1 /* 2 * ov534-ov7xxx gspca driver 3 * 4 * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it> 5 * Copyright (C) 2008 Jim Paris <jim@jtan.com> 6 * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr 7 * 8 * Based on a prototype written by Mark Ferrell <majortrips@gmail.com> 9 * USB protocol reverse engineered by Jim Paris <jim@jtan.com> 10 * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/ 11 * 12 * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr 13 * PS3 Eye camera - brightness, contrast, awb, agc, aec controls 14 * added by Max Thrun <bear24rw@gmail.com> 15 * PS3 Eye camera - FPS range extended by Joseph Howse 16 * <josephhowse@nummist.com> http://nummist.com 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License as published by 20 * the Free Software Foundation; either version 2 of the License, or 21 * any later version. 22 * 23 * This program is distributed in the hope that it will be useful, 24 * but WITHOUT ANY WARRANTY; without even the implied warranty of 25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 26 * GNU General Public License for more details. 27 * 28 * You should have received a copy of the GNU General Public License 29 * along with this program; if not, write to the Free Software 30 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #define MODULE_NAME "ov534" 36 37 #include "gspca.h" 38 39 #include <linux/fixp-arith.h> 40 #include <media/v4l2-ctrls.h> 41 42 #define OV534_REG_ADDRESS 0xf1 /* sensor address */ 43 #define OV534_REG_SUBADDR 0xf2 44 #define OV534_REG_WRITE 0xf3 45 #define OV534_REG_READ 0xf4 46 #define OV534_REG_OPERATION 0xf5 47 #define OV534_REG_STATUS 0xf6 48 49 #define OV534_OP_WRITE_3 0x37 50 #define OV534_OP_WRITE_2 0x33 51 #define OV534_OP_READ_2 0xf9 52 53 #define CTRL_TIMEOUT 500 54 55 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>"); 56 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver"); 57 MODULE_LICENSE("GPL"); 58 59 /* specific webcam descriptor */ 60 struct sd { 61 struct gspca_dev gspca_dev; /* !! must be the first item */ 62 63 struct v4l2_ctrl_handler ctrl_handler; 64 struct v4l2_ctrl *hue; 65 struct v4l2_ctrl *saturation; 66 struct v4l2_ctrl *brightness; 67 struct v4l2_ctrl *contrast; 68 struct { /* gain control cluster */ 69 struct v4l2_ctrl *autogain; 70 struct v4l2_ctrl *gain; 71 }; 72 struct v4l2_ctrl *autowhitebalance; 73 struct { /* exposure control cluster */ 74 struct v4l2_ctrl *autoexposure; 75 struct v4l2_ctrl *exposure; 76 }; 77 struct v4l2_ctrl *sharpness; 78 struct v4l2_ctrl *hflip; 79 struct v4l2_ctrl *vflip; 80 struct v4l2_ctrl *plfreq; 81 82 __u32 last_pts; 83 u16 last_fid; 84 u8 frame_rate; 85 86 u8 sensor; 87 }; 88 enum sensors { 89 SENSOR_OV767x, 90 SENSOR_OV772x, 91 NSENSORS 92 }; 93 94 static int sd_start(struct gspca_dev *gspca_dev); 95 static void sd_stopN(struct gspca_dev *gspca_dev); 96 97 98 static const struct v4l2_pix_format ov772x_mode[] = { 99 {320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 100 .bytesperline = 320 * 2, 101 .sizeimage = 320 * 240 * 2, 102 .colorspace = V4L2_COLORSPACE_SRGB, 103 .priv = 1}, 104 {640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE, 105 .bytesperline = 640 * 2, 106 .sizeimage = 640 * 480 * 2, 107 .colorspace = V4L2_COLORSPACE_SRGB, 108 .priv = 0}, 109 }; 110 static const struct v4l2_pix_format ov767x_mode[] = { 111 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 112 .bytesperline = 320, 113 .sizeimage = 320 * 240 * 3 / 8 + 590, 114 .colorspace = V4L2_COLORSPACE_JPEG}, 115 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 116 .bytesperline = 640, 117 .sizeimage = 640 * 480 * 3 / 8 + 590, 118 .colorspace = V4L2_COLORSPACE_JPEG}, 119 }; 120 121 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30}; 122 static const u8 vga_rates[] = {60, 50, 40, 30, 15}; 123 124 static const struct framerates ov772x_framerates[] = { 125 { /* 320x240 */ 126 .rates = qvga_rates, 127 .nrates = ARRAY_SIZE(qvga_rates), 128 }, 129 { /* 640x480 */ 130 .rates = vga_rates, 131 .nrates = ARRAY_SIZE(vga_rates), 132 }, 133 }; 134 135 struct reg_array { 136 const u8 (*val)[2]; 137 int len; 138 }; 139 140 static const u8 bridge_init_767x[][2] = { 141 /* comments from the ms-win file apollo7670.set */ 142 /* str1 */ 143 {0xf1, 0x42}, 144 {0x88, 0xf8}, 145 {0x89, 0xff}, 146 {0x76, 0x03}, 147 {0x92, 0x03}, 148 {0x95, 0x10}, 149 {0xe2, 0x00}, 150 {0xe7, 0x3e}, 151 {0x8d, 0x1c}, 152 {0x8e, 0x00}, 153 {0x8f, 0x00}, 154 {0x1f, 0x00}, 155 {0xc3, 0xf9}, 156 {0x89, 0xff}, 157 {0x88, 0xf8}, 158 {0x76, 0x03}, 159 {0x92, 0x01}, 160 {0x93, 0x18}, 161 {0x1c, 0x00}, 162 {0x1d, 0x48}, 163 {0x1d, 0x00}, 164 {0x1d, 0xff}, 165 {0x1d, 0x02}, 166 {0x1d, 0x58}, 167 {0x1d, 0x00}, 168 {0x1c, 0x0a}, 169 {0x1d, 0x0a}, 170 {0x1d, 0x0e}, 171 {0xc0, 0x50}, /* HSize 640 */ 172 {0xc1, 0x3c}, /* VSize 480 */ 173 {0x34, 0x05}, /* enable Audio Suspend mode */ 174 {0xc2, 0x0c}, /* Input YUV */ 175 {0xc3, 0xf9}, /* enable PRE */ 176 {0x34, 0x05}, /* enable Audio Suspend mode */ 177 {0xe7, 0x2e}, /* this solves failure of "SuspendResumeTest" */ 178 {0x31, 0xf9}, /* enable 1.8V Suspend */ 179 {0x35, 0x02}, /* turn on JPEG */ 180 {0xd9, 0x10}, 181 {0x25, 0x42}, /* GPIO[8]:Input */ 182 {0x94, 0x11}, /* If the default setting is loaded when 183 * system boots up, this flag is closed here */ 184 }; 185 static const u8 sensor_init_767x[][2] = { 186 {0x12, 0x80}, 187 {0x11, 0x03}, 188 {0x3a, 0x04}, 189 {0x12, 0x00}, 190 {0x17, 0x13}, 191 {0x18, 0x01}, 192 {0x32, 0xb6}, 193 {0x19, 0x02}, 194 {0x1a, 0x7a}, 195 {0x03, 0x0a}, 196 {0x0c, 0x00}, 197 {0x3e, 0x00}, 198 {0x70, 0x3a}, 199 {0x71, 0x35}, 200 {0x72, 0x11}, 201 {0x73, 0xf0}, 202 {0xa2, 0x02}, 203 {0x7a, 0x2a}, /* set Gamma=1.6 below */ 204 {0x7b, 0x12}, 205 {0x7c, 0x1d}, 206 {0x7d, 0x2d}, 207 {0x7e, 0x45}, 208 {0x7f, 0x50}, 209 {0x80, 0x59}, 210 {0x81, 0x62}, 211 {0x82, 0x6b}, 212 {0x83, 0x73}, 213 {0x84, 0x7b}, 214 {0x85, 0x8a}, 215 {0x86, 0x98}, 216 {0x87, 0xb2}, 217 {0x88, 0xca}, 218 {0x89, 0xe0}, 219 {0x13, 0xe0}, 220 {0x00, 0x00}, 221 {0x10, 0x00}, 222 {0x0d, 0x40}, 223 {0x14, 0x38}, /* gain max 16x */ 224 {0xa5, 0x05}, 225 {0xab, 0x07}, 226 {0x24, 0x95}, 227 {0x25, 0x33}, 228 {0x26, 0xe3}, 229 {0x9f, 0x78}, 230 {0xa0, 0x68}, 231 {0xa1, 0x03}, 232 {0xa6, 0xd8}, 233 {0xa7, 0xd8}, 234 {0xa8, 0xf0}, 235 {0xa9, 0x90}, 236 {0xaa, 0x94}, 237 {0x13, 0xe5}, 238 {0x0e, 0x61}, 239 {0x0f, 0x4b}, 240 {0x16, 0x02}, 241 {0x21, 0x02}, 242 {0x22, 0x91}, 243 {0x29, 0x07}, 244 {0x33, 0x0b}, 245 {0x35, 0x0b}, 246 {0x37, 0x1d}, 247 {0x38, 0x71}, 248 {0x39, 0x2a}, 249 {0x3c, 0x78}, 250 {0x4d, 0x40}, 251 {0x4e, 0x20}, 252 {0x69, 0x00}, 253 {0x6b, 0x4a}, 254 {0x74, 0x10}, 255 {0x8d, 0x4f}, 256 {0x8e, 0x00}, 257 {0x8f, 0x00}, 258 {0x90, 0x00}, 259 {0x91, 0x00}, 260 {0x96, 0x00}, 261 {0x9a, 0x80}, 262 {0xb0, 0x84}, 263 {0xb1, 0x0c}, 264 {0xb2, 0x0e}, 265 {0xb3, 0x82}, 266 {0xb8, 0x0a}, 267 {0x43, 0x0a}, 268 {0x44, 0xf0}, 269 {0x45, 0x34}, 270 {0x46, 0x58}, 271 {0x47, 0x28}, 272 {0x48, 0x3a}, 273 {0x59, 0x88}, 274 {0x5a, 0x88}, 275 {0x5b, 0x44}, 276 {0x5c, 0x67}, 277 {0x5d, 0x49}, 278 {0x5e, 0x0e}, 279 {0x6c, 0x0a}, 280 {0x6d, 0x55}, 281 {0x6e, 0x11}, 282 {0x6f, 0x9f}, 283 {0x6a, 0x40}, 284 {0x01, 0x40}, 285 {0x02, 0x40}, 286 {0x13, 0xe7}, 287 {0x4f, 0x80}, 288 {0x50, 0x80}, 289 {0x51, 0x00}, 290 {0x52, 0x22}, 291 {0x53, 0x5e}, 292 {0x54, 0x80}, 293 {0x58, 0x9e}, 294 {0x41, 0x08}, 295 {0x3f, 0x00}, 296 {0x75, 0x04}, 297 {0x76, 0xe1}, 298 {0x4c, 0x00}, 299 {0x77, 0x01}, 300 {0x3d, 0xc2}, 301 {0x4b, 0x09}, 302 {0xc9, 0x60}, 303 {0x41, 0x38}, /* jfm: auto sharpness + auto de-noise */ 304 {0x56, 0x40}, 305 {0x34, 0x11}, 306 {0x3b, 0xc2}, 307 {0xa4, 0x8a}, /* Night mode trigger point */ 308 {0x96, 0x00}, 309 {0x97, 0x30}, 310 {0x98, 0x20}, 311 {0x99, 0x20}, 312 {0x9a, 0x84}, 313 {0x9b, 0x29}, 314 {0x9c, 0x03}, 315 {0x9d, 0x4c}, 316 {0x9e, 0x3f}, 317 {0x78, 0x04}, 318 {0x79, 0x01}, 319 {0xc8, 0xf0}, 320 {0x79, 0x0f}, 321 {0xc8, 0x00}, 322 {0x79, 0x10}, 323 {0xc8, 0x7e}, 324 {0x79, 0x0a}, 325 {0xc8, 0x80}, 326 {0x79, 0x0b}, 327 {0xc8, 0x01}, 328 {0x79, 0x0c}, 329 {0xc8, 0x0f}, 330 {0x79, 0x0d}, 331 {0xc8, 0x20}, 332 {0x79, 0x09}, 333 {0xc8, 0x80}, 334 {0x79, 0x02}, 335 {0xc8, 0xc0}, 336 {0x79, 0x03}, 337 {0xc8, 0x20}, 338 {0x79, 0x26}, 339 }; 340 static const u8 bridge_start_vga_767x[][2] = { 341 /* str59 JPG */ 342 {0x94, 0xaa}, 343 {0xf1, 0x42}, 344 {0xe5, 0x04}, 345 {0xc0, 0x50}, 346 {0xc1, 0x3c}, 347 {0xc2, 0x0c}, 348 {0x35, 0x02}, /* turn on JPEG */ 349 {0xd9, 0x10}, 350 {0xda, 0x00}, /* for higher clock rate(30fps) */ 351 {0x34, 0x05}, /* enable Audio Suspend mode */ 352 {0xc3, 0xf9}, /* enable PRE */ 353 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 354 {0x8d, 0x1c}, /* output YUV */ 355 /* {0x34, 0x05}, * enable Audio Suspend mode (?) */ 356 {0x50, 0x00}, /* H/V divider=0 */ 357 {0x51, 0xa0}, /* input H=640/4 */ 358 {0x52, 0x3c}, /* input V=480/4 */ 359 {0x53, 0x00}, /* offset X=0 */ 360 {0x54, 0x00}, /* offset Y=0 */ 361 {0x55, 0x00}, /* H/V size[8]=0 */ 362 {0x57, 0x00}, /* H-size[9]=0 */ 363 {0x5c, 0x00}, /* output size[9:8]=0 */ 364 {0x5a, 0xa0}, /* output H=640/4 */ 365 {0x5b, 0x78}, /* output V=480/4 */ 366 {0x1c, 0x0a}, 367 {0x1d, 0x0a}, 368 {0x94, 0x11}, 369 }; 370 static const u8 sensor_start_vga_767x[][2] = { 371 {0x11, 0x01}, 372 {0x1e, 0x04}, 373 {0x19, 0x02}, 374 {0x1a, 0x7a}, 375 }; 376 static const u8 bridge_start_qvga_767x[][2] = { 377 /* str86 JPG */ 378 {0x94, 0xaa}, 379 {0xf1, 0x42}, 380 {0xe5, 0x04}, 381 {0xc0, 0x80}, 382 {0xc1, 0x60}, 383 {0xc2, 0x0c}, 384 {0x35, 0x02}, /* turn on JPEG */ 385 {0xd9, 0x10}, 386 {0xc0, 0x50}, /* CIF HSize 640 */ 387 {0xc1, 0x3c}, /* CIF VSize 480 */ 388 {0x8c, 0x00}, /* CIF VSize LSB[2:0] */ 389 {0x8d, 0x1c}, /* output YUV */ 390 {0x34, 0x05}, /* enable Audio Suspend mode */ 391 {0xc2, 0x4c}, /* output YUV and Enable DCW */ 392 {0xc3, 0xf9}, /* enable PRE */ 393 {0x1c, 0x00}, /* indirect addressing */ 394 {0x1d, 0x48}, /* output YUV422 */ 395 {0x50, 0x89}, /* H/V divider=/2; plus DCW AVG */ 396 {0x51, 0xa0}, /* DCW input H=640/4 */ 397 {0x52, 0x78}, /* DCW input V=480/4 */ 398 {0x53, 0x00}, /* offset X=0 */ 399 {0x54, 0x00}, /* offset Y=0 */ 400 {0x55, 0x00}, /* H/V size[8]=0 */ 401 {0x57, 0x00}, /* H-size[9]=0 */ 402 {0x5c, 0x00}, /* DCW output size[9:8]=0 */ 403 {0x5a, 0x50}, /* DCW output H=320/4 */ 404 {0x5b, 0x3c}, /* DCW output V=240/4 */ 405 {0x1c, 0x0a}, 406 {0x1d, 0x0a}, 407 {0x94, 0x11}, 408 }; 409 static const u8 sensor_start_qvga_767x[][2] = { 410 {0x11, 0x01}, 411 {0x1e, 0x04}, 412 {0x19, 0x02}, 413 {0x1a, 0x7a}, 414 }; 415 416 static const u8 bridge_init_772x[][2] = { 417 { 0xc2, 0x0c }, 418 { 0x88, 0xf8 }, 419 { 0xc3, 0x69 }, 420 { 0x89, 0xff }, 421 { 0x76, 0x03 }, 422 { 0x92, 0x01 }, 423 { 0x93, 0x18 }, 424 { 0x94, 0x10 }, 425 { 0x95, 0x10 }, 426 { 0xe2, 0x00 }, 427 { 0xe7, 0x3e }, 428 429 { 0x96, 0x00 }, 430 431 { 0x97, 0x20 }, 432 { 0x97, 0x20 }, 433 { 0x97, 0x20 }, 434 { 0x97, 0x0a }, 435 { 0x97, 0x3f }, 436 { 0x97, 0x4a }, 437 { 0x97, 0x20 }, 438 { 0x97, 0x15 }, 439 { 0x97, 0x0b }, 440 441 { 0x8e, 0x40 }, 442 { 0x1f, 0x81 }, 443 { 0x34, 0x05 }, 444 { 0xe3, 0x04 }, 445 { 0x88, 0x00 }, 446 { 0x89, 0x00 }, 447 { 0x76, 0x00 }, 448 { 0xe7, 0x2e }, 449 { 0x31, 0xf9 }, 450 { 0x25, 0x42 }, 451 { 0x21, 0xf0 }, 452 453 { 0x1c, 0x00 }, 454 { 0x1d, 0x40 }, 455 { 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */ 456 { 0x1d, 0x00 }, /* payload size */ 457 458 { 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */ 459 { 0x1d, 0x58 }, /* frame size */ 460 { 0x1d, 0x00 }, /* frame size */ 461 462 { 0x1c, 0x0a }, 463 { 0x1d, 0x08 }, /* turn on UVC header */ 464 { 0x1d, 0x0e }, /* .. */ 465 466 { 0x8d, 0x1c }, 467 { 0x8e, 0x80 }, 468 { 0xe5, 0x04 }, 469 470 { 0xc0, 0x50 }, 471 { 0xc1, 0x3c }, 472 { 0xc2, 0x0c }, 473 }; 474 static const u8 sensor_init_772x[][2] = { 475 { 0x12, 0x80 }, 476 { 0x11, 0x01 }, 477 /*fixme: better have a delay?*/ 478 { 0x11, 0x01 }, 479 { 0x11, 0x01 }, 480 { 0x11, 0x01 }, 481 { 0x11, 0x01 }, 482 { 0x11, 0x01 }, 483 { 0x11, 0x01 }, 484 { 0x11, 0x01 }, 485 { 0x11, 0x01 }, 486 { 0x11, 0x01 }, 487 { 0x11, 0x01 }, 488 489 { 0x3d, 0x03 }, 490 { 0x17, 0x26 }, 491 { 0x18, 0xa0 }, 492 { 0x19, 0x07 }, 493 { 0x1a, 0xf0 }, 494 { 0x32, 0x00 }, 495 { 0x29, 0xa0 }, 496 { 0x2c, 0xf0 }, 497 { 0x65, 0x20 }, 498 { 0x11, 0x01 }, 499 { 0x42, 0x7f }, 500 { 0x63, 0xaa }, /* AWB - was e0 */ 501 { 0x64, 0xff }, 502 { 0x66, 0x00 }, 503 { 0x13, 0xf0 }, /* com8 */ 504 { 0x0d, 0x41 }, 505 { 0x0f, 0xc5 }, 506 { 0x14, 0x11 }, 507 508 { 0x22, 0x7f }, 509 { 0x23, 0x03 }, 510 { 0x24, 0x40 }, 511 { 0x25, 0x30 }, 512 { 0x26, 0xa1 }, 513 { 0x2a, 0x00 }, 514 { 0x2b, 0x00 }, 515 { 0x6b, 0xaa }, 516 { 0x13, 0xff }, /* AWB */ 517 518 { 0x90, 0x05 }, 519 { 0x91, 0x01 }, 520 { 0x92, 0x03 }, 521 { 0x93, 0x00 }, 522 { 0x94, 0x60 }, 523 { 0x95, 0x3c }, 524 { 0x96, 0x24 }, 525 { 0x97, 0x1e }, 526 { 0x98, 0x62 }, 527 { 0x99, 0x80 }, 528 { 0x9a, 0x1e }, 529 { 0x9b, 0x08 }, 530 { 0x9c, 0x20 }, 531 { 0x9e, 0x81 }, 532 533 { 0xa6, 0x07 }, 534 { 0x7e, 0x0c }, 535 { 0x7f, 0x16 }, 536 { 0x80, 0x2a }, 537 { 0x81, 0x4e }, 538 { 0x82, 0x61 }, 539 { 0x83, 0x6f }, 540 { 0x84, 0x7b }, 541 { 0x85, 0x86 }, 542 { 0x86, 0x8e }, 543 { 0x87, 0x97 }, 544 { 0x88, 0xa4 }, 545 { 0x89, 0xaf }, 546 { 0x8a, 0xc5 }, 547 { 0x8b, 0xd7 }, 548 { 0x8c, 0xe8 }, 549 { 0x8d, 0x20 }, 550 551 { 0x0c, 0x90 }, 552 553 { 0x2b, 0x00 }, 554 { 0x22, 0x7f }, 555 { 0x23, 0x03 }, 556 { 0x11, 0x01 }, 557 { 0x0c, 0xd0 }, 558 { 0x64, 0xff }, 559 { 0x0d, 0x41 }, 560 561 { 0x14, 0x41 }, 562 { 0x0e, 0xcd }, 563 { 0xac, 0xbf }, 564 { 0x8e, 0x00 }, /* De-noise threshold */ 565 { 0x0c, 0xd0 } 566 }; 567 static const u8 bridge_start_vga_772x[][2] = { 568 {0x1c, 0x00}, 569 {0x1d, 0x40}, 570 {0x1d, 0x02}, 571 {0x1d, 0x00}, 572 {0x1d, 0x02}, 573 {0x1d, 0x58}, 574 {0x1d, 0x00}, 575 {0xc0, 0x50}, 576 {0xc1, 0x3c}, 577 }; 578 static const u8 sensor_start_vga_772x[][2] = { 579 {0x12, 0x00}, 580 {0x17, 0x26}, 581 {0x18, 0xa0}, 582 {0x19, 0x07}, 583 {0x1a, 0xf0}, 584 {0x29, 0xa0}, 585 {0x2c, 0xf0}, 586 {0x65, 0x20}, 587 }; 588 static const u8 bridge_start_qvga_772x[][2] = { 589 {0x1c, 0x00}, 590 {0x1d, 0x40}, 591 {0x1d, 0x02}, 592 {0x1d, 0x00}, 593 {0x1d, 0x01}, 594 {0x1d, 0x4b}, 595 {0x1d, 0x00}, 596 {0xc0, 0x28}, 597 {0xc1, 0x1e}, 598 }; 599 static const u8 sensor_start_qvga_772x[][2] = { 600 {0x12, 0x40}, 601 {0x17, 0x3f}, 602 {0x18, 0x50}, 603 {0x19, 0x03}, 604 {0x1a, 0x78}, 605 {0x29, 0x50}, 606 {0x2c, 0x78}, 607 {0x65, 0x2f}, 608 }; 609 610 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val) 611 { 612 struct usb_device *udev = gspca_dev->dev; 613 int ret; 614 615 if (gspca_dev->usb_err < 0) 616 return; 617 618 PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val); 619 gspca_dev->usb_buf[0] = val; 620 ret = usb_control_msg(udev, 621 usb_sndctrlpipe(udev, 0), 622 0x01, 623 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 624 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 625 if (ret < 0) { 626 pr_err("write failed %d\n", ret); 627 gspca_dev->usb_err = ret; 628 } 629 } 630 631 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg) 632 { 633 struct usb_device *udev = gspca_dev->dev; 634 int ret; 635 636 if (gspca_dev->usb_err < 0) 637 return 0; 638 ret = usb_control_msg(udev, 639 usb_rcvctrlpipe(udev, 0), 640 0x01, 641 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 642 0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT); 643 PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]); 644 if (ret < 0) { 645 pr_err("read failed %d\n", ret); 646 gspca_dev->usb_err = ret; 647 } 648 return gspca_dev->usb_buf[0]; 649 } 650 651 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7. 