xref: /linux/drivers/media/usb/gspca/sonixb.c (revision 4e0ae876f77bc01a7e77724dea57b4b82bd53244)
1 /*
2  *		sonix sn9c102 (bayer) library
3  *
4  * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr>
5  * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
6  * Add Pas106 Stefano Mozzi (C) 2004
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  */
18 
19 /* Some documentation on known sonixb registers:
20 
21 Reg	Use
22 sn9c101 / sn9c102:
23 0x10	high nibble red gain low nibble blue gain
24 0x11	low nibble green gain
25 sn9c103:
26 0x05	red gain 0-127
27 0x06	blue gain 0-127
28 0x07	green gain 0-127
29 all:
30 0x08-0x0f i2c / 3wire registers
31 0x12	hstart
32 0x13	vstart
33 0x15	hsize (hsize = register-value * 16)
34 0x16	vsize (vsize = register-value * 16)
35 0x17	bit 0 toggle compression quality (according to sn9c102 driver)
36 0x18	bit 7 enables compression, bit 4-5 set image down scaling:
37 	00 scale 1, 01 scale 1/2, 10, scale 1/4
38 0x19	high-nibble is sensor clock divider, changes exposure on sensors which
39 	use a clock generated by the bridge. Some sensors have their own clock.
40 0x1c	auto_exposure area (for avg_lum) startx (startx = register-value * 32)
41 0x1d	auto_exposure area (for avg_lum) starty (starty = register-value * 32)
42 0x1e	auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
43 0x1f	auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
44 */
45 
46 #define MODULE_NAME "sonixb"
47 
48 #include <linux/input.h>
49 #include "gspca.h"
50 
51 MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>");
52 MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
53 MODULE_LICENSE("GPL");
54 
55 /* specific webcam descriptor */
56 struct sd {
57 	struct gspca_dev gspca_dev;	/* !! must be the first item */
58 
59 	struct v4l2_ctrl *brightness;
60 	struct v4l2_ctrl *plfreq;
61 
62 	atomic_t avg_lum;
63 	int prev_avg_lum;
64 	int exposure_knee;
65 	int header_read;
66 	u8 header[12]; /* Header without sof marker */
67 
68 	unsigned char autogain_ignore_frames;
69 	unsigned char frames_to_drop;
70 
71 	__u8 bridge;			/* Type of bridge */
72 #define BRIDGE_101 0
73 #define BRIDGE_102 0 /* We make no difference between 101 and 102 */
74 #define BRIDGE_103 1
75 
76 	__u8 sensor;			/* Type of image sensor chip */
77 #define SENSOR_HV7131D 0
78 #define SENSOR_HV7131R 1
79 #define SENSOR_OV6650 2
80 #define SENSOR_OV7630 3
81 #define SENSOR_PAS106 4
82 #define SENSOR_PAS202 5
83 #define SENSOR_TAS5110C 6
84 #define SENSOR_TAS5110D 7
85 #define SENSOR_TAS5130CXX 8
86 	__u8 reg11;
87 };
88 
89 typedef const __u8 sensor_init_t[8];
90 
91 struct sensor_data {
92 	const __u8 *bridge_init;
93 	sensor_init_t *sensor_init;
94 	int sensor_init_size;
95 	int flags;
96 	__u8 sensor_addr;
97 };
98 
99 /* sensor_data flags */
100 #define F_SIF		0x01	/* sif or vga */
101 
102 /* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
103 #define MODE_RAW 0x10		/* raw bayer mode */
104 #define MODE_REDUCED_SIF 0x20	/* vga mode (320x240 / 160x120) on sif cam */
105 
106 #define COMP 0xc7		/* 0x87 //0x07 */
107 #define COMP1 0xc9		/* 0x89 //0x09 */
108 
109 #define MCK_INIT 0x63
110 #define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/
111 
112 #define SYS_CLK 0x04
113 
114 #define SENS(bridge, sensor, _flags, _sensor_addr) \
115 { \
116 	.bridge_init = bridge, \
117 	.sensor_init = sensor, \
118 	.sensor_init_size = sizeof(sensor), \
119 	.flags = _flags, .sensor_addr = _sensor_addr \
120 }
121 
122 /* We calculate the autogain at the end of the transfer of a frame, at this
123    moment a frame with the old settings is being captured and transmitted. So
124    if we adjust the gain or exposure we must ignore at least the next frame for
125    the new settings to come into effect before doing any other adjustments. */
126 #define AUTOGAIN_IGNORE_FRAMES 1
127 
128 static const struct v4l2_pix_format vga_mode[] = {
129 	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
130 		.bytesperline = 160,
131 		.sizeimage = 160 * 120,
132 		.colorspace = V4L2_COLORSPACE_SRGB,
133 		.priv = 2 | MODE_RAW},
134 	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
135 		.bytesperline = 160,
136 		.sizeimage = 160 * 120 * 5 / 4,
137 		.colorspace = V4L2_COLORSPACE_SRGB,
138 		.priv = 2},
139 	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
140 		.bytesperline = 320,
141 		.sizeimage = 320 * 240 * 5 / 4,
142 		.colorspace = V4L2_COLORSPACE_SRGB,
143 		.priv = 1},
144 	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
145 		.bytesperline = 640,
146 		.sizeimage = 640 * 480 * 5 / 4,
147 		.colorspace = V4L2_COLORSPACE_SRGB,
148 		.priv = 0},
149 };
150 static const struct v4l2_pix_format sif_mode[] = {
151 	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
152 		.bytesperline = 160,
153 		.sizeimage = 160 * 120,
154 		.colorspace = V4L2_COLORSPACE_SRGB,
155 		.priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
156 	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
157 		.bytesperline = 160,
158 		.sizeimage = 160 * 120 * 5 / 4,
159 		.colorspace = V4L2_COLORSPACE_SRGB,
160 		.priv = 1 | MODE_REDUCED_SIF},
161 	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
162 		.bytesperline = 176,
163 		.sizeimage = 176 * 144,
164 		.colorspace = V4L2_COLORSPACE_SRGB,
165 		.priv = 1 | MODE_RAW},
166 	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
167 		.bytesperline = 176,
168 		.sizeimage = 176 * 144 * 5 / 4,
169 		.colorspace = V4L2_COLORSPACE_SRGB,
170 		.priv = 1},
171 	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
172 		.bytesperline = 320,
173 		.sizeimage = 320 * 240 * 5 / 4,
174 		.colorspace = V4L2_COLORSPACE_SRGB,
175 		.priv = 0 | MODE_REDUCED_SIF},
176 	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
177 		.bytesperline = 352,
178 		.sizeimage = 352 * 288 * 5 / 4,
179 		.colorspace = V4L2_COLORSPACE_SRGB,
180 		.priv = 0},
181 };
182 
183 static const __u8 initHv7131d[] = {
184 	0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
185 	0x00, 0x00,
186 	0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
187 	0x28, 0x1e, 0x60, 0x8e, 0x42,
188 };
189 static const __u8 hv7131d_sensor_init[][8] = {
190 	{0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
191 	{0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
192 	{0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
193 	{0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
194 	{0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
195 };
196 
197 static const __u8 initHv7131r[] = {
198 	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
199 	0x00, 0x00,
200 	0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
201 	0x28, 0x1e, 0x60, 0x8a, 0x20,
202 };
203 static const __u8 hv7131r_sensor_init[][8] = {
204 	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
205 	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
206 	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
207 	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
208 	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
209 };
210 static const __u8 initOv6650[] = {
211 	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
212 	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
213 	0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
214 	0x10,
215 };
216 static const __u8 ov6650_sensor_init[][8] = {
217 	/* Bright, contrast, etc are set through SCBB interface.
