1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * sonix sn9c102 (bayer) library 4 * 5 * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr> 6 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr 7 * Add Pas106 Stefano Mozzi (C) 2004 8 */ 9 10 /* Some documentation on known sonixb registers: 11 12 Reg Use 13 sn9c101 / sn9c102: 14 0x10 high nibble red gain low nibble blue gain 15 0x11 low nibble green gain 16 sn9c103: 17 0x05 red gain 0-127 18 0x06 blue gain 0-127 19 0x07 green gain 0-127 20 all: 21 0x08-0x0f i2c / 3wire registers 22 0x12 hstart 23 0x13 vstart 24 0x15 hsize (hsize = register-value * 16) 25 0x16 vsize (vsize = register-value * 16) 26 0x17 bit 0 toggle compression quality (according to sn9c102 driver) 27 0x18 bit 7 enables compression, bit 4-5 set image down scaling: 28 00 scale 1, 01 scale 1/2, 10, scale 1/4 29 0x19 high-nibble is sensor clock divider, changes exposure on sensors which 30 use a clock generated by the bridge. Some sensors have their own clock. 31 0x1c auto_exposure area (for avg_lum) startx (startx = register-value * 32) 32 0x1d auto_exposure area (for avg_lum) starty (starty = register-value * 32) 33 0x1e auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32) 34 0x1f auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32) 35 */ 36 37 #define MODULE_NAME "sonixb" 38 39 #include <linux/input.h> 40 #include "gspca.h" 41 42 MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>"); 43 MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver"); 44 MODULE_LICENSE("GPL"); 45 46 /* specific webcam descriptor */ 47 struct sd { 48 struct gspca_dev gspca_dev; /* !! must be the first item */ 49 50 struct v4l2_ctrl *brightness; 51 struct v4l2_ctrl *plfreq; 52 53 atomic_t avg_lum; 54 int prev_avg_lum; 55 int exposure_knee; 56 int header_read; 57 u8 header[12]; /* Header without sof marker */ 58 59 unsigned char autogain_ignore_frames; 60 unsigned char frames_to_drop; 61 62 __u8 bridge; /* Type of bridge */ 63 #define BRIDGE_101 0 64 #define BRIDGE_102 0 /* We make no difference between 101 and 102 */ 65 #define BRIDGE_103 1 66 67 __u8 sensor; /* Type of image sensor chip */ 68 #define SENSOR_HV7131D 0 69 #define SENSOR_HV7131R 1 70 #define SENSOR_OV6650 2 71 #define SENSOR_OV7630 3 72 #define SENSOR_PAS106 4 73 #define SENSOR_PAS202 5 74 #define SENSOR_TAS5110C 6 75 #define SENSOR_TAS5110D 7 76 #define SENSOR_TAS5130CXX 8 77 __u8 reg11; 78 }; 79 80 typedef const __u8 sensor_init_t[8]; 81 82 struct sensor_data { 83 const __u8 *bridge_init; 84 sensor_init_t *sensor_init; 85 int sensor_init_size; 86 int flags; 87 __u8 sensor_addr; 88 }; 89 90 /* sensor_data flags */ 91 #define F_SIF 0x01 /* sif or vga */ 92 93 /* priv field of struct v4l2_pix_format flags (do not use low nibble!) */ 94 #define MODE_RAW 0x10 /* raw bayer mode */ 95 #define MODE_REDUCED_SIF 0x20 /* vga mode (320x240 / 160x120) on sif cam */ 96 97 #define COMP 0xc7 /* 0x87 //0x07 */ 98 #define COMP1 0xc9 /* 0x89 //0x09 */ 99 100 #define MCK_INIT 0x63 101 #define MCK_INIT1 0x20 /*fixme: Bayer - 0x50 for JPEG ??*/ 102 103 #define SYS_CLK 0x04 104 105 #define SENS(bridge, sensor, _flags, _sensor_addr) \ 106 { \ 107 .bridge_init = bridge, \ 108 .sensor_init = sensor, \ 109 .sensor_init_size = sizeof(sensor), \ 110 .flags = _flags, .sensor_addr = _sensor_addr \ 111 } 112 113 /* We calculate the autogain at the end of the transfer of a frame, at this 114 moment a frame with the old settings is being captured and transmitted. So 115 if we adjust the gain or exposure we must ignore at least the next frame for 116 the new settings to come into effect before doing any other adjustments. */ 117 #define AUTOGAIN_IGNORE_FRAMES 1 118 119 static const struct v4l2_pix_format vga_mode[] = { 120 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 121 .bytesperline = 160, 122 .sizeimage = 160 * 120, 123 .colorspace = V4L2_COLORSPACE_SRGB, 124 .priv = 2 | MODE_RAW}, 125 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, 126 .bytesperline = 160, 127 .sizeimage = 160 * 120 * 5 / 4, 128 .colorspace = V4L2_COLORSPACE_SRGB, 129 .priv = 2}, 130 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, 131 .bytesperline = 320, 132 .sizeimage = 320 * 240 * 5 / 4, 133 .colorspace = V4L2_COLORSPACE_SRGB, 134 .priv = 1}, 135 {640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, 136 .bytesperline = 640, 137 .sizeimage = 640 * 480 * 5 / 4, 138 .colorspace = V4L2_COLORSPACE_SRGB, 139 .priv = 0}, 140 }; 141 static const struct v4l2_pix_format sif_mode[] = { 142 {160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 143 .bytesperline = 160, 144 .sizeimage = 160 * 120, 145 .colorspace = V4L2_COLORSPACE_SRGB, 146 .priv = 1 | MODE_RAW | MODE_REDUCED_SIF}, 147 {160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, 148 .bytesperline = 160, 149 .sizeimage = 160 * 120 * 5 / 4, 150 .colorspace = V4L2_COLORSPACE_SRGB, 151 .priv = 1 | MODE_REDUCED_SIF}, 152 {176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 153 .bytesperline = 176, 154 .sizeimage = 176 * 144, 155 .colorspace = V4L2_COLORSPACE_SRGB, 156 .priv = 1 | MODE_RAW}, 157 {176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, 158 .bytesperline = 176, 159 .sizeimage = 176 * 144 * 5 / 4, 160 .colorspace = V4L2_COLORSPACE_SRGB, 161 .priv = 1}, 162 {320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, 163 .bytesperline = 320, 164 .sizeimage = 320 * 240 * 5 / 4, 165 .colorspace = V4L2_COLORSPACE_SRGB, 166 .priv = 0 | MODE_REDUCED_SIF}, 167 {352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE, 168 .bytesperline = 352, 169 .sizeimage = 352 * 288 * 5 / 4, 170 .colorspace = V4L2_COLORSPACE_SRGB, 171 .priv = 0}, 172 }; 173 174 static const __u8 initHv7131d[] = { 175 0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00, 176 0x00, 0x00, 177 0x00, 0x00, 0x00, 0x02, 0x02, 0x00, 178 0x28, 0x1e, 0x60, 0x8e, 0x42, 179 }; 180 static const __u8 hv7131d_sensor_init[][8] = { 181 {0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17}, 182 {0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17}, 183 {0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17}, 184 {0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */ 185 {0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */ 186 }; 187 188 static const __u8 initHv7131r[] = { 189 0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00, 190 0x00, 0x00, 191 0x00, 0x00, 0x00, 0x02, 0x01, 0x00, 192 0x28, 0x1e, 0x60, 0x8a, 0x20, 193 }; 194 static const __u8 hv7131r_sensor_init[][8] = { 195 {0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10}, 196 {0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10}, 197 {0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10}, 198 {0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16}, 199 {0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15}, 200 }; 201 static const __u8 initOv6650[] = { 202 0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 203 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 204 0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b, 205 0x10, 206 }; 207 static const __u8 ov6650_sensor_init[][8] = { 208 /* Bright, contrast, etc are set through SCBB interface. 209 * AVCAP on win2 do not send any data on this controls. */ 210 /* Anyway, some registers appears to alter bright and constrat */ 211 212 /* Reset sensor */ 213 {0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10}, 214 /* Set clock register 0x11 low nibble is clock divider */ 215 {0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10}, 216 /* Next some unknown stuff */ 217 {0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10}, 218 /* {0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10}, 219 * THIS SET GREEN SCREEN 220 * (pixels could be innverted in decode kind of "brg", 221 * but blue wont be there. Avoid this data ... */ 222 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */ 223 {0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, 224 {0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10}, 225 /* Enable rgb brightness control */ 226 {0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10}, 227 /* HDG: Note windows uses the line below, which sets both register 0x60 228 and 0x61 I believe these registers of the ov6650 are identical as 229 those of the ov7630, because if this is true the windows settings 230 add a bit additional red gain and a lot additional blue gain, which 231 matches my findings that the windows settings make blue much too 232 blue and red a little too red. 233 {0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */ 234 /* Some more unknown stuff */ 235 {0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10}, 236 {0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */ 237 }; 238 239 static const __u8 initOv7630[] = { 240 0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, /* r01 .. r08 */ 241 0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* r09 .. r10 */ 242 0x00, 0x01, 0x01, 0x0a, /* r11 .. r14 */ 243 0x28, 0x1e, /* H & V sizes r15 .. r16 */ 244 0x68, 0x8f, MCK_INIT1, /* r17 .. r19 */ 245 }; 246 static const __u8 ov7630_sensor_init[][8] = { 247 {0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10}, 248 {0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10}, 249 /* {0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10}, jfm */ 250 {0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10}, /* jfm */ 251 {0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10}, 252 {0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10}, 253 {0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10}, 254 {0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10}, 255 {0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10}, 256 {0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10}, 257 {0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10}, 258 {0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10}, 259 /* {0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10}, * jfm */ 260 {0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10}, 261 {0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10}, 262 {0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10}, 263 {0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10}, 264 {0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10}, 265 {0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10}, 266 }; 267 268 static const __u8 initPas106[] = { 269 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00, 270 0x00, 0x00, 271 0x00, 0x00, 0x00, 0x04, 0x01, 0x00, 272 0x16, 0x12, 0x24, COMP1, MCK_INIT1, 273 }; 274 /* compression 0x86 mckinit1 0x2b */ 275 276 /* "Known" PAS106B registers: 277 0x02 clock divider 278 0x03 Variable framerate bits 4-11 279 0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !! 280 The variable framerate control must never be set lower then 300, 281 which sets the framerate at 90 / reg02, otherwise vsync is lost. 282 0x05 Shutter Time Line Offset, this can be used as an exposure control: 283 0 = use full frame time, 255 = no exposure at all 284 Note this may never be larger then "var-framerate control" / 2 - 2. 285 When var-framerate control is < 514, no exposure is reached at the max 286 allowed value for the framerate control value, rather then at 255. 287 0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but 288 only a very little bit, leave at 0xcd 289 0x07 offset sign bit (bit0 1 > negative offset) 290 0x08 offset 291 0x09 Blue Gain 292 0x0a Green1 Gain 293 0x0b Green2 Gain 294 0x0c Red Gain 295 0x0e Global gain 296 0x13 Write 1 to commit settings to sensor 297 */ 298 299 static const __u8 pas106_sensor_init[][8] = { 300 /* Pixel Clock Divider 6 */ 301 { 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 }, 302 /* Frame Time MSB (also seen as 0x12) */ 303 { 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 }, 304 /* Frame Time LSB (also seen as 0x05) */ 305 { 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 }, 306 /* Shutter Time Line Offset (also seen as 0x6d) */ 307 { 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 }, 308 /* Shutter Time Pixel Offset (also seen as 0xb1) */ 309 { 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 }, 310 /* Black Level Subtract Sign (also seen 0x00) */ 311 { 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 }, 312 /* Black Level Subtract