xref: /linux/drivers/media/usb/gspca/ov519.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /**
2  * OV519 driver
3  *
4  * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5  * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
6  *
7  * This module is adapted from the ov51x-jpeg package, which itself
8  * was adapted from the ov511 driver.
9  *
10  * Original copyright for the ov511 driver is:
11  *
12  * Copyright (c) 1999-2006 Mark W. McClelland
13  * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14  * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15  * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16  * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17  * Changes by Claudio Matsuoka <claudio@conectiva.com>
18  *
19  * ov51x-jpeg original copyright is:
20  *
21  * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22  * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2 of the License, or
27  * any later version.
28  *
29  * This program is distributed in the hope that it will be useful,
30  * but WITHOUT ANY WARRANTY; without even the implied warranty of
31  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32  * GNU General Public License for more details.
33  *
34  * You should have received a copy of the GNU General Public License
35  * along with this program; if not, write to the Free Software
36  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
37  *
38  */
39 
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 
42 #define MODULE_NAME "ov519"
43 
44 #include <linux/input.h>
45 #include "gspca.h"
46 
47 /* The jpeg_hdr is used by w996Xcf only */
48 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
49 #define CONEX_CAM
50 #include "jpeg.h"
51 
52 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
53 MODULE_DESCRIPTION("OV519 USB Camera Driver");
54 MODULE_LICENSE("GPL");
55 
56 /* global parameters */
57 static int frame_rate;
58 
59 /* Number of times to retry a failed I2C transaction. Increase this if you
60  * are getting "Failed to read sensor ID..." */
61 static int i2c_detect_tries = 10;
62 
63 /* ov519 device descriptor */
64 struct sd {
65 	struct gspca_dev gspca_dev;		/* !! must be the first item */
66 
67 	struct v4l2_ctrl *jpegqual;
68 	struct v4l2_ctrl *freq;
69 	struct { /* h/vflip control cluster */
70 		struct v4l2_ctrl *hflip;
71 		struct v4l2_ctrl *vflip;
72 	};
73 	struct { /* autobrightness/brightness control cluster */
74 		struct v4l2_ctrl *autobright;
75 		struct v4l2_ctrl *brightness;
76 	};
77 
78 	u8 packet_nr;
79 
80 	char bridge;
81 #define BRIDGE_OV511		0
82 #define BRIDGE_OV511PLUS	1
83 #define BRIDGE_OV518		2
84 #define BRIDGE_OV518PLUS	3
85 #define BRIDGE_OV519		4		/* = ov530 */
86 #define BRIDGE_OVFX2		5
87 #define BRIDGE_W9968CF		6
88 #define BRIDGE_MASK		7
89 
90 	char invert_led;
91 #define BRIDGE_INVERT_LED	8
92 
93 	char snapshot_pressed;
94 	char snapshot_needs_reset;
95 
96 	/* Determined by sensor type */
97 	u8 sif;
98 
99 #define QUALITY_MIN 50
100 #define QUALITY_MAX 70
101 #define QUALITY_DEF 50
102 
103 	u8 stopped;		/* Streaming is temporarily paused */
104 	u8 first_frame;
105 
106 	u8 frame_rate;		/* current Framerate */
107 	u8 clockdiv;		/* clockdiv override */
108 
109 	s8 sensor;		/* Type of image sensor chip (SEN_*) */
110 
111 	u8 sensor_addr;
112 	u16 sensor_width;
113 	u16 sensor_height;
114 	s16 sensor_reg_cache[256];
115 
116 	u8 jpeg_hdr[JPEG_HDR_SZ];
117 };
118 enum sensors {
119 	SEN_OV2610,
120 	SEN_OV2610AE,
121 	SEN_OV3610,
122 	SEN_OV6620,
123 	SEN_OV6630,
124 	SEN_OV66308AF,
125 	SEN_OV7610,
126 	SEN_OV7620,
127 	SEN_OV7620AE,
128 	SEN_OV7640,
129 	SEN_OV7648,
130 	SEN_OV7660,
131 	SEN_OV7670,
132 	SEN_OV76BE,
133 	SEN_OV8610,
134 	SEN_OV9600,
135 };
136 
137 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
138    the ov sensors which is already present here. When we have the time we
139    really should move the sensor drivers to v4l2 sub drivers. */
140 #include "w996Xcf.c"
141 
142 /* table of the disabled controls */
143 struct ctrl_valid {
144 	unsigned int has_brightness:1;
145 	unsigned int has_contrast:1;
146 	unsigned int has_exposure:1;
147 	unsigned int has_autogain:1;
148 	unsigned int has_sat:1;
149 	unsigned int has_hvflip:1;
150 	unsigned int has_autobright:1;
151 	unsigned int has_freq:1;
152 };
153 
154 static const struct ctrl_valid valid_controls[] = {
155 	[SEN_OV2610] = {
156 		.has_exposure = 1,
157 		.has_autogain = 1,
158 	},
159 	[SEN_OV2610AE] = {
160 		.has_exposure = 1,
161 		.has_autogain = 1,
162 	},
163 	[SEN_OV3610] = {
164 		/* No controls */
165 	},
166 	[SEN_OV6620] = {
167 		.has_brightness = 1,
168 		.has_contrast = 1,
169 		.has_sat = 1,
170 		.has_autobright = 1,
171 		.has_freq = 1,
172 	},
173 	[SEN_OV6630] = {
174 		.has_brightness = 1,
175 		.has_contrast = 1,
176 		.has_sat = 1,
177 		.has_autobright = 1,
178 		.has_freq = 1,
179 	},
180 	[SEN_OV66308AF] = {
181 		.has_brightness = 1,
182 		.has_contrast = 1,
183 		.has_sat = 1,
184 		.has_autobright = 1,
185 		.has_freq = 1,
186 	},
187 	[SEN_OV7610] = {
188 		.has_brightness = 1,
189 		.has_contrast = 1,
190 		.has_sat = 1,
191 		.has_autobright = 1,
192 		.has_freq = 1,
193 	},
194 	[SEN_OV7620] = {
195 		.has_brightness = 1,
196 		.has_contrast = 1,
197 		.has_sat = 1,
198 		.has_autobright = 1,
199 		.has_freq = 1,
200 	},
201 	[SEN_OV7620AE] = {
202 		.has_brightness = 1,
203 		.has_contrast = 1,
204 		.has_sat = 1,
205 		.has_autobright = 1,
206 		.has_freq = 1,
207 	},
208 	[SEN_OV7640] = {
209 		.has_brightness = 1,
210 		.has_sat = 1,
211 		.has_freq = 1,
212 	},
213 	[SEN_OV7648] = {
214 		.has_brightness = 1,
215 		.has_sat = 1,
216 		.has_freq = 1,
217 	},
218 	[SEN_OV7660] = {
219 		.has_brightness = 1,
220 		.has_contrast = 1,
221 		.has_sat = 1,
222 		.has_hvflip = 1,
223 		.has_freq = 1,
224 	},
225 	[SEN_OV7670] = {
226 		.has_brightness = 1,
227 		.has_contrast = 1,
228 		.has_hvflip = 1,
229 		.has_freq = 1,
230 	},
231 	[SEN_OV76BE] = {
232 		.has_brightness = 1,
233 		.has_contrast = 1,
234 		.has_sat = 1,
235 		.has_autobright = 1,
236 		.has_freq = 1,
237 	},
238 	[SEN_OV8610] = {
239 		.has_brightness = 1,
240 		.has_contrast = 1,
241 		.has_sat = 1,
242 		.has_autobright = 1,
243 	},
244 	[SEN_OV9600] = {
245 		.has_exposure = 1,
246 		.has_autogain = 1,
247 	},
248 };
249 
250 static const struct v4l2_pix_format ov519_vga_mode[] = {
251 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
252 		.bytesperline = 320,
253 		.sizeimage = 320 * 240 * 3 / 8 + 590,
254 		.colorspace = V4L2_COLORSPACE_JPEG,
255 		.priv = 1},
256 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
257 		.bytesperline = 640,
258 		.sizeimage = 640 * 480 * 3 / 8 + 590,
259 		.colorspace = V4L2_COLORSPACE_JPEG,
260 		.priv = 0},
261 };
262 static const struct v4l2_pix_format ov519_sif_mode[] = {
263 	{160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
264 		.bytesperline = 160,
265 		.sizeimage = 160 * 120 * 3 / 8 + 590,
266 		.colorspace = V4L2_COLORSPACE_JPEG,
267 		.priv = 3},
268 	{176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
269 		.bytesperline = 176,
270 		.sizeimage = 176 * 144 * 3 / 8 + 590,
271 		.colorspace = V4L2_COLORSPACE_JPEG,
272 		.priv = 1},
273 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
274 		.bytesperline = 320,
275 		.sizeimage = 320 * 240 * 3 / 8 + 590,
276 		.colorspace = V4L2_COLORSPACE_JPEG,
277 		.priv = 2},
278 	{352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
279 		.bytesperline = 352,
280 		.sizeimage = 352 * 288 * 3 / 8 + 590,
281 		.colorspace = V4L2_COLORSPACE_JPEG,
282 		.priv = 0},
283 };
284 
285 /* Note some of the sizeimage values for the ov511 / ov518 may seem
286    larger then necessary, however they need to be this big as the ov511 /
287    ov518 always fills the entire isoc frame, using 0 padding bytes when
288    it doesn't have any data. So with low framerates the amount of data
289    transferred can become quite large (libv4l will remove all the 0 padding
290    in userspace). */
291 static const struct v4l2_pix_format ov518_vga_mode[] = {
292 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
293 		.bytesperline = 320,
294 		.sizeimage = 320 * 240 * 3,
295 		.colorspace = V4L2_COLORSPACE_JPEG,
296 		.priv = 1},
297 	{640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
298 		.bytesperline = 640,
299 		.sizeimage = 640 * 480 * 2,
300 		.colorspace = V4L2_COLORSPACE_JPEG,
301 		.priv = 0},
302 };
303 static const struct v4l2_pix_format ov518_sif_mode[] = {
304 	{160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
305 		.bytesperline = 160,
306 		.sizeimage = 70000,
307 		.colorspace = V4L2_COLORSPACE_JPEG,
308 		.priv = 3},
309 	{176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
310 		.bytesperline = 176,
311 		.sizeimage = 70000,
312 		.colorspace = V4L2_COLORSPACE_JPEG,
313 		.priv = 1},
314 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
315 		.bytesperline = 320,
316 		.sizeimage = 320 * 240 * 3,
317 		.colorspace = V4L2_COLORSPACE_JPEG,
318 		.priv = 2},
319 	{352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
320 		.bytesperline = 352,
321 		.sizeimage = 352 * 288 * 3,
322 		.colorspace = V4L2_COLORSPACE_JPEG,
323 		.priv = 0},
324 };
325 
326 static const struct v4l2_pix_format ov511_vga_mode[] = {
327 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
328 		.bytesperline = 320,
329 		.sizeimage = 320 * 240 * 3,
330 		.colorspace = V4L2_COLORSPACE_JPEG,
331 		.priv = 1},
332 	{640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
333 		.bytesperline = 640,
334 		.sizeimage = 640 * 480 * 2,
335 		.colorspace = V4L2_COLORSPACE_JPEG,
336 		.priv = 0},
337 };
338 static const struct v4l2_pix_format ov511_sif_mode[] = {
339 	{160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
340 		.bytesperline = 160,
341 		.sizeimage = 70000,
342 		.colorspace = V4L2_COLORSPACE_JPEG,
343 		.priv = 3},
344 	{176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
345 		.bytesperline = 176,
346 		.sizeimage = 70000,
347 		.colorspace = V4L2_COLORSPACE_JPEG,
348 		.priv = 1},
349 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
350 		.bytesperline = 320,
351 		.sizeimage = 320 * 240 * 3,
352 		.colorspace = V4L2_COLORSPACE_JPEG,
353 		.priv = 2},
354 	{352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
355 		.bytesperline = 352,
356 		.sizeimage = 352 * 288 * 3,
357 		.colorspace = V4L2_COLORSPACE_JPEG,
358 		.priv = 0},
359 };
360 
361 static const struct v4l2_pix_format ovfx2_vga_mode[] = {
362 	{320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
363 		.bytesperline = 320,
364 		.sizeimage = 320 * 240,
365 		.colorspace = V4L2_COLORSPACE_SRGB,
366 		.priv = 1},
367 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
368 		.bytesperline = 640,
369 		.sizeimage = 640 * 480,
370 		.colorspace = V4L2_COLORSPACE_SRGB,
371 		.priv = 0},
372 };
373 static const struct v4l2_pix_format ovfx2_cif_mode[] = {
374 	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
375 		.bytesperline = 160,
376 		.sizeimage = 160 * 120,
377 		.colorspace = V4L2_COLORSPACE_SRGB,
378 		.priv = 3},
379 	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
380 		.bytesperline = 176,
381 		.sizeimage = 176 * 144,
382 		.colorspace = V4L2_COLORSPACE_SRGB,
383 		.priv = 1},
384 	{320, 240, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
385 		.bytesperline = 320,
386 		.sizeimage = 320 * 240,
387 		.colorspace = V4L2_COLORSPACE_SRGB,
388 		.priv = 2},
389 	{352, 288, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
390 		.bytesperline = 352,
391 		.sizeimage = 352 * 288,
392 		.colorspace = V4L2_COLORSPACE_SRGB,
393 		.priv = 0},
394 };
395 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
396 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
397 		.bytesperline = 800,
398 		.sizeimage = 800 * 600,
399 		.colorspace = V4L2_COLORSPACE_SRGB,
400 		.priv = 1},
401 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
402 		.bytesperline = 1600,
403 		.sizeimage = 1600 * 1200,
404 		.colorspace = V4L2_COLORSPACE_SRGB},
405 };
406 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
407 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
408 		.bytesperline = 640,
409 		.sizeimage = 640 * 480,
410 		.colorspace = V4L2_COLORSPACE_SRGB,
411 		.priv = 1},
412 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
413 		.bytesperline = 800,
414 		.sizeimage = 800 * 600,
415 		.colorspace = V4L2_COLORSPACE_SRGB,
416 		.priv = 1},
417 	{1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
418 		.bytesperline = 1024,
419 		.sizeimage = 1024 * 768,
420 		.colorspace = V4L2_COLORSPACE_SRGB,
421 		.priv = 1},
422 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
423 		.bytesperline = 1600,
424 		.sizeimage = 1600 * 1200,
425 		.colorspace = V4L2_COLORSPACE_SRGB,
426 		.priv = 0},
427 	{2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
428 		.bytesperline = 2048,
429 		.sizeimage = 2048 * 1536,
430 		.colorspace = V4L2_COLORSPACE_SRGB,
431 		.priv = 0},
432 };
433 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
434 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
435 		.bytesperline = 640,
436 		.sizeimage = 640 * 480,
437 		.colorspace = V4L2_COLORSPACE_SRGB,
438 		.priv = 1},
439 	{1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
440 		.bytesperline = 1280,
441 		.sizeimage = 1280 * 1024,
442 		.colorspace = V4L2_COLORSPACE_SRGB},
443 };
444 
445 /* Registers common to OV511 / OV518 */
446 #define R51x_FIFO_PSIZE			0x30	/* 2 bytes wide w/ OV518(+) */
447 #define R51x_SYS_RESET			0x50
448 	/* Reset type flags */
449 	#define	OV511_RESET_OMNICE	0x08
450 #define R51x_SYS_INIT			0x53
451 #define R51x_SYS_SNAP			0x52
452 #define R51x_SYS_CUST_ID		0x5f
453 #define R51x_COMP_LUT_BEGIN		0x80
454 
455 /* OV511 Camera interface register numbers */
456 #define R511_CAM_DELAY			0x10
457 #define R511_CAM_EDGE			0x11
458 #define R511_CAM_PXCNT			0x12
459 #define R511_CAM_LNCNT			0x13
460 #define R511_CAM_PXDIV			0x14
461 #define R511_CAM_LNDIV			0x15
462 #define R511_CAM_UV_EN			0x16
463 #define R511_CAM_LINE_MODE		0x17
464 #define R511_CAM_OPTS			0x18
465 
466 #define R511_SNAP_FRAME			0x19
467 #define R511_SNAP_PXCNT			0x1a
468 #define R511_SNAP_LNCNT			0x1b
469 #define R511_SNAP_PXDIV			0x1c
470 #define R511_SNAP_LNDIV			0x1d
471 #define R511_SNAP_UV_EN			0x1e
472 #define R511_SNAP_OPTS			0x1f
473 
474 #define R511_DRAM_FLOW_CTL		0x20
475 #define R511_FIFO_OPTS			0x31
476 #define R511_I2C_CTL			0x40
477 #define R511_SYS_LED_CTL		0x55	/* OV511+ only */
478 #define R511_COMP_EN			0x78
479 #define R511_COMP_LUT_EN		0x79
480 
481 /* OV518 Camera interface register numbers */
482 #define R518_GPIO_OUT			0x56	/* OV518(+) only */
483 #define R518_GPIO_CTL			0x57	/* OV518(+) only */
484 
485 /* OV519 Camera interface register numbers */
486 #define OV519_R10_H_SIZE		0x10
487 #define OV519_R11_V_SIZE		0x11
488 #define OV519_R12_X_OFFSETL		0x12
489 #define OV519_R13_X_OFFSETH		0x13
490 #define OV519_R14_Y_OFFSETL		0x14
491 #define OV519_R15_Y_OFFSETH		0x15
492 #define OV519_R16_DIVIDER		0x16
493 #define OV519_R20_DFR			0x20
494 #define OV519_R25_FORMAT		0x25
495 
496 /* OV519 System Controller register numbers */
497 #define OV519_R51_RESET1		0x51
498 #define OV519_R54_EN_CLK1		0x54
499 #define OV519_R57_SNAPSHOT		0x57
500 
501 #define OV519_GPIO_DATA_OUT0		0x71
502 #define OV519_GPIO_IO_CTRL0		0x72
503 
504 /*#define OV511_ENDPOINT_ADDRESS 1	 * Isoc endpoint number */
505 
506 /*
507  * The FX2 chip does not give us a zero length read at end of frame.