218 	 * AVCAP on win2 do not send any data on this controls. */
219 	/* Anyway, some registers appears to alter bright and constrat */
220 
221 	/* Reset sensor */
222 	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
223 	/* Set clock register 0x11 low nibble is clock divider */
224 	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
225 	/* Next some unknown stuff */
226 	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
227 /*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
228 		 * THIS SET GREEN SCREEN
229 		 * (pixels could be innverted in decode kind of "brg",
230 		 * but blue wont be there. Avoid this data ... */
231 	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
232 	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
233 	{0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
234 	/* Enable rgb brightness control */
235 	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
236 	/* HDG: Note windows uses the line below, which sets both register 0x60
237 	   and 0x61 I believe these registers of the ov6650 are identical as
238 	   those of the ov7630, because if this is true the windows settings
239 	   add a bit additional red gain and a lot additional blue gain, which
240 	   matches my findings that the windows settings make blue much too
241 	   blue and red a little too red.
242 	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
243 	/* Some more unknown stuff */
244 	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
245 	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
246 };
247 
248 static const __u8 initOv7630[] = {
249 	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
250 	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
251 	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
252 	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
253 	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
254 };
255 static const __u8 ov7630_sensor_init[][8] = {
256 	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
257 	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
258 /*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
259 	{0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
260 	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
261 	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
262 	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
263 	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
264 	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
265 	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
266 	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
267 	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
268 /*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
269 	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
270 	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
271 	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
272 	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
273 	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
274 	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
275 };
276 
277 static const __u8 initPas106[] = {
278 	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
279 	0x00, 0x00,
280 	0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
281 	0x16, 0x12, 0x24, COMP1, MCK_INIT1,
282 };
283 /* compression 0x86 mckinit1 0x2b */
284 
285 /* "Known" PAS106B registers:
286   0x02 clock divider
287   0x03 Variable framerate bits 4-11
288   0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
289        The variable framerate control must never be set lower then 300,
290        which sets the framerate at 90 / reg02, otherwise vsync is lost.
291   0x05 Shutter Time Line Offset, this can be used as an exposure control:
292        0 = use full frame time, 255 = no exposure at all
293        Note this may never be larger then "var-framerate control" / 2 - 2.
294        When var-framerate control is < 514, no exposure is reached at the max
295        allowed value for the framerate control value, rather then at 255.
296   0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
297        only a very little bit, leave at 0xcd
298   0x07 offset sign bit (bit0 1 > negative offset)
299   0x08 offset
300   0x09 Blue Gain
301   0x0a Green1 Gain
302   0x0b Green2 Gain
303   0x0c Red Gain
304   0x0e Global gain
305   0x13 Write 1 to commit settings to sensor
306 */
307 
308 static const __u8 pas106_sensor_init[][8] = {
309 	/* Pixel Clock Divider 6 */
310 	{ 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
311 	/* Frame Time MSB (also seen as 0x12) */
312 	{ 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
313 	/* Frame Time LSB (also seen as 0x05) */
314 	{ 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
315 	/* Shutter Time Line Offset (also seen as 0x6d) */
316 	{ 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
317 	/* Shutter Time Pixel Offset (also seen as 0xb1) */
318 	{ 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
319 	/* Black Level Subtract Sign (also seen 0x00) */
320 	{ 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
321 	/* Black Level Subtract Level (also seen 0x01) */
322 	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
323 	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
324 	/* Color Gain B Pixel 5 a */
325 	{ 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
326 	/* Color Gain G1 Pixel 1 5 */
327 	{ 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
328 	/* Color Gain G2 Pixel 1 0 5 */
329 	{ 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
330 	/* Color Gain R Pixel 3 1 */
331 	{ 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
332 	/* Color GainH  Pixel */
333 	{ 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
334 	/* Global Gain */
335 	{ 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
336 	/* Contrast */
337 	{ 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
338 	/* H&V synchro polarity */
339 	{ 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
340 	/* ?default */
341 	{ 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
342 	/* DAC scale */
343 	{ 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
344 	/* ?default */
345 	{ 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
346 	/* Validate Settings */
347 	{ 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
348 };
349 
350 static const __u8 initPas202[] = {
351 	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
352 	0x00, 0x00,
353 	0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
354 	0x28, 0x1e, 0x20, 0x89, 0x20,
355 };
356 
357 /* "Known" PAS202BCB registers:
358   0x02 clock divider
359   0x04 Variable framerate bits 6-11 (*)
360   0x05 Var framerate  bits 0-5, one must leave the 2 msb's at 0 !!
361   0x07 Blue Gain
362   0x08 Green Gain
363   0x09 Red Gain
364   0x0b offset sign bit (bit0 1 > negative offset)
365   0x0c offset
366   0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
367        leave at 1 otherwise we get a jump in our exposure control
368   0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
369   0x10 Master gain 0 - 31
370   0x11 write 1 to apply changes
371   (*) The variable framerate control must never be set lower then 500
372       which sets the framerate at 30 / reg02, otherwise vsync is lost.