652 * (direction and output)? */ 653 static void ov534_set_led(struct gspca_dev *gspca_dev, int status) 654 { 655 u8 data; 656 657 PDEBUG(D_CONF, "led status: %d", status); 658 659 data = ov534_reg_read(gspca_dev, 0x21); 660 data |= 0x80; 661 ov534_reg_write(gspca_dev, 0x21, data); 662 663 data = ov534_reg_read(gspca_dev, 0x23); 664 if (status) 665 data |= 0x80; 666 else 667 data &= ~0x80; 668 669 ov534_reg_write(gspca_dev, 0x23, data); 670 671 if (!status) { 672 data = ov534_reg_read(gspca_dev, 0x21); 673 data &= ~0x80; 674 ov534_reg_write(gspca_dev, 0x21, data); 675 } 676 } 677 678 static int sccb_check_status(struct gspca_dev *gspca_dev) 679 { 680 u8 data; 681 int i; 682 683 for (i = 0; i < 5; i++) { 684 msleep(10); 685 data = ov534_reg_read(gspca_dev, OV534_REG_STATUS); 686 687 switch (data) { 688 case 0x00: 689 return 1; 690 case 0x04: 691 return 0; 692 case 0x03: 693 break; 694 default: 695 PERR("sccb status 0x%02x, attempt %d/5", 696 data, i + 1); 697 } 698 } 699 return 0; 700 } 701 702 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val) 703 { 704 PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val); 705 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 706 ov534_reg_write(gspca_dev, OV534_REG_WRITE, val); 707 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3); 708 709 if (!sccb_check_status(gspca_dev)) { 710 pr_err("sccb_reg_write failed\n"); 711 gspca_dev->usb_err = -EIO; 712 } 713 } 714 715 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg) 716 { 717 ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg); 718 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2); 719 if (!sccb_check_status(gspca_dev)) 720 pr_err("sccb_reg_read failed 1\n"); 721 722 ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2); 723 if (!sccb_check_status(gspca_dev)) 724 pr_err("sccb_reg_read failed 2\n"); 725 726 return ov534_reg_read(gspca_dev, OV534_REG_READ); 727 } 728 729 /* output a bridge sequence (reg - val) */ 730 static void reg_w_array(struct gspca_dev *gspca_dev, 731 const u8 (*data)[2], int len) 732 { 733 while (--len >= 0) { 734 ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]); 735 data++; 736 } 737 } 738 739 /* output a sensor sequence (reg - val) */ 740 static void sccb_w_array(struct gspca_dev *gspca_dev, 741 const u8 (*data)[2], int len) 742 { 743 while (--len >= 0) { 744 if ((*data)[0] != 0xff) { 745 sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]); 746 } else { 747 sccb_reg_read(gspca_dev, (*data)[1]); 748 sccb_reg_write(gspca_dev, 0xff, 0x00); 749 } 750 data++; 751 } 752 } 753 754 /* ov772x specific controls */ 755 static void set_frame_rate(struct gspca_dev *gspca_dev) 756 { 757 struct sd *sd = (struct sd *) gspca_dev; 758 int i; 759 struct rate_s { 760 u8 fps; 761 u8 r11; 762 u8 r0d; 763 u8 re5; 764 }; 765 const struct rate_s *r; 766 static const struct rate_s rate_0[] = { /* 640x480 */ 767 {60, 0x01, 0xc1, 0x04}, 768 {50, 0x01, 0x41, 0x02}, 769 {40, 0x02, 0xc1, 0x04}, 770 {30, 0x04, 0x81, 0x02}, 771 {15, 0x03, 0x41, 0x04}, 772 }; 773 static const struct rate_s rate_1[] = { /* 320x240 */ 774 /* {205, 0x01, 0xc1, 0x02}, * 205 FPS: video is partly corrupt */ 775 {187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */ 776 {150, 0x01, 0xc1, 0x04}, 777 {137, 0x02, 0xc1, 0x02}, 778 {125, 0x02, 0x81, 0x02}, 779 {100, 0x02, 0xc1, 0x04}, 780 {75, 0x03, 0xc1, 0x04}, 781 {60, 0x04, 0xc1, 0x04}, 782 {50, 0x02, 0x41, 0x04}, 783 {37, 0x03, 0x41, 0x04}, 784 {30, 0x04, 0x41, 0x04}, 785 }; 786 787 if (sd->sensor != SENSOR_OV772x) 788 return; 789 if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) { 790 r = rate_0; 791 i = ARRAY_SIZE(rate_0); 792 } else { 793 r = rate_1; 794 i = ARRAY_SIZE(rate_1); 795 } 796 while (--i > 0) { 797 if (sd->frame_rate >= r->fps) 798 break; 799 r++; 800 } 801 802 sccb_reg_write(gspca_dev, 0x11, r->r11); 803 sccb_reg_write(gspca_dev, 0x0d, r->r0d); 804 ov534_reg_write(gspca_dev, 0xe5, r->re5); 805 806 PDEBUG(D_PROBE, "frame_rate: %d", r->fps); 807 } 808 809 static void sethue(struct gspca_dev *gspca_dev, s32 val) 810 { 811 struct sd *sd = (struct sd *) gspca_dev; 812 813 if (sd->sensor == SENSOR_OV767x) { 814 /* TBD */ 815 } else { 816 s16 huesin; 817 s16 huecos; 818 819 /* According to the datasheet the registers expect HUESIN and 820 * HUECOS to be the result of the trigonometric functions, 821 * scaled by 0x80. 822 * 823 * The 0x7fff here represents the maximum absolute value 824 * returned byt fixp_sin and fixp_cos, so the scaling will 825 * consider the result like in the interval [-1.0, 1.0]. 826 */ 827 huesin = fixp_sin16(val) * 0x80 / 0x7fff; 828 huecos = fixp_cos16(val) * 0x80 / 0x7fff; 829 830 if (huesin < 0) { 831 sccb_reg_write(gspca_dev, 0xab, 832 sccb_reg_read(gspca_dev, 0xab) | 0x2); 833 huesin = -huesin; 834 } else { 835 sccb_reg_write(gspca_dev, 0xab, 836 sccb_reg_read(gspca_dev, 0xab) & ~0x2); 837 838 } 839 sccb_reg_write(gspca_dev, 0xa9, (u8)huecos); 840 sccb_reg_write(gspca_dev, 0xaa, (u8)huesin); 841 } 842 } 843 844 static void setsaturation(struct gspca_dev *gspca_dev, s32 val) 845 { 846 struct sd *sd = (struct sd *) gspca_dev; 847 848 if (sd->sensor == SENSOR_OV767x) { 849 int i; 850 static u8 color_tb[][6] = { 851 {0x42, 0x42, 0x00, 0x11, 0x30, 0x41}, 852 {0x52, 0x52, 0x00, 0x16, 0x3c, 0x52}, 853 {0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66}, 854 {0x80, 0x80, 0x00, 0x22, 0x5e, 