508  * It does, however, give a short read at the end of a frame, if
509  * necessary, rather than run two frames together.
510  *
511  * By choosing the right bulk transfer size, we are guaranteed to always
512  * get a short read for the last read of each frame.  Frame sizes are
513  * always a composite number (width * height, or a multiple) so if we
514  * choose a prime number, we are guaranteed that the last read of a
515  * frame will be short.
516  *
517  * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
518  * otherwise EOVERFLOW "babbling" errors occur.  I have not been able
519  * to figure out why.  [PMiller]
520  *
521  * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
522  *
523  * It isn't enough to know the number of bytes per frame, in case we
524  * have data dropouts or buffer overruns (even though the FX2 double
525  * buffers, there are some pretty strict real time constraints for
526  * isochronous transfer for larger frame sizes).
527  */
528 /*jfm: this value does not work for 800x600 - see isoc_init */
529 #define OVFX2_BULK_SIZE (13 * 4096)
530 
531 /* I2C registers */
532 #define R51x_I2C_W_SID		0x41
533 #define R51x_I2C_SADDR_3	0x42
534 #define R51x_I2C_SADDR_2	0x43
535 #define R51x_I2C_R_SID		0x44
536 #define R51x_I2C_DATA		0x45
537 #define R518_I2C_CTL		0x47	/* OV518(+) only */
538 #define OVFX2_I2C_ADDR		0x00
539 
540 /* I2C ADDRESSES */
541 #define OV7xx0_SID   0x42
542 #define OV_HIRES_SID 0x60		/* OV9xxx / OV2xxx / OV3xxx */
543 #define OV8xx0_SID   0xa0
544 #define OV6xx0_SID   0xc0
545 
546 /* OV7610 registers */
547 #define OV7610_REG_GAIN		0x00	/* gain setting (5:0) */
548 #define OV7610_REG_BLUE		0x01	/* blue channel balance */
549 #define OV7610_REG_RED		0x02	/* red channel balance */
550 #define OV7610_REG_SAT		0x03	/* saturation */
551 #define OV8610_REG_HUE		0x04	/* 04 reserved */
552 #define OV7610_REG_CNT		0x05	/* Y contrast */
553 #define OV7610_REG_BRT		0x06	/* Y brightness */
554 #define OV7610_REG_COM_C	0x14	/* misc common regs */
555 #define OV7610_REG_ID_HIGH	0x1c	/* manufacturer ID MSB */
556 #define OV7610_REG_ID_LOW	0x1d	/* manufacturer ID LSB */
557 #define OV7610_REG_COM_I	0x29	/* misc settings */
558 
559 /* OV7660 and OV7670 registers */
560 #define OV7670_R00_GAIN		0x00	/* Gain lower 8 bits (rest in vref) */
561 #define OV7670_R01_BLUE		0x01	/* blue gain */
562 #define OV7670_R02_RED		0x02	/* red gain */
563 #define OV7670_R03_VREF		0x03	/* Pieces of GAIN, VSTART, VSTOP */
564 #define OV7670_R04_COM1		0x04	/* Control 1 */
565 /*#define OV7670_R07_AECHH	0x07	 * AEC MS 5 bits */
566 #define OV7670_R0C_COM3		0x0c	/* Control 3 */
567 #define OV7670_R0D_COM4		0x0d	/* Control 4 */
568 #define OV7670_R0E_COM5		0x0e	/* All "reserved" */
569 #define OV7670_R0F_COM6		0x0f	/* Control 6 */
570 #define OV7670_R10_AECH		0x10	/* More bits of AEC value */
571 #define OV7670_R11_CLKRC	0x11	/* Clock control */
572 #define OV7670_R12_COM7		0x12	/* Control 7 */
573 #define   OV7670_COM7_FMT_VGA	 0x00
574 /*#define   OV7670_COM7_YUV	 0x00	 * YUV */
575 #define   OV7670_COM7_FMT_QVGA	 0x10	/* QVGA format */
576 #define   OV7670_COM7_FMT_MASK	 0x38
577 #define   OV7670_COM7_RESET	 0x80	/* Register reset */
578 #define OV7670_R13_COM8		0x13	/* Control 8 */
579 #define   OV7670_COM8_AEC	 0x01	/* Auto exposure enable */
580 #define   OV7670_COM8_AWB	 0x02	/* White balance enable */
581 #define   OV7670_COM8_AGC	 0x04	/* Auto gain enable */
582 #define   OV7670_COM8_BFILT	 0x20	/* Band filter enable */
583 #define   OV7670_COM8_AECSTEP	 0x40	/* Unlimited AEC step size */
584 #define   OV7670_COM8_FASTAEC	 0x80	/* Enable fast AGC/AEC */
585 #define OV7670_R14_COM9		0x14	/* Control 9 - gain ceiling */
586 #define OV7670_R15_COM10	0x15	/* Control 10 */
587 #define OV7670_R17_HSTART	0x17	/* Horiz start high bits */
588 #define OV7670_R18_HSTOP	0x18	/* Horiz stop high bits */
589 #define OV7670_R19_VSTART	0x19	/* Vert start high bits */
590 #define OV7670_R1A_VSTOP	0x1a	/* Vert stop high bits */
591 #define OV7670_R1E_MVFP		0x1e	/* Mirror / vflip */
592 #define   OV7670_MVFP_VFLIP	 0x10	/* vertical flip */
593 #define   OV7670_MVFP_MIRROR	 0x20	/* Mirror image */
594 #define OV7670_R24_AEW		0x24	/* AGC upper limit */
595 #define OV7670_R25_AEB		0x25	/* AGC lower limit */
596 #define OV7670_R26_VPT		0x26	/* AGC/AEC fast mode op region */
597 #define OV7670_R32_HREF		0x32	/* HREF pieces */
598 #define OV7670_R3A_TSLB		0x3a	/* lots of stuff */
599 #define OV7670_R3B_COM11	0x3b	/* Control 11 */
600 #define   OV7670_COM11_EXP	 0x02
601 #define   OV7670_COM11_HZAUTO	 0x10	/* Auto detect 50/60 Hz */
602 #define OV7670_R3C_COM12	0x3c	/* Control 12 */
603 #define OV7670_R3D_COM13	0x3d	/* Control 13 */
604 #define   OV7670_COM13_GAMMA	 0x80	/* Gamma enable */
605 #define   OV7670_COM13_UVSAT	 0x40	/* UV saturation auto adjustment */
606 #define OV7670_R3E_COM14	0x3e	/* Control 14 */
607 #define OV7670_R3F_EDGE		0x3f	/* Edge enhancement factor */
608 #define OV7670_R40_COM15	0x40	/* Control 15 */
609 /*#define   OV7670_COM15_R00FF	 0xc0	 *	00 to FF */
610 #define OV7670_R41_COM16	0x41	/* Control 16 */
611 #define   OV7670_COM16_AWBGAIN	 0x08	/* AWB gain enable */
612 /* end of ov7660 common registers */
613 #define OV7670_R55_BRIGHT	0x55	/* Brightness */
614 #define OV7670_R56_CONTRAS	0x56	/* Contrast control */
615 #define OV7670_R69_GFIX		0x69	/* Fix gain control */
616 /*#define OV7670_R8C_RGB444	0x8c	 * RGB 444 control */
617 #define OV7670_R9F_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
618 #define OV7670_RA0_HAECC2	0xa0	/* Hist AEC/AGC control 2 */
619 #define OV7670_RA5_BD50MAX	0xa5	/* 50hz banding step limit */
620 #define OV7670_RA6_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
621 #define OV7670_RA7_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
622 #define OV7670_RA8_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
623 #define OV7670_RA9_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
624 #define OV7670_RAA_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
625 #define OV7670_RAB_BD60MAX	0xab	/* 60hz banding step limit */
626 
627 struct ov_regvals {
628 	u8 reg;
629 	u8 val;
630 };
631 struct ov_i2c_regvals {
632 	u8 reg;
633 	u8 val;
634 };
635 
636 /* Settings for OV2610 camera chip */
637 static const struct ov_i2c_regvals norm_2610[] = {
638 	{ 0x12, 0x80 },	/* reset */
639 };
640 
641 static const struct ov_i2c_regvals norm_2610ae[] = {
642 	{0x12, 0x80},	/* reset */
643 	{0x13, 0xcd},
644 	{0x09, 0x01},
645 	{0x0d, 0x00},
646 	{0x11, 0x80},
647 	{0x12, 0x20},	/* 1600x1200 */
648 	{0x33, 0x0c},
649 	{0x35, 0x90},
650 	{0x36, 0x37},
651 /* ms-win traces */
652 	{0x11, 0x83},	/* clock / 3 ? */
653 	{0x2d, 0x00},	/* 60 Hz filter */
654 	{0x24, 0xb0},	/* normal colors */
655 	{0x25, 0x90},
656 	{0x10, 0x43},
657 };
658 
659 static const struct ov_i2c_regvals norm_3620b[] = {
660 	/*
661 	 * From the datasheet: "Note that after writing to register COMH
662 	 * (0x12) to change the sensor mode, registers related to the
663 	 * sensor’s cropping window will be reset back to their default
664 	 * values."
665 	 *
666 	 * "wait 4096 external clock ... to make sure the sensor is
667 	 * stable and ready to access registers" i.e. 160us at 24MHz
668 	 */
669 	{ 0x12, 0x80 }, /* COMH reset */
670 	{ 0x12, 0x00 }, /* QXGA, master */
671 
672 	/*
673 	 * 11 CLKRC "Clock Rate Control"
674 	 * [7] internal frequency doublers: on
675 	 * [6] video port mode: master
676 	 * [5:0] clock divider: 1
677 	 */
678 	{ 0x11, 0x80 },
679 
680 	/*
681 	 * 13 COMI "Common Control I"
682 	 *                  = 192 (0xC0) 11000000
683 	 *    COMI[7] "AEC speed selection"
684 	 *                  =   1 (0x01) 1....... "Faster AEC correction"
685 	 *    COMI[6] "AEC speed step selection"
686 	 *                  =   1 (0x01) .1...... "Big steps, fast"
687 	 *    COMI[5] "Banding filter on off"
688 	 *                  =   0 (0x00) ..0..... "Off"
689 	 *    COMI[4] "Banding filter option"
690 	 *                  =   0 (0x00) ...0.... "Main clock is 48 MHz and
691 	 *                                         the PLL is ON"
692 	 *    COMI[3] "Reserved"
693 	 *                  =   0 (0x00) ....0...
694 	 *    COMI[2] "AGC auto manual control selection"
695 	 *                  =   0 (0x00) .....0.. "Manual"
696 	 *    COMI[1] "AWB auto manual control selection"
697 	 *                  =   0 (0x00) ......0. "Manual"
698 	 *    COMI[0] "Exposure control"
699 	 *                  =   0 (0x00) .......0 "Manual"
700 	 */
701 	{ 0x13, 0xc0 },
702 
703 	/*
704 	 * 09 COMC "Common Control C"
705 	 *                  =   8 (0x08) 00001000
706 	 *    COMC[7:5] "Reserved"
707 	 *                  =   0 (0x00) 000.....
708 	 *    COMC[4] "Sleep Mode Enable"
709 	 *                  =   0 (0x00) ...0.... "Normal mode"
710 	 *    COMC[3:2] "Sensor sampling reset timing selection"
711 	 *                  =   2 (0x02) ....10.. "Longer reset time"
712 	 *    COMC[1:0] "Output drive current select"
713 	 *                  =   0 (0x00) ......00 "Weakest"
714 	 */
715 	{ 0x09, 0x08 },
716 
717 	/*
718 	 * 0C COMD "Common Control D"
719 	 *                  =   8 (0x08) 00001000
720 	 *    COMD[7] "Reserved"
721 	 *                  =   0 (0x00) 0.......
722 	 *    COMD[6] "Swap MSB and LSB at the output port"
723 	 *                  =   0 (0x00) .0...... "False"
724 	 *    COMD[5:3] "Reserved"
725 	 *                  =   1 (0x01) ..001...
726 	 *    COMD[2] "Output Average On Off"
727 	 *                  =   0 (0x00) .....0.. "Output Normal"
728 	 *    COMD[1] "Sensor precharge voltage selection"
729 	 *                  =   0 (0x00) ......0. "Selects internal
730 	 *                                         reference precharge
731 	 *                                         voltage"
732 	 *    COMD[0] "Snapshot option"
733 	 *                  =   0 (0x00) .......0 "Enable live video output
734 	 *                                         after snapshot sequence"
735 	 */
736 	{ 0x0c, 0x08 },
737 
738 	/*
739 	 * 0D COME "Common Control E"
740 	 *                  = 161 (0xA1) 10100001
741 	 *    COME[7] "Output average option"
742 	 *                  =   1 (0x01) 1....... "Output average of 4 pixels"
743 	 *    COME[6] "Anti-blooming control"
744 	 *                  =   0 (0x00) .0...... "Off"
745 	 *    COME[5:3] "Reserved"
746 	 *                  =   4 (0x04) ..100...
747 	 *    COME[2] "Clock output power down pin status"
748 	 *                  =   0 (0x00) .....0.. "Tri-state data output pin
749 	 *                                         on power down"
750 	 *    COME[1] "Data output pin status selection at power down"
751 	 *                  =   0 (0x00) ......0. "Tri-state VSYNC, PCLK,
752 	 *                                         HREF, and CHSYNC pins on
753 	 *                                         power down"
754 	 *    COME[0] "Auto zero circuit select"
755 	 *                  =   1 (0x01) .......1 "On"
756 	 */
757 	{ 0x0d, 0xa1 },
758 
759 	/*
760 	 * 0E COMF "Common Control F"
761 	 *                  = 112 (0x70) 01110000
762 	 *    COMF[7] "System clock selection"
763 	 *                  =   0 (0x00) 0....... "Use 24 MHz system clock"
764 	 *    COMF[6:4] "Reserved"
765 	 *                  =   7 (0x07) .111....
766 	 *    COMF[3] "Manual auto negative offset canceling selection"
767 	 *                  =   0 (0x00) ....0... "Auto detect negative
768 	 *                                         offset and cancel it"
769 	 *    COMF[2:0] "Reserved"
770 	 *                  =   0 (0x00) .....000
771 	 */
772 	{ 0x0e, 0x70 },
773 
774 	/*
775 	 * 0F COMG "Common Control G"
776 	 *                  =  66 (0x42) 01000010
777 	 *    COMG[7] "Optical black output selection"
778 	 *                  =   0 (0x00) 0....... "Disable"
779 	 *    COMG[6] "Black level calibrate selection"
780 	 *                  =   1 (0x01) .1...... "Use optical black pixels
781 	 *                                         to calibrate"
782 	 *    COMG[5:4] "Reserved"
783 	 *                  =   0 (0x00) ..00....
784 	 *    COMG[3] "Channel offset adjustment"
785 	 *                  =   0 (0x00) ....0... "Disable offset adjustment"
786 	 *    COMG[2] "ADC black level calibration option"
787 	 *                  =   0 (0x00) .....0.. "Use B/G line and G/R
788 	 *                                         line to calibrate each
789 	 *                                         channel's black level"
790 	 *    COMG[1] "Reserved"
791 	 *                  =   1 (0x01) ......1.
792 	 *    COMG[0] "ADC black level calibration enable"
793 	 *                  =   0 (0x00) .......0 "Disable"
794 	 */
795 	{ 0x0f, 0x42 },
796 
797 	/*
798 	 * 14 COMJ "Common Control J"
799 	 *                  = 198 (0xC6) 11000110
800 	 *    COMJ[7:6] "AGC gain ceiling"
801 	 *                  =   3 (0x03) 11...... "8x"
802 	 *    COMJ[5:4] "Reserved"
803 	 *                  =   0 (0x00) ..00....
804 	 *    COMJ[3] "Auto banding filter"
805 	 *                  =   0 (0x00) ....0... "Banding filter is always
806 	 *                                         on off depending on
807 	 *                                         COMI[5] setting"
808 	 *    COMJ[2] "VSYNC drop option"
809 	 *                  =   1 (0x01) .....1.. "SYNC is dropped if frame
810 	 *                                         data is dropped"
811 	 *    COMJ[1] "Frame data drop"
812 	 *                  =   1 (0x01) ......1. "Drop frame data if
813 	 *                                         exposure is not within
814 	 *                                         tolerance.  In AEC mode,
815 	 *                                         data is normally dropped
816 	 *                                         when data is out of
817 	 *                                         range."
818 	 *    COMJ[0] "Reserved"
819 	 *                  =   0 (0x00) .......0
820 	 */
821 	{ 0x14, 0xc6 },
822 
823 	/*
824 	 * 15 COMK "Common Control K"
825 	 *                  =   2 (0x02) 00000010
826 	 *    COMK[7] "CHSYNC pin output swap"
827 	 *                  =   0 (0x00) 0....... "CHSYNC"
828 	 *    COMK[6] "HREF pin output swap"
829 	 *                  =   0 (0x00) .0...... "HREF"
830 	 *    COMK[5] "PCLK output selection"
831 	 *                  =   0 (0x00) ..0..... "PCLK always output"
832 	 *    COMK[4] "PCLK edge selection"
833 	 *                  =   0 (0x00) ...0.... "Data valid on falling edge"
834 	 *    COMK[3] "HREF output polarity"
835 	 *                  =   0 (0x00) ....0... "positive"
836 	 *    COMK[2] "Reserved"
837 	 *                  =   0 (0x00) .....0..