373 */
374 static const __u8 pas202_sensor_init[][8] = {
375 	/* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
376 	   to set it lower, but for some reason the bridge starts missing
377 	   vsync's then */
378 	{0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
379 	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
380 	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
381 	{0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
382 	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
383 	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
384 	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
385 	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
386 	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
387 	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
388 };
389 
390 static const __u8 initTas5110c[] = {
391 	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
392 	0x00, 0x00,
393 	0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
394 	0x16, 0x12, 0x60, 0x86, 0x2b,
395 };
396 /* Same as above, except a different hstart */
397 static const __u8 initTas5110d[] = {
398 	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
399 	0x00, 0x00,
400 	0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
401 	0x16, 0x12, 0x60, 0x86, 0x2b,
402 };
403 /* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */
404 static const __u8 tas5110c_sensor_init[][8] = {
405 	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
406 	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
407 };
408 /* Known TAS5110D registers
409  * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain
410  * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted)
411  *        Note: writing reg03 seems to only work when written together with 02
412  */
413 static const __u8 tas5110d_sensor_init[][8] = {
414 	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */
415 };
416 
417 static const __u8 initTas5130[] = {
418 	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
419 	0x00, 0x00,
420 	0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
421 	0x28, 0x1e, 0x60, COMP, MCK_INIT,
422 };
423 static const __u8 tas5130_sensor_init[][8] = {
424 /*	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
425 					* shutter 0x47 short exposure? */
426 	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
427 					/* shutter 0x01 long exposure */
428 	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
429 };
430 
431 static const struct sensor_data sensor_data[] = {
432 	SENS(initHv7131d, hv7131d_sensor_init, 0, 0),
433 	SENS(initHv7131r, hv7131r_sensor_init, 0, 0),
434 	SENS(initOv6650, ov6650_sensor_init, F_SIF, 0x60),
435 	SENS(initOv7630, ov7630_sensor_init, 0, 0x21),
436 	SENS(initPas106, pas106_sensor_init, F_SIF, 0),
437 	SENS(initPas202, pas202_sensor_init, 0, 0),
438 	SENS(initTas5110c, tas5110c_sensor_init, F_SIF, 0),
439 	SENS(initTas5110d, tas5110d_sensor_init, F_SIF, 0),
440 	SENS(initTas5130, tas5130_sensor_init, 0, 0),
441 };
442 
443 /* get one byte in gspca_dev->usb_buf */
444 static void reg_r(struct gspca_dev *gspca_dev,
445 		  __u16 value)
446 {
447 	int res;
448 
449 	if (gspca_dev->usb_err < 0)
450 		return;
451 
452 	res = usb_control_msg(gspca_dev->dev,
453 			usb_rcvctrlpipe(gspca_dev->dev, 0),
454 			0,			/* request */
455 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
456 			value,
457 			0,			/* index */
458 			gspca_dev->usb_buf, 1,
459 			500);
460 
461 	if (res < 0) {
462 		dev_err(gspca_dev->v4l2_dev.dev,
463 			"Error reading register %02x: %d\n", value, res);
464 		gspca_dev->usb_err = res;
465 	}
466 }
467 
468 static void reg_w(struct gspca_dev *gspca_dev,
469 		  __u16 value,
470 		  const __u8 *buffer,
471 		  int len)
472 {
473 	int res;
474 
475 	if (gspca_dev->usb_err < 0)
476 		return;
477 
478 	memcpy(gspca_dev->usb_buf, buffer, len);
479 	res = usb_control_msg(gspca_dev->dev,
480 			usb_sndctrlpipe(gspca_dev->dev, 0),
481 			0x08,			/* request */
482 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
483 			value,
484 			0,			/* index */
485 			gspca_dev->usb_buf, len,
486 			500);
487 
488 	if (res < 0) {
489 		dev_err(gspca_dev->v4l2_dev.dev,
490 			"Error writing register %02x: %d\n", value, res);
491 		gspca_dev->usb_err = res;
492 	}
493 }
494 
495 static void i2c_w(struct gspca_dev *gspca_dev, const u8 *buf)
496 {
497 	int retry = 60;
498 
499 	if (gspca_dev->usb_err < 0)
500 		return;
501 
502 	/* is i2c ready */
503 	reg_w(gspca_dev, 0x08, buf, 8);
504 	while (retry--) {
505 		if (gspca_dev->usb_err < 0)
506 			return;
507 		msleep(1);
508 		reg_r(gspca_dev, 0x08);
509 		if (gspca_dev->usb_buf[0] & 0x04) {
510 			if (gspca_dev->usb_buf[0] & 0x08) {
511 				dev_err(gspca_dev->v4l2_dev.dev,
512 					"i2c error writing %8ph\n", buf);
513 				gspca_dev->usb_err = -EIO;
514 			}
515 			return;
516 		}
517 	}
518 
519 	dev_err(gspca_dev->v4l2_dev.dev, "i2c write timeout\n");
520 	gspca_dev->usb_err = -EIO;
521 }
522 
523 static void i2c_w_vector(struct gspca_dev *gspca_dev,
524 			const __u8 buffer[][8], int len)
525 {
526 	for (;;) {
527 		if (gspca_dev->usb_err < 0)
528 			return;
529 		i2c_w(gspca_dev, *buffer);
530 		len -= 8;
531 		if (len <= 0)
532 			break;
533 		buffer++;
534 	}
535 }
536 
537 static void setbrightness(struct gspca_dev *gspca_dev)
538 {
539 	struct sd *sd = (struct sd *) gspca_dev;
540 
541 	switch (sd->sensor) {
542 	case  SENSOR_OV6650:
543 	case  SENSOR_OV7630: {
544 		__u8 i2cOV[] =
545 			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
546 
547 		/* change reg 0x06 */
548 		i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
549 		i2cOV[3] = sd->brightness->val;
550 		i2c_w(gspca_dev, i2cOV);
551 		break;
552 	}
553 	case SENSOR_PAS106:
554 	case SENSOR_PAS202: {
555 		__u8 i2cpbright[] =
556 			{0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
557 		__u8 i2cpdoit[] =
558 			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
559 
560 		/* PAS106 uses reg 7 and 8 instead of b and c */
561 		if (sd->sensor == SENSOR_PAS106) {
562 			i2cpbright[2] = 7;
563 			i2cpdoit[2] = 0x13;
564 		}
565 
566 		if (sd->brightness->val < 127) {
567 			/* change reg 0x0b, signreg */
568 			i2cpbright[3] = 0x01;
569 			/* set reg 0x0c, offset */
570 			i2cpbright[4] = 127 - sd->brightness->val;
571 		} else
572 			i2cpbright[4] = sd->brightness->val - 127;
573 
574 		i2c_w(gspca_dev, i2cpbright);
575 		i2c_w(gspca_dev, i2cpdoit);
576 		break;
577 	}
578 	default:
579 		break;
580 	}
581 }
582 
583 static void setgain(struct gspca_dev *gspca_dev)
584 {
585 	struct sd *sd = (struct sd *) gspca_dev;
586 	u8 gain = gspca_dev->gain->val;
587 
588 	switch (sd->sensor) {
589 	case SENSOR_HV7131D: {
590 		__u8 i2c[] =
591 			{0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};
592 
593 		i2c[3] = 0x3f - gain;
594 		i2c[4] = 0x3f - gain;
595 		i2c[5] = 0x3f - gain;
596 
597 		i2c_w(gspca_dev, i2c);
598 		break;
599 	}
600 	case SENSOR_TAS5110C:
601 	case SENSOR_TAS5130CXX: {
602 		__u8 i2c[] =
603 			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};
604 
605 		i2c[4] = 255 - gain;
606 		i2c_w(gspca_dev, i2c);
607 		break;
608 	}
609 	case SENSOR_TAS5110D: {
610 		__u8 i2c[] = {
611 			0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 };
612 		gain = 255 - gain;
613 		/* The bits in the register are the wrong way around!! */
614 		i2c[3] |= (gain & 0x80) >> 7;
615 		i2c[3] |= (gain & 0x40) >> 5;
616 		i2c[3] |= (gain & 0x20) >> 3;
617 		i2c[3] |= (gain & 0x10) >> 1;
618 		i2c[3] |= (gain & 0x08) << 1;
619 		i2c[3] |= (gain & 0x04) << 3;
620 		i2c[3] |= (gain & 0x02) << 5;
621 		i2c[3] |= (gain & 0x01) << 7;
622 		i2c_w(gspca_dev, i2c);
623 		break;
624 	}
625 	case SENSOR_OV6650:
626 	case SENSOR_OV7630: {
627 		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
628 
629 		/*
630 		 * The ov7630's gain is weird, at 32 the gain drops to the
631 		 * same level as at 16, so skip 32-47 (of the 0-63 scale).