Level (also seen 0x01) */ 313 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 }, 314 { 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 }, 315 /* Color Gain B Pixel 5 a */ 316 { 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 }, 317 /* Color Gain G1 Pixel 1 5 */ 318 { 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 }, 319 /* Color Gain G2 Pixel 1 0 5 */ 320 { 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 }, 321 /* Color Gain R Pixel 3 1 */ 322 { 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 }, 323 /* Color GainH Pixel */ 324 { 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 }, 325 /* Global Gain */ 326 { 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 }, 327 /* Contrast */ 328 { 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 }, 329 /* H&V synchro polarity */ 330 { 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 }, 331 /* ?default */ 332 { 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 }, 333 /* DAC scale */ 334 { 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 }, 335 /* ?default */ 336 { 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 }, 337 /* Validate Settings */ 338 { 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 }, 339 }; 340 341 static const __u8 initPas202[] = { 342 0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00, 343 0x00, 0x00, 344 0x00, 0x00, 0x00, 0x06, 0x03, 0x0a, 345 0x28, 0x1e, 0x20, 0x89, 0x20, 346 }; 347 348 /* "Known" PAS202BCB registers: 349 0x02 clock divider 350 0x04 Variable framerate bits 6-11 (*) 351 0x05 Var framerate bits 0-5, one must leave the 2 msb's at 0 !! 352 0x07 Blue Gain 353 0x08 Green Gain 354 0x09 Red Gain 355 0x0b offset sign bit (bit0 1 > negative offset) 356 0x0c offset 357 0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too, 358 leave at 1 otherwise we get a jump in our exposure control 359 0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all 360 0x10 Master gain 0 - 31 361 0x11 write 1 to apply changes 362 (*) The variable framerate control must never be set lower then 500 363 which sets the framerate at 30 / reg02, otherwise vsync is lost. 364 */ 365 static const __u8 pas202_sensor_init[][8] = { 366 /* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like 367 to set it lower, but for some reason the bridge starts missing 368 vsync's then */ 369 {0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10}, 370 {0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10}, 371 {0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10}, 372 {0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10}, 373 {0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10}, 374 {0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10}, 375 {0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10}, 376 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10}, 377 {0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10}, 378 {0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10}, 379 }; 380 381 static const __u8 initTas5110c[] = { 382 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00, 383 0x00, 0x00, 384 0x00, 0x00, 0x00, 0x45, 0x09, 0x0a, 385 0x16, 0x12, 0x60, 0x86, 0x2b, 386 }; 387 /* Same as above, except a different hstart */ 388 static const __u8 initTas5110d[] = { 389 0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00, 390 0x00, 0x00, 391 0x00, 0x00, 0x00, 0x41, 0x09, 0x0a, 392 0x16, 0x12, 0x60, 0x86, 0x2b, 393 }; 394 /* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */ 395 static const __u8 tas5110c_sensor_init[][8] = { 396 {0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10}, 397 {0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10}, 398 }; 399 /* Known TAS5110D registers 400 * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain 401 * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted) 402 * Note: writing reg03 seems to only work when written together with 02 403 */ 404 static const __u8 tas5110d_sensor_init[][8] = { 405 {0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */ 406 }; 407 408 static const __u8 initTas5130[] = { 409 0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00, 410 0x00, 0x00, 411 0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a, 412 0x28, 0x1e, 0x60, COMP, MCK_INIT, 413 }; 414 static const __u8 tas5130_sensor_init[][8] = { 415 /* {0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10}, 416 * shutter 0x47 short exposure? */ 417 {0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10}, 418 /* shutter 0x01 long exposure */ 419 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10}, 420 }; 421 422 static const struct sensor_data sensor_data[] = { 423 SENS(initHv7131d, hv7131d_sensor_init, 0, 0), 424 SENS(initHv7131r, hv7131r_sensor_init, 0, 0), 425 SENS(initOv6650, ov6650_sensor_init, F_SIF, 0x60), 426 SENS(initOv7630, ov7630_sensor_init, 0, 0x21), 427 SENS(initPas106, pas106_sensor_init, F_SIF, 0), 428 SENS(initPas202, pas202_sensor_init, 0, 0), 429 SENS(initTas5110c, tas5110c_sensor_init, F_SIF, 0), 430 SENS(initTas5110d, tas5110d_sensor_init, F_SIF, 0), 431 SENS(initTas5130, tas5130_sensor_init, 0, 0), 432 }; 433 434 /* get one byte in gspca_dev->usb_buf */ 435 static void reg_r(struct gspca_dev *gspca_dev, 436 __u16 value) 437 { 438 int res; 439 440 if (gspca_dev->usb_err < 0) 441 return; 442 443 res = usb_control_msg(gspca_dev->dev, 444 usb_rcvctrlpipe(gspca_dev->dev, 0), 445 0, /* request */ 446 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 447 value, 448 0, /* index */ 449 gspca_dev->usb_buf, 1, 450 500); 451 452 if (res < 0) { 453 dev_err(gspca_dev->v4l2_dev.dev, 454 "Error reading register %02x: %d\n", value, res); 455 gspca_dev->usb_err = res; 456 /* 457 * Make sure the result is zeroed to avoid uninitialized 458 * values. 