664  * be normalized using the nominal device clock frequency reported through the
665  * UVC descriptors.
666  *
667  * Both the PTS/STC and SOF counters roll over, after a fixed but device
668  * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
669  * sliding window size is smaller than the rollover period, differences computed
670  * on unsigned integers will produce the correct result. However, the p term in
671  * the linear relations will be miscomputed.
672  *
673  * To fix the issue, we subtract a constant from the PTS and STC values to bring
674  * PTS to half the 32 bit STC range. The sliding window STC values then fit into
675  * the 32 bit range without any rollover.
676  *
677  * Similarly, we add 2048 to the device SOF values to make sure that the SOF
678  * computed by (1) will never be smaller than 0. This offset is then compensated
679  * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
680  * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
681  * lower than 4096, and the host SOF counters can have rolled over to 2048. This
682  * case is handled by subtracting 2048 from the SOF value if it exceeds the host
683  * SOF value at the end of the sliding window.
684  *
685  * Finally we subtract a constant from the host timestamps to bring the first
686  * timestamp of the sliding window to 1s.
687  */
688 void uvc_video_clock_update(struct uvc_streaming *stream,
689 			    struct vb2_v4l2_buffer *vbuf,
690 			    struct uvc_buffer *buf)
691 {
692 	struct uvc_clock *clock = &stream->clock;
693 	struct uvc_clock_sample *first;
694 	struct uvc_clock_sample *last;
695 	unsigned long flags;
696 	u64 timestamp;
697 	u32 delta_stc;
698 	u32 y1, y2;
699 	u32 x1, x2;
700 	u32 mean;
701 	u32 sof;
702 	u64 y;
703 
704 	if (!uvc_hw_timestamps_param)
705 		return;
706 
707 	/*
708 	 * We will get called from __vb2_queue_cancel() if there are buffers
709 	 * done but not dequeued by the user, but the sample array has already
710 	 * been released at that time. Just bail out in that case.
711 	 */
712 	if (!clock->samples)
713 		return;
714 
715 	spin_lock_irqsave(&clock->lock, flags);
716 
717 	if (clock->count < clock->size)
718 		goto done;
719 
720 	first = &clock->samples[clock->head];
721 	last = &clock->samples[(clock->head - 1) % clock->size];
722 
723 	/* First step, PTS to SOF conversion. */
724 	delta_stc = buf->pts - (1UL << 31);
725 	x1 = first->dev_stc - delta_stc;
726 	x2 = last->dev_stc - delta_stc;
727 	if (x1 == x2)
728 		goto done;
729 
730 	y1 = (first->dev_sof + 2048) << 16;
731 	y2 = (last->dev_sof + 2048) << 16;
732 	if (y2 < y1)
733 		y2 += 2048 << 16;
734 
735 	y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
736 	  - (u64)y2 * (u64)x1;
737 	y = div_u64(y, x2 - x1);
738 
739 	sof = y;
740 
741 	uvc_dbg(stream->dev, CLOCK,
742 		"%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
743 		stream->dev->name, buf->pts,
744 		y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
745 		sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
746 		x1, x2, y1, y2, clock->sof_offset);
747 
748 	/* Second step, SOF to host clock conversion. */
749 	x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
750 	x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
751 	if (x2 < x1)
752 		x2 += 2048 << 16;
753 	if (x1 == x2)
754 		goto done;
755 
756 	y1 = NSEC_PER_SEC;
757 	y2 = (u32)ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
758 
759 	/* Interpolated and host SOF timestamps can wrap around at slightly
760 	 * different times. Handle this by adding or removing 2048 to or from
761 	 * the computed SOF value to keep it close to the SOF samples mean
762 	 * value.
763 	 */
764 	mean = (x1 + x2) / 2;
765 	if (mean - (1024 << 16) > sof)
766 		sof += 2048 << 16;
767 	else if (sof > mean + (1024 << 16))
768 		sof -= 2048 << 16;
769 
770 	y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
771 	  - (u64)y2 * (u64)x1;
772 	y = div_u64(y, x2 - x1);
773 
774 	timestamp = ktime_to_ns(first->host_time) + y - y1;
775 
776 	uvc_dbg(stream->dev, CLOCK,
777 		"%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
778 		stream->dev->name,
779 		sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
780 		y, timestamp, vbuf->vb2_buf.timestamp,
781 		x1, first->host_sof, first->dev_sof,
782 		x2, last->host_sof, last->dev_sof, y1, y2);
783 
784 	/* Update the V4L2 buffer. */
785 	vbuf->vb2_buf.timestamp = timestamp;
786 
787 done:
788 	spin_unlock_irqrestore(&clock->lock, flags);
789 }
790 
791 /* ------------------------------------------------------------------------
792  * Stream statistics
793  */
794 
795 static void uvc_video_stats_decode(struct uvc_streaming *stream,
796 		const u8 *data, int len)
797 {
798 	unsigned int header_size;
799 	bool has_pts = false;
800 	bool has_scr = false;
801 	u16 scr_sof;
802 	u32 scr_stc;
803 	u32 pts;
804 
805 	if (stream->stats.stream.nb_frames == 0 &&
806 	    stream->stats.frame.nb_packets == 0)
807 		stream->stats.stream.start_ts = ktime_get();
808 
809 	switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
810 	case UVC_STREAM_PTS | UVC_STREAM_SCR:
811 		header_size = 12;
812 		has_pts = true;
813 		has_scr = true;
814 		break;
815 	case UVC_STREAM_PTS:
816 		header_size = 6;
817 		has_pts = true;
818 		break;
819 	case UVC_STREAM_SCR:
820 		header_size = 8;
821 		has_scr = true;
822 		break;
823 	default:
824 		header_size = 2;
825 		break;
826 	}
827 
828 	/* Check for invalid headers. */
829 	if (len < header_size || data[0] < header_size) {
830 		stream->stats.frame.nb_invalid++;
831 		return;
832 	}
833 
834 	/* Extract the timestamps. */
835 	if (has_pts)
836 		pts = get_unaligned_le32(&data[2]);
837 
838 	if (has_scr) {
839 		scr_stc = get_unaligned_le32(&data[header_size - 6]);
840 		scr_sof = get_unaligned_le16(&data[header_size - 2]);
841 	}
842 
843 	/* Is PTS constant through the whole frame ? */
844 	if (has_pts && stream->stats.frame.nb_pts) {
845 		if (stream->stats.frame.pts != pts) {
846 			stream->stats.frame.nb_pts_diffs++;
847 			stream->stats.frame.last_pts_diff =
848 				stream->stats.frame.nb_packets;
849 		}
850 	}
851 
852 	if (has_pts) {
853 		stream->stats.frame.nb_pts++;
854 		stream->stats.frame.pts = pts;
855 	}
856 
857 	/* Do all frames have a PTS in their first non-empty packet, or before
858 	 * their first empty packet ?