632 		 */
633 		if (sd->sensor == SENSOR_OV7630 && gain >= 32)
634 			gain += 16;
635 
636 		i2c[1] = sensor_data[sd->sensor].sensor_addr;
637 		i2c[3] = gain;
638 		i2c_w(gspca_dev, i2c);
639 		break;
640 	}
641 	case SENSOR_PAS106:
642 	case SENSOR_PAS202: {
643 		__u8 i2cpgain[] =
644 			{0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
645 		__u8 i2cpcolorgain[] =
646 			{0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
647 		__u8 i2cpdoit[] =
648 			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
649 
650 		/* PAS106 uses different regs (and has split green gains) */
651 		if (sd->sensor == SENSOR_PAS106) {
652 			i2cpgain[2] = 0x0e;
653 			i2cpcolorgain[0] = 0xd0;
654 			i2cpcolorgain[2] = 0x09;
655 			i2cpdoit[2] = 0x13;
656 		}
657 
658 		i2cpgain[3] = gain;
659 		i2cpcolorgain[3] = gain >> 1;
660 		i2cpcolorgain[4] = gain >> 1;
661 		i2cpcolorgain[5] = gain >> 1;
662 		i2cpcolorgain[6] = gain >> 1;
663 
664 		i2c_w(gspca_dev, i2cpgain);
665 		i2c_w(gspca_dev, i2cpcolorgain);
666 		i2c_w(gspca_dev, i2cpdoit);
667 		break;
668 	}
669 	default:
670 		if (sd->bridge == BRIDGE_103) {
671 			u8 buf[3] = { gain, gain, gain }; /* R, G, B */
672 			reg_w(gspca_dev, 0x05, buf, 3);
673 		} else {
674 			u8 buf[2];
675 			buf[0] = gain << 4 | gain; /* Red and blue */
676 			buf[1] = gain; /* Green */
677 			reg_w(gspca_dev, 0x10, buf, 2);
678 		}
679 	}
680 }
681 
682 static void setexposure(struct gspca_dev *gspca_dev)
683 {
684 	struct sd *sd = (struct sd *) gspca_dev;
685 
686 	switch (sd->sensor) {
687 	case SENSOR_HV7131D: {
688 		/* Note the datasheet wrongly says line mode exposure uses reg
689 		   0x26 and 0x27, testing has shown 0x25 + 0x26 */
690 		__u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
691 		u16 reg = gspca_dev->exposure->val;
692 
693 		i2c[3] = reg >> 8;
694 		i2c[4] = reg & 0xff;
695 		i2c_w(gspca_dev, i2c);
696 		break;
697 	}
698 	case SENSOR_TAS5110C:
699 	case SENSOR_TAS5110D: {
700 		/* register 19's high nibble contains the sn9c10x clock divider
701 		   The high nibble configures the no fps according to the
702 		   formula: 60 / high_nibble. With a maximum of 30 fps */
703 		u8 reg = gspca_dev->exposure->val;
704 
705 		reg = (reg << 4) | 0x0b;
706 		reg_w(gspca_dev, 0x19, &reg, 1);
707 		break;
708 	}
709 	case SENSOR_OV6650:
710 	case SENSOR_OV7630: {
711 		/* The ov6650 / ov7630 have 2 registers which both influence
712 		   exposure, register 11, whose low nibble sets the nr off fps
713 		   according to: fps = 30 / (low_nibble + 1)
714 
715 		   The fps configures the maximum exposure setting, but it is
716 		   possible to use less exposure then what the fps maximum
717 		   allows by setting register 10. register 10 configures the
718 		   actual exposure as quotient of the full exposure, with 0
719 		   being no exposure at all (not very useful) and reg10_max
720 		   being max exposure possible at that framerate.
721 
722 		   The code maps our 0 - 510 ms exposure ctrl to these 2
723 		   registers, trying to keep fps as high as possible.