838 	 *    COMK[1] "VSYNC polarity"
839 	 *                  =   1 (0x01) ......1. "negative"
840 	 *    COMK[0] "HSYNC polarity"
841 	 *                  =   0 (0x00) .......0 "positive"
842 	 */
843 	{ 0x15, 0x02 },
844 
845 	/*
846 	 * 33 CHLF "Current Control"
847 	 *                  =   9 (0x09) 00001001
848 	 *    CHLF[7:6] "Sensor current control"
849 	 *                  =   0 (0x00) 00......
850 	 *    CHLF[5] "Sensor current range control"
851 	 *                  =   0 (0x00) ..0..... "normal range"
852 	 *    CHLF[4] "Sensor current"
853 	 *                  =   0 (0x00) ...0.... "normal current"
854 	 *    CHLF[3] "Sensor buffer current control"
855 	 *                  =   1 (0x01) ....1... "half current"
856 	 *    CHLF[2] "Column buffer current control"
857 	 *                  =   0 (0x00) .....0.. "normal current"
858 	 *    CHLF[1] "Analog DSP current control"
859 	 *                  =   0 (0x00) ......0. "normal current"
860 	 *    CHLF[1] "ADC current control"
861 	 *                  =   0 (0x00) ......0. "normal current"
862 	 */
863 	{ 0x33, 0x09 },
864 
865 	/*
866 	 * 34 VBLM "Blooming Control"
867 	 *                  =  80 (0x50) 01010000
868 	 *    VBLM[7] "Hard soft reset switch"
869 	 *                  =   0 (0x00) 0....... "Hard reset"
870 	 *    VBLM[6:4] "Blooming voltage selection"
871 	 *                  =   5 (0x05) .101....
872 	 *    VBLM[3:0] "Sensor current control"
873 	 *                  =   0 (0x00) ....0000
874 	 */
875 	{ 0x34, 0x50 },
876 
877 	/*
878 	 * 36 VCHG "Sensor Precharge Voltage Control"
879 	 *                  =   0 (0x00) 00000000
880 	 *    VCHG[7] "Reserved"
881 	 *                  =   0 (0x00) 0.......
882 	 *    VCHG[6:4] "Sensor precharge voltage control"
883 	 *                  =   0 (0x00) .000....
884 	 *    VCHG[3:0] "Sensor array common reference"
885 	 *                  =   0 (0x00) ....0000
886 	 */
887 	{ 0x36, 0x00 },
888 
889 	/*
890 	 * 37 ADC "ADC Reference Control"
891 	 *                  =   4 (0x04) 00000100
892 	 *    ADC[7:4] "Reserved"
893 	 *                  =   0 (0x00) 0000....
894 	 *    ADC[3] "ADC input signal range"
895 	 *                  =   0 (0x00) ....0... "Input signal 1.0x"
896 	 *    ADC[2:0] "ADC range control"
897 	 *                  =   4 (0x04) .....100
898 	 */
899 	{ 0x37, 0x04 },
900 
901 	/*
902 	 * 38 ACOM "Analog Common Ground"
903 	 *                  =  82 (0x52) 01010010
904 	 *    ACOM[7] "Analog gain control"
905 	 *                  =   0 (0x00) 0....... "Gain 1x"
906 	 *    ACOM[6] "Analog black level calibration"
907 	 *                  =   1 (0x01) .1...... "On"
908 	 *    ACOM[5:0] "Reserved"
909 	 *                  =  18 (0x12) ..010010
910 	 */
911 	{ 0x38, 0x52 },
912 
913 	/*
914 	 * 3A FREFA "Internal Reference Adjustment"
915 	 *                  =   0 (0x00) 00000000
916 	 *    FREFA[7:0] "Range"
917 	 *                  =   0 (0x00) 00000000
918 	 */
919 	{ 0x3a, 0x00 },
920 
921 	/*
922 	 * 3C FVOPT "Internal Reference Adjustment"
923 	 *                  =  31 (0x1F) 00011111
924 	 *    FVOPT[7:0] "Range"
925 	 *                  =  31 (0x1F) 00011111
926 	 */
927 	{ 0x3c, 0x1f },
928 
929 	/*
930 	 * 44 Undocumented  =   0 (0x00) 00000000
931 	 *    44[7:0] "It's a secret"
932 	 *                  =   0 (0x00) 00000000
933 	 */
934 	{ 0x44, 0x00 },
935 
936 	/*
937 	 * 40 Undocumented  =   0 (0x00) 00000000
938 	 *    40[7:0] "It's a secret"
939 	 *                  =   0 (0x00) 00000000
940 	 */
941 	{ 0x40, 0x00 },
942 
943 	/*
944 	 * 41 Undocumented  =   0 (0x00) 00000000
945 	 *    41[7:0] "It's a secret"
946 	 *                  =   0 (0x00) 00000000
947 	 */
948 	{ 0x41, 0x00 },
949 
950 	/*
951 	 * 42 Undocumented  =   0 (0x00) 00000000
952 	 *    42[7:0] "It's a secret"
953 	 *                  =   0 (0x00) 00000000
954 	 */
955 	{ 0x42, 0x00 },
956 
957 	/*
958 	 * 43 Undocumented  =   0 (0x00) 00000000
959 	 *    43[7:0] "It's a secret"
960 	 *                  =   0 (0x00) 00000000
961 	 */
962 	{ 0x43, 0x00 },
963 
964 	/*
965 	 * 45 Undocumented  = 128 (0x80) 10000000
966 	 *    45[7:0] "It's a secret"
967 	 *                  = 128 (0x80) 10000000
968 	 */
969 	{ 0x45, 0x80 },
970 
971 	/*
972 	 * 48 Undocumented  = 192 (0xC0) 11000000
973 	 *    48[7:0] "It's a secret"
974 	 *                  = 192 (0xC0) 11000000
975 	 */
976 	{ 0x48, 0xc0 },
977 
978 	/*
979 	 * 49 Undocumented  =  25 (0x19) 00011001
980 	 *    49[7:0] "It's a secret"
981 	 *                  =  25 (0x19) 00011001
982 	 */
983 	{ 0x49, 0x19 },
984 
985 	/*
986 	 * 4B Undocumented  = 128 (0x80) 10000000
987 	 *    4B[7:0] "It's a secret"
988 	 *                  = 128 (0x80) 10000000
989 	 */
990 	{ 0x4b, 0x80 },
991 
992 	/*
993 	 * 4D Undocumented  = 196 (0xC4) 11000100
994 	 *    4D[7:0] "It's a secret"
995 	 *                  = 196 (0xC4) 11000100
996 	 */
997 	{ 0x4d, 0xc4 },
998 
999 	/*
1000 	 * 35 VREF "Reference Voltage Control"
1001 	 *                  =  76 (0x4c) 01001100
1002 	 *    VREF[7:5] "Column high reference control"
1003 	 *                  =   2 (0x02) 010..... "higher voltage"
1004 	 *    VREF[4:2] "Column low reference control"
1005 	 *                  =   3 (0x03) ...011.. "Highest voltage"
1006 	 *    VREF[1:0] "Reserved"
1007 	 *                  =   0 (0x00) ......00
1008 	 */
1009 	{ 0x35, 0x4c },
1010 
1011 	/*
1012 	 * 3D Undocumented  =   0 (0x00) 00000000
1013 	 *    3D[7:0] "It's a secret"
1014 	 *                  =   0 (0x00) 00000000
1015 	 */
1016 	{ 0x3d, 0x00 },
1017 
1018 	/*
1019 	 * 3E Undocumented  =   0 (0x00) 00000000
1020 	 *    3E[7:0] "It's a secret"
1021 	 *                  =   0 (0x00) 00000000
1022 	 */
1023 	{ 0x3e, 0x00 },
1024 
1025 	/*
1026 	 * 3B FREFB "Internal Reference Adjustment"
1027 	 *                  =  24 (0x18) 00011000
1028 	 *    FREFB[7:0] "Range"
1029 	 *                  =  24 (0x18) 00011000
1030 	 */
1031 	{ 0x3b, 0x18 },
1032 
1033 	/*
1034 	 * 33 CHLF "Current Control"
1035 	 *                  =  25 (0x19) 00011001
1036 	 *    CHLF[7:6] "Sensor current control"
1037 	 *                  =   0 (0x00) 00......
1038 	 *    CHLF[5] "Sensor current range control"
1039 	 *                  =   0 (0x00) ..0..... "normal range"
1040 	 *    CHLF[4] "Sensor current"
1041 	 *                  =   1 (0x01) ...1.... "double current"
1042 	 *    CHLF[3] "Sensor buffer current control"
1043 	 *                  =   1 (0x01) ....1... "half current"
1044 	 *    CHLF[2] "Column buffer current control"
1045 	 *                  =   0 (0x00) .....0.. "normal current"
1046 	 *    CHLF[1] "Analog DSP current control"
1047 	 *                  =   0 (0x00) ......0. "normal current"
1048 	 *    CHLF[1] "ADC current control"
1049 	 *                  =   0 (0x00) ......0. "normal current"
1050 	 */
1051 	{ 0x33, 0x19 },
1052 
1053 	/*
1054 	 * 34 VBLM "Blooming Control"
1055 	 *                  =  90 (0x5A) 01011010
1056 	 *    VBLM[7] "Hard soft reset switch"
1057 	 *                  =   0 (0x00) 0....... "Hard reset"
1058 	 *    VBLM[6:4] "Blooming voltage selection"
1059 	 *                  =   5 (0x05) .101....
1060 	 *    VBLM[3:0] "Sensor current control"
1061 	 *                  =  10 (0x0A) ....1010
1062 	 */
1063 	{ 0x34, 0x5a },
1064 
1065 	/*
1066 	 * 3B FREFB "Internal Reference Adjustment"
1067 	 *                  =   0 (0x00) 00000000
1068 	 *    FREFB[7:0] "Range"
1069 	 *                  =   0 (0x00) 00000000
1070 	 */
1071 	{ 0x3b, 0x00 },
1072 
1073 	/*
1074 	 * 33 CHLF "Current Control"
1075 	 *                  =   9 (0x09) 00001001
1076 	 *    CHLF[7:6] "Sensor current control"
1077 	 *                  =   0 (0x00) 00......
1078 	 *    CHLF[5] "Sensor current range control"
1079 	 *                  =   0 (0x00) ..0..... "normal range"
1080 	 *    CHLF[4] "Sensor current"
1081 	 *                  =   0 (0x00) ...0.... "normal current"
1082 	 *    CHLF[3] "Sensor buffer current control"
1083 	 *                  =   1 (0x01) ....1... "half current"
1084 	 *    CHLF[2] "Column buffer current control"
1085 	 *                  =   0 (0x00) .....0.. "normal current"
1086 	 *    CHLF[1] "Analog DSP current control"
1087 	 *                  =   0 (0x00) ......0. "normal current"
1088 	 *    CHLF[1] "ADC current control"
1089 	 *                  =   0 (0x00) ......0. "normal current"
1090 	 */
1091 	{ 0x33, 0x09 },
1092 
1093 	/*
1094 	 * 34 VBLM "Blooming Control"
1095 	 *                  =  80 (0x50) 01010000
1096 	 *    VBLM[7] "Hard soft reset switch"
1097 	 *                  =   0 (0x00) 0....... "Hard reset"
1098 	 *    VBLM[6:4] "Blooming voltage selection"
1099 	 *                  =   5 (0x05) .101....
1100 	 *    VBLM[3:0] "Sensor current control"
1101 	 *                  =   0 (0x00) ....0000
1102 	 */
1103 	{ 0x34, 0x50 },
1104 
1105 	/*
1106 	 * 12 COMH "Common Control H"
1107 	 *                  =  64 (0x40) 01000000
1108 	 *    COMH[7] "SRST"
1109 	 *                  =   0 (0x00) 0....... "No-op"
1110 	 *    COMH[6:4] "Resolution selection"
1111 	 *                  =   4 (0x04) .100.... "XGA"
1112 	 *    COMH[3] "Master slave selection"
1113 	 *                  =   0 (0x00) ....0... "Master mode"
1114 	 *    COMH[2] "Internal B/R channel option"
1115 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1116 	 *    COMH[1] "Color bar test pattern"
1117 	 *                  =   0 (0x00) ......0. "Off"
1118 	 *    COMH[0] "Reserved"
1119 	 *                  =   0 (0x00) .......0
1120 	 */
1121 	{ 0x12, 0x40 },
1122 
1123 	/*
1124 	 * 17 HREFST "Horizontal window start"
1125 	 *                  =  31 (0x1F) 00011111
1126 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1127 	 *                  =  31 (0x1F) 00011111
1128 	 */
1129 	{ 0x17, 0x1f },
1130 
1131 	/*
1132 	 * 18 HREFEND "Horizontal window end"
1133 	 *                  =  95 (0x5F) 01011111
1134 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1135 	 *                  =  95 (0x5F) 01011111
1136 	 */
1137 	{ 0x18, 0x5f },
1138 
1139 	/*
1140 	 * 19 VSTRT "Vertical window start"
1141 	 *                  =   0 (0x00) 00000000
1142 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1143 	 *                  =   0 (0x00) 00000000
1144 	 */
1145 	{ 0x19, 0x00 },
1146 
1147 	/*
1148 	 * 1A VEND "Vertical window end"
1149 	 *                  =  96 (0x60) 01100000
1150 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1151 	 *                  =  96 (0x60) 01100000
1152 	 */
1153 	{ 0x1a, 0x60 },
1154 
1155 	/*
1156 	 * 32 COMM "Common Control M"
1157 	 *                  =  18 (0x12) 00010010
1158 	 *    COMM[7:6] "Pixel clock divide option"
1159 	 *                  =   0 (0x00) 00...... "/1"
1160 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1161 	 *                  =   2 (0x02) ..010...
1162 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1163 	 *                  =   2 (0x02) .....010
1164 	 */
1165 	{ 0x32, 0x12 },
1166 
1167 	/*
1168 	 * 03 COMA "Common Control A"
1169 	 *                  =  74 (0x4A) 01001010
1170 	 *    COMA[7:4] "AWB Update Threshold"
1171 	 *                  =   4 (0x04) 0100....
1172 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1173 	 *                  =   2 (0x02) ....10..
1174 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1175 	 *                  =   2 (0x02) ......10
1176 	 */
1177 	{ 0x03, 0x4a },
1178 
1179 	/*
1180 	 * 11 CLKRC "Clock Rate Control"
1181 	 *                  = 128 (0x80) 10000000
1182 	 *    CLKRC[7] "Internal frequency doublers on off seclection"
1183 	 *                  =   1 (0x01) 1....... "On"
1184 	 *    CLKRC[6] "Digital video master slave selection"
1185 	 *                  =   0 (0x00) .0...... "Master mode, sensor
1186 	 *                                         provides PCLK"
1187 	 *    CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1188 	 *                  =   0 (0x00) ..000000
1189 	 */
1190 	{ 0x11, 0x80 },
1191 
1192 	/*
1193 	 * 12 COMH "Common Control H"
1194 	 *                  =   0 (0x00) 00000000
1195 	 *    COMH[7] "SRST"
1196 	 *                  =   0 (0x00) 0....... "No-op"
1197 	 *    COMH[6:4] "Resolution selection"
1198 	 *                  =   0 (0x00) .000.... "QXGA"
1199 	 *    COMH[3] "Master slave selection"
1200 	 *                  =   0 (0x00) ....0... "Master mode"
1201 	 *    COMH[2] "Internal B/R channel option"
1202 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1203 	 *    COMH[1] "Color bar test pattern"
1204 	 *                  =   0 (0x00) ......0. "Off"
1205 	 *    COMH[0] "Reserved"
1206 	 *                  =   0 (0x00) .......0
1207 	 */
1208 	{ 0x12, 0x00 },
1209 
1210 	/*
1211 	 * 12 COMH "Common Control H"
1212 	 *                  =  64 (0x40) 01000000
1213 	 *    COMH[7] "SRST"
1214 	 *                  =   0 (0x00) 0....... "No-op"
1215 	 *    COMH[6:4] "Resolution selection"
1216 	 *                  =   4 (0x04) .100.... "XGA"
1217 	 *    COMH[3] "Master slave selection"
1218 	 *                  =   0 (0x00) ....0... "Master mode"
1219 	 *    COMH[2] "Internal B/R channel option"
1220 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1221 	 *    COMH[1] "Color bar test pattern"
1222 	 *                  =   0 (0x00) ......0. "Off"
1223 	 *    COMH[0] "Reserved"
1224 	 *                  =   0 (0x00) .......0
1225 	 */
1226 	{ 0x12, 0x40 },
1227 
1228 	/*
1229 	 * 17 HREFST "Horizontal window start"
1230 	 *                  =  31 (0x1F) 00011111
1231 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1232 	 *                  =  31 (0x1F) 00011111
1233 	 */
1234 	{ 0x17, 0x1f },
1235 
1236 	/*
1237 	 * 18 HREFEND "Horizontal window end"
1238 	 *                  =  95 (0x5F) 01011111
1239 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1240 	 *                  =  95 (0x5F) 01011111
1241 	 */
1242 	{ 0x18, 0x5f },
1243 
1244 	/*
1245 	 * 19 VSTRT "Vertical window start"
1246 	 *                  =   0 (0x00) 00000000
1247 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1248 	 *                  =   0 (0x00) 00000000
1249 	 */
1250 	{ 0x19, 0x00 },
1251 
1252 	/*
1253 	 * 1A VEND "Vertical window end"
1254 	 *                  =  96 (0x60) 01100000
1255 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1256 	 *                  =  96 (0x60) 01100000
1257 	 */
1258 	{ 0x1a, 0x60 },
1259 
1260 	/*
1261 	 * 32 COMM "Common Control M"
1262 	 *                  =  18 (0x12) 00010010
1263 	 *    COMM[7:6] "Pixel clock divide option"
1264 	 *                  =   0 (0x00) 00...... "/1"
1265 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1266 	 *                  =   2 (0x02) ..010...