0x80}, 855 {0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a}, 856 {0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8}, 857 {0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd}, 858 }; 859 860 for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++) 861 sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]); 862 } else { 863 sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */ 864 sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */ 865 } 866 } 867 868 static void setbrightness(struct gspca_dev *gspca_dev, s32 val) 869 { 870 struct sd *sd = (struct sd *) gspca_dev; 871 872 if (sd->sensor == SENSOR_OV767x) { 873 if (val < 0) 874 val = 0x80 - val; 875 sccb_reg_write(gspca_dev, 0x55, val); /* bright */ 876 } else { 877 sccb_reg_write(gspca_dev, 0x9b, val); 878 } 879 } 880 881 static void setcontrast(struct gspca_dev *gspca_dev, s32 val) 882 { 883 struct sd *sd = (struct sd *) gspca_dev; 884 885 if (sd->sensor == SENSOR_OV767x) 886 sccb_reg_write(gspca_dev, 0x56, val); /* contras */ 887 else 888 sccb_reg_write(gspca_dev, 0x9c, val); 889 } 890 891 static void setgain(struct gspca_dev *gspca_dev, s32 val) 892 { 893 switch (val & 0x30) { 894 case 0x00: 895 val &= 0x0f; 896 break; 897 case 0x10: 898 val &= 0x0f; 899 val |= 0x30; 900 break; 901 case 0x20: 902 val &= 0x0f; 903 val |= 0x70; 904 break; 905 default: 906 /* case 0x30: */ 907 val &= 0x0f; 908 val |= 0xf0; 909 break; 910 } 911 sccb_reg_write(gspca_dev, 0x00, val); 912 } 913 914 static s32 getgain(struct gspca_dev *gspca_dev) 915 { 916 return sccb_reg_read(gspca_dev, 0x00); 917 } 918 919 static void setexposure(struct gspca_dev *gspca_dev, s32 val) 920 { 921 struct sd *sd = (struct sd *) gspca_dev; 922 923 if (sd->sensor == SENSOR_OV767x) { 924 925 /* set only aec[9:2] */ 926 sccb_reg_write(gspca_dev, 0x10, val); /* aech */ 927 } else { 928 929 /* 'val' is one byte and represents half of the exposure value 930 * we are going to set into registers, a two bytes value: 931 * 932 * MSB: ((u16) val << 1) >> 8 == val >> 7 933 * LSB: ((u16) val << 1) & 0xff == val << 1 934 */ 935 sccb_reg_write(gspca_dev, 0x08, val >> 7); 936 sccb_reg_write(gspca_dev, 0x10, val << 1); 937 } 938 } 939 940 static s32 getexposure(struct gspca_dev *gspca_dev) 941 { 942 struct sd *sd = (struct sd *) gspca_dev; 943 944 if (sd->sensor == SENSOR_OV767x) { 945 /* get only aec[9:2] */ 946 return sccb_reg_read(gspca_dev, 0x10); /* aech */ 947 } else { 948 u8 hi = sccb_reg_read(gspca_dev, 0x08); 949 u8 lo = sccb_reg_read(gspca_dev, 0x10); 950 return (hi << 8 | lo) >> 1; 951 } 952 } 953 954 static void setagc(struct gspca_dev *gspca_dev, s32 val) 955 { 956 if (val) { 957 sccb_reg_write(gspca_dev, 0x13, 958 sccb_reg_read(gspca_dev, 0x13) | 0x04); 959 sccb_reg_write(gspca_dev, 0x64, 960 sccb_reg_read(gspca_dev, 0x64) | 0x03); 961 } else { 962 sccb_reg_write(gspca_dev, 0x13, 963 sccb_reg_read(gspca_dev, 0x13) & ~0x04); 964 sccb_reg_write(gspca_dev, 0x64, 965 sccb_reg_read(gspca_dev, 0x64) & ~0x03); 966 } 967 } 968 969 static void setawb(struct gspca_dev *gspca_dev, s32 val) 970 { 971 struct sd *sd = (struct sd *) gspca_dev; 972 973 if (val) { 974 sccb_reg_write(gspca_dev, 0x13, 975 sccb_reg_read(gspca_dev, 0x13) | 0x02); 976 if (sd->sensor == SENSOR_OV772x) 977 sccb_reg_write(gspca_dev, 0x63, 978 sccb_reg_read(gspca_dev, 0x63) | 0xc0); 979 } else { 980 sccb_reg_write(gspca_dev, 0x13, 981 sccb_reg_read(gspca_dev, 0x13) & ~0x02); 982 if (sd->sensor == SENSOR_OV772x) 983 sccb_reg_write(gspca_dev, 0x63, 984 sccb_reg_read(gspca_dev, 0x63) & ~0xc0); 985 } 986 } 987 988 static void setaec(struct gspca_dev *gspca_dev, s32 val) 989 { 990 struct sd *sd = (struct sd *) gspca_dev; 991 u8 data; 992 993 data = sd->sensor == SENSOR_OV767x ? 994 0x05 : /* agc + aec */ 995 0x01; /* agc */ 996 switch (val) { 997 case V4L2_EXPOSURE_AUTO: 998 sccb_reg_write(gspca_dev, 0x13, 999 sccb_reg_read(gspca_dev, 0x13) | data); 1000 break; 1001 case V4L2_EXPOSURE_MANUAL: 1002 sccb_reg_write(gspca_dev, 0x13, 1003 sccb_reg_read(gspca_dev, 0x13) & ~data); 1004 break; 1005 } 1006 } 1007 1008 static void setsharpness(struct gspca_dev *gspca_dev, s32 val) 1009 { 1010 sccb_reg_write(gspca_dev, 0x91, val); /* Auto de-noise threshold */ 1011 sccb_reg_write(gspca_dev, 0x8e, val); /* De-noise threshold */ 1012 } 1013 1014 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip) 1015 { 1016 struct sd *sd = (struct sd *) gspca_dev; 1017 u8 val; 1018 1019 if (sd->sensor == SENSOR_OV767x) { 1020 val = sccb_reg_read(gspca_dev, 0x1e); /* mvfp */ 1021 val &= ~0x30; 1022 if (hflip) 1023 val |= 0x20; 1024 if (vflip) 1025 val |= 0x10; 1026 sccb_reg_write(gspca_dev, 0x1e, val); 1027 } else { 1028 val = sccb_reg_read(gspca_dev, 0x0c); 1029 val &= ~0xc0; 1030 if (hflip == 0) 1031 val |= 0x40; 1032 if (vflip == 0) 1033 val |= 0x80; 1034 sccb_reg_write(gspca_dev, 0x0c, val); 1035 } 1036 } 1037 1038 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val) 1039 { 1040 struct sd *sd = (struct sd *) gspca_dev; 1041 1042 val = val ? 