724 		*/
725 		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
726 		int reg10, reg11, reg10_max;
727 
728 		/* ov6645 datasheet says reg10_max is 9a, but that uses
729 		   tline * 2 * reg10 as formula for calculating texpo, the
730 		   ov6650 probably uses the same formula as the 7730 which uses
731 		   tline * 4 * reg10, which explains why the reg10max we've
732 		   found experimentally for the ov6650 is exactly half that of
733 		   the ov6645. The ov7630 datasheet says the max is 0x41. */
734 		if (sd->sensor == SENSOR_OV6650) {
735 			reg10_max = 0x4d;
736 			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
737 		} else
738 			reg10_max = 0x41;
739 
740 		reg11 = (15 * gspca_dev->exposure->val + 999) / 1000;
741 		if (reg11 < 1)
742 			reg11 = 1;
743 		else if (reg11 > 16)
744 			reg11 = 16;
745 
746 		/* In 640x480, if the reg11 has less than 4, the image is
747 		   unstable (the bridge goes into a higher compression mode
748 		   which we have not reverse engineered yet). */
749 		if (gspca_dev->pixfmt.width == 640 && reg11 < 4)
750 			reg11 = 4;
751 
752 		/* frame exposure time in ms = 1000 * reg11 / 30    ->
753 		reg10 = (gspca_dev->exposure->val / 2) * reg10_max
754 				/ (1000 * reg11 / 30) */
755 		reg10 = (gspca_dev->exposure->val * 15 * reg10_max)
756 				/ (1000 * reg11);
757 
758 		/* Don't allow this to get below 10 when using autogain, the
759 		   steps become very large (relatively) when below 10 causing
760 		   the image to oscillate from much too dark, to much too bright
761 		   and back again. */
762 		if (gspca_dev->autogain->val && reg10 < 10)
763 			reg10 = 10;
764 		else if (reg10 > reg10_max)
765 			reg10 = reg10_max;
766 
767 		/* Write reg 10 and reg11 low nibble */
768 		i2c[1] = sensor_data[sd->sensor].sensor_addr;
769 		i2c[3] = reg10;
770 		i2c[4] |= reg11 - 1;
771 
772 		/* If register 11 didn't change, don't change it */
773 		if (sd->reg11 == reg11)
774 			i2c[0] = 0xa0;
775 
776 		i2c_w(gspca_dev, i2c);
777 		if (gspca_dev->usb_err == 0)
778 			sd->reg11 = reg11;
779 		break;
780 	}
781 	case SENSOR_PAS202: {
782 		__u8 i2cpframerate[] =
783 			{0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
784 		__u8 i2cpexpo[] =
785 			{0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
786 		const __u8 i2cpdoit[] =
787 			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
788 		int framerate_ctrl;
789 
790 		/* The exposure knee for the autogain algorithm is 200
791 		   (100 ms / 10 fps on other sensors), for values below this
792 		   use the control for setting the partial frame expose time,
793 		   above that use variable framerate. This way we run at max
794 		   framerate (640x480@7.5 fps, 320x240@10fps) until the knee
795 		   is reached. Using the variable framerate control above 200
796 		   is better then playing around with both clockdiv + partial
797 		   frame exposure times (like we are doing with the ov chips),
798 		   as that sometimes leads to jumps in the exposure control,
799 		   which are bad for auto exposure. */
800 		if (gspca_dev->exposure->val < 200) {
801 			i2cpexpo[3] = 255 - (gspca_dev->exposure->val * 255)
802 						/ 200;
803 			framerate_ctrl = 500;
804 		} else {
805 			/* The PAS202's exposure control goes from 0 - 4095,
806 			   but anything below 500 causes vsync issues, so scale
807 			   our 200-1023 to 500-4095 */
808 			framerate_ctrl = (gspca_dev->exposure->val - 200)
809 							* 1000 / 229 +  500;
810 		}
811 
812 		i2cpframerate[3] = framerate_ctrl >> 6;
813 		i2cpframerate[4] = framerate_ctrl & 0x3f;
814 		i2c_w(gspca_dev, i2cpframerate);
815 		i2c_w(gspca_dev, i2cpexpo);
816 		i2c_w(gspca_dev, i2cpdoit);
817 		break;
818 	}
819 	case SENSOR_PAS106: {
820 		__u8 i2cpframerate[] =
821 			{0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
822 		__u8 i2cpexpo[] =
823 			{0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
824 		const __u8 i2cpdoit[] =
825 			{0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
826 		int framerate_ctrl;
827 
828 		/* For values below 150 use partial frame exposure, above
829 		   that use framerate ctrl */
830 		if (gspca_dev->exposure->val < 150) {
831 			i2cpexpo[3] = 150 - gspca_dev->exposure->val;
832 			framerate_ctrl = 300;
833 		} else {
834 			/* The PAS106's exposure control goes from 0 - 4095,
835 			   but anything below 300 causes vsync issues, so scale
836 			   our 150-1023 to 300-4095 */
837 			framerate_ctrl = (gspca_dev->exposure->val - 150)
838 						* 1000 / 230 + 300;
839 		}
840 
841 		i2cpframerate[3] = framerate_ctrl >> 4;
842 		i2cpframerate[4] = framerate_ctrl & 0x0f;
843 		i2c_w(gspca_dev, i2cpframerate);
844 		i2c_w(gspca_dev, i2cpexpo);
845 		i2c_w(gspca_dev, i2cpdoit);
846 		break;
847 	}
848 	default:
849 		break;
850 	}
851 }
852 
853 static void setfreq(struct gspca_dev *gspca_dev)
854 {
855 	struct sd *sd = (struct sd *) gspca_dev;
856 
857 	if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630) {
858 		/* Framerate adjust register for artificial light 50 hz flicker
859 		   compensation, for the ov6650 this is identical to ov6630
860 		   0x2b register, see ov6630 datasheet.
861 		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
862 		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
863 		switch (sd->plfreq->val) {
864 		default:
865 /*		case 0:			 * no filter*/
866 /*		case 2:			 * 60 hz */
867 			i2c[3] = 0;
868 			break;
869 		case 1:			/* 50 hz */
870 			i2c[3] = (sd->sensor == SENSOR_OV6650)
871 					? 0x4f : 0x8a;
872 			break;
873 		}
874 		i2c[1] = sensor_data[sd->sensor].sensor_addr;
875 		i2c_w(gspca_dev, i2c);
876 	}
877 }
878 
879 static void do_autogain(struct gspca_dev *gspca_dev)
880 {
881 	struct sd *sd = (struct sd *) gspca_dev;
882 	int deadzone, desired_avg_lum, avg_lum;
883 
884 	avg_lum = atomic_read(&sd->avg_lum);
885 	if (avg_lum == -1)
886 		return;
887 
888 	if (sd->autogain_ignore_frames > 0) {
889 		sd->autogain_ignore_frames--;
890 		return;
891 	}
892 
893 	/* SIF / VGA sensors have a different autoexposure area and thus
894 	   different avg_lum values for the same picture brightness */
895 	if (sensor_data[sd->sensor].flags & F_SIF) {
896 		deadzone = 500;
897 		/* SIF sensors tend to overexpose, so keep this small */
898 		desired_avg_lum = 5000;
899 	} else {
900 		deadzone = 1500;
901 		desired_avg_lum = 13000;
902 	}
903 
904 	if (sd->brightness)