859 	 */
860 	if (stream->stats.frame.size == 0) {
861 		if (len > header_size)
862 			stream->stats.frame.has_initial_pts = has_pts;
863 		if (len == header_size && has_pts)
864 			stream->stats.frame.has_early_pts = true;
865 	}
866 
867 	/* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
868 	if (has_scr && stream->stats.frame.nb_scr) {
869 		if (stream->stats.frame.scr_stc != scr_stc)
870 			stream->stats.frame.nb_scr_diffs++;
871 	}
872 
873 	if (has_scr) {
874 		/* Expand the SOF counter to 32 bits and store its value. */
875 		if (stream->stats.stream.nb_frames > 0 ||
876 		    stream->stats.frame.nb_scr > 0)
877 			stream->stats.stream.scr_sof_count +=
878 				(scr_sof - stream->stats.stream.scr_sof) % 2048;
879 		stream->stats.stream.scr_sof = scr_sof;
880 
881 		stream->stats.frame.nb_scr++;
882 		stream->stats.frame.scr_stc = scr_stc;
883 		stream->stats.frame.scr_sof = scr_sof;
884 
885 		if (scr_sof < stream->stats.stream.min_sof)
886 			stream->stats.stream.min_sof = scr_sof;
887 		if (scr_sof > stream->stats.stream.max_sof)
888 			stream->stats.stream.max_sof = scr_sof;
889 	}
890 
891 	/* Record the first non-empty packet number. */
892 	if (stream->stats.frame.size == 0 && len > header_size)
893 		stream->stats.frame.first_data = stream->stats.frame.nb_packets;
894 
895 	/* Update the frame size. */
896 	stream->stats.frame.size += len - header_size;
897 
898 	/* Update the packets counters. */
899 	stream->stats.frame.nb_packets++;
900 	if (len <= header_size)
901 		stream->stats.frame.nb_empty++;
902 
903 	if (data[1] & UVC_STREAM_ERR)
904 		stream->stats.frame.nb_errors++;
905 }
906 
907 static void uvc_video_stats_update(struct uvc_streaming *stream)
908 {
909 	struct uvc_stats_frame *frame = &stream->stats.frame;
910 
911 	uvc_dbg(stream->dev, STATS,
912 		"frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n",
913 		stream->sequence, frame->first_data,
914 		frame->nb_packets - frame->nb_empty, frame->nb_packets,
915 		frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
916 		frame->has_early_pts ? "" : "!",
917 		frame->has_initial_pts ? "" : "!",
918 		frame->nb_scr_diffs, frame->nb_scr,
919 		frame->pts, frame->scr_stc, frame->scr_sof);
920 
921 	stream->stats.stream.nb_frames++;
922 	stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
923 	stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
924 	stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
925 	stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
926 
927 	if (frame->has_early_pts)
928 		stream->stats.stream.nb_pts_early++;
929 	if (frame->has_initial_pts)
930 		stream->stats.stream.nb_pts_initial++;
931 	if (frame->last_pts_diff <= frame->first_data)
932 		stream->stats.stream.nb_pts_constant++;
933 	if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
934 		stream->stats.stream.nb_scr_count_ok++;
935 	if (frame->nb_scr_diffs + 1 == frame->nb_scr)
936 		stream->stats.stream.nb_scr_diffs_ok++;
937 
938 	memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
939 }
940 
941 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
942 			    size_t size)
943 {
944 	unsigned int scr_sof_freq;
945 	unsigned int duration;
946 	size_t count = 0;
947 
948 	/* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
949 	 * frequency this will not overflow before more than 1h.
950 	 */
951 	duration = ktime_ms_delta(stream->stats.stream.stop_ts,
952 				  stream->stats.stream.start_ts);
953 	if (duration != 0)
954 		scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
955 			     / duration;
956 	else
957 		scr_sof_freq = 0;
958 
959 	count += scnprintf(buf + count, size - count,
960 			   "frames:  %u\npackets: %u\nempty:   %u\n"
961 			   "errors:  %u\ninvalid: %u\n",
962 			   stream->stats.stream.nb_frames,
963 			   stream->stats.stream.nb_packets,
964 			   stream->stats.stream.nb_empty,
965 			   stream->stats.stream.nb_errors,
966 			   stream->stats.stream.nb_invalid);
967 	count += scnprintf(buf + count, size - count,
968 			   "pts: %u early, %u initial, %u ok\n",
969 			   stream->stats.stream.nb_pts_early,
970 			   stream->stats.stream.nb_pts_initial,
971 			   stream->stats.stream.nb_pts_constant);
972 	count += scnprintf(buf + count, size - count,
973 			   "scr: %u count ok, %u diff ok\n",
974 			   stream->stats.stream.nb_scr_count_ok,
975 			   stream->stats.stream.nb_scr_diffs_ok);
976 	count += scnprintf(buf + count, size - count,
977 			   "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
978 			   stream->stats.stream.min_sof,
979 			   stream->stats.stream.max_sof,
980 			   scr_sof_freq / 1000, scr_sof_freq % 1000);
981 
982 	return count;
983 }
984 
985 static void uvc_video_stats_start(struct uvc_streaming *stream)
986 {
987 	memset(&stream->stats, 0, sizeof(stream->stats));
988 	stream->stats.stream.min_sof = 2048;
989 }
990 
991 static void uvc_video_stats_stop(struct uvc_streaming *stream)
992 {
993 	stream->stats.stream.stop_ts = ktime_get();
994 }
995 
996 /* ------------------------------------------------------------------------
997  * Video codecs
998  */
999 
1000 /* Video payload decoding is handled by uvc_video_decode_start(),
1001  * uvc_video_decode_data() and uvc_video_decode_end().
1002  *
1003  * uvc_video_decode_start is called with URB data at the start of a bulk or
1004  * isochronous payload. It processes header data and returns the header size
1005  * in bytes if successful. If an error occurs, it returns a negative error
1006  * code. The following error codes have special meanings.
1007  *
1008  * - EAGAIN informs the caller that the current video buffer should be marked
1009  *   as done, and that the function should be called again with the same data
1010  *   and a new video buffer. This is used when end of frame conditions can be
1011  *   reliably detected at the beginning of the next frame only.
1012  *
1013  * If an error other than -EAGAIN is returned, the caller will drop the current
1014  * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
1015  * made until the next payload. -ENODATA can be used to drop the current
1016  * payload if no other error code is appropriate.
1017  *
1018  * uvc_video_decode_data is called for every URB with URB data. It copies the
1019  * data to the video buffer.
1020  *
1021  * uvc_video_decode_end is called with header data at the end of a bulk or
1022  * isochronous payload. It performs any additional header data processing and
1023  * returns 0 or a negative error code if an error occurred. As header data have
1024  * already been processed by uvc_video_decode_start, this functions isn't
1025  * required to perform sanity checks a second time.
1026  *
1027  * For isochronous transfers where a payload is always transferred in a single
1028  * URB, the three functions will be called in a row.
1029  *
1030  * To let the decoder process header data and update its internal state even
1031  * when no video buffer is available, uvc_video_decode_start must be prepared
1032  * to be called with a NULL buf parameter. uvc_video_decode_data and
1033  * uvc_video_decode_end will never be called with a NULL buffer.
1034  */
1035 static int uvc_video_decode_start(struct uvc_streaming *stream,
1036 		struct uvc_buffer *buf, const u8 *data, int len)
1037 {
1038 	u8 fid;
1039 
1040 	/* Sanity checks:
1041 	 * - packet must be at least 2 bytes long
1042 	 * - bHeaderLength value must be at least 2 bytes (see above)
1043 	 * - bHeaderLength value can't be larger than the packet size.