1267 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1268 	 *                  =   2 (0x02) .....010
1269 	 */
1270 	{ 0x32, 0x12 },
1271 
1272 	/*
1273 	 * 03 COMA "Common Control A"
1274 	 *                  =  74 (0x4A) 01001010
1275 	 *    COMA[7:4] "AWB Update Threshold"
1276 	 *                  =   4 (0x04) 0100....
1277 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1278 	 *                  =   2 (0x02) ....10..
1279 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1280 	 *                  =   2 (0x02) ......10
1281 	 */
1282 	{ 0x03, 0x4a },
1283 
1284 	/*
1285 	 * 02 RED "Red Gain Control"
1286 	 *                  = 175 (0xAF) 10101111
1287 	 *    RED[7] "Action"
1288 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1289 	 *    RED[6:0] "Value"
1290 	 *                  =  47 (0x2F) .0101111
1291 	 */
1292 	{ 0x02, 0xaf },
1293 
1294 	/*
1295 	 * 2D ADDVSL "VSYNC Pulse Width"
1296 	 *                  = 210 (0xD2) 11010010
1297 	 *    ADDVSL[7:0] "VSYNC pulse width, LSB"
1298 	 *                  = 210 (0xD2) 11010010
1299 	 */
1300 	{ 0x2d, 0xd2 },
1301 
1302 	/*
1303 	 * 00 GAIN          =  24 (0x18) 00011000
1304 	 *    GAIN[7:6] "Reserved"
1305 	 *                  =   0 (0x00) 00......
1306 	 *    GAIN[5] "Double"
1307 	 *                  =   0 (0x00) ..0..... "False"
1308 	 *    GAIN[4] "Double"
1309 	 *                  =   1 (0x01) ...1.... "True"
1310 	 *    GAIN[3:0] "Range"
1311 	 *                  =   8 (0x08) ....1000
1312 	 */
1313 	{ 0x00, 0x18 },
1314 
1315 	/*
1316 	 * 01 BLUE "Blue Gain Control"
1317 	 *                  = 240 (0xF0) 11110000
1318 	 *    BLUE[7] "Action"
1319 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1320 	 *    BLUE[6:0] "Value"
1321 	 *                  = 112 (0x70) .1110000
1322 	 */
1323 	{ 0x01, 0xf0 },
1324 
1325 	/*
1326 	 * 10 AEC "Automatic Exposure Control"
1327 	 *                  =  10 (0x0A) 00001010
1328 	 *    AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1329 	 *                  =  10 (0x0A) 00001010
1330 	 */
1331 	{ 0x10, 0x0a },
1332 
1333 	{ 0xe1, 0x67 },
1334 	{ 0xe3, 0x03 },
1335 	{ 0xe4, 0x26 },
1336 	{ 0xe5, 0x3e },
1337 	{ 0xf8, 0x01 },
1338 	{ 0xff, 0x01 },
1339 };
1340 
1341 static const struct ov_i2c_regvals norm_6x20[] = {
1342 	{ 0x12, 0x80 }, /* reset */
1343 	{ 0x11, 0x01 },
1344 	{ 0x03, 0x60 },
1345 	{ 0x05, 0x7f }, /* For when autoadjust is off */
1346 	{ 0x07, 0xa8 },
1347 	/* The ratio of 0x0c and 0x0d controls the white point */
1348 	{ 0x0c, 0x24 },
1349 	{ 0x0d, 0x24 },
1350 	{ 0x0f, 0x15 }, /* COMS */
1351 	{ 0x10, 0x75 }, /* AEC Exposure time */
1352 	{ 0x12, 0x24 }, /* Enable AGC */
1353 	{ 0x14, 0x04 },
1354 	/* 0x16: 0x06 helps frame stability with moving objects */
1355 	{ 0x16, 0x06 },
1356 /*	{ 0x20, 0x30 },  * Aperture correction enable */
1357 	{ 0x26, 0xb2 }, /* BLC enable */
1358 	/* 0x28: 0x05 Selects RGB format if RGB on */
1359 	{ 0x28, 0x05 },
1360 	{ 0x2a, 0x04 }, /* Disable framerate adjust */
1361 /*	{ 0x2b, 0xac },  * Framerate; Set 2a[7] first */
1362 	{ 0x2d, 0x85 },
1363 	{ 0x33, 0xa0 }, /* Color Processing Parameter */
1364 	{ 0x34, 0xd2 }, /* Max A/D range */
1365 	{ 0x38, 0x8b },
1366 	{ 0x39, 0x40 },
1367 
1368 	{ 0x3c, 0x39 }, /* Enable AEC mode changing */
1369 	{ 0x3c, 0x3c }, /* Change AEC mode */
1370 	{ 0x3c, 0x24 }, /* Disable AEC mode changing */
1371 
1372 	{ 0x3d, 0x80 },
1373 	/* These next two registers (0x4a, 0x4b) are undocumented.
1374 	 * They control the color balance */
1375 	{ 0x4a, 0x80 },
1376 	{ 0x4b, 0x80 },
1377 	{ 0x4d, 0xd2 }, /* This reduces noise a bit */
1378 	{ 0x4e, 0xc1 },
1379 	{ 0x4f, 0x04 },
1380 /* Do 50-53 have any effect? */
1381 /* Toggle 0x12[2] off and on here? */
1382 };
1383 
1384 static const struct ov_i2c_regvals norm_6x30[] = {
1385 	{ 0x12, 0x80 }, /* Reset */
1386 	{ 0x00, 0x1f }, /* Gain */
1387 	{ 0x01, 0x99 }, /* Blue gain */
1388 	{ 0x02, 0x7c }, /* Red gain */
1389 	{ 0x03, 0xc0 }, /* Saturation */
1390 	{ 0x05, 0x0a }, /* Contrast */
1391 	{ 0x06, 0x95 }, /* Brightness */
1392 	{ 0x07, 0x2d }, /* Sharpness */
1393 	{ 0x0c, 0x20 },
1394 	{ 0x0d, 0x20 },
1395 	{ 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1396 	{ 0x0f, 0x05 },
1397 	{ 0x10, 0x9a },
1398 	{ 0x11, 0x00 }, /* Pixel clock = fastest */
1399 	{ 0x12, 0x24 }, /* Enable AGC and AWB */
1400 	{ 0x13, 0x21 },
1401 	{ 0x14, 0x80 },
1402 	{ 0x15, 0x01 },
1403 	{ 0x16, 0x03 },
1404 	{ 0x17, 0x38 },
1405 	{ 0x18, 0xea },
1406 	{ 0x19, 0x04 },
1407 	{ 0x1a, 0x93 },
1408 	{ 0x1b, 0x00 },
1409 	{ 0x1e, 0xc4 },
1410 	{ 0x1f, 0x04 },
1411 	{ 0x20, 0x20 },
1412 	{ 0x21, 0x10 },
1413 	{ 0x22, 0x88 },
1414 	{ 0x23, 0xc0 }, /* Crystal circuit power level */
1415 	{ 0x25, 0x9a }, /* Increase AEC black ratio */
1416 	{ 0x26, 0xb2 }, /* BLC enable */
1417 	{ 0x27, 0xa2 },
1418 	{ 0x28, 0x00 },
1419 	{ 0x29, 0x00 },
1420 	{ 0x2a, 0x84 }, /* 60 Hz power */
1421 	{ 0x2b, 0xa8 }, /* 60 Hz power */
1422 	{ 0x2c, 0xa0 },
1423 	{ 0x2d, 0x95 }, /* Enable auto-brightness */
1424 	{ 0x2e, 0x88 },
1425 	{ 0x33, 0x26 },
1426 	{ 0x34, 0x03 },
1427 	{ 0x36, 0x8f },
1428 	{ 0x37, 0x80 },
1429 	{ 0x38, 0x83 },
1430 	{ 0x39, 0x80 },
1431 	{ 0x3a, 0x0f },
1432 	{ 0x3b, 0x3c },
1433 	{ 0x3c, 0x1a },
1434 	{ 0x3d, 0x80 },
1435 	{ 0x3e, 0x80 },
1436 	{ 0x3f, 0x0e },
1437 	{ 0x40, 0x00 }, /* White bal */
1438 	{ 0x41, 0x00 }, /* White bal */
1439 	{ 0x42, 0x80 },
1440 	{ 0x43, 0x3f }, /* White bal */
1441 	{ 0x44, 0x80 },
1442 	{ 0x45, 0x20 },
1443 	{ 0x46, 0x20 },
1444 	{ 0x47, 0x80 },
1445 	{ 0x48, 0x7f },
1446 	{ 0x49, 0x00 },
1447 	{ 0x4a, 0x00 },
1448 	{ 0x4b, 0x80 },
1449 	{ 0x4c, 0xd0 },
1450 	{ 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1451 	{ 0x4e, 0x40 },
1452 	{ 0x4f, 0x07 }, /* UV avg., col. killer: max */
1453 	{ 0x50, 0xff },
1454 	{ 0x54, 0x23 }, /* Max AGC gain: 18dB */
1455 	{ 0x55, 0xff },
1456 	{ 0x56, 0x12 },
1457 	{ 0x57, 0x81 },
1458 	{ 0x58, 0x75 },
1459 	{ 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1460 	{ 0x5a, 0x2c },
1461 	{ 0x5b, 0x0f }, /* AWB chrominance levels */
1462 	{ 0x5c, 0x10 },
1463 	{ 0x3d, 0x80 },
1464 	{ 0x27, 0xa6 },
1465 	{ 0x12, 0x20 }, /* Toggle AWB */
1466 	{ 0x12, 0x24 },
1467 };
1468 
1469 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1470  *
1471  * Register 0x0f in the 7610 has the following effects:
1472  *
1473  * 0x85 (AEC method 1): Best overall, good contrast range
1474  * 0x45 (AEC method 2): Very overexposed
1475  * 0xa5 (spec sheet default): Ok, but the black level is
1476  *	shifted resulting in loss of contrast
1477  * 0x05 (old driver setting): very overexposed, too much
1478  *	contrast
1479  */
1480 static const struct ov_i2c_regvals norm_7610[] = {
1481 	{ 0x10, 0xff },
1482 	{ 0x16, 0x06 },
1483 	{ 0x28, 0x24 },
1484 	{ 0x2b, 0xac },
1485 	{ 0x12, 0x00 },
1486 	{ 0x38, 0x81 },
1487 	{ 0x28, 0x24 },	/* 0c */
1488 	{ 0x0f, 0x85 },	/* lg's setting */
1489 	{ 0x15, 0x01 },
1490 	{ 0x20, 0x1c },
1491 	{ 0x23, 0x2a },
1492 	{ 0x24, 0x10 },
1493 	{ 0x25, 0x8a },
1494 	{ 0x26, 0xa2 },
1495 	{ 0x27, 0xc2 },
1496 	{ 0x2a, 0x04 },
1497 	{ 0x2c, 0xfe },
1498 	{ 0x2d, 0x93 },
1499 	{ 0x30, 0x71 },
1500 	{ 0x31, 0x60 },
1501 	{ 0x32, 0x26 },
1502 	{ 0x33, 0x20 },
1503 	{ 0x34, 0x48 },
1504 	{ 0x12, 0x24 },
1505 	{ 0x11, 0x01 },
1506 	{ 0x0c, 0x24 },
1507 	{ 0x0d, 0x24 },
1508 };
1509 
1510 static const struct ov_i2c_regvals norm_7620[] = {
1511 	{ 0x12, 0x80 },		/* reset */
1512 	{ 0x00, 0x00 },		/* gain */
1513 	{ 0x01, 0x80 },		/* blue gain */
1514 	{ 0x02, 0x80 },		/* red gain */
1515 	{ 0x03, 0xc0 },		/* OV7670_R03_VREF */
1516 	{ 0x06, 0x60 },
1517 	{ 0x07, 0x00 },
1518 	{ 0x0c, 0x24 },
1519 	{ 0x0c, 0x24 },
1520 	{ 0x0d, 0x24 },
1521 	{ 0x11, 0x01 },
1522 	{ 0x12, 0x24 },
1523 	{ 0x13, 0x01 },
1524 	{ 0x14, 0x84 },
1525 	{ 0x15, 0x01 },
1526 	{ 0x16, 0x03 },
1527 	{ 0x17, 0x2f },
1528 	{ 0x18, 0xcf },
1529 	{ 0x19, 0x06 },
1530 	{ 0x1a, 0xf5 },
1531 	{ 0x1b, 0x00 },
1532 	{ 0x20, 0x18 },
1533 	{ 0x21, 0x80 },
1534 	{ 0x22, 0x80 },
1535 	{ 0x23, 0x00 },
1536 	{ 0x26, 0xa2 },
1537 	{ 0x27, 0xea },
1538 	{ 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1539 	{ 0x29, 0x00 },
1540 	{ 0x2a, 0x10 },
1541 	{ 0x2b, 0x00 },
1542 	{ 0x2c, 0x88 },
1543 	{ 0x2d, 0x91 },
1544 	{ 0x2e, 0x80 },
1545 	{ 0x2f, 0x44 },
1546 	{ 0x60, 0x27 },
1547 	{ 0x61, 0x02 },
1548 	{ 0x62, 0x5f },
1549 	{ 0x63, 0xd5 },
1550 	{ 0x64, 0x57 },
1551 	{ 0x65, 0x83 },
1552 	{ 0x66, 0x55 },
1553 	{ 0x67, 0x92 },
1554 	{ 0x68, 0xcf },
1555 	{ 0x69, 0x76 },
1556 	{ 0x6a, 0x22 },
1557 	{ 0x6b, 0x00 },
1558 	{ 0x6c, 0x02 },
1559 	{ 0x6d, 0x44 },
1560 	{ 0x6e, 0x80 },
1561 	{ 0x6f, 0x1d },
1562 	{ 0x70, 0x8b },
1563 	{ 0x71, 0x00 },
1564 	{ 0x72, 0x14 },
1565 	{ 0x73, 0x54 },
1566 	{ 0x74, 0x00 },
1567 	{ 0x75, 0x8e },
1568 	{ 0x76, 0x00 },
1569 	{ 0x77, 0xff },
1570 	{ 0x78, 0x80 },
1571 	{ 0x79, 0x80 },
1572 	{ 0x7a, 0x80 },
1573 	{ 0x7b, 0xe2 },
1574 	{ 0x7c, 0x00 },
1575 };
1576 
1577 /* 7640 and 7648. The defaults should be OK for most registers. */
1578 static const struct ov_i2c_regvals norm_7640[] = {
1579 	{ 0x12, 0x80 },
1580 	{ 0x12, 0x14 },
1581 };
1582 
1583 static const struct ov_regvals init_519_ov7660[] = {
1584 	{ 0x5d,	0x03 }, /* Turn off suspend mode */
1585 	{ 0x53,	0x9b }, /* 0x9f enables the (unused) microcontroller */
1586 	{ 0x54,	0x0f }, /* bit2 (jpeg enable) */
1587 	{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
1588 	{ 0xa3,	0x18 },
1589 	{ 0xa4,	0x04 },
1590 	{ 0xa5,	0x28 },
1591 	{ 0x37,	0x00 },	/* SetUsbInit */
1592 	{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
1593 	/* Enable both fields, YUV Input, disable defect comp (why?) */
1594 	{ 0x20,	0x0c },	/* 0x0d does U <-> V swap */
1595 	{ 0x21,	0x38 },
1596 	{ 0x22,	0x1d },
1597 	{ 0x17,	0x50 }, /* undocumented */
1598 	{ 0x37,	0x00 }, /* undocumented */
1599 	{ 0x40,	0xff }, /* I2C timeout counter */
1600 	{ 0x46,	0x00 }, /* I2C clock prescaler */
1601 };
1602 static const struct ov_i2c_regvals norm_7660[] = {
1603 	{OV7670_R12_COM7, OV7670_COM7_RESET},
1604 	{OV7670_R11_CLKRC, 0x81},
1605 	{0x92, 0x00},			/* DM_LNL */
1606 	{0x93, 0x00},			/* DM_LNH */
1607 	{0x9d, 0x4c},			/* BD50ST */
1608 	{0x9e, 0x3f},			/* BD60ST */
1609 	{OV7670_R3B_COM11, 0x02},
1610 	{OV7670_R13_COM8, 0xf5},
1611 	{OV7670_R10_AECH, 0x00},
1612 	{OV7670_R00_GAIN, 0x00},
1613 	{OV7670_R01_BLUE, 0x7c},
1614 	{OV7670_R02_RED, 0x9d},
1615 	{OV7670_R12_COM7, 0x00},
1616 	{OV7670_R04_COM1, 00},
1617 	{OV7670_R18_HSTOP, 0x01},
1618 	{OV7670_R17_HSTART, 0x13},
1619 	{OV7670_R32_HREF, 0x92},
1620 	{OV7670_R19_VSTART, 0x02},
1621 	{OV7670_R1A_VSTOP, 0x7a},
1622 	{OV7670_R03_VREF, 0x00},
1623 	{OV7670_R0E_COM5, 0x04},
1624 	{OV7670_R0F_COM6, 0x62},
1625 	{OV7670_R15_COM10, 0x00},
1626 	{0x16, 0x02},			/* RSVD */
1627 	{0x1b, 0x00},			/* PSHFT */
1628 	{OV7670_R1E_MVFP, 0x01},
1629 	{0x29, 0x3c},			/* RSVD */
1630 	{0x33, 0x00},			/* CHLF */
1631 	{0x34, 0x07},			/* ARBLM */
1632 	{0x35, 0x84},			/* RSVD */
1633 	{0x36, 0x00},			/* RSVD */
1634 	{0x37, 0x04},			/* ADC */
1635 	{0x39, 0x43},			/* OFON */
1636 	{OV7670_R3A_TSLB, 0x00},
1637 	{OV7670_R3C_COM12, 0x6c},
1638 	{OV7670_R3D_COM13, 0x98},
1639 	{OV7670_R3F_EDGE, 0x23},
1640 	{OV7670_R40_COM15, 0xc1},
1641 	{OV7670_R41_COM16, 0x22},
1642 	{0x6b, 0x0a},			/* DBLV */
1643 	{0xa1, 0x08},			/* RSVD */
1644 	{0x69, 0x80},			/* HV */
1645 	{0x43, 0xf0},			/* RSVD.. */
1646 	{0x44, 0x10},
1647 	{0x45, 0x78},
1648 	{0x46, 0xa8},
1649 	{0x47, 0x60},
1650 	{0x48, 0x80},
1651 	{0x59, 0xba},
1652 	{0x5a, 0x9a},
1653 	{0x5b, 0x22},
1654 	{0x5c, 0xb9},
1655 	{0x5d, 0x9b},
1656 	{0x5e, 0x10},
1657 	{0x5f, 0xe0},
1658 	{0x60, 0x85},
1659 	{0x61, 0x60},
1660 	{0x9f, 0x9d},			/* RSVD */
1661 	{0xa0, 0xa0},			/* DSPC2 */
1662 	{0x4f, 0x60},			/* matrix */
1663 	{0x50, 0x64},
1664 	{0x51, 0x04},
1665 	{0x52, 0x18},
1666 	{0x53, 0x3c},
1667 	{0x54, 0x54},
1668 	{0x55, 0x40},
1669 	{0x56, 0x40},
1670 	{0x57, 0x40},
1671 	{0x58, 0x0d},			/* matrix sign */
1672 	{0x8b, 0xcc},			/* RSVD */
1673 	{0x8c, 0xcc},
1674 	{0x8d, 0xcf},
1675 	{0x6c, 0x40},			/* gamma curve */
1676 	{0x6d, 0xe0},
1677 	{0x6e, 0xa0},
1678 	{0x6f, 0x80},
1679 	{0x70, 0x70},
1680 	{0x71, 0x80},
1681 	{0x72, 0x60},
1682 	{0x73, 0x60},
1683 	{0x74, 0x50},
1684 	{0x75, 0x40},
1685 	{0x76, 0x38},
1686 	{0x77, 0x3c},
1687 	{0x78, 0x32},
1688 	{0x79, 0x1a},
1689 	{0x7a, 0x28},
1690 	{0x7b, 0x24},
1691 	{0x7c, 0x04},			/* gamma curve */
1692 	{0x7d, 0x12},
1693 	{0x7e, 0x26},
1694 	{0x7f, 0x46},
1695 	{0x80, 0x54},
1696 	{0x81, 0x64},
1697 	{0x82, 0x70},
1698 	{0x83, 0x7c},
1699 	{0x84, 0x86},
1700 	{0x85, 0x8e},
1701 	{0x86, 0x9c},
1702 	{0x87, 0xab},
1703 	{0x88, 0xc4},
1704 	{0x89, 0xd1},
1705 	{0x8a, 0xe5},
1706 	{OV7670_R14_COM9, 0x1e},
1707 	{OV7670_R24_AEW, 0x80},
1708 	{OV7670_R25_AEB, 0x72},
1709 	{OV7670_R26_VPT, 0xb3},
1710 	{0x62, 0x80},			/* LCC1 */