905 		desired_avg_lum = sd->brightness->val * desired_avg_lum / 127;
906 
907 	if (gspca_dev->exposure->maximum < 500) {
908 		if (gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum,
909 				desired_avg_lum, deadzone))
910 			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
911 	} else {
912 		int gain_knee = (s32)gspca_dev->gain->maximum * 9 / 10;
913 		if (gspca_expo_autogain(gspca_dev, avg_lum, desired_avg_lum,
914 				deadzone, gain_knee, sd->exposure_knee))
915 			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
916 	}
917 }
918 
919 /* this function is called at probe time */
920 static int sd_config(struct gspca_dev *gspca_dev,
921 			const struct usb_device_id *id)
922 {
923 	struct sd *sd = (struct sd *) gspca_dev;
924 	struct cam *cam;
925 
926 	reg_r(gspca_dev, 0x00);
927 	if (gspca_dev->usb_buf[0] != 0x10)
928 		return -ENODEV;
929 
930 	/* copy the webcam info from the device id */
931 	sd->sensor = id->driver_info >> 8;
932 	sd->bridge = id->driver_info & 0xff;
933 
934 	cam = &gspca_dev->cam;
935 	if (!(sensor_data[sd->sensor].flags & F_SIF)) {
936 		cam->cam_mode = vga_mode;
937 		cam->nmodes = ARRAY_SIZE(vga_mode);
938 	} else {
939 		cam->cam_mode = sif_mode;
940 		cam->nmodes = ARRAY_SIZE(sif_mode);
941 	}
942 	cam->npkt = 36;			/* 36 packets per ISOC message */
943 
944 	return 0;
945 }
946 
947 /* this function is called at probe and resume time */
948 static int sd_init(struct gspca_dev *gspca_dev)
949 {
950 	const __u8 stop = 0x09; /* Disable stream turn of LED */
951 
952 	reg_w(gspca_dev, 0x01, &stop, 1);
953 
954 	return gspca_dev->usb_err;
955 }
956 
957 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
958 {
959 	struct gspca_dev *gspca_dev =
960 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
961 	struct sd *sd = (struct sd *)gspca_dev;
962 
963 	gspca_dev->usb_err = 0;
964 
965 	if (ctrl->id == V4L2_CID_AUTOGAIN && ctrl->is_new && ctrl->val) {
966 		/* when switching to autogain set defaults to make sure
967 		   we are on a valid point of the autogain gain /
968 		   exposure knee graph, and give this change time to
969 		   take effect before doing autogain. */
970 		gspca_dev->gain->val = gspca_dev->gain->default_value;
971 		gspca_dev->exposure->val = gspca_dev->exposure->default_value;
972 		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
973 	}
974 
975 	if (!gspca_dev->streaming)
976 		return 0;
977 
978 	switch (ctrl->id) {
979 	case V4L2_CID_BRIGHTNESS:
980 		setbrightness(gspca_dev);
981 		break;
982 	case V4L2_CID_AUTOGAIN:
983 		if (gspca_dev->exposure->is_new || (ctrl->is_new && ctrl->val))
984 			setexposure(gspca_dev);
985 		if (gspca_dev->gain->is_new || (ctrl->is_new && ctrl->val))
986 			setgain(gspca_dev);
987 		break;
988 	case V4L2_CID_POWER_LINE_FREQUENCY:
989 		setfreq(gspca_dev);
990 		break;
991 	default:
992 		return -EINVAL;
993 	}
994 	return gspca_dev->usb_err;
995 }
996 
997 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
998 	.s_ctrl = sd_s_ctrl,
999 };
1000 
1001 /* this function is called at probe time */
1002 static int sd_init_controls(struct gspca_dev *gspca_dev)
1003 {
1004 	struct sd *sd = (struct sd *) gspca_dev;
1005 	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
1006 
1007 	gspca_dev->vdev.ctrl_handler = hdl;
1008 	v4l2_ctrl_handler_init(hdl, 5);
1009 
1010 	if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630 ||
1011 	    sd->sensor == SENSOR_PAS106 || sd->sensor == SENSOR_PAS202)
1012 		sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1013 					V4L2_CID_BRIGHTNESS, 0, 255, 1, 127);
1014 
1015 	/* Gain range is sensor dependent */
1016 	switch (sd->sensor) {
1017 	case SENSOR_OV6650:
1018 	case SENSOR_PAS106:
1019 	case SENSOR_PAS202:
1020 		gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1021 					V4L2_CID_GAIN, 0, 31, 1, 15);
1022 		break;
1023 	case SENSOR_OV7630:
1024 		gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1025 					V4L2_CID_GAIN, 0, 47, 1, 31);
1026 		break;
1027 	case SENSOR_HV7131D:
1028 		gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1029 					V4L2_CID_GAIN, 0, 63, 1, 31);
1030 		break;
1031 	case SENSOR_TAS5110C:
1032 	case SENSOR_TAS5110D:
1033 	case SENSOR_TAS5130CXX:
1034 		gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1035 					V4L2_CID_GAIN, 0, 255, 1, 127);
1036 		break;
1037 	default:
1038 		if (sd->bridge == BRIDGE_103) {
1039 			gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1040 						V4L2_CID_GAIN, 0, 127, 1, 63);
1041 		} else {
1042 			gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1043 						V4L2_CID_GAIN, 0, 15, 1, 7);
1044 		}
1045 	}
1046 
1047 	/* Exposure range is sensor dependent, and not all have exposure */
1048 	switch (sd->sensor) {
1049 	case SENSOR_HV7131D:
1050 		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1051 					V4L2_CID_EXPOSURE, 0, 8191, 1, 482);
1052 		sd->exposure_knee = 964;
1053 		break;
1054 	case SENSOR_OV6650:
1055 	case SENSOR_OV7630:
1056 	case SENSOR_PAS106:
1057 	case SENSOR_PAS202:
1058 		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1059 					V4L2_CID_EXPOSURE, 0, 1023, 1, 66);
1060 		sd->exposure_knee = 200;
1061 		break;
1062 	case SENSOR_TAS5110C:
1063 	case SENSOR_TAS5110D:
1064 		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1065 					V4L2_CID_EXPOSURE, 2, 15, 1, 2);
1066 		break;
1067 	}
1068 
1069 	if (gspca_dev->exposure) {
1070 		gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
1071 						V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1072 	}
1073 
1074 	if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630)
1075 		sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
1076 			V4L2_CID_POWER_LINE_FREQUENCY,
1077 			V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
1078 			V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1079 
1080 	if (hdl->error) {
1081 		pr_err("Could not initialize controls\n");
1082 		return hdl->error;
1083 	}
1084 
1085 	if (gspca_dev->autogain)
1086 		v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, false);
1087 
1088 	return 0;
1089 }
1090 
1091 /* -- start the camera -- */
1092 static int sd_start(struct gspca_dev *gspca_dev)
1093 {
1094 	struct sd *sd = (struct sd *) gspca_dev;
1095 	struct cam *cam = &gspca_dev->cam;
1096 	int i, mode;
1097 	__u8 regs[0x31];
1098 
1099 	mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1100 	/* Copy registers 0x01 - 0x19 from the template */