459 */ 460 gspca_dev->usb_buf[0] = 0; 461 } 462 } 463 464 static void reg_w(struct gspca_dev *gspca_dev, 465 __u16 value, 466 const __u8 *buffer, 467 int len) 468 { 469 int res; 470 471 if (gspca_dev->usb_err < 0) 472 return; 473 474 memcpy(gspca_dev->usb_buf, buffer, len); 475 res = usb_control_msg(gspca_dev->dev, 476 usb_sndctrlpipe(gspca_dev->dev, 0), 477 0x08, /* request */ 478 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 479 value, 480 0, /* index */ 481 gspca_dev->usb_buf, len, 482 500); 483 484 if (res < 0) { 485 dev_err(gspca_dev->v4l2_dev.dev, 486 "Error writing register %02x: %d\n", value, res); 487 gspca_dev->usb_err = res; 488 } 489 } 490 491 static void i2c_w(struct gspca_dev *gspca_dev, const u8 *buf) 492 { 493 int retry = 60; 494 495 if (gspca_dev->usb_err < 0) 496 return; 497 498 /* is i2c ready */ 499 reg_w(gspca_dev, 0x08, buf, 8); 500 while (retry--) { 501 if (gspca_dev->usb_err < 0) 502 return; 503 msleep(1); 504 reg_r(gspca_dev, 0x08); 505 if (gspca_dev->usb_buf[0] & 0x04) { 506 if (gspca_dev->usb_buf[0] & 0x08) { 507 dev_err(gspca_dev->v4l2_dev.dev, 508 "i2c error writing %8ph\n", buf); 509 gspca_dev->usb_err = -EIO; 510 } 511 return; 512 } 513 } 514 515 dev_err(gspca_dev->v4l2_dev.dev, "i2c write timeout\n"); 516 gspca_dev->usb_err = -EIO; 517 } 518 519 static void i2c_w_vector(struct gspca_dev *gspca_dev, 520 const __u8 buffer[][8], int len) 521 { 522 for (;;) { 523 if (gspca_dev->usb_err < 0) 524 return; 525 i2c_w(gspca_dev, *buffer); 526 len -= 8; 527 if (len <= 0) 528 break; 529 buffer++; 530 } 531 } 532 533 static void setbrightness(struct gspca_dev *gspca_dev) 534 { 535 struct sd *sd = (struct sd *) gspca_dev; 536 537 switch (sd->sensor) { 538 case SENSOR_OV6650: 539 case SENSOR_OV7630: { 540 __u8 i2cOV[] = 541 {0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10}; 542 543 /* change reg 0x06 */ 544 i2cOV[1] = sensor_data[sd->sensor].sensor_addr; 545 i2cOV[3] = sd->brightness->val; 546 i2c_w(gspca_dev, i2cOV); 547 break; 548 } 549 case SENSOR_PAS106: 550 case SENSOR_PAS202: { 551 __u8 i2cpbright[] = 552 {0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16}; 553 __u8 i2cpdoit[] = 554 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16}; 555 556 /* PAS106 uses reg 7 and 8 instead of b and c */ 557 if (sd->sensor == SENSOR_PAS106) { 558 i2cpbright[2] = 7; 559 i2cpdoit[2] = 0x13; 560 } 561 562 if (sd->brightness->val < 127) { 563 /* change reg 0x0b, signreg */ 564 i2cpbright[3] = 0x01; 565 /* set reg 0x0c, offset */ 566 i2cpbright[4] = 127 - sd->brightness->val; 567 } else 568 i2cpbright[4] = sd->brightness->val - 127; 569 570 i2c_w(gspca_dev, i2cpbright); 571 i2c_w(gspca_dev, i2cpdoit); 572 break; 573 } 574 default: 575 break; 576 } 577 } 578 579 static void setgain(struct gspca_dev *gspca_dev) 580 { 581 struct sd *sd = (struct sd *) gspca_dev; 582 u8 gain = gspca_dev->gain->val; 583 584 switch (sd->sensor) { 585 case SENSOR_HV7131D: { 586 __u8 i2c[] = 587 {0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17}; 588 589 i2c[3] = 0x3f - gain; 590 i2c[4] = 0x3f - gain; 591 i2c[5] = 0x3f - gain; 592 593 i2c_w(gspca_dev, i2c); 594 break; 595 } 596 case SENSOR_TAS5110C: 597 case SENSOR_TAS5130CXX: { 598 __u8 i2c[] = 599 {0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10}; 600 601 i2c[4] = 255 - gain; 602 i2c_w(gspca_dev, i2c); 603 break; 604 } 605 case SENSOR_TAS5110D: { 606 __u8 i2c[] = { 607 0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 }; 608 gain = 255 - gain; 609 /* The bits in the register are the wrong way around!! */ 610 i2c[3] |= (gain & 0x80) >> 7; 611 i2c[3] |= (gain & 0x40) >> 5; 612 i2c[3] |= (gain & 0x20) >> 3; 613 i2c[3] |= (gain & 0x10) >> 1; 614 i2c[3] |= (gain & 0x08) << 1; 615 i2c[3] |= (gain & 0x04) << 3; 616 i2c[3] |= (gain & 0x02) << 5; 617 i2c[3] |= (gain & 0x01) << 7; 618 i2c_w(gspca_dev, i2c); 619 break; 620 } 621 case SENSOR_OV6650: 622 case SENSOR_OV7630: { 623 __u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10}; 624 625 /* 626 * The ov7630's gain is weird, at 32 the gain drops to the 627 * same level as at 16, so skip 32-47 (of the 0-63 scale). 628 */ 629 if (sd->sensor == SENSOR_OV7630 && gain >= 32) 630 gain += 16; 631 632 i2c[1] = sensor_data[sd->sensor].sensor_addr; 633 i2c[3] = gain; 634 i2c_w(gspca_dev, i2c); 635 break; 636 } 637 case SENSOR_PAS106: 638 case SENSOR_PAS202: { 639 __u8 i2cpgain[] = 640 {0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15}; 641 __u8 i2cpcolorgain[] = 642 {0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15}; 643 __u8 i2cpdoit[] = 644 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16}; 645 646 /* PAS106 uses different regs (and has split green gains) */ 647 if (sd->sensor == SENSOR_PAS106) { 648 i2cpgain[2] = 0x0e; 649 i2cpcolorgain[0] = 0xd0; 650 i2cpcolorgain[2] = 0x09; 651 i2cpdoit[2] = 0x13; 652 } 653 654 i2cpgain[3] = gain; 655 i2cpcolorgain[3] = gain >> 1; 656 i2cpcolorgain[4] = gain >> 1; 657 i2cpcolorgain[5] = gain >> 1; 658 i2cpcolorgain[6] = gain >> 1; 659 660 i2c_w(gspca_dev, i2cpgain); 661 i2c_w(gspca_dev, i2cpcolorgain); 662 i2c_w(gspca_dev, i2cpdoit); 663 break; 664 } 665 default: 666 if (sd->bridge == BRIDGE_103) { 667 u8 buf[3] = { gain, gain, gain }; /* R, G, B */ 668 reg_w(gspca_dev, 0x05, buf, 3); 669 } else { 670 u8 buf[2]; 671 buf[0] = gain << 4 | gain; /* Red and blue */ 672 buf[1] = gain; /* Green */ 673 reg_w(gspca_dev, 0x10, buf, 2); 674 } 675 } 676 } 677 678 static void setexposure(struct gspca_dev *gspca_dev) 679 { 680 struct sd *sd = (struct sd *) gspca_dev; 681 682 switch (sd->sensor) { 683 case SENSOR_HV7131D: { 684 /* Note the datasheet wrongly says line mode exposure uses reg 685 0x26 and 0x27, testing has shown 0x25 + 0x26 */ 686 __u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17}; 687 u16 reg = gspca_dev->exposure->val; 688 689 i2c[3] = reg >> 8; 690 i2c[4] = reg & 0xff; 691 i2c_w(gspca_dev, i2c); 692 break; 693 } 694 case SENSOR_TAS5110C: 695 case SENSOR_TAS5110D: { 696 /* register 19's high nibble contains the sn9c10x clock divider 697 The high nibble configures the no fps according to the 698 formula: 60 / high_nibble. With a maximum of 30 fps */ 699 u8 reg = gspca_dev->exposure->val; 700 701 reg = (reg << 4) | 0x0b; 702 reg_w(gspca_dev, 0x19, ®, 1); 703 break; 704 } 705 case SENSOR_OV6650: 706 case SENSOR_OV7630: { 707 /* The ov6650 / ov7630 have 2 registers which both influence 708 exposure, register 11, whose low nibble sets the nr off fps 709 according to: fps = 30 / (low_nibble + 1) 710 711 The fps configures the maximum exposure setting, but it is 712 possible to use less exposure then what the fps maximum 713 allows by setting register 10. register 10 configures the 714 actual exposure as quotient of the full exposure, with 0 715 being no exposure at all (not very useful) and reg10_max 716 being max exposure possible at that framerate. 