1711 	{0x63, 0x80},			/* LCC2 */
1712 	{0x64, 0x06},			/* LCC3 */
1713 	{0x65, 0x00},			/* LCC4 */
1714 	{0x66, 0x01},			/* LCC5 */
1715 	{0x94, 0x0e},			/* RSVD.. */
1716 	{0x95, 0x14},
1717 	{OV7670_R13_COM8, OV7670_COM8_FASTAEC
1718 			| OV7670_COM8_AECSTEP
1719 			| OV7670_COM8_BFILT
1720 			| 0x10
1721 			| OV7670_COM8_AGC
1722 			| OV7670_COM8_AWB
1723 			| OV7670_COM8_AEC},
1724 	{0xa1, 0xc8}
1725 };
1726 static const struct ov_i2c_regvals norm_9600[] = {
1727 	{0x12, 0x80},
1728 	{0x0c, 0x28},
1729 	{0x11, 0x80},
1730 	{0x13, 0xb5},
1731 	{0x14, 0x3e},
1732 	{0x1b, 0x04},
1733 	{0x24, 0xb0},
1734 	{0x25, 0x90},
1735 	{0x26, 0x94},
1736 	{0x35, 0x90},
1737 	{0x37, 0x07},
1738 	{0x38, 0x08},
1739 	{0x01, 0x8e},
1740 	{0x02, 0x85}
1741 };
1742 
1743 /* 7670. Defaults taken from OmniVision provided data,
1744 *  as provided by Jonathan Corbet of OLPC		*/
1745 static const struct ov_i2c_regvals norm_7670[] = {
1746 	{ OV7670_R12_COM7, OV7670_COM7_RESET },
1747 	{ OV7670_R3A_TSLB, 0x04 },		/* OV */
1748 	{ OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1749 	{ OV7670_R11_CLKRC, 0x01 },
1750 /*
1751  * Set the hardware window.  These values from OV don't entirely
1752  * make sense - hstop is less than hstart.  But they work...
1753  */
1754 	{ OV7670_R17_HSTART, 0x13 },
1755 	{ OV7670_R18_HSTOP, 0x01 },
1756 	{ OV7670_R32_HREF, 0xb6 },
1757 	{ OV7670_R19_VSTART, 0x02 },
1758 	{ OV7670_R1A_VSTOP, 0x7a },
1759 	{ OV7670_R03_VREF, 0x0a },
1760 
1761 	{ OV7670_R0C_COM3, 0x00 },
1762 	{ OV7670_R3E_COM14, 0x00 },
1763 /* Mystery scaling numbers */
1764 	{ 0x70, 0x3a },
1765 	{ 0x71, 0x35 },
1766 	{ 0x72, 0x11 },
1767 	{ 0x73, 0xf0 },
1768 	{ 0xa2, 0x02 },
1769 /*	{ OV7670_R15_COM10, 0x0 }, */
1770 
1771 /* Gamma curve values */
1772 	{ 0x7a, 0x20 },
1773 	{ 0x7b, 0x10 },
1774 	{ 0x7c, 0x1e },
1775 	{ 0x7d, 0x35 },
1776 	{ 0x7e, 0x5a },
1777 	{ 0x7f, 0x69 },
1778 	{ 0x80, 0x76 },
1779 	{ 0x81, 0x80 },
1780 	{ 0x82, 0x88 },
1781 	{ 0x83, 0x8f },
1782 	{ 0x84, 0x96 },
1783 	{ 0x85, 0xa3 },
1784 	{ 0x86, 0xaf },
1785 	{ 0x87, 0xc4 },
1786 	{ 0x88, 0xd7 },
1787 	{ 0x89, 0xe8 },
1788 
1789 /* AGC and AEC parameters.  Note we start by disabling those features,
1790    then turn them only after tweaking the values. */
1791 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1792 			 | OV7670_COM8_AECSTEP
1793 			 | OV7670_COM8_BFILT },
1794 	{ OV7670_R00_GAIN, 0x00 },
1795 	{ OV7670_R10_AECH, 0x00 },
1796 	{ OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1797 	{ OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1798 	{ OV7670_RA5_BD50MAX, 0x05 },
1799 	{ OV7670_RAB_BD60MAX, 0x07 },
1800 	{ OV7670_R24_AEW, 0x95 },
1801 	{ OV7670_R25_AEB, 0x33 },
1802 	{ OV7670_R26_VPT, 0xe3 },
1803 	{ OV7670_R9F_HAECC1, 0x78 },
1804 	{ OV7670_RA0_HAECC2, 0x68 },
1805 	{ 0xa1, 0x03 }, /* magic */
1806 	{ OV7670_RA6_HAECC3, 0xd8 },
1807 	{ OV7670_RA7_HAECC4, 0xd8 },
1808 	{ OV7670_RA8_HAECC5, 0xf0 },
1809 	{ OV7670_RA9_HAECC6, 0x90 },
1810 	{ OV7670_RAA_HAECC7, 0x94 },
1811 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1812 			| OV7670_COM8_AECSTEP
1813 			| OV7670_COM8_BFILT
1814 			| OV7670_COM8_AGC
1815 			| OV7670_COM8_AEC },
1816 
1817 /* Almost all of these are magic "reserved" values.  */
1818 	{ OV7670_R0E_COM5, 0x61 },
1819 	{ OV7670_R0F_COM6, 0x4b },
1820 	{ 0x16, 0x02 },
1821 	{ OV7670_R1E_MVFP, 0x07 },
1822 	{ 0x21, 0x02 },
1823 	{ 0x22, 0x91 },
1824 	{ 0x29, 0x07 },
1825 	{ 0x33, 0x0b },
1826 	{ 0x35, 0x0b },
1827 	{ 0x37, 0x1d },
1828 	{ 0x38, 0x71 },
1829 	{ 0x39, 0x2a },
1830 	{ OV7670_R3C_COM12, 0x78 },
1831 	{ 0x4d, 0x40 },
1832 	{ 0x4e, 0x20 },
1833 	{ OV7670_R69_GFIX, 0x00 },
1834 	{ 0x6b, 0x4a },
1835 	{ 0x74, 0x10 },
1836 	{ 0x8d, 0x4f },
1837 	{ 0x8e, 0x00 },
1838 	{ 0x8f, 0x00 },
1839 	{ 0x90, 0x00 },
1840 	{ 0x91, 0x00 },
1841 	{ 0x96, 0x00 },
1842 	{ 0x9a, 0x00 },
1843 	{ 0xb0, 0x84 },
1844 	{ 0xb1, 0x0c },
1845 	{ 0xb2, 0x0e },
1846 	{ 0xb3, 0x82 },
1847 	{ 0xb8, 0x0a },
1848 
1849 /* More reserved magic, some of which tweaks white balance */
1850 	{ 0x43, 0x0a },
1851 	{ 0x44, 0xf0 },
1852 	{ 0x45, 0x34 },
1853 	{ 0x46, 0x58 },
1854 	{ 0x47, 0x28 },
1855 	{ 0x48, 0x3a },
1856 	{ 0x59, 0x88 },
1857 	{ 0x5a, 0x88 },
1858 	{ 0x5b, 0x44 },
1859 	{ 0x5c, 0x67 },
1860 	{ 0x5d, 0x49 },
1861 	{ 0x5e, 0x0e },
1862 	{ 0x6c, 0x0a },
1863 	{ 0x6d, 0x55 },
1864 	{ 0x6e, 0x11 },
1865 	{ 0x6f, 0x9f },			/* "9e for advance AWB" */
1866 	{ 0x6a, 0x40 },
1867 	{ OV7670_R01_BLUE, 0x40 },
1868 	{ OV7670_R02_RED, 0x60 },
1869 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1870 			| OV7670_COM8_AECSTEP
1871 			| OV7670_COM8_BFILT
1872 			| OV7670_COM8_AGC
1873 			| OV7670_COM8_AEC
1874 			| OV7670_COM8_AWB },
1875 
1876 /* Matrix coefficients */
1877 	{ 0x4f, 0x80 },
1878 	{ 0x50, 0x80 },
1879 	{ 0x51, 0x00 },
1880 	{ 0x52, 0x22 },
1881 	{ 0x53, 0x5e },
1882 	{ 0x54, 0x80 },
1883 	{ 0x58, 0x9e },
1884 
1885 	{ OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1886 	{ OV7670_R3F_EDGE, 0x00 },
1887 	{ 0x75, 0x05 },
1888 	{ 0x76, 0xe1 },
1889 	{ 0x4c, 0x00 },
1890 	{ 0x77, 0x01 },
1891 	{ OV7670_R3D_COM13, OV7670_COM13_GAMMA
1892 			  | OV7670_COM13_UVSAT
1893 			  | 2},		/* was 3 */
1894 	{ 0x4b, 0x09 },
1895 	{ 0xc9, 0x60 },
1896 	{ OV7670_R41_COM16, 0x38 },
1897 	{ 0x56, 0x40 },
1898 
1899 	{ 0x34, 0x11 },
1900 	{ OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1901 	{ 0xa4, 0x88 },
1902 	{ 0x96, 0x00 },
1903 	{ 0x97, 0x30 },
1904 	{ 0x98, 0x20 },
1905 	{ 0x99, 0x30 },
1906 	{ 0x9a, 0x84 },
1907 	{ 0x9b, 0x29 },
1908 	{ 0x9c, 0x03 },
1909 	{ 0x9d, 0x4c },
1910 	{ 0x9e, 0x3f },
1911 	{ 0x78, 0x04 },
1912 
1913 /* Extra-weird stuff.  Some sort of multiplexor register */
1914 	{ 0x79, 0x01 },
1915 	{ 0xc8, 0xf0 },
1916 	{ 0x79, 0x0f },
1917 	{ 0xc8, 0x00 },
1918 	{ 0x79, 0x10 },
1919 	{ 0xc8, 0x7e },
1920 	{ 0x79, 0x0a },
1921 	{ 0xc8, 0x80 },
1922 	{ 0x79, 0x0b },
1923 	{ 0xc8, 0x01 },
1924 	{ 0x79, 0x0c },
1925 	{ 0xc8, 0x0f },
1926 	{ 0x79, 0x0d },
1927 	{ 0xc8, 0x20 },
1928 	{ 0x79, 0x09 },
1929 	{ 0xc8, 0x80 },
1930 	{ 0x79, 0x02 },
1931 	{ 0xc8, 0xc0 },
1932 	{ 0x79, 0x03 },
1933 	{ 0xc8, 0x40 },
1934 	{ 0x79, 0x05 },
1935 	{ 0xc8, 0x30 },
1936 	{ 0x79, 0x26 },
1937 };
1938 
1939 static const struct ov_i2c_regvals norm_8610[] = {
1940 	{ 0x12, 0x80 },
1941 	{ 0x00, 0x00 },
1942 	{ 0x01, 0x80 },
1943 	{ 0x02, 0x80 },
1944 	{ 0x03, 0xc0 },
1945 	{ 0x04, 0x30 },
1946 	{ 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1947 	{ 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1948 	{ 0x0a, 0x86 },
1949 	{ 0x0b, 0xb0 },
1950 	{ 0x0c, 0x20 },
1951 	{ 0x0d, 0x20 },
1952 	{ 0x11, 0x01 },
1953 	{ 0x12, 0x25 },
1954 	{ 0x13, 0x01 },
1955 	{ 0x14, 0x04 },
1956 	{ 0x15, 0x01 }, /* Lin and Win think different about UV order */
1957 	{ 0x16, 0x03 },
1958 	{ 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1959 	{ 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1960 	{ 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1961 	{ 0x1a, 0xf5 },
1962 	{ 0x1b, 0x00 },
1963 	{ 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1964 	{ 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1965 	{ 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1966 	{ 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1967 	{ 0x26, 0xa2 },
1968 	{ 0x27, 0xea },
1969 	{ 0x28, 0x00 },
1970 	{ 0x29, 0x00 },
1971 	{ 0x2a, 0x80 },
1972 	{ 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1973 	{ 0x2c, 0xac },
1974 	{ 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1975 	{ 0x2e, 0x80 },
1976 	{ 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1977 	{ 0x4c, 0x00 },
1978 	{ 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1979 	{ 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1980 	{ 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1981 	{ 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1982 	{ 0x63, 0xff },
1983 	{ 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1984 			 * maybe thats wrong */
1985 	{ 0x65, 0x00 },
1986 	{ 0x66, 0x55 },
1987 	{ 0x67, 0xb0 },
1988 	{ 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1989 	{ 0x69, 0x02 },
1990 	{ 0x6a, 0x22 },
1991 	{ 0x6b, 0x00 },
1992 	{ 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1993 			 * deleting bit7 colors the first images red */
1994 	{ 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1995 	{ 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1996 	{ 0x6f, 0x01 },
1997 	{ 0x70, 0x8b },
1998 	{ 0x71, 0x00 },
1999 	{ 0x72, 0x14 },
2000 	{ 0x73, 0x54 },
2001 	{ 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
2002 	{ 0x75, 0x0e },
2003 	{ 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
2004 	{ 0x77, 0xff },
2005 	{ 0x78, 0x80 },
2006 	{ 0x79, 0x80 },
2007 	{ 0x7a, 0x80 },
2008 	{ 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
2009 	{ 0x7c, 0x00 },
2010 	{ 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
2011 	{ 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
2012 	{ 0x7f, 0xfb },
2013 	{ 0x80, 0x28 },
2014 	{ 0x81, 0x00 },
2015 	{ 0x82, 0x23 },
2016 	{ 0x83, 0x0b },
2017 	{ 0x84, 0x00 },
2018 	{ 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
2019 	{ 0x86, 0xc9 },
2020 	{ 0x87, 0x00 },
2021 	{ 0x88, 0x00 },
2022 	{ 0x89, 0x01 },
2023 	{ 0x12, 0x20 },
2024 	{ 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
2025 };
2026 
2027 static unsigned char ov7670_abs_to_sm(unsigned char v)
2028 {
2029 	if (v > 127)
2030 		return v & 0x7f;
2031 	return (128 - v) | 0x80;
2032 }
2033 
2034 /* Write a OV519 register */
2035 static void reg_w(struct sd *sd, u16 index, u16 value)
2036 {
2037 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2038 	int ret, req = 0;
2039 
2040 	if (sd->gspca_dev.usb_err < 0)
2041 		return;
2042 
2043 	switch (sd->bridge) {
2044 	case BRIDGE_OV511:
2045 	case BRIDGE_OV511PLUS:
2046 		req = 2;
2047 		break;
2048 	case BRIDGE_OVFX2:
2049 		req = 0x0a;
2050 		/* fall through */
2051 	case BRIDGE_W9968CF:
2052 		PDEBUG(D_USBO, "SET %02x %04x %04x",
2053 				req, value, index);
2054 		ret = usb_control_msg(sd->gspca_dev.dev,
2055 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2056 			req,
2057 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2058 			value, index, NULL, 0, 500);
2059 		goto leave;
2060 	default:
2061 		req = 1;
2062 	}
2063 
2064 	PDEBUG(D_USBO, "SET %02x 0000 %04x %02x",
2065 			req, index, value);
2066 	sd->gspca_dev.usb_buf[0] = value;
2067 	ret = usb_control_msg(sd->gspca_dev.dev,
2068 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2069 			req,
2070 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2071 			0, index,
2072 			sd->gspca_dev.usb_buf, 1, 500);
2073 leave:
2074 	if (ret < 0) {
2075 		PERR("reg_w %02x failed %d\n", index, ret);
2076 		sd->gspca_dev.usb_err = ret;
2077 		return;
2078 	}
2079 }
2080 
2081 /* Read from a OV519 register, note not valid for the w9968cf!! */
2082 /* returns: negative is error, pos or zero is data */
2083 static int reg_r(struct sd *sd, u16 index)
2084 {
2085 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2086 	int ret;
2087 	int req;
2088 
2089 	if (sd->gspca_dev.usb_err < 0)
2090 		return -1;
2091 
2092 	switch (sd->bridge) {
2093 	case BRIDGE_OV511:
2094 	case BRIDGE_OV511PLUS:
2095 		req = 3;
2096 		break;
2097 	case BRIDGE_OVFX2:
2098 		req = 0x0b;
2099 		break;
2100 	default:
2101 		req = 1;
2102 	}
2103 
2104 	ret = usb_control_msg(sd->gspca_dev.dev,
2105 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2106 			req,
2107 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2108 			0, index, sd->gspca_dev.usb_buf, 1, 500);
2109 
2110 	if (ret >= 0) {
2111 		ret = sd->gspca_dev.usb_buf[0];
2112 		PDEBUG(D_USBI, "GET %02x 0000 %04x %02x",
2113 			req, index, ret);
2114 	} else {
2115 		PERR("reg_r %02x failed %d\n", index, ret);
2116 		sd->gspca_dev.usb_err = ret;
2117 	}
2118 
2119 	return ret;
2120 }
2121 
2122 /* Read 8 values from a OV519 register */
2123 static int reg_r8(struct sd *sd,
2124 		  u16 index)
2125 {
2126 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2127 	int ret;
2128 
2129 	if (sd->gspca_dev.usb_err < 0)
2130 		return -1;
2131 
2132 	ret = usb_control_msg(sd->gspca_dev.dev,
2133 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2134 			1,			/* REQ_IO */
2135 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2136 			0, index, sd->gspca_dev.usb_buf, 8, 500);
2137 
2138 	if (ret >= 0) {
2139 		ret = sd->gspca_dev.usb_buf[0];
2140 	} else {
2141 		PERR("reg_r8 %02x failed %d\n", index, ret);
2142 		sd->gspca_dev.usb_err = ret;
2143 	}
2144 
2145 	return ret;
2146 }
2147 
2148 /*
2149  * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2150  * the same position as 1's in "mask" are cleared and set to "value". Bits
2151  * that are in the same position as 0's in "mask" are preserved, regardless
2152  * of their respective state in "value".