1101 	memcpy(&regs[0x01], sensor_data[sd->sensor].bridge_init, 0x19);
1102 	/* Set the mode */
1103 	regs[0x18] |= mode << 4;
1104 
1105 	/* Set bridge gain to 1.0 */
1106 	if (sd->bridge == BRIDGE_103) {
1107 		regs[0x05] = 0x20; /* Red */
1108 		regs[0x06] = 0x20; /* Green */
1109 		regs[0x07] = 0x20; /* Blue */
1110 	} else {
1111 		regs[0x10] = 0x00; /* Red and blue */
1112 		regs[0x11] = 0x00; /* Green */
1113 	}
1114 
1115 	/* Setup pixel numbers and auto exposure window */
1116 	if (sensor_data[sd->sensor].flags & F_SIF) {
1117 		regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
1118 		regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
1119 		regs[0x1c] = 0x02; /* AE H-start 64 */
1120 		regs[0x1d] = 0x02; /* AE V-start 64 */
1121 		regs[0x1e] = 0x09; /* AE H-end 288 */
1122 		regs[0x1f] = 0x07; /* AE V-end 224 */
1123 	} else {
1124 		regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
1125 		regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
1126 		regs[0x1c] = 0x05; /* AE H-start 160 */
1127 		regs[0x1d] = 0x03; /* AE V-start 96 */
1128 		regs[0x1e] = 0x0f; /* AE H-end 480 */
1129 		regs[0x1f] = 0x0c; /* AE V-end 384 */
1130 	}
1131 
1132 	/* Setup the gamma table (only used with the sn9c103 bridge) */
1133 	for (i = 0; i < 16; i++)
1134 		regs[0x20 + i] = i * 16;
1135 	regs[0x20 + i] = 255;
1136 
1137 	/* Special cases where some regs depend on mode or bridge */
1138 	switch (sd->sensor) {
1139 	case SENSOR_TAS5130CXX:
1140 		/* FIXME / TESTME
1141 		   probably not mode specific at all most likely the upper
1142 		   nibble of 0x19 is exposure (clock divider) just as with
1143 		   the tas5110, we need someone to test this. */
1144 		regs[0x19] = mode ? 0x23 : 0x43;
1145 		break;
1146 	case SENSOR_OV7630:
1147 		/* FIXME / TESTME for some reason with the 101/102 bridge the
1148 		   clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
1149 		   Also the hstart needs to go from 1 to 2 when using a 103,
1150 		   which is likely related. This does not seem right. */
1151 		if (sd->bridge == BRIDGE_103) {
1152 			regs[0x01] = 0x44; /* Select 24 Mhz clock */
1153 			regs[0x12] = 0x02; /* Set hstart to 2 */
1154 		}
1155 		break;
1156 	case SENSOR_PAS202:
1157 		/* For some unknown reason we need to increase hstart by 1 on
1158 		   the sn9c103, otherwise we get wrong colors (bayer shift). */
1159 		if (sd->bridge == BRIDGE_103)
1160 			regs[0x12] += 1;
1161 		break;
1162 	}
1163 	/* Disable compression when the raw bayer format has been selected */
1164 	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
1165 		regs[0x18] &= ~0x80;
1166 
1167 	/* Vga mode emulation on SIF sensor? */
1168 	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
1169 		regs[0x12] += 16;	/* hstart adjust */
1170 		regs[0x13] += 24;	/* vstart adjust */
1171 		regs[0x15]  = 320 / 16; /* hsize */
1172 		regs[0x16]  = 240 / 16; /* vsize */
1173 	}
1174 
1175 	/* reg 0x01 bit 2 video transfert on */
1176 	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1177 	/* reg 0x17 SensorClk enable inv Clk 0x60 */
1178 	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1179 	/* Set the registers from the template */
1180 	reg_w(gspca_dev, 0x01, &regs[0x01],
1181 	      (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f);
1182 
1183 	/* Init the sensor */
1184 	i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
1185 			sensor_data[sd->sensor].sensor_init_size);
1186 
1187 	/* Mode / bridge specific sensor setup */
1188 	switch (sd->sensor) {
1189 	case SENSOR_PAS202: {
1190 		const __u8 i2cpclockdiv[] =
1191 			{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
1192 		/* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
1193 		if (mode)
1194 			i2c_w(gspca_dev, i2cpclockdiv);
1195 		break;
1196 	    }
1197 	case SENSOR_OV7630:
1198 		/* FIXME / TESTME We should be able to handle this identical
1199 		   for the 101/102 and the 103 case */
1200 		if (sd->bridge == BRIDGE_103) {
1201 			const __u8 i2c[] = { 0xa0, 0x21, 0x13,
1202 					     0x80, 0x00, 0x00, 0x00, 0x10 };
1203 			i2c_w(gspca_dev, i2c);
1204 		}
1205 		break;
1206 	}
1207 	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1208 	reg_w(gspca_dev, 0x15, &regs[0x15], 2);
1209 	/* compression register */
1210 	reg_w(gspca_dev, 0x18, &regs[0x18], 1);
1211 	/* H_start */
1212 	reg_w(gspca_dev, 0x12, &regs[0x12], 1);
1213 	/* V_START */
1214 	reg_w(gspca_dev, 0x13, &regs[0x13], 1);
1215 	/* reset 0x17 SensorClk enable inv Clk 0x60 */
1216 				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1217 	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1218 	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
1219 	reg_w(gspca_dev, 0x19, &regs[0x19], 1);
1220 	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1221 	reg_w(gspca_dev, 0x1c, &regs[0x1c], 4);
1222 	/* Enable video transfert */
1223 	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1224 	/* Compression */
1225 	reg_w(gspca_dev, 0x18, &regs[0x18], 2);
1226 	msleep(20);
1227 
1228 	sd->reg11 = -1;
1229 
1230 	setgain(gspca_dev);
1231 	setbrightness(gspca_dev);
1232 	setexposure(gspca_dev);
1233 	setfreq(gspca_dev);
1234 
1235 	sd->frames_to_drop = 0;
1236 	sd->autogain_ignore_frames = 0;
1237 	gspca_dev->exp_too_high_cnt = 0;
1238 	gspca_dev->exp_too_low_cnt = 0;
1239 	atomic_set(&sd->avg_lum, -1);
1240 	return gspca_dev->usb_err;
1241 }
1242 
1243 static void sd_stopN(struct gspca_dev *gspca_dev)
1244 {
1245 	sd_init(gspca_dev);
1246 }
1247 
1248 static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
1249 {
1250 	struct sd *sd = (struct sd *) gspca_dev;
1251 	int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
1252 
1253 	/* frames start with:
1254 	 *	ff ff 00 c4 c4 96	synchro
1255 	 *	00		(unknown)
1256 	 *	xx		(frame sequence / size / compression)
1257 	 *	(xx)		(idem - extra byte for sn9c103)
1258 	 *	ll mm		brightness sum inside auto exposure
1259 	 *	ll mm		brightness sum outside auto exposure
1260 	 *	(xx xx xx xx xx)	audio values for snc103
1261 	 */
1262 	for (i = 0; i < len; i++) {
1263 		switch (sd->header_read) {
1264 		case 0:
1265 			if (data[i] == 0xff)
1266 				sd->header_read++;
1267 			break;
1268 		case 1:
1269 			if (data[i] == 0xff)
1270 				sd->header_read++;
1271 			else
1272 				sd->header_read = 0;
1273 			break;
1274 		case 2:
1275 			if (data[i] == 0x00)
1276 				sd->header_read++;