0x9e : 0x00; 1043 if (sd->sensor == SENSOR_OV767x) { 1044 sccb_reg_write(gspca_dev, 0x2a, 0x00); 1045 if (val) 1046 val = 0x9d; /* insert dummy to 25fps for 50Hz */ 1047 } 1048 sccb_reg_write(gspca_dev, 0x2b, val); 1049 } 1050 1051 1052 /* this function is called at probe time */ 1053 static int sd_config(struct gspca_dev *gspca_dev, 1054 const struct usb_device_id *id) 1055 { 1056 struct sd *sd = (struct sd *) gspca_dev; 1057 struct cam *cam; 1058 1059 cam = &gspca_dev->cam; 1060 1061 cam->cam_mode = ov772x_mode; 1062 cam->nmodes = ARRAY_SIZE(ov772x_mode); 1063 1064 sd->frame_rate = 30; 1065 1066 return 0; 1067 } 1068 1069 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 1070 { 1071 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1072 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1073 1074 switch (ctrl->id) { 1075 case V4L2_CID_AUTOGAIN: 1076 gspca_dev->usb_err = 0; 1077 if (ctrl->val && sd->gain && gspca_dev->streaming) 1078 sd->gain->val = getgain(gspca_dev); 1079 return gspca_dev->usb_err; 1080 1081 case V4L2_CID_EXPOSURE_AUTO: 1082 gspca_dev->usb_err = 0; 1083 if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure && 1084 gspca_dev->streaming) 1085 sd->exposure->val = getexposure(gspca_dev); 1086 return gspca_dev->usb_err; 1087 } 1088 return -EINVAL; 1089 } 1090 1091 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl) 1092 { 1093 struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler); 1094 struct gspca_dev *gspca_dev = &sd->gspca_dev; 1095 1096 gspca_dev->usb_err = 0; 1097 if (!gspca_dev->streaming) 1098 return 0; 1099 1100 switch (ctrl->id) { 1101 case V4L2_CID_HUE: 1102 sethue(gspca_dev, ctrl->val); 1103 break; 1104 case V4L2_CID_SATURATION: 1105 setsaturation(gspca_dev, ctrl->val); 1106 break; 1107 case V4L2_CID_BRIGHTNESS: 1108 setbrightness(gspca_dev, ctrl->val); 1109 break; 1110 case V4L2_CID_CONTRAST: 1111 setcontrast(gspca_dev, ctrl->val); 1112 break; 1113 case V4L2_CID_AUTOGAIN: 1114 /* case V4L2_CID_GAIN: */ 1115 setagc(gspca_dev, ctrl->val); 1116 if (!gspca_dev->usb_err && !ctrl->val && sd->gain) 1117 setgain(gspca_dev, sd->gain->val); 1118 break; 1119 case V4L2_CID_AUTO_WHITE_BALANCE: 1120 setawb(gspca_dev, ctrl->val); 1121 break; 1122 case V4L2_CID_EXPOSURE_AUTO: 1123 /* case V4L2_CID_EXPOSURE: */ 1124 setaec(gspca_dev, ctrl->val); 1125 if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL && 1126 sd->exposure) 1127 setexposure(gspca_dev, sd->exposure->val); 1128 break; 1129 case V4L2_CID_SHARPNESS: 1130 setsharpness(gspca_dev, ctrl->val); 1131 break; 1132 case V4L2_CID_HFLIP: 1133 sethvflip(gspca_dev, ctrl->val, sd->vflip->val); 1134 break; 1135 case V4L2_CID_VFLIP: 1136 sethvflip(gspca_dev, sd->hflip->val, ctrl->val); 1137 break; 1138 case V4L2_CID_POWER_LINE_FREQUENCY: 1139 setlightfreq(gspca_dev, ctrl->val); 1140 break; 1141 } 1142 return gspca_dev->usb_err; 1143 } 1144 1145 static const struct v4l2_ctrl_ops ov534_ctrl_ops = { 1146 .g_volatile_ctrl = ov534_g_volatile_ctrl, 1147 .s_ctrl = ov534_s_ctrl, 1148 }; 1149 1150 static int sd_init_controls(struct gspca_dev *gspca_dev) 1151 { 1152 struct sd *sd = (struct sd *) gspca_dev; 1153 struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler; 1154 /* parameters with different values between the supported sensors */ 1155 int saturation_min; 1156 int saturation_max; 1157 int saturation_def; 1158 int brightness_min; 1159 int brightness_max; 1160 int brightness_def; 1161 int contrast_max; 1162 int contrast_def; 1163 int exposure_min; 1164 int exposure_max; 1165 int exposure_def; 1166 int hflip_def; 1167 1168 if (sd->sensor == SENSOR_OV767x) { 1169 saturation_min = 0, 1170 saturation_max = 6, 1171 saturation_def = 3, 1172 brightness_min = -127; 1173 brightness_max = 127; 1174 brightness_def = 0; 1175 contrast_max = 0x80; 1176 contrast_def = 0x40; 1177 exposure_min = 0x08; 1178 exposure_max = 0x60; 1179 exposure_def = 0x13; 1180 hflip_def = 1; 1181 } else { 1182 saturation_min = 0, 1183 saturation_max = 255, 1184 saturation_def = 64, 1185 brightness_min = 0; 1186 brightness_max = 255; 1187 brightness_def = 0; 1188 contrast_max = 255; 1189 contrast_def = 32; 1190 exposure_min = 0; 1191 exposure_max = 255; 1192 exposure_def = 120; 1193 hflip_def = 0; 1194 } 1195 1196 gspca_dev->vdev.ctrl_handler = hdl; 1197 1198 v4l2_ctrl_handler_init(hdl, 13); 1199 1200 if (sd->sensor == SENSOR_OV772x) 1201 sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1202 V4L2_CID_HUE, -90, 90, 1, 0); 1203 1204 sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1205 V4L2_CID_SATURATION, saturation_min, saturation_max, 1, 1206 saturation_def); 1207 sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1208 V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1, 1209 brightness_def); 1210 sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1211 V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def); 1212 1213 if (sd->sensor == SENSOR_OV772x) { 1214 sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1215 V4L2_CID_AUTOGAIN, 0, 1, 1, 1); 1216 sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1217 V4L2_CID_GAIN, 0, 63, 1, 20); 1218 } 1219 1220 sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1221 V4L2_CID_EXPOSURE_AUTO, 1222 V4L2_EXPOSURE_MANUAL, 0, 1223 V4L2_EXPOSURE_AUTO); 1224 sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1225 V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1, 1226 exposure_def); 1227 1228 sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1229 