2153  */
2154 static void reg_w_mask(struct sd *sd,
2155 			u16 index,
2156 			u8 value,
2157 			u8 mask)
2158 {
2159 	int ret;
2160 	u8 oldval;
2161 
2162 	if (mask != 0xff) {
2163 		value &= mask;			/* Enforce mask on value */
2164 		ret = reg_r(sd, index);
2165 		if (ret < 0)
2166 			return;
2167 
2168 		oldval = ret & ~mask;		/* Clear the masked bits */
2169 		value |= oldval;		/* Set the desired bits */
2170 	}
2171 	reg_w(sd, index, value);
2172 }
2173 
2174 /*
2175  * Writes multiple (n) byte value to a single register. Only valid with certain
2176  * registers (0x30 and 0xc4 - 0xce).
2177  */
2178 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2179 {
2180 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2181 	int ret;
2182 
2183 	if (sd->gspca_dev.usb_err < 0)
2184 		return;
2185 
2186 	*((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2187 
2188 	ret = usb_control_msg(sd->gspca_dev.dev,
2189 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2190 			1 /* REG_IO */,
2191 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2192 			0, index,
2193 			sd->gspca_dev.usb_buf, n, 500);
2194 	if (ret < 0) {
2195 		PERR("reg_w32 %02x failed %d\n", index, ret);
2196 		sd->gspca_dev.usb_err = ret;
2197 	}
2198 }
2199 
2200 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2201 {
2202 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2203 	int rc, retries;
2204 
2205 	PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value);
2206 
2207 	/* Three byte write cycle */
2208 	for (retries = 6; ; ) {
2209 		/* Select camera register */
2210 		reg_w(sd, R51x_I2C_SADDR_3, reg);
2211 
2212 		/* Write "value" to I2C data port of OV511 */
2213 		reg_w(sd, R51x_I2C_DATA, value);
2214 
2215 		/* Initiate 3-byte write cycle */
2216 		reg_w(sd, R511_I2C_CTL, 0x01);
2217 
2218 		do {
2219 			rc = reg_r(sd, R511_I2C_CTL);
2220 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2221 
2222 		if (rc < 0)
2223 			return;
2224 
2225 		if ((rc & 2) == 0) /* Ack? */
2226 			break;
2227 		if (--retries < 0) {
2228 			PDEBUG(D_USBO, "i2c write retries exhausted");
2229 			return;
2230 		}
2231 	}
2232 }
2233 
2234 static int ov511_i2c_r(struct sd *sd, u8 reg)
2235 {
2236 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2237 	int rc, value, retries;
2238 
2239 	/* Two byte write cycle */
2240 	for (retries = 6; ; ) {
2241 		/* Select camera register */
2242 		reg_w(sd, R51x_I2C_SADDR_2, reg);
2243 
2244 		/* Initiate 2-byte write cycle */
2245 		reg_w(sd, R511_I2C_CTL, 0x03);
2246 
2247 		do {
2248 			rc = reg_r(sd, R511_I2C_CTL);
2249 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2250 
2251 		if (rc < 0)
2252 			return rc;
2253 
2254 		if ((rc & 2) == 0) /* Ack? */
2255 			break;
2256 
2257 		/* I2C abort */
2258 		reg_w(sd, R511_I2C_CTL, 0x10);
2259 
2260 		if (--retries < 0) {
2261 			PDEBUG(D_USBI, "i2c write retries exhausted");
2262 			return -1;
2263 		}
2264 	}
2265 
2266 	/* Two byte read cycle */
2267 	for (retries = 6; ; ) {
2268 		/* Initiate 2-byte read cycle */
2269 		reg_w(sd, R511_I2C_CTL, 0x05);
2270 
2271 		do {
2272 			rc = reg_r(sd, R511_I2C_CTL);
2273 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2274 
2275 		if (rc < 0)
2276 			return rc;
2277 
2278 		if ((rc & 2) == 0) /* Ack? */
2279 			break;
2280 
2281 		/* I2C abort */
2282 		reg_w(sd, R511_I2C_CTL, 0x10);
2283 
2284 		if (--retries < 0) {
2285 			PDEBUG(D_USBI, "i2c read retries exhausted");
2286 			return -1;
2287 		}
2288 	}
2289 
2290 	value = reg_r(sd, R51x_I2C_DATA);
2291 
2292 	PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value);
2293 
2294 	/* This is needed to make i2c_w() work */
2295 	reg_w(sd, R511_I2C_CTL, 0x05);
2296 
2297 	return value;
2298 }
2299 
2300 /*
2301  * The OV518 I2C I/O procedure is different, hence, this function.
2302  * This is normally only called from i2c_w(). Note that this function
2303  * always succeeds regardless of whether the sensor is present and working.
2304  */
2305 static void ov518_i2c_w(struct sd *sd,
2306 		u8 reg,
2307 		u8 value)
2308 {
2309 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2310 
2311 	PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value);
2312 
2313 	/* Select camera register */
2314 	reg_w(sd, R51x_I2C_SADDR_3, reg);
2315 
2316 	/* Write "value" to I2C data port of OV511 */
2317 	reg_w(sd, R51x_I2C_DATA, value);
2318 
2319 	/* Initiate 3-byte write cycle */
2320 	reg_w(sd, R518_I2C_CTL, 0x01);
2321 
2322 	/* wait for write complete */
2323 	msleep(4);
2324 	reg_r8(sd, R518_I2C_CTL);
2325 }
2326 
2327 /*
2328  * returns: negative is error, pos or zero is data
2329  *
2330  * The OV518 I2C I/O procedure is different, hence, this function.
2331  * This is normally only called from i2c_r(). Note that this function
2332  * always succeeds regardless of whether the sensor is present and working.
2333  */
2334 static int ov518_i2c_r(struct sd *sd, u8 reg)
2335 {
2336 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2337 	int value;
2338 
2339 	/* Select camera register */
2340 	reg_w(sd, R51x_I2C_SADDR_2, reg);
2341 
2342 	/* Initiate 2-byte write cycle */
2343 	reg_w(sd, R518_I2C_CTL, 0x03);
2344 	reg_r8(sd, R518_I2C_CTL);
2345 
2346 	/* Initiate 2-byte read cycle */
2347 	reg_w(sd, R518_I2C_CTL, 0x05);
2348 	reg_r8(sd, R518_I2C_CTL);
2349 
2350 	value = reg_r(sd, R51x_I2C_DATA);
2351 	PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value);
2352 	return value;
2353 }
2354 
2355 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2356 {
2357 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2358 	int ret;
2359 
2360 	if (sd->gspca_dev.usb_err < 0)
2361 		return;
2362 
2363 	ret = usb_control_msg(sd->gspca_dev.dev,
2364 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2365 			0x02,
2366 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2367 			(u16) value, (u16) reg, NULL, 0, 500);
2368 
2369 	if (ret < 0) {
2370 		PERR("ovfx2_i2c_w %02x failed %d\n", reg, ret);
2371 		sd->gspca_dev.usb_err = ret;
2372 	}
2373 
2374 	PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value);
2375 }
2376 
2377 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2378 {
2379 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2380 	int ret;
2381 
2382 	if (sd->gspca_dev.usb_err < 0)
2383 		return -1;
2384 
2385 	ret = usb_control_msg(sd->gspca_dev.dev,
2386 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2387 			0x03,
2388 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2389 			0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2390 
2391 	if (ret >= 0) {
2392 		ret = sd->gspca_dev.usb_buf[0];
2393 		PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret);
2394 	} else {
2395 		PERR("ovfx2_i2c_r %02x failed %d\n", reg, ret);
2396 		sd->gspca_dev.usb_err = ret;
2397 	}
2398 
2399 	return ret;
2400 }
2401 
2402 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2403 {
2404 	if (sd->sensor_reg_cache[reg] == value)
2405 		return;
2406 
2407 	switch (sd->bridge) {
2408 	case BRIDGE_OV511:
2409 	case BRIDGE_OV511PLUS:
2410 		ov511_i2c_w(sd, reg, value);
2411 		break;
2412 	case BRIDGE_OV518:
2413 	case BRIDGE_OV518PLUS:
2414 	case BRIDGE_OV519:
2415 		ov518_i2c_w(sd, reg, value);
2416 		break;
2417 	case BRIDGE_OVFX2:
2418 		ovfx2_i2c_w(sd, reg, value);
2419 		break;
2420 	case BRIDGE_W9968CF:
2421 		w9968cf_i2c_w(sd, reg, value);
2422 		break;
2423 	}
2424 
2425 	if (sd->gspca_dev.usb_err >= 0) {
2426 		/* Up on sensor reset empty the register cache */
2427 		if (reg == 0x12 && (value & 0x80))
2428 			memset(sd->sensor_reg_cache, -1,
2429 				sizeof(sd->sensor_reg_cache));
2430 		else
2431 			sd->sensor_reg_cache[reg] = value;
2432 	}
2433 }
2434 
2435 static int i2c_r(struct sd *sd, u8 reg)
2436 {
2437 	int ret = -1;
2438 
2439 	if (sd->sensor_reg_cache[reg] != -1)
2440 		return sd->sensor_reg_cache[reg];
2441 
2442 	switch (sd->bridge) {
2443 	case BRIDGE_OV511:
2444 	case BRIDGE_OV511PLUS:
2445 		ret = ov511_i2c_r(sd, reg);
2446 		break;
2447 	case BRIDGE_OV518:
2448 	case BRIDGE_OV518PLUS:
2449 	case BRIDGE_OV519:
2450 		ret = ov518_i2c_r(sd, reg);
2451 		break;
2452 	case BRIDGE_OVFX2:
2453 		ret = ovfx2_i2c_r(sd, reg);
2454 		break;
2455 	case BRIDGE_W9968CF:
2456 		ret = w9968cf_i2c_r(sd, reg);
2457 		break;
2458 	}
2459 
2460 	if (ret >= 0)
2461 		sd->sensor_reg_cache[reg] = ret;
2462 
2463 	return ret;
2464 }
2465 
2466 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2467  * the same position as 1's in "mask" are cleared and set to "value". Bits
2468  * that are in the same position as 0's in "mask" are preserved, regardless
2469  * of their respective state in "value".
2470  */
2471 static void i2c_w_mask(struct sd *sd,
2472 			u8 reg,
2473 			u8 value,
2474 			u8 mask)
2475 {
2476 	int rc;
2477 	u8 oldval;
2478 
2479 	value &= mask;			/* Enforce mask on value */
2480 	rc = i2c_r(sd, reg);
2481 	if (rc < 0)
2482 		return;
2483 	oldval = rc & ~mask;		/* Clear the masked bits */
2484 	value |= oldval;		/* Set the desired bits */
2485 	i2c_w(sd, reg, value);
2486 }
2487 
2488 /* Temporarily stops OV511 from functioning. Must do this before changing
2489  * registers while the camera is streaming */
2490 static inline void ov51x_stop(struct sd *sd)
2491 {
2492 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2493 
2494 	PDEBUG(D_STREAM, "stopping");
2495 	sd->stopped = 1;
2496 	switch (sd->bridge) {
2497 	case BRIDGE_OV511:
2498 	case BRIDGE_OV511PLUS:
2499 		reg_w(sd, R51x_SYS_RESET, 0x3d);
2500 		break;
2501 	case BRIDGE_OV518:
2502 	case BRIDGE_OV518PLUS:
2503 		reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2504 		break;
2505 	case BRIDGE_OV519:
2506 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2507 		reg_w(sd, OV519_R51_RESET1, 0x00);
2508 		reg_w(sd, 0x22, 0x00);		/* FRAR */
2509 		break;
2510 	case BRIDGE_OVFX2:
2511 		reg_w_mask(sd, 0x0f, 0x00, 0x02);
2512 		break;
2513 	case BRIDGE_W9968CF:
2514 		reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2515 		break;
2516 	}
2517 }
2518 
2519 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2520  * actually stopped (for performance). */
2521 static inline void ov51x_restart(struct sd *sd)
2522 {
2523 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2524 
2525 	PDEBUG(D_STREAM, "restarting");
2526 	if (!sd->stopped)
2527 		return;
2528 	sd->stopped = 0;
2529 
2530 	/* Reinitialize the stream */
2531 	switch (sd->bridge) {
2532 	case BRIDGE_OV511:
2533 	case BRIDGE_OV511PLUS:
2534 		reg_w(sd, R51x_SYS_RESET, 0x00);
2535 		break;
2536 	case BRIDGE_OV518:
2537 	case BRIDGE_OV518PLUS:
2538 		reg_w(sd, 0x2f, 0x80);
2539 		reg_w(sd, R51x_SYS_RESET, 0x00);
2540 		break;
2541 	case BRIDGE_OV519:
2542 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2543 		reg_w(sd, OV519_R51_RESET1, 0x00);
2544 		reg_w(sd, 0x22, 0x1d);		/* FRAR */
2545 		break;
2546 	case BRIDGE_OVFX2:
2547 		reg_w_mask(sd, 0x0f, 0x02, 0x02);
2548 		break;
2549 	case BRIDGE_W9968CF:
2550 		reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2551 		break;
2552 	}
2553 }
2554 
2555 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2556 
2557 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2558  * is synchronized. Returns <0 on failure.
2559  */
2560 static int init_ov_sensor(struct sd *sd, u8 slave)
2561 {
2562 	int i;
2563 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2564 
2565 	ov51x_set_slave_ids(sd, slave);
2566 
2567 	/* Reset the sensor */
2568 	i2c_w(sd, 0x12, 0x80);
2569 
2570 	/* Wait for it to initialize */
2571 	msleep(150);
2572 
2573 	for (i = 0; i < i2c_detect_tries; i++) {
2574 		if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2575 		    i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2576 			PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i);
2577 			return 0;
2578 		}
2579 
2580 		/* Reset the sensor */
2581 		i2c_w(sd, 0x12, 0x80);
2582 
2583 		/* Wait for it to initialize */
2584 		msleep(150);
2585 
2586 		/* Dummy read to sync I2C */
2587 		if (i2c_r(sd, 0x00) < 0)
2588 			return -1;
2589 	}
2590 	return -1;
2591 }
2592 
2593 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2594  * and the read slave will be set to (slave + 1).
2595  * This should not be called from outside the i2c I/O functions.