717 718 The code maps our 0 - 510 ms exposure ctrl to these 2 719 registers, trying to keep fps as high as possible. 720 */ 721 __u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10}; 722 int reg10, reg11, reg10_max; 723 724 /* ov6645 datasheet says reg10_max is 9a, but that uses 725 tline * 2 * reg10 as formula for calculating texpo, the 726 ov6650 probably uses the same formula as the 7730 which uses 727 tline * 4 * reg10, which explains why the reg10max we've 728 found experimentally for the ov6650 is exactly half that of 729 the ov6645. The ov7630 datasheet says the max is 0x41. */ 730 if (sd->sensor == SENSOR_OV6650) { 731 reg10_max = 0x4d; 732 i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */ 733 } else 734 reg10_max = 0x41; 735 736 reg11 = (15 * gspca_dev->exposure->val + 999) / 1000; 737 if (reg11 < 1) 738 reg11 = 1; 739 else if (reg11 > 16) 740 reg11 = 16; 741 742 /* In 640x480, if the reg11 has less than 4, the image is 743 unstable (the bridge goes into a higher compression mode 744 which we have not reverse engineered yet). */ 745 if (gspca_dev->pixfmt.width == 640 && reg11 < 4) 746 reg11 = 4; 747 748 /* frame exposure time in ms = 1000 * reg11 / 30 -> 749 reg10 = (gspca_dev->exposure->val / 2) * reg10_max 750 / (1000 * reg11 / 30) */ 751 reg10 = (gspca_dev->exposure->val * 15 * reg10_max) 752 / (1000 * reg11); 753 754 /* Don't allow this to get below 10 when using autogain, the 755 steps become very large (relatively) when below 10 causing 756 the image to oscillate from much too dark, to much too bright 757 and back again. */ 758 if (gspca_dev->autogain->val && reg10 < 10) 759 reg10 = 10; 760 else if (reg10 > reg10_max) 761 reg10 = reg10_max; 762 763 /* Write reg 10 and reg11 low nibble */ 764 i2c[1] = sensor_data[sd->sensor].sensor_addr; 765 i2c[3] = reg10; 766 i2c[4] |= reg11 - 1; 767 768 /* If register 11 didn't change, don't change it */ 769 if (sd->reg11 == reg11) 770 i2c[0] = 0xa0; 771 772 i2c_w(gspca_dev, i2c); 773 if (gspca_dev->usb_err == 0) 774 sd->reg11 = reg11; 775 break; 776 } 777 case SENSOR_PAS202: { 778 __u8 i2cpframerate[] = 779 {0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16}; 780 __u8 i2cpexpo[] = 781 {0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16}; 782 const __u8 i2cpdoit[] = 783 {0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16}; 784 int framerate_ctrl; 785 786 /* The exposure knee for the autogain algorithm is 200 787 (100 ms / 10 fps on other sensors), for values below this 788 use the control for setting the partial frame expose time, 789 above that use variable framerate. This way we run at max 790 framerate (640x480@7.5 fps, 320x240@10fps) until the knee 791 is reached. Using the variable framerate control above 200 792 is better then playing around with both clockdiv + partial 793 frame exposure times (like we are doing with the ov chips), 794 as that sometimes leads to jumps in the exposure control, 795 which are bad for auto exposure. */ 796 if (gspca_dev->exposure->val < 200) { 797 i2cpexpo[3] = 255 - (gspca_dev->exposure->val * 255) 798 / 200; 799 framerate_ctrl = 500; 800 } else { 801 /* The PAS202's exposure control goes from 0 - 4095, 802 but anything below 500 causes vsync issues, so scale 803 our 200-1023 to 500-4095 */ 804 framerate_ctrl = (gspca_dev->exposure->val - 200) 805 * 1000 / 229 + 500; 806 } 807 808 i2cpframerate[3] = framerate_ctrl >> 6; 809 i2cpframerate[4] = framerate_ctrl & 0x3f; 810 i2c_w(gspca_dev, i2cpframerate); 811 i2c_w(gspca_dev, i2cpexpo); 812 i2c_w(gspca_dev, i2cpdoit); 813 break; 814 } 815 case SENSOR_PAS106: { 816 __u8 i2cpframerate[] = 817 {0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14}; 818 __u8 i2cpexpo[] = 819 {0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14}; 820 const __u8 i2cpdoit[] = 821 {0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14}; 822 int framerate_ctrl; 823 824 /* For values below 150 use partial frame exposure, above 825 that use framerate ctrl */ 826 if (gspca_dev->exposure->val < 150) { 827 i2cpexpo[3] = 150 - gspca_dev->exposure->val; 828 framerate_ctrl = 300; 829 } else { 830 /* The PAS106's exposure control goes from 0 - 4095, 831 but anything below 300 causes vsync issues, so scale 832 our 150-1023 to 300-4095 */ 833 framerate_ctrl = (gspca_dev->exposure->val - 150) 834 * 1000 / 230 + 300; 835 } 836 837 i2cpframerate[3] = framerate_ctrl >> 4; 838 i2cpframerate[4] = framerate_ctrl & 0x0f; 839 i2c_w(gspca_dev, i2cpframerate); 840 i2c_w(gspca_dev, i2cpexpo); 841 i2c_w(gspca_dev, i2cpdoit); 842 break; 843 } 844 default: 845 break; 846 } 847 } 848 849 static void setfreq(struct gspca_dev *gspca_dev) 850 { 851 struct sd *sd = (struct sd *) gspca_dev; 852 853 if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630) { 854 /* Framerate adjust register for artificial light 50 hz flicker 855 compensation, for the ov6650 this is identical to ov6630 856 0x2b register, see ov6630 datasheet. 857 0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */ 858 __u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10}; 859 switch (sd->plfreq->val) { 860 default: 861 /* case 0: * no filter*/ 862 /* case 2: * 60 hz */ 863 i2c[3] = 0; 864 break; 865 case 1: /* 50 hz */ 866 i2c[3] = (sd->sensor == SENSOR_OV6650) 867 ? 