1044 	 */
1045 	if (len < 2 || data[0] < 2 || data[0] > len) {
1046 		stream->stats.frame.nb_invalid++;
1047 		return -EINVAL;
1048 	}
1049 
1050 	fid = data[1] & UVC_STREAM_FID;
1051 
1052 	/* Increase the sequence number regardless of any buffer states, so
1053 	 * that discontinuous sequence numbers always indicate lost frames.
1054 	 */
1055 	if (stream->last_fid != fid) {
1056 		stream->sequence++;
1057 		if (stream->sequence)
1058 			uvc_video_stats_update(stream);
1059 	}
1060 
1061 	uvc_video_clock_decode(stream, buf, data, len);
1062 	uvc_video_stats_decode(stream, data, len);
1063 
1064 	/* Store the payload FID bit and return immediately when the buffer is
1065 	 * NULL.
1066 	 */
1067 	if (buf == NULL) {
1068 		stream->last_fid = fid;
1069 		return -ENODATA;
1070 	}
1071 
1072 	/* Mark the buffer as bad if the error bit is set. */
1073 	if (data[1] & UVC_STREAM_ERR) {
1074 		uvc_dbg(stream->dev, FRAME,
1075 			"Marking buffer as bad (error bit set)\n");
1076 		buf->error = 1;
1077 	}
1078 
1079 	/* Synchronize to the input stream by waiting for the FID bit to be
1080 	 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
1081 	 * stream->last_fid is initialized to -1, so the first isochronous
1082 	 * frame will always be in sync.
1083 	 *
1084 	 * If the device doesn't toggle the FID bit, invert stream->last_fid
1085 	 * when the EOF bit is set to force synchronisation on the next packet.
1086 	 */
1087 	if (buf->state != UVC_BUF_STATE_ACTIVE) {
1088 		if (fid == stream->last_fid) {
1089 			uvc_dbg(stream->dev, FRAME,
1090 				"Dropping payload (out of sync)\n");
1091 			if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1092 			    (data[1] & UVC_STREAM_EOF))
1093 				stream->last_fid ^= UVC_STREAM_FID;
1094 			return -ENODATA;
1095 		}
1096 
1097 		buf->buf.field = V4L2_FIELD_NONE;
1098 		buf->buf.sequence = stream->sequence;
1099 		buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time());
1100 
1101 		/* TODO: Handle PTS and SCR. */
1102 		buf->state = UVC_BUF_STATE_ACTIVE;
1103 	}
1104 
1105 	/* Mark the buffer as done if we're at the beginning of a new frame.
1106 	 * End of frame detection is better implemented by checking the EOF
1107 	 * bit (FID bit toggling is delayed by one frame compared to the EOF
1108 	 * bit), but some devices don't set the bit at end of frame (and the
1109 	 * last payload can be lost anyway). We thus must check if the FID has
1110 	 * been toggled.
1111 	 *
1112 	 * stream->last_fid is initialized to -1, so the first isochronous
1113 	 * frame will never trigger an end of frame detection.
1114 	 *
1115 	 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1116 	 * as it doesn't make sense to return an empty buffer. This also
1117 	 * avoids detecting end of frame conditions at FID toggling if the
1118 	 * previous payload had the EOF bit set.
1119 	 */
1120 	if (fid != stream->last_fid && buf->bytesused != 0) {
1121 		uvc_dbg(stream->dev, FRAME,
1122 			"Frame complete (FID bit toggled)\n");
1123 		buf->state = UVC_BUF_STATE_READY;
1124 		return -EAGAIN;
1125 	}
1126 
1127 	stream->last_fid = fid;
1128 
1129 	return data[0];
1130 }
1131 
1132 static inline enum dma_data_direction uvc_stream_dir(
1133 				struct uvc_streaming *stream)
1134 {
1135 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1136 		return DMA_FROM_DEVICE;
1137 	else
1138 		return DMA_TO_DEVICE;
1139 }
1140 
1141 static inline struct device *uvc_stream_to_dmadev(struct uvc_streaming *stream)
1142 {
1143 	return bus_to_hcd(stream->dev->udev->bus)->self.sysdev;
1144 }
1145 
1146 static int uvc_submit_urb(struct uvc_urb *uvc_urb, gfp_t mem_flags)
1147 {
1148 	/* Sync DMA. */
1149 	dma_sync_sgtable_for_device(uvc_stream_to_dmadev(uvc_urb->stream),
1150 				    uvc_urb->sgt,
1151 				    uvc_stream_dir(uvc_urb->stream));
1152 	return usb_submit_urb(uvc_urb->urb, mem_flags);
1153 }
1154 
1155 /*
1156  * uvc_video_decode_data_work: Asynchronous memcpy processing
1157  *
1158  * Copy URB data to video buffers in process context, releasing buffer
1159  * references and requeuing the URB when done.
1160  */
1161 static void uvc_video_copy_data_work(struct work_struct *work)
1162 {
1163 	struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work);
1164 	unsigned int i;
1165 	int ret;
1166 
1167 	for (i = 0; i < uvc_urb->async_operations; i++) {
1168 		struct uvc_copy_op *op = &uvc_urb->copy_operations[i];
1169 
1170 		memcpy(op->dst, op->src, op->len);
1171 
1172 		/* Release reference taken on this buffer. */
1173 		uvc_queue_buffer_release(op->buf);
1174 	}
1175 
1176 	ret = uvc_submit_urb(uvc_urb, GFP_KERNEL);
1177 	if (ret < 0)
1178 		dev_err(&uvc_urb->stream->intf->dev,
1179 			"Failed to resubmit video URB (%d).\n", ret);
1180 }
1181 
1182 static void uvc_video_decode_data(struct uvc_urb *uvc_urb,
1183 		struct uvc_buffer *buf, const u8 *data, int len)
1184 {
1185 	unsigned int active_op = uvc_urb->async_operations;
1186 	struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op];
1187 	unsigned int maxlen;
1188 
1189 	if (len <= 0)
1190 		return;
1191 
1192 	maxlen = buf->length - buf->bytesused;
1193 
1194 	/* Take a buffer reference for async work. */
1195 	kref_get(&buf->ref);
1196 
1197 	op->buf = buf;
1198 	op->src = data;
1199 	op->dst = buf->mem + buf->bytesused;
1200 	op->len = min_t(unsigned int, len, maxlen);
1201 
1202 	buf->bytesused += op->len;
1203 
1204 	/* Complete the current frame if the buffer size was exceeded. */
1205 	if (len > maxlen) {
1206 		uvc_dbg(uvc_urb->stream->dev, FRAME,
1207 			"Frame complete (overflow)\n");
1208 		buf->error = 1;
1209 		buf->state = UVC_BUF_STATE_READY;
1210 	}
1211 
1212 	uvc_urb->async_operations++;
1213 }
1214 
1215 static void uvc_video_decode_end(struct uvc_streaming *stream,
1216 		struct uvc_buffer *buf, const u8 *data, int len)
1217 {
1218 	/* Mark the buffer as done if the EOF marker is set. */
1219 	if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1220 		uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n");
1221 		if (data[0] == len)
1222 			uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n");
1223 		buf->state = UVC_BUF_STATE_READY;
1224 		if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1225 			stream->last_fid ^= UVC_STREAM_FID;
1226 	}
1227 }
1228 
1229 /* Video payload encoding is handled by uvc_video_encode_header() and
1230  * uvc_video_encode_data(). Only bulk transfers are currently supported.