2596  * Sets I2C read and write slave IDs. Returns <0 for error
2597  */
2598 static void ov51x_set_slave_ids(struct sd *sd,
2599 				u8 slave)
2600 {
2601 	switch (sd->bridge) {
2602 	case BRIDGE_OVFX2:
2603 		reg_w(sd, OVFX2_I2C_ADDR, slave);
2604 		return;
2605 	case BRIDGE_W9968CF:
2606 		sd->sensor_addr = slave;
2607 		return;
2608 	}
2609 
2610 	reg_w(sd, R51x_I2C_W_SID, slave);
2611 	reg_w(sd, R51x_I2C_R_SID, slave + 1);
2612 }
2613 
2614 static void write_regvals(struct sd *sd,
2615 			 const struct ov_regvals *regvals,
2616 			 int n)
2617 {
2618 	while (--n >= 0) {
2619 		reg_w(sd, regvals->reg, regvals->val);
2620 		regvals++;
2621 	}
2622 }
2623 
2624 static void write_i2c_regvals(struct sd *sd,
2625 			const struct ov_i2c_regvals *regvals,
2626 			int n)
2627 {
2628 	while (--n >= 0) {
2629 		i2c_w(sd, regvals->reg, regvals->val);
2630 		regvals++;
2631 	}
2632 }
2633 
2634 /****************************************************************************
2635  *
2636  * OV511 and sensor configuration
2637  *
2638  ***************************************************************************/
2639 
2640 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2641 static void ov_hires_configure(struct sd *sd)
2642 {
2643 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2644 	int high, low;
2645 
2646 	if (sd->bridge != BRIDGE_OVFX2) {
2647 		PERR("error hires sensors only supported with ovfx2\n");
2648 		return;
2649 	}
2650 
2651 	PDEBUG(D_PROBE, "starting ov hires configuration");
2652 
2653 	/* Detect sensor (sub)type */
2654 	high = i2c_r(sd, 0x0a);
2655 	low = i2c_r(sd, 0x0b);
2656 	/* info("%x, %x", high, low); */
2657 	switch (high) {
2658 	case 0x96:
2659 		switch (low) {
2660 		case 0x40:
2661 			PDEBUG(D_PROBE, "Sensor is a OV2610");
2662 			sd->sensor = SEN_OV2610;
2663 			return;
2664 		case 0x41:
2665 			PDEBUG(D_PROBE, "Sensor is a OV2610AE");
2666 			sd->sensor = SEN_OV2610AE;
2667 			return;
2668 		case 0xb1:
2669 			PDEBUG(D_PROBE, "Sensor is a OV9600");
2670 			sd->sensor = SEN_OV9600;
2671 			return;
2672 		}
2673 		break;
2674 	case 0x36:
2675 		if ((low & 0x0f) == 0x00) {
2676 			PDEBUG(D_PROBE, "Sensor is a OV3610");
2677 			sd->sensor = SEN_OV3610;
2678 			return;
2679 		}
2680 		break;
2681 	}
2682 	PERR("Error unknown sensor type: %02x%02x\n", high, low);
2683 }
2684 
2685 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2686  * the same register settings as the OV8610, since they are very similar.
2687  */
2688 static void ov8xx0_configure(struct sd *sd)
2689 {
2690 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2691 	int rc;
2692 
2693 	PDEBUG(D_PROBE, "starting ov8xx0 configuration");
2694 
2695 	/* Detect sensor (sub)type */
2696 	rc = i2c_r(sd, OV7610_REG_COM_I);
2697 	if (rc < 0) {
2698 		PERR("Error detecting sensor type");
2699 		return;
2700 	}
2701 	if ((rc & 3) == 1)
2702 		sd->sensor = SEN_OV8610;
2703 	else
2704 		PERR("Unknown image sensor version: %d\n", rc & 3);
2705 }
2706 
2707 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2708  * the same register settings as the OV7610, since they are very similar.
2709  */
2710 static void ov7xx0_configure(struct sd *sd)
2711 {
2712 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2713 	int rc, high, low;
2714 
2715 	PDEBUG(D_PROBE, "starting OV7xx0 configuration");
2716 
2717 	/* Detect sensor (sub)type */
2718 	rc = i2c_r(sd, OV7610_REG_COM_I);
2719 
2720 	/* add OV7670 here
2721 	 * it appears to be wrongly detected as a 7610 by default */
2722 	if (rc < 0) {
2723 		PERR("Error detecting sensor type\n");
2724 		return;
2725 	}
2726 	if ((rc & 3) == 3) {
2727 		/* quick hack to make OV7670s work */
2728 		high = i2c_r(sd, 0x0a);
2729 		low = i2c_r(sd, 0x0b);
2730 		/* info("%x, %x", high, low); */
2731 		if (high == 0x76 && (low & 0xf0) == 0x70) {
2732 			PDEBUG(D_PROBE, "Sensor is an OV76%02x", low);
2733 			sd->sensor = SEN_OV7670;
2734 		} else {
2735 			PDEBUG(D_PROBE, "Sensor is an OV7610");
2736 			sd->sensor = SEN_OV7610;
2737 		}
2738 	} else if ((rc & 3) == 1) {
2739 		/* I don't know what's different about the 76BE yet. */
2740 		if (i2c_r(sd, 0x15) & 1) {
2741 			PDEBUG(D_PROBE, "Sensor is an OV7620AE");
2742 			sd->sensor = SEN_OV7620AE;
2743 		} else {
2744 			PDEBUG(D_PROBE, "Sensor is an OV76BE");
2745 			sd->sensor = SEN_OV76BE;
2746 		}
2747 	} else if ((rc & 3) == 0) {
2748 		/* try to read product id registers */
2749 		high = i2c_r(sd, 0x0a);
2750 		if (high < 0) {
2751 			PERR("Error detecting camera chip PID\n");
2752 			return;
2753 		}
2754 		low = i2c_r(sd, 0x0b);
2755 		if (low < 0) {
2756 			PERR("Error detecting camera chip VER\n");
2757 			return;
2758 		}
2759 		if (high == 0x76) {
2760 			switch (low) {
2761 			case 0x30:
2762 				PERR("Sensor is an OV7630/OV7635\n");
2763 				PERR("7630 is not supported by this driver\n");
2764 				return;
2765 			case 0x40:
2766 				PDEBUG(D_PROBE, "Sensor is an OV7645");
2767 				sd->sensor = SEN_OV7640; /* FIXME */
2768 				break;
2769 			case 0x45:
2770 				PDEBUG(D_PROBE, "Sensor is an OV7645B");
2771 				sd->sensor = SEN_OV7640; /* FIXME */
2772 				break;
2773 			case 0x48:
2774 				PDEBUG(D_PROBE, "Sensor is an OV7648");
2775 				sd->sensor = SEN_OV7648;
2776 				break;
2777 			case 0x60:
2778 				PDEBUG(D_PROBE, "Sensor is a OV7660");
2779 				sd->sensor = SEN_OV7660;
2780 				break;
2781 			default:
2782 				PERR("Unknown sensor: 0x76%02x\n", low);
2783 				return;
2784 			}
2785 		} else {
2786 			PDEBUG(D_PROBE, "Sensor is an OV7620");
2787 			sd->sensor = SEN_OV7620;
2788 		}
2789 	} else {
2790 		PERR("Unknown image sensor version: %d\n", rc & 3);
2791 	}
2792 }
2793 
2794 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2795 static void ov6xx0_configure(struct sd *sd)
2796 {
2797 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2798 	int rc;
2799 
2800 	PDEBUG(D_PROBE, "starting OV6xx0 configuration");
2801 
2802 	/* Detect sensor (sub)type */
2803 	rc = i2c_r(sd, OV7610_REG_COM_I);
2804 	if (rc < 0) {
2805 		PERR("Error detecting sensor type\n");
2806 		return;
2807 	}
2808 
2809 	/* Ugh. The first two bits are the version bits, but
2810 	 * the entire register value must be used. I guess OVT
2811 	 * underestimated how many variants they would make. */
2812 	switch (rc) {
2813 	case 0x00:
2814 		sd->sensor = SEN_OV6630;
2815 		pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2816 		break;
2817 	case 0x01:
2818 		sd->sensor = SEN_OV6620;
2819 		PDEBUG(D_PROBE, "Sensor is an OV6620");
2820 		break;
2821 	case 0x02:
2822 		sd->sensor = SEN_OV6630;
2823 		PDEBUG(D_PROBE, "Sensor is an OV66308AE");
2824 		break;
2825 	case 0x03:
2826 		sd->sensor = SEN_OV66308AF;
2827 		PDEBUG(D_PROBE, "Sensor is an OV66308AF");
2828 		break;
2829 	case 0x90:
2830 		sd->sensor = SEN_OV6630;
2831 		pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2832 		break;
2833 	default:
2834 		PERR("FATAL: Unknown sensor version: 0x%02x\n", rc);
2835 		return;
2836 	}
2837 
2838 	/* Set sensor-specific vars */
2839 	sd->sif = 1;
2840 }
2841 
2842 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2843 static void ov51x_led_control(struct sd *sd, int on)
2844 {
2845 	if (sd->invert_led)
2846 		on = !on;
2847 
2848 	switch (sd->bridge) {
2849 	/* OV511 has no LED control */
2850 	case BRIDGE_OV511PLUS:
2851 		reg_w(sd, R511_SYS_LED_CTL, on);
2852 		break;
2853 	case BRIDGE_OV518:
2854 	case BRIDGE_OV518PLUS:
2855 		reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2856 		break;
2857 	case BRIDGE_OV519:
2858 		reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2859 		break;
2860 	}
2861 }
2862 
2863 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2864 {
2865 	struct sd *sd = (struct sd *) gspca_dev;
2866 
2867 	if (!sd->snapshot_needs_reset)
2868 		return;
2869 
2870 	/* Note it is important that we clear sd->snapshot_needs_reset,
2871 	   before actually clearing the snapshot state in the bridge
2872 	   otherwise we might race with the pkt_scan interrupt handler */
2873 	sd->snapshot_needs_reset = 0;
2874 
2875 	switch (sd->bridge) {
2876 	case BRIDGE_OV511:
2877 	case BRIDGE_OV511PLUS:
2878 		reg_w(sd, R51x_SYS_SNAP, 0x02);
2879 		reg_w(sd, R51x_SYS_SNAP, 0x00);
2880 		break;
2881 	case BRIDGE_OV518:
2882 	case BRIDGE_OV518PLUS:
2883 		reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2884 		reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2885 		break;
2886 	case BRIDGE_OV519:
2887 		reg_w(sd, R51x_SYS_RESET, 0x40);
2888 		reg_w(sd, R51x_SYS_RESET, 0x00);
2889 		break;
2890 	}
2891 }
2892 
2893 static void ov51x_upload_quan_tables(struct sd *sd)
2894 {
2895 	const unsigned char yQuanTable511[] = {
2896 		0, 1, 1, 2, 2, 3, 3, 4,
2897 		1, 1, 1, 2, 2, 3, 4, 4,
2898 		1, 1, 2, 2, 3, 4, 4, 4,
2899 		2, 2, 2, 3, 4, 4, 4, 4,
2900 		2, 2, 3, 4, 4, 5, 5, 5,
2901 		3, 3, 4, 4, 5, 5, 5, 5,
2902 		3, 4, 4, 4, 5, 5, 5, 5,
2903 		4, 4, 4, 4, 5, 5, 5, 5
2904 	};
2905 
2906 	const unsigned char uvQuanTable511[] = {
2907 		0, 2, 2, 3, 4, 4, 4, 4,
2908 		2, 2, 2, 4, 4, 4, 4, 4,
2909 		2, 2, 3, 4, 4, 4, 4, 4,
2910 		3, 4, 4, 4, 4, 4, 4, 4,
2911 		4, 4, 4, 4, 4, 4, 4, 4,
2912 		4, 4, 4, 4, 4, 4, 4, 4,
2913 		4, 4, 4, 4, 4, 4, 4, 4,
2914 		4, 4, 4, 4, 4, 4, 4, 4
2915 	};
2916 
2917 	/* OV518 quantization tables are 8x4 (instead of 8x8) */
2918 	const unsigned char yQuanTable518[] = {
2919 		5, 4, 5, 6, 6, 7, 7, 7,
2920 		5, 5, 5, 5, 6, 7, 7, 7,
2921 		6, 6, 6, 6, 7, 7, 7, 8,
2922 		7, 7, 6, 7, 7, 7, 8, 8
2923 	};
2924 	const unsigned char uvQuanTable518[] = {
2925 		6, 6, 6, 7, 7, 7, 7, 7,
2926 		6, 6, 6, 7, 7, 7, 7, 7,
2927 		6, 6, 6, 7, 7, 7, 7, 8,
2928 		7, 7, 7, 7, 7, 7, 8, 8
2929 	};
2930 
2931 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2932 	const unsigned char *pYTable, *pUVTable;
2933 	unsigned char val0, val1;
2934 	int i, size, reg = R51x_COMP_LUT_BEGIN;
2935 
2936 	PDEBUG(D_PROBE, "Uploading quantization tables");
2937 
2938 	if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2939 		pYTable = yQuanTable511;
2940 		pUVTable = uvQuanTable511;
2941 		size = 32;
2942 	} else {
2943 		pYTable = yQuanTable518;
2944 		pUVTable = uvQuanTable518;
2945 		size = 16;
2946 	}
2947 
2948 	for (i = 0; i < size; i++) {
2949 		val0 = *pYTable++;
2950 		val1 = *pYTable++;
2951 		val0 &= 0x0f;
2952 		val1 &= 0x0f;
2953 		val0 |= val1 << 4;
2954 		reg_w(sd, reg, val0);
2955 
2956 		val0 = *pUVTable++;
2957 		val1 = *pUVTable++;
2958 		val0 &= 0x0f;
2959 		val1 &= 0x0f;
2960 		val0 |= val1 << 4;
2961 		reg_w(sd, reg + size, val0);
2962 
2963 		reg++;
2964 	}
2965 }
2966 
2967 /* This initializes the OV511/OV511+ and the sensor */
2968 static void ov511_configure(struct gspca_dev *gspca_dev)
2969 {
2970 	struct sd *sd = (struct sd *) gspca_dev;
2971 
2972 	/* For 511 and 511+ */
2973 	const struct ov_regvals init_511[] = {
2974 		{ R51x_SYS_RESET,	0x7f },
2975 		{ R51x_SYS_INIT,	0x01 },
2976 		{ R51x_SYS_RESET,	0x7f },
2977 		{ R51x_SYS_INIT,	0x01 },
2978 		{ R51x_SYS_RESET,	0x3f },
2979 		{ R51x_SYS_INIT,	0x01 },
2980 		{ R51x_SYS_RESET,	0x3d },
2981 	};
2982 
2983 	const struct ov_regvals norm_511[] = {
2984 		{ R511_DRAM_FLOW_CTL,	0x01 },
2985 		{ R51x_SYS_SNAP,	0x00 },
2986 		{ R51x_SYS_SNAP,	0x02 },
2987 		{ R51x_SYS_SNAP,	0x00 },
2988 		{ R511_FIFO_OPTS,	0x1f },
2989 		{ R511_COMP_EN,		0x00 },
2990 		{ R511_COMP_LUT_EN,	0x03 },
2991 	};
2992 
2993 	const struct ov_regvals norm_511_p[] = {
2994 		{ R511_DRAM_FLOW_CTL,	0xff },
2995 		{ R51x_SYS_SNAP,	0x00 },
2996 		{ R51x_SYS_SNAP,	0x02 },
2997 		{ R51x_SYS_SNAP,	0x00 },
2998 		{ R511_FIFO_OPTS,	0xff },
2999 		{ R511_COMP_EN,		0x00 },
3000 		{ R511_COMP_LUT_EN,	0x03 },
3001 	};
3002 
3003 	const struct ov_regvals compress_511[] = {
3004 		{ 0x70, 0x1f },
3005 		{ 0x71, 0x05 },
3006 		{ 0x72, 0x06 },
3007 		{ 0x73, 0x06 },
3008 		{ 0x74, 0x14 },
3009 		{ 0x75, 0x03 },
3010 		{ 0x76, 0x04 },
3011 		{ 0x77, 0x04 },
3012 	};
3013 
3014 	PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID));
3015 
3016 	write_regvals(sd, init_511, ARRAY_SIZE(init_511));
3017 
3018 	switch (sd->bridge) {
3019 	case BRIDGE_OV511:
3020 		write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
3021 		break;
3022 	case BRIDGE_OV511PLUS:
3023 		write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3024 		break;
3025 	}
3026 
3027 	/* Init compression */
3028 	write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3029 
3030 	ov51x_upload_quan_tables(sd);
3031 }
3032 
3033 /* This initializes the OV518/OV518+ and the sensor */
3034 static void ov518_configure(struct gspca_dev *gspca_dev)
3035 {
3036 	struct sd *sd = (struct sd *) gspca_dev;
3037 
3038 	/* For 518 and 518+ */
3039 	const struct ov_regvals init_518[] = {
3040 		{ R51x_SYS_RESET,	0x40 },
3041 		{ R51x_SYS_INIT,	0xe1 },
3042 		{ R51x_SYS_RESET,	0x3e },
3043 		{ R51x_SYS_INIT,	0xe1 },
3044 		{ R51x_SYS_RESET,	0x00 },
3045 		{ R51x_SYS_INIT,	0xe1 },
3046 		{ 0x46,			0x00 },
3047 		{ 0x5d,			0x03 },
3048 	};
3049 
3050 	const struct ov_regvals norm_518[] = {
3051 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3052 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3053 		{ 0x31,			0x0f },
3054 		{ 0x5d,			0x03 },
3055 		{ 0x24,			0x9f },
3056 		{ 0x25,			0x90 },
3057 		{ 0x20,			0x00 },
3058 		{ 0x51,			0x04 },
3059 		{ 0x71,			0x19 },
3060 		{ 0x2f,			0x80 },
3061 	};
3062 
3063 	const struct ov_regvals norm_518_p[] = {
3064 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3065 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3066 		{ 0x31,			0x0f },
3067 		{ 0x5d,			0x03 },
3068 		{ 0x24,			0x9f },
3069 		{ 0x25,			0x90 },
3070 		{ 0x20,			0x60 },
3071 		{ 0x51,			0x02 },
3072 		{ 0x71,			0x19 },
3073 		{ 0x40,			0xff },
3074 		{ 0x41,			0x42 },
3075 		{ 0x46,			0x00 },
3076 		{ 0x33,			0x04 },
3077 		{ 0x21,			0x19 },
3078 		{ 0x3f,			0x10 },
3079 		{ 0x2f,			0x80 },
3080 	};
3081 
3082 	/* First 5 bits of custom ID reg are a revision ID on OV518 */
3083 	PDEBUG(D_PROBE, "Device revision %d",
3084 		0x1f & reg_r(sd, R51x_SYS_CUST_ID));
3085 
3086 	write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3087 
3088 	/* Set LED GPIO pin to output mode */
3089 	reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3090 
3091 	switch (sd->bridge) {
3092 	case BRIDGE_OV518:
3093 		write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3094 		break;
3095 	case BRIDGE_OV518PLUS:
3096 		write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3097 		break;
3098 	}
3099 
3100 	ov51x_upload_quan_tables(sd);
3101 
3102 	reg_w(sd, 0x2f, 0x80);
3103 }