0x4f : 0x8a; 868 break; 869 } 870 i2c[1] = sensor_data[sd->sensor].sensor_addr; 871 i2c_w(gspca_dev, i2c); 872 } 873 } 874 875 static void do_autogain(struct gspca_dev *gspca_dev) 876 { 877 struct sd *sd = (struct sd *) gspca_dev; 878 int deadzone, desired_avg_lum, avg_lum; 879 880 avg_lum = atomic_read(&sd->avg_lum); 881 if (avg_lum == -1) 882 return; 883 884 if (sd->autogain_ignore_frames > 0) { 885 sd->autogain_ignore_frames--; 886 return; 887 } 888 889 /* SIF / VGA sensors have a different autoexposure area and thus 890 different avg_lum values for the same picture brightness */ 891 if (sensor_data[sd->sensor].flags & F_SIF) { 892 deadzone = 500; 893 /* SIF sensors tend to overexpose, so keep this small */ 894 desired_avg_lum = 5000; 895 } else { 896 deadzone = 1500; 897 desired_avg_lum = 13000; 898 } 899 900 if (sd->brightness) 901 desired_avg_lum = sd->brightness->val * desired_avg_lum / 127; 902 903 if (gspca_dev->exposure->maximum < 500) { 904 if (gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum, 905 desired_avg_lum, deadzone)) 906 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES; 907 } else { 908 int gain_knee = (s32)gspca_dev->gain->maximum * 9 / 10; 909 if (gspca_expo_autogain(gspca_dev, avg_lum, desired_avg_lum, 910 deadzone, gain_knee, sd->exposure_knee)) 911 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES; 912 } 913 } 914 915 /* this function is called at probe time */ 916 static int sd_config(struct gspca_dev *gspca_dev, 917 const struct usb_device_id *id) 918 { 919 struct sd *sd = (struct sd *) gspca_dev; 920 struct cam *cam; 921 922 reg_r(gspca_dev, 0x00); 923 if (gspca_dev->usb_buf[0] != 0x10) 924 return -ENODEV; 925 926 /* copy the webcam info from the device id */ 927 sd->sensor = id->driver_info >> 8; 928 sd->bridge = id->driver_info & 0xff; 929 930 cam = &gspca_dev->cam; 931 if (!(sensor_data[sd->sensor].flags & F_SIF)) { 932 cam->cam_mode = vga_mode; 933 cam->nmodes = ARRAY_SIZE(vga_mode); 934 } else { 935 cam->cam_mode = sif_mode; 936 cam->nmodes = ARRAY_SIZE(sif_mode); 937 } 938 cam->npkt = 36; /* 36 packets per ISOC message */ 939 940 return 0; 941 } 942 943 /* this function is called at probe and resume time */ 944 static int sd_init(struct gspca_dev *gspca_dev) 945 { 946 const __u8 stop = 0x09; /* Disable stream turn of LED */ 947 948 reg_w(gspca_dev, 0x01, &stop, 1); 949 950 return gspca_dev->usb_err; 951 } 952 953 static int sd_s_ctrl(struct v4l2_ctrl *ctrl) 954 { 955 struct gspca_dev *gspca_dev = 956 container_of(ctrl->handler, struct gspca_dev, ctrl_handler); 957 struct sd *sd = (struct sd *)gspca_dev; 958 959 gspca_dev->usb_err = 0; 960 961 if (ctrl->id == V4L2_CID_AUTOGAIN && ctrl->is_new && ctrl->val) { 962 /* when switching to autogain set defaults to make sure 963 we are on a valid point of the autogain gain / 964 exposure knee graph, and give this change time to 965 take effect before doing autogain. */ 966 gspca_dev->gain->val = gspca_dev->gain->default_value; 967 gspca_dev->exposure->val = gspca_dev->exposure->default_value; 968 sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES; 969 } 970 971 if (!gspca_dev->streaming) 972 return 0; 973 974 switch (ctrl->id) { 975 case V4L2_CID_BRIGHTNESS: 976 setbrightness(gspca_dev); 977 break; 978 case V4L2_CID_AUTOGAIN: 979 if (gspca_dev->exposure->is_new || (ctrl->is_new && ctrl->val)) 980 setexposure(gspca_dev); 981 if (gspca_dev->gain->is_new || (ctrl->is_new && ctrl->val)) 982 setgain(gspca_dev); 983 break; 984 case V4L2_CID_POWER_LINE_FREQUENCY: 985 setfreq(gspca_dev); 986 break; 987 default: 988 return -EINVAL; 989 } 990 return gspca_dev->usb_err; 991 } 992 993 static const struct v4l2_ctrl_ops sd_ctrl_ops = { 994 .s_ctrl = sd_s_ctrl, 995 }; 996 997 /* this function is called at probe time */ 998 static int sd_init_controls(struct gspca_dev *gspca_dev) 999 { 1000 struct sd *sd = (struct sd *) gspca_dev; 1001 struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler; 1002 1003 gspca_dev->vdev.ctrl_handler = hdl; 1004 v4l2_ctrl_handler_init(hdl, 5); 1005 1006 if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630 || 1007 sd->sensor == SENSOR_PAS106 || sd->sensor == SENSOR_PAS202) 1008 sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1009 V4L2_CID_BRIGHTNESS, 0, 255, 1, 127); 1010 1011 /* Gain range is sensor dependent */ 1012 switch (sd->sensor) { 1013 case SENSOR_OV6650: 1014 case SENSOR_PAS106: 1015 case SENSOR_PAS202: 1016 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1017 V4L2_CID_GAIN, 0, 31, 1, 15); 1018 break; 1019 case SENSOR_OV7630: 1020 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1021 V4L2_CID_GAIN, 0, 47, 1, 31); 1022 break; 1023 case SENSOR_HV7131D: 1024 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1025 V4L2_CID_GAIN, 0, 63, 1, 31); 1026 break; 1027 case SENSOR_TAS5110C: 1028 case SENSOR_TAS5110D: 1029 case SENSOR_TAS5130CXX: 1030 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1031 V4L2_CID_GAIN, 0, 255, 1, 127); 1032 break; 1033 default: 1034 if (sd->bridge == BRIDGE_103) { 1035 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1036 V4L2_CID_GAIN, 0, 127, 1, 63); 1037 } else { 1038 gspca_dev->gain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1039 V4L2_CID_GAIN, 0, 15, 1, 7); 1040 } 1041 } 1042 1043 /* Exposure range is sensor dependent, and not all have exposure */ 1044 switch (sd->sensor) { 1045 case SENSOR_HV7131D: 1046 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1047 V4L2_CID_EXPOSURE, 0, 8191, 1, 482); 1048 sd->exposure_knee = 964; 1049 break; 1050 case SENSOR_OV6650: 1051 case SENSOR_OV7630: 1052 case SENSOR_PAS106: 1053 case SENSOR_PAS202: 1054 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1055 V4L2_CID_EXPOSURE, 0, 1023, 1, 66); 1056 sd->exposure_knee = 200; 1057 break; 1058 case SENSOR_TAS5110C: 1059 case SENSOR_TAS5110D: 1060 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1061 V4L2_CID_EXPOSURE, 2, 15, 1, 2); 1062 break; 1063 } 1064 1065 if (gspca_dev->exposure) { 1066 gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 1067 V4L2_CID_AUTOGAIN, 0, 1, 1, 1); 1068 } 1069 1070 if (sd->sensor == SENSOR_OV6650 || sd->sensor == SENSOR_OV7630) 1071 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops, 1072 V4L2_CID_POWER_LINE_FREQUENCY, 1073 V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 1074 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED); 1075 1076 if (hdl->error) { 1077 pr_err("Could not initialize controls\n"); 1078 return hdl->error; 1079 } 1080 1081 if (gspca_dev->autogain) 1082 v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, false); 1083 1084 return 0; 1085 } 1086 1087 /* -- start the camera -- */ 1088 static int sd_start(struct gspca_dev *gspca_dev) 1089 { 1090 struct sd *sd = (struct sd *) gspca_dev; 