1277 			else if (data[i] != 0xff)
1278 				sd->header_read = 0;
1279 			break;
1280 		case 3:
1281 			if (data[i] == 0xc4)
1282 				sd->header_read++;
1283 			else if (data[i] == 0xff)
1284 				sd->header_read = 1;
1285 			else
1286 				sd->header_read = 0;
1287 			break;
1288 		case 4:
1289 			if (data[i] == 0xc4)
1290 				sd->header_read++;
1291 			else if (data[i] == 0xff)
1292 				sd->header_read = 1;
1293 			else
1294 				sd->header_read = 0;
1295 			break;
1296 		case 5:
1297 			if (data[i] == 0x96)
1298 				sd->header_read++;
1299 			else if (data[i] == 0xff)
1300 				sd->header_read = 1;
1301 			else
1302 				sd->header_read = 0;
1303 			break;
1304 		default:
1305 			sd->header[sd->header_read - 6] = data[i];
1306 			sd->header_read++;
1307 			if (sd->header_read == header_size) {
1308 				sd->header_read = 0;
1309 				return data + i + 1;
1310 			}
1311 		}
1312 	}
1313 	return NULL;
1314 }
1315 
1316 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1317 			u8 *data,			/* isoc packet */
1318 			int len)			/* iso packet length */
1319 {
1320 	int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
1321 	struct sd *sd = (struct sd *) gspca_dev;
1322 	struct cam *cam = &gspca_dev->cam;
1323 	u8 *sof;
1324 
1325 	sof = find_sof(gspca_dev, data, len);
1326 	if (sof) {
1327 		if (sd->bridge == BRIDGE_103) {
1328 			fr_h_sz = 18;
1329 			lum_offset = 3;
1330 		} else {
1331 			fr_h_sz = 12;
1332 			lum_offset = 2;
1333 		}
1334 
1335 		len_after_sof = len - (sof - data);
1336 		len = (sof - data) - fr_h_sz;
1337 		if (len < 0)
1338 			len = 0;
1339 	}
1340 
1341 	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
1342 		/* In raw mode we sometimes get some garbage after the frame
1343 		   ignore this */
1344 		int used;
1345 		int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;
1346 
1347 		used = gspca_dev->image_len;
1348 		if (used + len > size)
1349 			len = size - used;
1350 	}
1351 
1352 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1353 
1354 	if (sof) {
1355 		int  lum = sd->header[lum_offset] +
1356 			  (sd->header[lum_offset + 1] << 8);
1357 
1358 		/* When exposure changes midway a frame we
1359 		   get a lum of 0 in this case drop 2 frames
1360 		   as the frames directly after an exposure
1361 		   change have an unstable image. Sometimes lum
1362 		   *really* is 0 (cam used in low light with
1363 		   low exposure setting), so do not drop frames
1364 		   if the previous lum was 0 too. */
1365 		if (lum == 0 && sd->prev_avg_lum != 0) {
1366 			lum = -1;
1367 			sd->frames_to_drop = 2;
1368 			sd->prev_avg_lum = 0;
1369 		} else
1370 			sd->prev_avg_lum = lum;
1371 		atomic_set(&sd->avg_lum, lum);
1372 
1373 		if (sd->frames_to_drop)
1374 			sd->frames_to_drop--;
1375 		else
1376 			gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
1377 
1378 		gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
1379 	}
1380 }
1381 
1382 #if IS_ENABLED(CONFIG_INPUT)
1383 static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
1384 			u8 *data,		/* interrupt packet data */
1385 			int len)		/* interrupt packet length */
1386 {
1387 	int ret = -EINVAL;
1388 
1389 	if (len == 1 && data[0] == 1) {
1390 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
1391 		input_sync(gspca_dev->input_dev);
1392 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
1393 		input_sync(gspca_dev->input_dev);
1394 		ret = 0;
1395 	}
1396 
1397 	return ret;
1398 }
1399 #endif
1400 
1401 /* sub-driver description */
1402 static const struct sd_desc sd_desc = {
1403 	.name = MODULE_NAME,
1404 	.config = sd_config,
1405 	.init = sd_init,
1406 	.init_controls = sd_init_controls,
1407 	.start = sd_start,
1408 	.stopN = sd_stopN,
1409 	.pkt_scan = sd_pkt_scan,
1410 	.dq_callback = do_autogain,
1411 #if IS_ENABLED(CONFIG_INPUT)
1412 	.int_pkt_scan = sd_int_pkt_scan,
1413 #endif
1414 };
1415 
1416 /* -- module initialisation -- */
1417 #define SB(sensor, bridge) \
1418 	.driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge
1419 
1420 
1421 static const struct usb_device_id device_table[] = {
1422 	{USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
1423 	{USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
1424 	{USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1425 	{USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
1426 	{USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
1427 	{USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1428 	{USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
1429 	{USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
1430 	{USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1431 	{USB_DEVICE(0x0c45, 0x6027), SB(OV7630, 101)}, /* Genius Eye 310 */
1432 	{USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
1433 	{USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1434 	{USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
1435 	/* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1436 	{USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1437 	{USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
1438 	{USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1439 	/* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
1440 	/* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */
1441 	{USB_DEVICE(0x0c45, 0x6083), SB(HV7131D, 103)},
1442 	{USB_DEVICE(0x0c45, 0x608c), SB(HV7131R, 103)},
1443 	/* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */
1444 	{USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1445 	{USB_DEVICE(0x0c45, 0x60a8), SB(PAS106, 103)},
1446 	{USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX, 103)},
1447 	{USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1448 	{USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1449 	{}
1450 };
1451 MODULE_DEVICE_TABLE(usb, device_table);
1452 
1453 /* -- device connect -- */
1454 static int sd_probe(struct usb_interface *intf,
1455 			const struct usb_device_id *id)
1456 {
1457 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1458 				THIS_MODULE);
1459 }
1460 
1461 static struct usb_driver sd_driver = {
1462 	.name = MODULE_NAME,
1463 	.id_table = device_table,
1464 	.probe = sd_probe,
1465 	.disconnect = gspca_disconnect,
1466 #ifdef CONFIG_PM
1467 	.suspend = gspca_suspend,
1468 	.resume = gspca_resume,
1469 	.reset_resume = gspca_resume,
1470 #endif
1471 };
1472 
1473 module_usb_driver(sd_driver);
1474