1231  *
1232  * uvc_video_encode_header is called at the start of a payload. It adds header
1233  * data to the transfer buffer and returns the header size. As the only known
1234  * UVC output device transfers a whole frame in a single payload, the EOF bit
1235  * is always set in the header.
1236  *
1237  * uvc_video_encode_data is called for every URB and copies the data from the
1238  * video buffer to the transfer buffer.
1239  */
1240 static int uvc_video_encode_header(struct uvc_streaming *stream,
1241 		struct uvc_buffer *buf, u8 *data, int len)
1242 {
1243 	data[0] = 2;	/* Header length */
1244 	data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1245 		| (stream->last_fid & UVC_STREAM_FID);
1246 	return 2;
1247 }
1248 
1249 static int uvc_video_encode_data(struct uvc_streaming *stream,
1250 		struct uvc_buffer *buf, u8 *data, int len)
1251 {
1252 	struct uvc_video_queue *queue = &stream->queue;
1253 	unsigned int nbytes;
1254 	void *mem;
1255 
1256 	/* Copy video data to the URB buffer. */
1257 	mem = buf->mem + queue->buf_used;
1258 	nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1259 	nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1260 			nbytes);
1261 	memcpy(data, mem, nbytes);
1262 
1263 	queue->buf_used += nbytes;
1264 
1265 	return nbytes;
1266 }
1267 
1268 /* ------------------------------------------------------------------------
1269  * Metadata
1270  */
1271 
1272 /*
1273  * Additionally to the payload headers we also want to provide the user with USB
1274  * Frame Numbers and system time values. The resulting buffer is thus composed
1275  * of blocks, containing a 64-bit timestamp in  nanoseconds, a 16-bit USB Frame
1276  * Number, and a copy of the payload header.
1277  *
1278  * Ideally we want to capture all payload headers for each frame. However, their
1279  * number is unknown and unbound. We thus drop headers that contain no vendor
1280  * data and that either contain no SCR value or an SCR value identical to the
1281  * previous header.
1282  */
1283 static void uvc_video_decode_meta(struct uvc_streaming *stream,
1284 				  struct uvc_buffer *meta_buf,
1285 				  const u8 *mem, unsigned int length)
1286 {
1287 	struct uvc_meta_buf *meta;
1288 	size_t len_std = 2;
1289 	bool has_pts, has_scr;
1290 	unsigned long flags;
1291 	unsigned int sof;
1292 	ktime_t time;
1293 	const u8 *scr;
1294 
1295 	if (!meta_buf || length == 2)
1296 		return;
1297 
1298 	if (meta_buf->length - meta_buf->bytesused <
1299 	    length + sizeof(meta->ns) + sizeof(meta->sof)) {
1300 		meta_buf->error = 1;
1301 		return;
1302 	}
1303 
1304 	has_pts = mem[1] & UVC_STREAM_PTS;
1305 	has_scr = mem[1] & UVC_STREAM_SCR;
1306 
1307 	if (has_pts) {
1308 		len_std += 4;
1309 		scr = mem + 6;
1310 	} else {
1311 		scr = mem + 2;
1312 	}
1313 
1314 	if (has_scr)
1315 		len_std += 6;
1316 
1317 	if (stream->meta.format == V4L2_META_FMT_UVC)
1318 		length = len_std;
1319 
1320 	if (length == len_std && (!has_scr ||
1321 				  !memcmp(scr, stream->clock.last_scr, 6)))
1322 		return;
1323 
1324 	meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
1325 	local_irq_save(flags);
1326 	time = uvc_video_get_time();
1327 	sof = usb_get_current_frame_number(stream->dev->udev);
1328 	local_irq_restore(flags);
1329 	put_unaligned(ktime_to_ns(time), &meta->ns);
1330 	put_unaligned(sof, &meta->sof);
1331 
1332 	if (has_scr)
1333 		memcpy(stream->clock.last_scr, scr, 6);
1334 
1335 	memcpy(&meta->length, mem, length);
1336 	meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
1337 
1338 	uvc_dbg(stream->dev, FRAME,
1339 		"%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1340 		__func__, ktime_to_ns(time), meta->sof, meta->length,
1341 		meta->flags,
1342 		has_pts ? *(u32 *)meta->buf : 0,
1343 		has_scr ? *(u32 *)scr : 0,
1344 		has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
1345 }
1346 
1347 /* ------------------------------------------------------------------------
1348  * URB handling
1349  */
1350 
1351 /*
1352  * Set error flag for incomplete buffer.
1353  */
1354 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1355 				      struct uvc_buffer *buf)
1356 {
1357 	if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1358 	    !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1359 		buf->error = 1;
1360 }
1361 
1362 /*
1363  * Completion handler for video URBs.
1364  */
1365 
1366 static void uvc_video_next_buffers(struct uvc_streaming *stream,
1367 		struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
1368 {
1369 	uvc_video_validate_buffer(stream, *video_buf);
1370 
1371 	if (*meta_buf) {
1372 		struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
1373 		const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
1374 
1375 		vb2_meta->sequence = vb2_video->sequence;
1376 		vb2_meta->field = vb2_video->field;
1377 		vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
1378 
1379 		(*meta_buf)->state = UVC_BUF_STATE_READY;
1380 		if (!(*meta_buf)->error)
1381 			(*meta_buf)->error = (*video_buf)->error;
1382 		*meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
1383 						  *meta_buf);
1384 	}
1385 	*video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
1386 }
1387 
1388 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb,
1389 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1390 {
1391 	struct urb *urb = uvc_urb->urb;
1392 	struct uvc_streaming *stream = uvc_urb->stream;
1393 	u8 *mem;
1394 	int ret, i;
1395 
1396 	for (i = 0; i < urb->number_of_packets; ++i) {
1397 		if (urb->iso_frame_desc[i].status < 0) {
1398 			uvc_dbg(stream->dev, FRAME,
1399 				"USB isochronous frame lost (%d)\n",
1400 				urb->iso_frame_desc[i].status);
1401 			/* Mark the buffer as faulty. */
1402 			if (buf != NULL)
1403 				buf->error = 1;
1404 			continue;
1405 		}
1406 
1407 		/* Decode the payload header. */
1408 		mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1409 		do {
1410 			ret = uvc_video_decode_start(stream, buf, mem,
1411 				urb->iso_frame_desc[i].actual_length);
1412 			if (ret == -EAGAIN)
1413 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1414 		} while (ret == -EAGAIN);
1415 
1416 		if (ret < 0)
1417 			continue;
1418 
1419 		uvc_video_decode_meta(stream, meta_buf, mem, ret);
1420 
1421 		/* Decode the payload data. */
1422 		uvc_video_decode_data(uvc_urb, buf, mem + ret,
1423 			urb->iso_frame_desc[i].actual_length - ret);
1424 
1425 		/* Process the header again. */
1426 		uvc_video_decode_end(stream, buf, mem,
1427 			urb->iso_frame_desc[i].actual_length);
1428 
1429 		if (buf->state == UVC_BUF_STATE_READY)
1430 			uvc_video_next_buffers(stream, &buf, &meta_buf);
1431 	}
1432 }
1433 
1434 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb,
1435 			struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1436 {
1437 	struct urb *urb = uvc_urb->urb;
1438 	struct uvc_streaming *stream = uvc_urb->stream;
1439 	u8 *mem;
1440 	int len, ret;
1441 
1442 	/*
1443 	 * Ignore ZLPs if they're not part of a frame, otherwise process them
1444 	 * to trigger the end of payload detection.