V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1); 1230 1231 if (sd->sensor == SENSOR_OV772x) 1232 sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1233 V4L2_CID_SHARPNESS, 0, 63, 1, 0); 1234 1235 sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1236 V4L2_CID_HFLIP, 0, 1, 1, hflip_def); 1237 sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops, 1238 V4L2_CID_VFLIP, 0, 1, 1, 0); 1239 sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops, 1240 V4L2_CID_POWER_LINE_FREQUENCY, 1241 V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0, 1242 V4L2_CID_POWER_LINE_FREQUENCY_DISABLED); 1243 1244 if (hdl->error) { 1245 pr_err("Could not initialize controls\n"); 1246 return hdl->error; 1247 } 1248 1249 if (sd->sensor == SENSOR_OV772x) 1250 v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true); 1251 1252 v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL, 1253 true); 1254 1255 return 0; 1256 } 1257 1258 /* this function is called at probe and resume time */ 1259 static int sd_init(struct gspca_dev *gspca_dev) 1260 { 1261 struct sd *sd = (struct sd *) gspca_dev; 1262 u16 sensor_id; 1263 static const struct reg_array bridge_init[NSENSORS] = { 1264 [SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)}, 1265 [SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)}, 1266 }; 1267 static const struct reg_array sensor_init[NSENSORS] = { 1268 [SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)}, 1269 [SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)}, 1270 }; 1271 1272 /* reset bridge */ 1273 ov534_reg_write(gspca_dev, 0xe7, 0x3a); 1274 ov534_reg_write(gspca_dev, 0xe0, 0x08); 1275 msleep(100); 1276 1277 /* initialize the sensor address */ 1278 ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42); 1279 1280 /* reset sensor */ 1281 sccb_reg_write(gspca_dev, 0x12, 0x80); 1282 msleep(10); 1283 1284 /* probe the sensor */ 1285 sccb_reg_read(gspca_dev, 0x0a); 1286 sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8; 1287 sccb_reg_read(gspca_dev, 0x0b); 1288 sensor_id |= sccb_reg_read(gspca_dev, 0x0b); 1289 PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id); 1290 1291 if ((sensor_id & 0xfff0) == 0x7670) { 1292 sd->sensor = SENSOR_OV767x; 1293 gspca_dev->cam.cam_mode = ov767x_mode; 1294 gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode); 1295 } else { 1296 sd->sensor = SENSOR_OV772x; 1297 gspca_dev->cam.bulk = 1; 1298 gspca_dev->cam.bulk_size = 16384; 1299 gspca_dev->cam.bulk_nurbs = 2; 1300 gspca_dev->cam.mode_framerates = ov772x_framerates; 1301 } 1302 1303 /* initialize */ 1304 reg_w_array(gspca_dev, bridge_init[sd->sensor].val, 1305 bridge_init[sd->sensor].len); 1306 ov534_set_led(gspca_dev, 1); 1307 sccb_w_array(gspca_dev, sensor_init[sd->sensor].val, 1308 sensor_init[sd->sensor].len); 1309 1310 sd_stopN(gspca_dev); 1311 /* set_frame_rate(gspca_dev); */ 1312 1313 return gspca_dev->usb_err; 1314 } 1315 1316 static int sd_start(struct gspca_dev *gspca_dev) 1317 { 1318 struct sd *sd = (struct sd *) gspca_dev; 1319 int mode; 1320 static const struct reg_array bridge_start[NSENSORS][2] = { 1321 [SENSOR_OV767x] = {{bridge_start_qvga_767x, 1322 ARRAY_SIZE(bridge_start_qvga_767x)}, 1323 {bridge_start_vga_767x, 1324 ARRAY_SIZE(bridge_start_vga_767x)}}, 1325 [SENSOR_OV772x] = {{bridge_start_qvga_772x, 1326 ARRAY_SIZE(bridge_start_qvga_772x)}, 1327 {bridge_start_vga_772x, 1328 ARRAY_SIZE(bridge_start_vga_772x)}}, 1329 }; 1330 static const struct reg_array sensor_start[NSENSORS][2] = { 1331 [SENSOR_OV767x] = {{sensor_start_qvga_767x, 1332 ARRAY_SIZE(sensor_start_qvga_767x)}, 1333 {sensor_start_vga_767x, 1334 ARRAY_SIZE(sensor_start_vga_767x)}}, 1335 [SENSOR_OV772x] = {{sensor_start_qvga_772x, 1336 ARRAY_SIZE(sensor_start_qvga_772x)}, 1337 {sensor_start_vga_772x, 1338 ARRAY_SIZE(sensor_start_vga_772x)}}, 1339 }; 1340 1341 /* (from ms-win trace) */ 1342 if (sd->sensor == SENSOR_OV767x) 1343 sccb_reg_write(gspca_dev, 0x1e, 0x04); 1344 /* black sun enable ? */ 1345 1346 mode = gspca_dev->curr_mode; /* 0: 320x240, 1: 640x480 */ 1347 reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val, 1348 bridge_start[sd->sensor][mode].len); 1349 sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val, 1350 sensor_start[sd->sensor][mode].len); 1351 1352 set_frame_rate(gspca_dev); 1353 1354 if (sd->hue) 1355 sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue)); 1356 setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation)); 1357 if (sd->autogain) 1358 setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain)); 1359 setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance)); 1360 setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure)); 1361 if (sd->gain) 1362 setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain)); 1363 setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure)); 1364 setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness)); 1365 setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast)); 1366 if (sd->sharpness) 1367 setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness)); 1368 sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip), 1369 v4l2_ctrl_g_ctrl(sd->vflip)); 1370 setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq)); 1371 1372 ov534_set_led(gspca_dev, 1); 1373 ov534_reg_write(gspca_dev, 