1091 struct cam *cam = &gspca_dev->cam; 1092 int i, mode; 1093 __u8 regs[0x31]; 1094 1095 mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07; 1096 /* Copy registers 0x01 - 0x19 from the template */ 1097 memcpy(®s[0x01], sensor_data[sd->sensor].bridge_init, 0x19); 1098 /* Set the mode */ 1099 regs[0x18] |= mode << 4; 1100 1101 /* Set bridge gain to 1.0 */ 1102 if (sd->bridge == BRIDGE_103) { 1103 regs[0x05] = 0x20; /* Red */ 1104 regs[0x06] = 0x20; /* Green */ 1105 regs[0x07] = 0x20; /* Blue */ 1106 } else { 1107 regs[0x10] = 0x00; /* Red and blue */ 1108 regs[0x11] = 0x00; /* Green */ 1109 } 1110 1111 /* Setup pixel numbers and auto exposure window */ 1112 if (sensor_data[sd->sensor].flags & F_SIF) { 1113 regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */ 1114 regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */ 1115 regs[0x1c] = 0x02; /* AE H-start 64 */ 1116 regs[0x1d] = 0x02; /* AE V-start 64 */ 1117 regs[0x1e] = 0x09; /* AE H-end 288 */ 1118 regs[0x1f] = 0x07; /* AE V-end 224 */ 1119 } else { 1120 regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */ 1121 regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */ 1122 regs[0x1c] = 0x05; /* AE H-start 160 */ 1123 regs[0x1d] = 0x03; /* AE V-start 96 */ 1124 regs[0x1e] = 0x0f; /* AE H-end 480 */ 1125 regs[0x1f] = 0x0c; /* AE V-end 384 */ 1126 } 1127 1128 /* Setup the gamma table (only used with the sn9c103 bridge) */ 1129 for (i = 0; i < 16; i++) 1130 regs[0x20 + i] = i * 16; 1131 regs[0x20 + i] = 255; 1132 1133 /* Special cases where some regs depend on mode or bridge */ 1134 switch (sd->sensor) { 1135 case SENSOR_TAS5130CXX: 1136 /* FIXME / TESTME 1137 probably not mode specific at all most likely the upper 1138 nibble of 0x19 is exposure (clock divider) just as with 1139 the tas5110, we need someone to test this. */ 1140 regs[0x19] = mode ? 0x23 : 0x43; 1141 break; 1142 case SENSOR_OV7630: 1143 /* FIXME / TESTME for some reason with the 101/102 bridge the 1144 clock is set to 12 Mhz (reg1 == 0x04), rather then 24. 1145 Also the hstart needs to go from 1 to 2 when using a 103, 1146 which is likely related. This does not seem right. */ 1147 if (sd->bridge == BRIDGE_103) { 1148 regs[0x01] = 0x44; /* Select 24 Mhz clock */ 1149 regs[0x12] = 0x02; /* Set hstart to 2 */ 1150 } 1151 break; 1152 case SENSOR_PAS202: 1153 /* For some unknown reason we need to increase hstart by 1 on 1154 the sn9c103, otherwise we get wrong colors (bayer shift). */ 1155 if (sd->bridge == BRIDGE_103) 1156 regs[0x12] += 1; 1157 break; 1158 } 1159 /* Disable compression when the raw bayer format has been selected */ 1160 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) 1161 regs[0x18] &= ~0x80; 1162 1163 /* Vga mode emulation on SIF sensor? */ 1164 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) { 1165 regs[0x12] += 16; /* hstart adjust */ 1166 regs[0x13] += 24; /* vstart adjust */ 1167 regs[0x15] = 320 / 16; /* hsize */ 1168 regs[0x16] = 240 / 16; /* vsize */ 1169 } 1170 1171 /* reg 0x01 bit 2 video transfert on */ 1172 reg_w(gspca_dev, 0x01, ®s[0x01], 1); 1173 /* reg 0x17 SensorClk enable inv Clk 0x60 */ 1174 reg_w(gspca_dev, 0x17, ®s[0x17], 1); 1175 /* Set the registers from the template */ 1176 reg_w(gspca_dev, 0x01, ®s[0x01], 1177 (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f); 1178 1179 /* Init the sensor */ 1180 i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init, 1181 sensor_data[sd->sensor].sensor_init_size); 1182 1183 /* Mode / bridge specific sensor setup */ 1184 switch (sd->sensor) { 1185 case SENSOR_PAS202: { 1186 const __u8 i2cpclockdiv[] = 1187 {0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10}; 1188 /* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */ 1189 if (mode) 1190 i2c_w(gspca_dev, i2cpclockdiv); 1191 break; 1192 } 1193 case SENSOR_OV7630: 1194 /* FIXME / TESTME We should be able to handle this identical 1195 for the 101/102 and the 103 case */ 1196 if (sd->bridge == BRIDGE_103) { 1197 const __u8 i2c[] = { 0xa0, 0x21, 0x13, 1198 0x80, 0x00, 0x00, 0x00, 0x10 }; 1199 i2c_w(gspca_dev, i2c); 1200 } 1201 break; 1202 } 1203 /* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */ 1204 reg_w(gspca_dev, 0x15, ®s[0x15], 2); 1205 /* compression register */ 1206 reg_w(gspca_dev, 0x18, ®s[0x18], 1); 1207 /* H_start */ 1208 reg_w(gspca_dev, 0x12, ®s[0x12], 1); 1209 /* V_START */ 1210 reg_w(gspca_dev, 0x13, ®s[0x13], 1); 1211 /* reset 0x17 SensorClk enable inv Clk 0x60 */ 1212 /*fixme: ov7630 [17]=68 8f (+20 if 102)*/ 1213 reg_w(gspca_dev, 0x17, ®s[0x17], 1); 1214 /*MCKSIZE ->3 */ /*fixme: not ov7630*/ 1215 reg_w(gspca_dev, 0x19, ®s[0x19], 1); 1216 /* AE_STRX AE_STRY AE_ENDX AE_ENDY */ 1217 reg_w(gspca_dev, 0x1c, ®s[0x1c], 4); 1218 /* Enable video transfert */ 1219 reg_w(gspca_dev, 0x01, ®s[0x01], 1); 1220 /* Compression */ 1221 reg_w(gspca_dev, 0x18, ®s[0x18], 2); 1222 msleep(20); 1223 1224 sd->reg11 = -1; 1225 1226 setgain(gspca_dev); 1227 setbrightness(gspca_dev); 1228 setexposure(gspca_dev); 1229 setfreq(gspca_dev); 1230 1231 sd->frames_to_drop = 0; 1232 sd->autogain_ignore_frames = 0; 1233 gspca_dev->exp_too_high_cnt = 0; 1234 gspca_dev->exp_too_low_cnt = 0; 1235 atomic_set(&sd->avg_lum, -1); 1236 return gspca_dev->usb_err; 1237 } 1238 1239 static void sd_stopN(struct gspca_dev *gspca_dev) 1240 { 1241 sd_init(gspca_dev); 1242 } 1243 1244 static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len) 1245 { 1246 struct sd *sd = (struct sd *) gspca_dev; 1247 int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12; 1248 1249 /* frames start with: 1250 * ff ff 00 c4 c4 96 synchro 1251 * 00 (unknown) 1252 * xx (frame sequence / size / compression) 1253 * (xx) (idem - extra byte for sn9c103) 1254 * ll mm brightness sum inside auto exposure 1255 * ll mm brightness sum outside auto exposure 1256 * (xx xx xx xx xx) audio values for snc103 1257 */ 1258 for (i = 0; i < len; i++) { 1259 switch (sd->header_read) { 1260 case 0: 1261 if (data[i] == 0xff) 1262 sd->header_read++; 1263 break; 1264 case 1: 1265 if (data[i] == 0xff) 1266 sd->header_read++; 1267 else 1268 sd->header_read = 0; 1269 break; 1270 case 2: 1271 if (data[i] == 0x00) 1272 