1445 	 */
1446 	if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1447 		return;
1448 
1449 	mem = urb->transfer_buffer;
1450 	len = urb->actual_length;
1451 	stream->bulk.payload_size += len;
1452 
1453 	/* If the URB is the first of its payload, decode and save the
1454 	 * header.
1455 	 */
1456 	if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1457 		do {
1458 			ret = uvc_video_decode_start(stream, buf, mem, len);
1459 			if (ret == -EAGAIN)
1460 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1461 		} while (ret == -EAGAIN);
1462 
1463 		/* If an error occurred skip the rest of the payload. */
1464 		if (ret < 0 || buf == NULL) {
1465 			stream->bulk.skip_payload = 1;
1466 		} else {
1467 			memcpy(stream->bulk.header, mem, ret);
1468 			stream->bulk.header_size = ret;
1469 
1470 			uvc_video_decode_meta(stream, meta_buf, mem, ret);
1471 
1472 			mem += ret;
1473 			len -= ret;
1474 		}
1475 	}
1476 
1477 	/* The buffer queue might have been cancelled while a bulk transfer
1478 	 * was in progress, so we can reach here with buf equal to NULL. Make
1479 	 * sure buf is never dereferenced if NULL.
1480 	 */
1481 
1482 	/* Prepare video data for processing. */
1483 	if (!stream->bulk.skip_payload && buf != NULL)
1484 		uvc_video_decode_data(uvc_urb, buf, mem, len);
1485 
1486 	/* Detect the payload end by a URB smaller than the maximum size (or
1487 	 * a payload size equal to the maximum) and process the header again.
1488 	 */
1489 	if (urb->actual_length < urb->transfer_buffer_length ||
1490 	    stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1491 		if (!stream->bulk.skip_payload && buf != NULL) {
1492 			uvc_video_decode_end(stream, buf, stream->bulk.header,
1493 				stream->bulk.payload_size);
1494 			if (buf->state == UVC_BUF_STATE_READY)
1495 				uvc_video_next_buffers(stream, &buf, &meta_buf);
1496 		}
1497 
1498 		stream->bulk.header_size = 0;
1499 		stream->bulk.skip_payload = 0;
1500 		stream->bulk.payload_size = 0;
1501 	}
1502 }
1503 
1504 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb,
1505 	struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1506 {
1507 	struct urb *urb = uvc_urb->urb;
1508 	struct uvc_streaming *stream = uvc_urb->stream;
1509 
1510 	u8 *mem = urb->transfer_buffer;
1511 	int len = stream->urb_size, ret;
1512 
1513 	if (buf == NULL) {
1514 		urb->transfer_buffer_length = 0;
1515 		return;
1516 	}
1517 
1518 	/* If the URB is the first of its payload, add the header. */
1519 	if (stream->bulk.header_size == 0) {
1520 		ret = uvc_video_encode_header(stream, buf, mem, len);
1521 		stream->bulk.header_size = ret;
1522 		stream->bulk.payload_size += ret;
1523 		mem += ret;
1524 		len -= ret;
1525 	}
1526 
1527 	/* Process video data. */
1528 	ret = uvc_video_encode_data(stream, buf, mem, len);
1529 
1530 	stream->bulk.payload_size += ret;
1531 	len -= ret;
1532 
1533 	if (buf->bytesused == stream->queue.buf_used ||
1534 	    stream->bulk.payload_size == stream->bulk.max_payload_size) {
1535 		if (buf->bytesused == stream->queue.buf_used) {
1536 			stream->queue.buf_used = 0;
1537 			buf->state = UVC_BUF_STATE_READY;
1538 			buf->buf.sequence = ++stream->sequence;
1539 			uvc_queue_next_buffer(&stream->queue, buf);
1540 			stream->last_fid ^= UVC_STREAM_FID;
1541 		}
1542 
1543 		stream->bulk.header_size = 0;
1544 		stream->bulk.payload_size = 0;
1545 	}
1546 
1547 	urb->transfer_buffer_length = stream->urb_size - len;
1548 }
1549 
1550 static void uvc_video_complete(struct urb *urb)
1551 {
1552 	struct uvc_urb *uvc_urb = urb->context;
1553 	struct uvc_streaming *stream = uvc_urb->stream;
1554 	struct uvc_video_queue *queue = &stream->queue;
1555 	struct uvc_video_queue *qmeta = &stream->meta.queue;
1556 	struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
1557 	struct uvc_buffer *buf = NULL;
1558 	struct uvc_buffer *buf_meta = NULL;
1559 	unsigned long flags;
1560 	int ret;
1561 
1562 	switch (urb->status) {
1563 	case 0:
1564 		break;
1565 
1566 	default:
1567 		dev_warn(&stream->intf->dev,
1568 			 "Non-zero status (%d) in video completion handler.\n",
1569 			 urb->status);
1570 		fallthrough;
1571 	case -ENOENT:		/* usb_poison_urb() called. */
1572 		if (stream->frozen)
1573 			return;
1574 		fallthrough;
1575 	case -ECONNRESET:	/* usb_unlink_urb() called. */
1576 	case -ESHUTDOWN:	/* The endpoint is being disabled. */
1577 		uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1578 		if (vb2_qmeta)
1579 			uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
1580 		return;
1581 	}
1582 
1583 	buf = uvc_queue_get_current_buffer(queue);
1584 
1585 	if (vb2_qmeta) {
1586 		spin_lock_irqsave(&qmeta->irqlock, flags);
1587 		if (!list_empty(&qmeta->irqqueue))
1588 			buf_meta = list_first_entry(&qmeta->irqqueue,
1589 						    struct uvc_buffer, queue);
1590 		spin_unlock_irqrestore(&qmeta->irqlock, flags);
1591 	}
1592 
1593 	/* Re-initialise the URB async work. */
1594 	uvc_urb->async_operations = 0;
1595 
1596 	/* Sync DMA and invalidate vmap range. */
1597 	dma_sync_sgtable_for_cpu(uvc_stream_to_dmadev(uvc_urb->stream),
1598 				 uvc_urb->sgt, uvc_stream_dir(stream));
1599 	invalidate_kernel_vmap_range(uvc_urb->buffer,
1600 				     uvc_urb->stream->urb_size);
1601 
1602 	/*
1603 	 * Process the URB headers, and optionally queue expensive memcpy tasks
1604 	 * to be deferred to a work queue.