0xe0, 0x00); 1374 return gspca_dev->usb_err; 1375 } 1376 1377 static void sd_stopN(struct gspca_dev *gspca_dev) 1378 { 1379 ov534_reg_write(gspca_dev, 0xe0, 0x09); 1380 ov534_set_led(gspca_dev, 0); 1381 } 1382 1383 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */ 1384 #define UVC_STREAM_EOH (1 << 7) 1385 #define UVC_STREAM_ERR (1 << 6) 1386 #define UVC_STREAM_STI (1 << 5) 1387 #define UVC_STREAM_RES (1 << 4) 1388 #define UVC_STREAM_SCR (1 << 3) 1389 #define UVC_STREAM_PTS (1 << 2) 1390 #define UVC_STREAM_EOF (1 << 1) 1391 #define UVC_STREAM_FID (1 << 0) 1392 1393 static void sd_pkt_scan(struct gspca_dev *gspca_dev, 1394 u8 *data, int len) 1395 { 1396 struct sd *sd = (struct sd *) gspca_dev; 1397 __u32 this_pts; 1398 u16 this_fid; 1399 int remaining_len = len; 1400 int payload_len; 1401 1402 payload_len = gspca_dev->cam.bulk ? 2048 : 2040; 1403 do { 1404 len = min(remaining_len, payload_len); 1405 1406 /* Payloads are prefixed with a UVC-style header. We 1407 consider a frame to start when the FID toggles, or the PTS 1408 changes. A frame ends when EOF is set, and we've received 1409 the correct number of bytes. */ 1410 1411 /* Verify UVC header. Header length is always 12 */ 1412 if (data[0] != 12 || len < 12) { 1413 PDEBUG(D_PACK, "bad header"); 1414 goto discard; 1415 } 1416 1417 /* Check errors */ 1418 if (data[1] & UVC_STREAM_ERR) { 1419 PDEBUG(D_PACK, "payload error"); 1420 goto discard; 1421 } 1422 1423 /* Extract PTS and FID */ 1424 if (!(data[1] & UVC_STREAM_PTS)) { 1425 PDEBUG(D_PACK, "PTS not present"); 1426 goto discard; 1427 } 1428 this_pts = (data[5] << 24) | (data[4] << 16) 1429 | (data[3] << 8) | data[2]; 1430 this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0; 1431 1432 /* If PTS or FID has changed, start a new frame. */ 1433 if (this_pts != sd->last_pts || this_fid != sd->last_fid) { 1434 if (gspca_dev->last_packet_type == INTER_PACKET) 1435 gspca_frame_add(gspca_dev, LAST_PACKET, 1436 NULL, 0); 1437 sd->last_pts = this_pts; 1438 sd->last_fid = this_fid; 1439 gspca_frame_add(gspca_dev, FIRST_PACKET, 1440 data + 12, len - 12); 1441 /* If this packet is marked as EOF, end the frame */ 1442 } else if (data[1] & UVC_STREAM_EOF) { 1443 sd->last_pts = 0; 1444 if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV 1445 && gspca_dev->image_len + len - 12 != 1446 gspca_dev->pixfmt.width * 1447 gspca_dev->pixfmt.height * 2) { 1448 PDEBUG(D_PACK, "wrong sized frame"); 1449 goto discard; 1450 } 1451 gspca_frame_add(gspca_dev, LAST_PACKET, 1452 data + 12, len - 12); 1453 } else { 1454 1455 /* Add the data from this payload */ 1456 gspca_frame_add(gspca_dev, INTER_PACKET, 1457 data + 12, len - 12); 1458 } 1459 1460 /* Done this payload */ 1461 goto scan_next; 1462 1463 discard: 1464 /* Discard data until a new frame starts. */ 1465 gspca_dev->last_packet_type = DISCARD_PACKET; 1466 1467 scan_next: 1468 remaining_len -= len; 1469 data += len; 1470 } while (remaining_len > 0); 1471 } 1472 1473 /* get stream parameters (framerate) */ 1474 static void sd_get_streamparm(struct gspca_dev *gspca_dev, 1475 struct v4l2_streamparm *parm) 1476 { 1477 struct v4l2_captureparm *cp = &parm->parm.capture; 1478 struct v4l2_fract *tpf = &cp->timeperframe; 1479 struct sd *sd = (struct sd *) gspca_dev; 1480 1481 cp->capability |= V4L2_CAP_TIMEPERFRAME; 1482 tpf->numerator = 1; 1483 tpf->denominator = sd->frame_rate; 1484 } 1485 1486 /* set stream parameters (framerate) */ 1487 static void sd_set_streamparm(struct gspca_dev *gspca_dev, 1488 struct v4l2_streamparm *parm) 1489 { 1490 struct v4l2_captureparm *cp = &parm->parm.capture; 1491 struct v4l2_fract *tpf = &cp->timeperframe; 1492 struct sd *sd = (struct sd *) gspca_dev; 1493 1494 if (tpf->numerator == 0 || tpf->denominator == 0) 1495 /* Set default framerate */ 1496 sd->frame_rate = 30; 1497 else 1498 /* Set requested framerate */ 1499 sd->frame_rate = tpf->denominator / tpf->numerator; 1500 1501 if (gspca_dev->streaming) 1502 set_frame_rate(gspca_dev); 1503 1504 /* Return the actual framerate */ 1505 tpf->numerator = 1; 1506 tpf->denominator = sd->frame_rate; 1507 } 1508 1509 /* sub-driver description */ 1510 static const struct sd_desc sd_desc = { 1511 .name = MODULE_NAME, 1512 .config = sd_config, 1513 .init = sd_init, 1514 .init_controls = sd_init_controls, 1515 .start = sd_start, 1516 .stopN = sd_stopN, 1517 .pkt_scan = sd_pkt_scan, 1518 .get_streamparm = sd_get_streamparm, 1519 .set_streamparm = sd_set_streamparm, 1520 }; 1521 1522 /* -- module initialisation -- */ 1523 static const struct usb_device_id device_table[] = { 1524 {USB_DEVICE(0x1415, 0x2000)}, 1525 {USB_DEVICE(0x06f8, 0x3002)}, 1526 {} 1527 }; 1528 1529 MODULE_DEVICE_TABLE(usb, device_table); 1530 1531 /* -- device connect -- */ 1532 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id) 1533 { 1534 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), 1535 THIS_MODULE); 1536 } 1537 1538 static struct usb_driver sd_driver = { 1539 .name = MODULE_NAME, 1540 .id_table = device_table, 1541 .probe = sd_probe, 1542 .disconnect = gspca_disconnect, 1543 #ifdef CONFIG_PM 1544 .suspend = gspca_suspend, 1545 .resume = gspca_resume, 1546 .reset_resume = gspca_resume, 1547 #endif 1548 }; 1549 1550 module_usb_driver(sd_driver); 1551