sd->header_read++; 1273 else if (data[i] != 0xff) 1274 sd->header_read = 0; 1275 break; 1276 case 3: 1277 if (data[i] == 0xc4) 1278 sd->header_read++; 1279 else if (data[i] == 0xff) 1280 sd->header_read = 1; 1281 else 1282 sd->header_read = 0; 1283 break; 1284 case 4: 1285 if (data[i] == 0xc4) 1286 sd->header_read++; 1287 else if (data[i] == 0xff) 1288 sd->header_read = 1; 1289 else 1290 sd->header_read = 0; 1291 break; 1292 case 5: 1293 if (data[i] == 0x96) 1294 sd->header_read++; 1295 else if (data[i] == 0xff) 1296 sd->header_read = 1; 1297 else 1298 sd->header_read = 0; 1299 break; 1300 default: 1301 sd->header[sd->header_read - 6] = data[i]; 1302 sd->header_read++; 1303 if (sd->header_read == header_size) { 1304 sd->header_read = 0; 1305 return data + i + 1; 1306 } 1307 } 1308 } 1309 return NULL; 1310 } 1311 1312 static void sd_pkt_scan(struct gspca_dev *gspca_dev, 1313 u8 *data, /* isoc packet */ 1314 int len) /* iso packet length */ 1315 { 1316 int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0; 1317 struct sd *sd = (struct sd *) gspca_dev; 1318 struct cam *cam = &gspca_dev->cam; 1319 u8 *sof; 1320 1321 sof = find_sof(gspca_dev, data, len); 1322 if (sof) { 1323 if (sd->bridge == BRIDGE_103) { 1324 fr_h_sz = 18; 1325 lum_offset = 3; 1326 } else { 1327 fr_h_sz = 12; 1328 lum_offset = 2; 1329 } 1330 1331 len_after_sof = len - (sof - data); 1332 len = (sof - data) - fr_h_sz; 1333 if (len < 0) 1334 len = 0; 1335 } 1336 1337 if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) { 1338 /* In raw mode we sometimes get some garbage after the frame 1339 ignore this */ 1340 int used; 1341 int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage; 1342 1343 used = gspca_dev->image_len; 1344 if (used + len > size) 1345 len = size - used; 1346 } 1347 1348 gspca_frame_add(gspca_dev, INTER_PACKET, data, len); 1349 1350 if (sof) { 1351 int lum = sd->header[lum_offset] + 1352 (sd->header[lum_offset + 1] << 8); 1353 1354 /* When exposure changes midway a frame we 1355 get a lum of 0 in this case drop 2 frames 1356 as the frames directly after an exposure 1357 change have an unstable image. Sometimes lum 1358 *really* is 0 (cam used in low light with 1359 low exposure setting), so do not drop frames 1360 if the previous lum was 0 too. */ 1361 if (lum == 0 && sd->prev_avg_lum != 0) { 1362 lum = -1; 1363 sd->frames_to_drop = 2; 1364 sd->prev_avg_lum = 0; 1365 } else 1366 sd->prev_avg_lum = lum; 1367 atomic_set(&sd->avg_lum, lum); 1368 1369 if (sd->frames_to_drop) 1370 sd->frames_to_drop--; 1371 else 1372 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0); 1373 1374 gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof); 1375 } 1376 } 1377 1378 #if IS_ENABLED(CONFIG_INPUT) 1379 static int sd_int_pkt_scan(struct gspca_dev *gspca_dev, 1380 u8 *data, /* interrupt packet data */ 1381 int len) /* interrupt packet length */ 1382 { 1383 int ret = -EINVAL; 1384 1385 if (len == 1 && data[0] == 1) { 1386 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1); 1387 input_sync(gspca_dev->input_dev); 1388 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0); 1389 input_sync(gspca_dev->input_dev); 1390 ret = 0; 1391 } 1392 1393 return ret; 1394 } 1395 #endif 1396 1397 /* sub-driver description */ 1398 static const struct sd_desc sd_desc = { 1399 .name = MODULE_NAME, 1400 .config = sd_config, 1401 .init = sd_init, 1402 .init_controls = sd_init_controls, 1403 .start = sd_start, 1404 .stopN = sd_stopN, 1405 .pkt_scan = sd_pkt_scan, 1406 .dq_callback = do_autogain, 1407 #if IS_ENABLED(CONFIG_INPUT) 1408 .int_pkt_scan = sd_int_pkt_scan, 1409 #endif 1410 }; 1411 1412 /* -- module initialisation -- */ 1413 #define SB(sensor, bridge) \ 1414 .driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge 1415 1416 1417 static const struct usb_device_id device_table[] = { 1418 {USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */ 1419 {USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */ 1420 {USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */ 1421 {USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)}, 1422 {USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)}, 1423 {USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)}, 1424 {USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)}, 1425 {USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)}, 1426 {USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)}, 1427 {USB_DEVICE(0x0c45, 0x6027), SB(OV7630, 101)}, /* Genius Eye 310 */ 1428 {USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)}, 1429 {USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)}, 1430 {USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)}, 1431 /* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */ 1432 {USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)}, 1433 {USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)}, 1434 {USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)}, 1435 /* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */ 1436 /* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */ 1437 {USB_DEVICE(0x0c45, 0x6083), SB(HV7131D, 103)}, 1438 {USB_DEVICE(0x0c45, 0x608c), SB(HV7131R, 103)}, 1439 /* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */ 1440 {USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)}, 1441 {USB_DEVICE(0x0c45, 0x60a8), SB(PAS106, 103)}, 1442 {USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX, 103)}, 1443 {USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)}, 1444 {USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)}, 1445 {} 1446 }; 1447 MODULE_DEVICE_TABLE(usb, device_table); 1448 1449 /* -- device connect -- */ 1450 static int sd_probe(struct usb_interface *intf, 1451 const struct usb_device_id *id) 1452 { 1453 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), 1454 THIS_MODULE); 1455 } 1456 1457 static struct usb_driver sd_driver = { 1458 .name = MODULE_NAME, 1459 .id_table = device_table, 1460 .probe = sd_probe, 1461 .disconnect = gspca_disconnect, 1462 #ifdef CONFIG_PM 1463 .suspend = gspca_suspend, 1464 .resume = gspca_resume, 1465 .reset_resume = gspca_resume, 1466 #endif 1467 }; 1468 1469 module_usb_driver(sd_driver); 1470