1605 	 */
1606 	stream->decode(uvc_urb, buf, buf_meta);
1607 
1608 	/* If no async work is needed, resubmit the URB immediately. */
1609 	if (!uvc_urb->async_operations) {
1610 		ret = uvc_submit_urb(uvc_urb, GFP_ATOMIC);
1611 		if (ret < 0)
1612 			dev_err(&stream->intf->dev,
1613 				"Failed to resubmit video URB (%d).\n", ret);
1614 		return;
1615 	}
1616 
1617 	queue_work(stream->async_wq, &uvc_urb->work);
1618 }
1619 
1620 /*
1621  * Free transfer buffers.
1622  */
1623 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1624 {
1625 	struct device *dma_dev = uvc_stream_to_dmadev(stream);
1626 	struct uvc_urb *uvc_urb;
1627 
1628 	for_each_uvc_urb(uvc_urb, stream) {
1629 		if (!uvc_urb->buffer)
1630 			continue;
1631 
1632 		dma_vunmap_noncontiguous(dma_dev, uvc_urb->buffer);
1633 		dma_free_noncontiguous(dma_dev, stream->urb_size, uvc_urb->sgt,
1634 				       uvc_stream_dir(stream));
1635 
1636 		uvc_urb->buffer = NULL;
1637 		uvc_urb->sgt = NULL;
1638 	}
1639 
1640 	stream->urb_size = 0;
1641 }
1642 
1643 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream,
1644 				 struct uvc_urb *uvc_urb, gfp_t gfp_flags)
1645 {
1646 	struct device *dma_dev = uvc_stream_to_dmadev(stream);
1647 
1648 	uvc_urb->sgt = dma_alloc_noncontiguous(dma_dev, stream->urb_size,
1649 					       uvc_stream_dir(stream),
1650 					       gfp_flags, 0);
1651 	if (!uvc_urb->sgt)
1652 		return false;
1653 	uvc_urb->dma = uvc_urb->sgt->sgl->dma_address;
1654 
1655 	uvc_urb->buffer = dma_vmap_noncontiguous(dma_dev, stream->urb_size,
1656 						 uvc_urb->sgt);
1657 	if (!uvc_urb->buffer) {
1658 		dma_free_noncontiguous(dma_dev, stream->urb_size,
1659 				       uvc_urb->sgt,
1660 				       uvc_stream_dir(stream));
1661 		uvc_urb->sgt = NULL;
1662 		return false;
1663 	}
1664 
1665 	return true;
1666 }
1667 
1668 /*
1669  * Allocate transfer buffers. This function can be called with buffers
1670  * already allocated when resuming from suspend, in which case it will
1671  * return without touching the buffers.
1672  *
1673  * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1674  * system is too low on memory try successively smaller numbers of packets
1675  * until allocation succeeds.
1676  *
1677  * Return the number of allocated packets on success or 0 when out of memory.
1678  */
1679 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1680 	unsigned int size, unsigned int psize, gfp_t gfp_flags)
1681 {
1682 	unsigned int npackets;
1683 	unsigned int i;
1684 
1685 	/* Buffers are already allocated, bail out. */
1686 	if (stream->urb_size)
1687 		return stream->urb_size / psize;
1688 
1689 	/* Compute the number of packets. Bulk endpoints might transfer UVC
1690 	 * payloads across multiple URBs.
1691 	 */
1692 	npackets = DIV_ROUND_UP(size, psize);
1693 	if (npackets > UVC_MAX_PACKETS)
1694 		npackets = UVC_MAX_PACKETS;
1695 
1696 	/* Retry allocations until one succeed. */
1697 	for (; npackets > 1; npackets /= 2) {
1698 		stream->urb_size = psize * npackets;
1699 
1700 		for (i = 0; i < UVC_URBS; ++i) {
1701 			struct uvc_urb *uvc_urb = &stream->uvc_urb[i];
1702 
1703 			if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) {
1704 				uvc_free_urb_buffers(stream);
1705 				break;
1706 			}
1707 
1708 			uvc_urb->stream = stream;
1709 		}
1710 
1711 		if (i == UVC_URBS) {
1712 			uvc_dbg(stream->dev, VIDEO,
1713 				"Allocated %u URB buffers of %ux%u bytes each\n",
1714 				UVC_URBS, npackets, psize);
1715 			return npackets;
1716 		}
1717 	}
1718 
1719 	uvc_dbg(stream->dev, VIDEO,
1720 		"Failed to allocate URB buffers (%u bytes per packet)\n",
1721 		psize);
1722 	return 0;
1723 }
1724 
1725 /*
1726  * Uninitialize isochronous/bulk URBs and free transfer buffers.
1727  */
1728 static void uvc_video_stop_transfer(struct uvc_streaming *stream,
1729 				    int free_buffers)
1730 {
1731 	struct uvc_urb *uvc_urb;
1732 
1733 	uvc_video_stats_stop(stream);
1734 
1735 	/*
1736 	 * We must poison the URBs rather than kill them to ensure that even
1737 	 * after the completion handler returns, any asynchronous workqueues
1738 	 * will be prevented from resubmitting the URBs.
1739 	 */
1740 	for_each_uvc_urb(uvc_urb, stream)
1741 		usb_poison_urb(uvc_urb->urb);
1742 
1743 	flush_workqueue(stream->async_wq);
1744 
1745 	for_each_uvc_urb(uvc_urb, stream) {
1746 		usb_free_urb(uvc_urb->urb);
1747 		uvc_urb->urb = NULL;
1748 	}
1749 
1750 	if (free_buffers)
1751 		uvc_free_urb_buffers(stream);
1752 }
1753 
1754 /*
1755  * Compute the maximum number of bytes per interval for an endpoint.
1756  */
1757 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep)
1758 {
1759 	u16 psize;
1760 
1761 	switch (dev->speed) {
1762 	case USB_SPEED_SUPER:
1763 	case USB_SPEED_SUPER_PLUS:
1764 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1765 	default:
1766 		psize = usb_endpoint_maxp(&ep->desc);
1767 		psize *= usb_endpoint_maxp_mult(&ep->desc);
1768 		return psize;
1769 	}
1770 }
1771 
1772 /*
1773  * Initialize isochronous URBs and allocate transfer buffers. The packet size
1774  * is given by the endpoint.
1775  */
1776 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1777 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1778 {
1779 	struct urb *urb;
1780 	struct uvc_urb *uvc_urb;
1781 	unsigned int npackets, i;
1782 	u16 psize;
1783 	u32 size;
1784 
1785 	psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1786 	size = stream->ctrl.dwMaxVideoFrameSize;
1787 
1788 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1789 	if (npackets == 0)
1790 		return -ENOMEM;
1791 
1792 	size = npackets * psize;
1793 
1794 	for_each_uvc_urb(uvc_urb, stream) {
1795 		urb = usb_alloc_urb(npackets, gfp_flags);
1796 		if (urb == NULL) {
1797 			uvc_video_stop_transfer(stream, 1);
1798 			return -ENOMEM;
1799 		}
1800 
1801 		urb->dev = stream->dev->udev;
1802 		urb->context = uvc_urb;
1803 		urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1804 				ep->desc.bEndpointAddress);
1805 		urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1806 		urb->transfer_dma = uvc_urb->dma;
1807 		urb->interval = ep->desc.bInterval;
1808 		urb->transfer_buffer = uvc_urb->buffer;
1809 		urb->complete = uvc_video_complete;
1810 		urb->number_of_packets = npackets;
1811 		urb->transfer_buffer_length = size;
1812 
1813 		for (i = 0; i < npackets; ++i) {
1814 			urb->iso_frame_desc[i].offset = i * psize;
1815 			urb->iso_frame_desc[i].length = psize;
1816 		}
1817 
1818 		uvc_urb->urb = urb;
1819 	}
1820 
1821 	return 0;
1822 }
1823 
1824 /*
1825  * Initialize bulk URBs and allocate transfer buffers. The packet size is
1826  * given by the endpoint.
1827  */
1828 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1829 	struct usb_host_endpoint *ep, gfp_t gfp_flags)
1830 {
1831 	struct urb *urb;
1832 	struct uvc_urb *uvc_urb;
1833 	unsigned int npackets, pipe;
1834 	u16 psize;
1835 	u32 size;
1836 
1837 	psize = usb_endpoint_maxp(&ep->desc);
1838 	size = stream->ctrl.dwMaxPayloadTransferSize;
1839 	stream->bulk.max_payload_size = size;
1840 
1841 	npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1842 	if (npackets == 0)
1843 		return -ENOMEM;
1844 
1845 	size = npackets * psize;
1846 
1847 	if (usb_endpoint_dir_in(&ep->desc))
1848 		pipe = usb_rcvbulkpipe(stream->dev->udev,
1849 				       ep->desc.bEndpointAddress);
1850 	else
1851 		pipe = usb_sndbulkpipe(stream->dev->udev,
1852 				       ep->desc.bEndpointAddress);
1853 
1854 	if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1855 		size = 0;
1856 
1857 	for_each_uvc_urb(uvc_urb, stream) {
1858 		urb = usb_alloc_urb(0, gfp_flags);
1859 		if (urb == NULL) {
1860 			uvc_video_stop_transfer(stream, 1);
1861 			return -ENOMEM;
1862 		}
1863 
1864 		usb_fill_bulk_urb(urb, stream->dev->udev, pipe,	uvc_urb->buffer,
1865 				  size, uvc_video_complete, uvc_urb);
1866 		urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1867 		urb->transfer_dma = uvc_urb->dma;
1868 
1869 		uvc_urb->urb = urb;
1870 	}
1871 
1872 	return 0;
1873 }
1874 
1875 /*
1876  * Initialize isochronous/bulk URBs and allocate transfer buffers.
1877  */
1878 static int uvc_video_start_transfer(struct uvc_streaming *stream,
1879 				    gfp_t gfp_flags)
1880 {
1881 	struct usb_interface *intf = stream->intf;
1882 	struct usb_host_endpoint *ep;
1883 	struct uvc_urb *uvc_urb;
1884 	unsigned int i;
1885 	int ret;
1886 
1887 	stream->sequence = -1;
1888 	stream->last_fid = -1;
1889 	stream->bulk.header_size = 0;
1890 	stream->bulk.skip_payload = 0;
1891 	stream->bulk.payload_size = 0;
1892 
1893 	uvc_video_stats_start(stream);
1894 
1895 	if (intf->num_altsetting > 1) {
1896 		struct usb_host_endpoint *best_ep = NULL;
1897 		unsigned int best_psize = UINT_MAX;
1898 		unsigned int bandwidth;
1899 		unsigned int altsetting;
1900 		int intfnum = stream->intfnum;
1901 
1902 		/* Isochronous endpoint, select the alternate setting. */
1903 		bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1904 
1905 		if (bandwidth == 0) {
1906 			uvc_dbg(stream->dev, VIDEO,
1907 				"Device requested null bandwidth, defaulting to lowest\n");
1908 			bandwidth = 1;
1909 		} else {
1910 			uvc_dbg(stream->dev, VIDEO,
1911 				"Device requested %u B/frame bandwidth\n",
1912 				bandwidth);
1913 		}
1914 
1915 		for (i = 0; i < intf->num_altsetting; ++i) {
1916 			struct usb_host_interface *alts;
1917 			unsigned int psize;
1918 
1919 			alts = &intf->altsetting[i];
1920 			ep = uvc_find_endpoint(alts,
1921 				stream->header.bEndpointAddress);
1922 			if (ep == NULL)
1923 				continue;
1924 
1925 			/* Check if the bandwidth is high enough. */
1926 			psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1927 			if (psize >= bandwidth && psize <= best_psize) {
1928 				altsetting = alts->desc.bAlternateSetting;
1929 				best_psize = psize;
1930 				best_ep = ep;
1931 			}
1932 		}
1933 
1934 		if (best_ep == NULL) {
1935 			uvc_dbg(stream->dev, VIDEO,
1936 				"No fast enough alt setting for requested bandwidth\n");
1937 			return -EIO;
1938 		}
1939 
1940 		uvc_dbg(stream->dev, VIDEO,
1941 			"Selecting alternate setting %u (%u B/frame bandwidth)\n",
1942 			altsetting, best_psize);
1943 
1944 		ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1945 		if (ret < 0)
1946 			return ret;
1947 
1948 		ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1949 	} else {
1950 		/* Bulk endpoint, proceed to URB initialization. */
1951 		ep = uvc_find_endpoint(&intf->altsetting[0],
1952 				stream->header.bEndpointAddress);
1953 		if (ep == NULL)
1954 			return -EIO;
1955 
1956 		/* Reject broken descriptors. */
1957 		if (usb_endpoint_maxp(&ep->desc) == 0)
1958 			return -EIO;
1959 
1960 		ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1961 	}
1962 
1963 	if (ret < 0)
1964 		return ret;
1965 
1966 	/* Submit the URBs. */
1967 	for_each_uvc_urb(uvc_urb, stream) {
1968 		ret = uvc_submit_urb(uvc_urb, gfp_flags);
1969 		if (ret < 0) {
1970 			dev_err(&stream->intf->dev,
1971 				"Failed to submit URB %u (%d).\n",
1972 				uvc_urb_index(uvc_urb), ret);
1973 			uvc_video_stop_transfer(stream, 1);
1974 			return ret;
1975 		}
1976 	}
1977 
1978 	/* The Logitech C920 temporarily forgets that it should not be adjusting
1979 	 * Exposure Absolute during init so restore controls to stored values.
1980 	 */
1981 	if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
1982 		uvc_ctrl_restore_values(stream->dev);
1983 
1984 	return 0;
1985 }
1986 
1987 /* --------------------------------------------------------------------------
1988  * Suspend/resume
1989  */
1990 
1991 /*
1992  * Stop streaming without disabling the video queue.
1993  *
1994  * To let userspace applications resume without trouble, we must not touch the
1995  * video buffers in any way. We mark the device as frozen to make sure the URB
1996  * completion handler won't try to cancel the queue when we kill the URBs.
1997  */
1998 int uvc_video_suspend(struct uvc_streaming *stream)
1999 {
2000 	if (!uvc_queue_streaming(&stream->queue))
2001 		return 0;
2002 
2003 	stream->frozen = 1;
2004 	uvc_video_stop_transfer(stream, 0);
2005 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2006 	return 0;
2007 }
2008 
2009 /*
2010  * Reconfigure the video interface and restart streaming if it was enabled
2011  * before suspend.
2012  *
2013  * If an error occurs, disable the video queue. This will wake all pending
2014  * buffers, making sure userspace applications are notified of the problem
2015  * instead of waiting forever.
2016  */
2017 int uvc_video_resume(struct uvc_streaming *stream, int reset)
2018 {
2019 	int ret;
2020 
2021 	/* If the bus has been reset on resume, set the alternate setting to 0.
2022 	 * This should be the default value, but some devices crash or otherwise
2023 	 * misbehave if they don't receive a SET_INTERFACE request before any
2024 	 * other video control request.
2025 	 */
2026 	if (reset)
2027 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2028 
2029 	stream->frozen = 0;
2030 
2031 	uvc_video_clock_reset(stream);
2032 
2033 	if (!uvc_queue_streaming(&stream->queue))
2034 		return 0;
2035 
2036 	ret = uvc_commit_video(stream, &stream->ctrl);
2037 	if (ret < 0)
2038 		return ret;
2039 
2040 	return uvc_video_start_transfer(stream, GFP_NOIO);
2041 }
2042 
2043 /* ------------------------------------------------------------------------
2044  * Video device
2045  */
2046 
2047 /*
2048  * Initialize the UVC video device by switching to alternate setting 0 and
2049  * retrieve the default format.
2050  *
2051  * Some cameras (namely the Fuji Finepix) set the format and frame
2052  * indexes to zero. The UVC standard doesn't clearly make this a spec
2053  * violation, so try to silently fix the values if possible.
2054  *
2055  * This function is called before registering the device with V4L.
2056  */
2057 int uvc_video_init(struct uvc_streaming *stream)
2058 {
2059 	struct uvc_streaming_control *probe = &stream->ctrl;
2060 	struct uvc_format *format = NULL;
2061 	struct uvc_frame *frame = NULL;
2062 	struct uvc_urb *uvc_urb;
2063 	unsigned int i;
2064 	int ret;
2065 
2066 	if (stream->nformats == 0) {
2067 		dev_info(&stream->intf->dev,
2068 			 "No supported video formats found.\n");
2069 		return -EINVAL;
2070 	}
2071 
2072 	atomic_set(&stream->active, 0);
2073 
2074 	/* Alternate setting 0 should be the default, yet the XBox Live Vision
2075 	 * Cam (and possibly other devices) crash or otherwise misbehave if
2076 	 * they don't receive a SET_INTERFACE request before any other video
2077 	 * control request.
2078 	 */
2079 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2080 
2081 	/* Set the streaming probe control with default streaming parameters
2082 	 * retrieved from the device. Webcams that don't support GET_DEF
2083 	 * requests on the probe control will just keep their current streaming
2084 	 * parameters.
2085 	 */
2086 	if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
2087 		uvc_set_video_ctrl(stream, probe, 1);
2088 
2089 	/* Initialize the streaming parameters with the probe control current
2090 	 * value. This makes sure SET_CUR requests on the streaming commit
2091 	 * control will always use values retrieved from a successful GET_CUR
2092 	 * request on the probe control, as required by the UVC specification.
2093 	 */
2094 	ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
2095 	if (ret < 0)
2096 		return ret;
2097 
2098 	/* Check if the default format descriptor exists. Use the first
2099 	 * available format otherwise.
2100 	 */
2101 	for (i = stream->nformats; i > 0; --i) {
2102 		format = &stream->format[i-1];
2103 		if (format->index == probe->bFormatIndex)
2104 			break;
2105 	}
2106 
2107 	if (format->nframes == 0) {
2108 		dev_info(&stream->intf->dev,
2109 			 "No frame descriptor found for the default format.\n");
2110 		return -EINVAL;
2111 	}
2112 
2113 	/* Zero bFrameIndex might be correct. Stream-based formats (including
2114 	 * MPEG-2 TS and DV) do not support frames but have a dummy frame
2115 	 * descriptor with bFrameIndex set to zero. If the default frame
2116 	 * descriptor is not found, use the first available frame.
2117 	 */
2118 	for (i = format->nframes; i > 0; --i) {
2119 		frame = &format->frame[i-1];
2120 		if (frame->bFrameIndex == probe->bFrameIndex)
2121 			break;
2122 	}
2123 
2124 	probe->bFormatIndex = format->index;
2125 	probe->bFrameIndex = frame->bFrameIndex;
2126 
2127 	stream->def_format = format;
2128 	stream->cur_format = format;
2129 	stream->cur_frame = frame;
2130 
2131 	/* Select the video decoding function */
2132 	if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
2133 		if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
2134 			stream->decode = uvc_video_decode_isight;
2135 		else if (stream->intf->num_altsetting > 1)
2136 			stream->decode = uvc_video_decode_isoc;
2137 		else
2138 			stream->decode = uvc_video_decode_bulk;
2139 	} else {
2140 		if (stream->intf->num_altsetting == 1)
2141 			stream->decode = uvc_video_encode_bulk;
2142 		else {
2143 			dev_info(&stream->intf->dev,
2144 				 "Isochronous endpoints are not supported for video output devices.\n");
2145 			return -EINVAL;
2146 		}
2147 	}
2148 
2149 	/* Prepare asynchronous work items. */
2150 	for_each_uvc_urb(uvc_urb, stream)
2151 		INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
2152 
2153 	return 0;
2154 }
2155 
2156 int uvc_video_start_streaming(struct uvc_streaming *stream)
2157 {
2158 	int ret;
2159 
2160 	ret = uvc_video_clock_init(stream);
2161 	if (ret < 0)
2162 		return ret;
2163 
2164 	/* Commit the streaming parameters. */
2165 	ret = uvc_commit_video(stream, &stream->ctrl);
2166 	if (ret < 0)
2167 		goto error_commit;
2168 
2169 	ret = uvc_video_start_transfer(stream, GFP_KERNEL);
2170 	if (ret < 0)
2171 		goto error_video;
2172 
2173 	return 0;
2174 
2175 error_video:
2176 	usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2177 error_commit:
2178 	uvc_video_clock_cleanup(stream);
2179 
2180 	return ret;
2181 }
2182 
2183 void uvc_video_stop_streaming(struct uvc_streaming *stream)
2184 {
2185 	uvc_video_stop_transfer(stream, 1);
2186 
2187 	if (stream->intf->num_altsetting > 1) {
2188 		usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2189 	} else {
2190 		/* UVC doesn't specify how to inform a bulk-based device
2191 		 * when the video stream is stopped. Windows sends a
2192 		 * CLEAR_FEATURE(HALT) request to the video streaming
2193 		 * bulk endpoint, mimic the same behaviour.
2194 		 */
2195 		unsigned int epnum = stream->header.bEndpointAddress
2196 				   & USB_ENDPOINT_NUMBER_MASK;
2197 		unsigned int dir = stream->header.bEndpointAddress
2198 				 & USB_ENDPOINT_DIR_MASK;
2199 		unsigned int pipe;
2200 
2201 		pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
2202 		usb_clear_halt(stream->dev->udev, pipe);
2203 	}
2204 
2205 	uvc_video_clock_cleanup(stream);
2206 }
2207