3104 
3105 static void ov519_configure(struct sd *sd)
3106 {
3107 	static const struct ov_regvals init_519[] = {
3108 		{ 0x5a, 0x6d }, /* EnableSystem */
3109 		{ 0x53, 0x9b }, /* don't enable the microcontroller */
3110 		{ OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3111 		{ 0x5d, 0x03 },
3112 		{ 0x49, 0x01 },
3113 		{ 0x48, 0x00 },
3114 		/* Set LED pin to output mode. Bit 4 must be cleared or sensor
3115 		 * detection will fail. This deserves further investigation. */
3116 		{ OV519_GPIO_IO_CTRL0,   0xee },
3117 		{ OV519_R51_RESET1, 0x0f },
3118 		{ OV519_R51_RESET1, 0x00 },
3119 		{ 0x22, 0x00 },
3120 		/* windows reads 0x55 at this point*/
3121 	};
3122 
3123 	write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3124 }
3125 
3126 static void ovfx2_configure(struct sd *sd)
3127 {
3128 	static const struct ov_regvals init_fx2[] = {
3129 		{ 0x00, 0x60 },
3130 		{ 0x02, 0x01 },
3131 		{ 0x0f, 0x1d },
3132 		{ 0xe9, 0x82 },
3133 		{ 0xea, 0xc7 },
3134 		{ 0xeb, 0x10 },
3135 		{ 0xec, 0xf6 },
3136 	};
3137 
3138 	sd->stopped = 1;
3139 
3140 	write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3141 }
3142 
3143 /* set the mode */
3144 /* This function works for ov7660 only */
3145 static void ov519_set_mode(struct sd *sd)
3146 {
3147 	static const struct ov_regvals bridge_ov7660[2][10] = {
3148 		{{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3149 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3150 		 {0x25, 0x01}, {0x26, 0x00}},
3151 		{{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3152 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3153 		 {0x25, 0x03}, {0x26, 0x00}}
3154 	};
3155 	static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3156 		{{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3157 		{{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3158 	};
3159 	static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3160 		{OV7670_R17_HSTART, 0x13},
3161 		{OV7670_R18_HSTOP, 0x01},
3162 		{OV7670_R32_HREF, 0x92},
3163 		{OV7670_R19_VSTART, 0x02},
3164 		{OV7670_R1A_VSTOP, 0x7a},
3165 		{OV7670_R03_VREF, 0x00},
3166 /*		{0x33, 0x00}, */
3167 /*		{0x34, 0x07}, */
3168 /*		{0x36, 0x00}, */
3169 /*		{0x6b, 0x0a}, */
3170 	};
3171 
3172 	write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3173 			ARRAY_SIZE(bridge_ov7660[0]));
3174 	write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3175 			ARRAY_SIZE(sensor_ov7660[0]));
3176 	write_i2c_regvals(sd, sensor_ov7660_2,
3177 			ARRAY_SIZE(sensor_ov7660_2));
3178 }
3179 
3180 /* set the frame rate */
3181 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3182 static void ov519_set_fr(struct sd *sd)
3183 {
3184 	int fr;
3185 	u8 clock;
3186 	/* frame rate table with indices:
3187 	 *	- mode = 0: 320x240, 1: 640x480
3188 	 *	- fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3189 	 *	- reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3190 	 */
3191 	static const u8 fr_tb[2][6][3] = {
3192 		{{0x04, 0xff, 0x00},
3193 		 {0x04, 0x1f, 0x00},
3194 		 {0x04, 0x1b, 0x00},
3195 		 {0x04, 0x15, 0x00},
3196 		 {0x04, 0x09, 0x00},
3197 		 {0x04, 0x01, 0x00}},
3198 		{{0x0c, 0xff, 0x00},
3199 		 {0x0c, 0x1f, 0x00},
3200 		 {0x0c, 0x1b, 0x00},
3201 		 {0x04, 0xff, 0x01},
3202 		 {0x04, 0x1f, 0x01},
3203 		 {0x04, 0x1b, 0x01}},
3204 	};
3205 
3206 	if (frame_rate > 0)
3207 		sd->frame_rate = frame_rate;
3208 	if (sd->frame_rate >= 30)
3209 		fr = 0;
3210 	else if (sd->frame_rate >= 25)
3211 		fr = 1;
3212 	else if (sd->frame_rate >= 20)
3213 		fr = 2;
3214 	else if (sd->frame_rate >= 15)
3215 		fr = 3;
3216 	else if (sd->frame_rate >= 10)
3217 		fr = 4;
3218 	else
3219 		fr = 5;
3220 	reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3221 	reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3222 	clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3223 	if (sd->sensor == SEN_OV7660)
3224 		clock |= 0x80;		/* enable double clock */
3225 	ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3226 }
3227 
3228 static void setautogain(struct gspca_dev *gspca_dev, s32 val)
3229 {
3230 	struct sd *sd = (struct sd *) gspca_dev;
3231 
3232 	i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05);
3233 }
3234 
3235 /* this function is called at probe time */
3236 static int sd_config(struct gspca_dev *gspca_dev,
3237 			const struct usb_device_id *id)
3238 {
3239 	struct sd *sd = (struct sd *) gspca_dev;
3240 	struct cam *cam = &gspca_dev->cam;
3241 
3242 	sd->bridge = id->driver_info & BRIDGE_MASK;
3243 	sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3244 
3245 	switch (sd->bridge) {
3246 	case BRIDGE_OV511:
3247 	case BRIDGE_OV511PLUS:
3248 		cam->cam_mode = ov511_vga_mode;
3249 		cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3250 		break;
3251 	case BRIDGE_OV518:
3252 	case BRIDGE_OV518PLUS:
3253 		cam->cam_mode = ov518_vga_mode;
3254 		cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3255 		break;
3256 	case BRIDGE_OV519:
3257 		cam->cam_mode = ov519_vga_mode;
3258 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3259 		break;
3260 	case BRIDGE_OVFX2:
3261 		cam->cam_mode = ov519_vga_mode;
3262 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3263 		cam->bulk_size = OVFX2_BULK_SIZE;
3264 		cam->bulk_nurbs = MAX_NURBS;
3265 		cam->bulk = 1;
3266 		break;
3267 	case BRIDGE_W9968CF:
3268 		cam->cam_mode = w9968cf_vga_mode;
3269 		cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3270 		break;
3271 	}
3272 
3273 	sd->frame_rate = 15;
3274 
3275 	return 0;
3276 }
3277 
3278 /* this function is called at probe and resume time */
3279 static int sd_init(struct gspca_dev *gspca_dev)
3280 {
3281 	struct sd *sd = (struct sd *) gspca_dev;
3282 	struct cam *cam = &gspca_dev->cam;
3283 
3284 	switch (sd->bridge) {
3285 	case BRIDGE_OV511:
3286 	case BRIDGE_OV511PLUS:
3287 		ov511_configure(gspca_dev);
3288 		break;
3289 	case BRIDGE_OV518:
3290 	case BRIDGE_OV518PLUS:
3291 		ov518_configure(gspca_dev);
3292 		break;
3293 	case BRIDGE_OV519:
3294 		ov519_configure(sd);
3295 		break;
3296 	case BRIDGE_OVFX2:
3297 		ovfx2_configure(sd);
3298 		break;
3299 	case BRIDGE_W9968CF:
3300 		w9968cf_configure(sd);
3301 		break;
3302 	}
3303 
3304 	/* The OV519 must be more aggressive about sensor detection since
3305 	 * I2C write will never fail if the sensor is not present. We have
3306 	 * to try to initialize the sensor to detect its presence */
3307 	sd->sensor = -1;
3308 
3309 	/* Test for 76xx */
3310 	if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3311 		ov7xx0_configure(sd);
3312 
3313 	/* Test for 6xx0 */
3314 	} else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3315 		ov6xx0_configure(sd);
3316 
3317 	/* Test for 8xx0 */
3318 	} else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3319 		ov8xx0_configure(sd);
3320 
3321 	/* Test for 3xxx / 2xxx */
3322 	} else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3323 		ov_hires_configure(sd);
3324 	} else {
3325 		PERR("Can't determine sensor slave IDs\n");
3326 		goto error;
3327 	}
3328 
3329 	if (sd->sensor < 0)
3330 		goto error;
3331 
3332 	ov51x_led_control(sd, 0);	/* turn LED off */
3333 
3334 	switch (sd->bridge) {
3335 	case BRIDGE_OV511:
3336 	case BRIDGE_OV511PLUS:
3337 		if (sd->sif) {
3338 			cam->cam_mode = ov511_sif_mode;
3339 			cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3340 		}
3341 		break;
3342 	case BRIDGE_OV518:
3343 	case BRIDGE_OV518PLUS:
3344 		if (sd->sif) {
3345 			cam->cam_mode = ov518_sif_mode;
3346 			cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3347 		}
3348 		break;
3349 	case BRIDGE_OV519:
3350 		if (sd->sif) {
3351 			cam->cam_mode = ov519_sif_mode;
3352 			cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3353 		}
3354 		break;
3355 	case BRIDGE_OVFX2:
3356 		switch (sd->sensor) {
3357 		case SEN_OV2610:
3358 		case SEN_OV2610AE:
3359 			cam->cam_mode = ovfx2_ov2610_mode;
3360 			cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3361 			break;
3362 		case SEN_OV3610:
3363 			cam->cam_mode = ovfx2_ov3610_mode;
3364 			cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3365 			break;
3366 		case SEN_OV9600:
3367 			cam->cam_mode = ovfx2_ov9600_mode;
3368 			cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3369 			break;
3370 		default:
3371 			if (sd->sif) {
3372 				cam->cam_mode = ov519_sif_mode;
3373 				cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3374 			}
3375 			break;
3376 		}
3377 		break;
3378 	case BRIDGE_W9968CF:
3379 		if (sd->sif)
3380 			cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3381 
3382 		/* w9968cf needs initialisation once the sensor is known */
3383 		w9968cf_init(sd);
3384 		break;
3385 	}
3386 
3387 	/* initialize the sensor */
3388 	switch (sd->sensor) {
3389 	case SEN_OV2610:
3390 		write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3391 
3392 		/* Enable autogain, autoexpo, awb, bandfilter */
3393 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3394 		break;
3395 	case SEN_OV2610AE:
3396 		write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3397 
3398 		/* enable autoexpo */
3399 		i2c_w_mask(sd, 0x13, 0x05, 0x05);
3400 		break;
3401 	case SEN_OV3610:
3402 		write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3403 
3404 		/* Enable autogain, autoexpo, awb, bandfilter */
3405 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3406 		break;
3407 	case SEN_OV6620:
3408 		write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3409 		break;
3410 	case SEN_OV6630:
3411 	case SEN_OV66308AF:
3412 		write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3413 		break;
3414 	default:
3415 /*	case SEN_OV7610: */
3416 /*	case SEN_OV76BE: */
3417 		write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3418 		i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3419 		break;
3420 	case SEN_OV7620:
3421 	case SEN_OV7620AE:
3422 		write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3423 		break;
3424 	case SEN_OV7640:
3425 	case SEN_OV7648:
3426 		write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3427 		break;
3428 	case SEN_OV7660:
3429 		i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3430 		msleep(14);
3431 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3432 		write_regvals(sd, init_519_ov7660,
3433 				ARRAY_SIZE(init_519_ov7660));
3434 		write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3435 		sd->gspca_dev.curr_mode = 1;	/* 640x480 */
3436 		ov519_set_mode(sd);
3437 		ov519_set_fr(sd);
3438 		sd_reset_snapshot(gspca_dev);
3439 		ov51x_restart(sd);
3440 		ov51x_stop(sd);			/* not in win traces */
3441 		ov51x_led_control(sd, 0);
3442 		break;
3443 	case SEN_OV7670:
3444 		write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3445 		break;
3446 	case SEN_OV8610:
3447 		write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3448 		break;
3449 	case SEN_OV9600:
3450 		write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3451 
3452 		/* enable autoexpo */
3453 /*		i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3454 		break;
3455 	}
3456 	return gspca_dev->usb_err;
3457 error:
3458 	PERR("OV519 Config failed");
3459 	return -EINVAL;
3460 }
3461 
3462 /* function called at start time before URB creation */
3463 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3464 {
3465 	struct sd *sd = (struct sd *) gspca_dev;
3466 
3467 	switch (sd->bridge) {
3468 	case BRIDGE_OVFX2:
3469 		if (gspca_dev->width != 800)
3470 			gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3471 		else
3472 			gspca_dev->cam.bulk_size = 7 * 4096;
3473 		break;
3474 	}
3475 	return 0;
3476 }
3477 
3478 /* Set up the OV511/OV511+ with the given image parameters.
3479  *
3480  * Do not put any sensor-specific code in here (including I2C I/O functions)
3481  */
3482 static void ov511_mode_init_regs(struct sd *sd)
3483 {
3484 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3485 	int hsegs, vsegs, packet_size, fps, needed;
3486 	int interlaced = 0;
3487 	struct usb_host_interface *alt;
3488 	struct usb_interface *intf;
3489 
3490 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3491 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3492 	if (!alt) {
3493 		PERR("Couldn't get altsetting\n");
3494 		sd->gspca_dev.usb_err = -EIO;
3495 		return;
3496 	}
3497 
3498 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3499 	reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3500 
3501 	reg_w(sd, R511_CAM_UV_EN, 0x01);
3502 	reg_w(sd, R511_SNAP_UV_EN, 0x01);
3503 	reg_w(sd, R511_SNAP_OPTS, 0x03);
3504 
3505 	/* Here I'm assuming that snapshot size == image size.
3506 	 * I hope that's always true. --claudio
3507 	 */
3508 	hsegs = (sd->gspca_dev.width >> 3) - 1;
3509 	vsegs = (sd->gspca_dev.height >> 3) - 1;
3510 
3511 	reg_w(sd, R511_CAM_PXCNT, hsegs);
3512 	reg_w(sd, R511_CAM_LNCNT, vsegs);
3513 	reg_w(sd, R511_CAM_PXDIV, 0x00);
3514 	reg_w(sd, R511_CAM_LNDIV, 0x00);
3515 
3516 	/* YUV420, low pass filter on */
3517 	reg_w(sd, R511_CAM_OPTS, 0x03);
3518 
3519 	/* Snapshot additions */
3520 	reg_w(sd, R511_SNAP_PXCNT, hsegs);
3521 	reg_w(sd, R511_SNAP_LNCNT, vsegs);
3522 	reg_w(sd, R511_SNAP_PXDIV, 0x00);
3523 	reg_w(sd, R511_SNAP_LNDIV, 0x00);
3524 
3525 	/******** Set the framerate ********/
3526 	if (frame_rate > 0)
3527 		sd->frame_rate = frame_rate;
3528 
3529 	switch (sd->sensor) {
3530 	case SEN_OV6620:
3531 		/* No framerate control, doesn't like higher rates yet */
3532 		sd->clockdiv = 3;
3533 		break;
3534 
3535 	/* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3536 	   for more sensors we need to do this for them too */
3537 	case SEN_OV7620:
3538 	case SEN_OV7620AE:
3539 	case SEN_OV7640:
3540 	case SEN_OV7648:
3541 	case SEN_OV76BE:
3542 		if (sd->gspca_dev.width == 320)
3543 			interlaced = 1;
3544 		/* Fall through */
3545 	case SEN_OV6630:
3546 	case SEN_OV7610:
3547 	case SEN_OV7670:
3548 		switch (sd->frame_rate) {
3549 		case 30:
3550 		case 25:
3551 			/* Not enough bandwidth to do 640x480 @ 30 fps */
3552 			if (sd->gspca_dev.width != 640) {
3553 				sd->clockdiv = 0;
3554 				break;
3555 			}
3556 			/* Fall through for 640x480 case */
3557 		default:
3558 /*		case 20: */
3559 /*		case 15: */
3560 			sd->clockdiv = 1;
3561 			break;
3562 		case 10:
3563 			sd->clockdiv = 2;
3564 			break;
3565 		case 5:
3566 			sd->clockdiv = 5;
3567 			break;
3568 		}
3569 		if (interlaced) {
3570 			sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3571 			/* Higher then 10 does not work */
3572 			if (sd->clockdiv > 10)
3573 				sd->clockdiv = 10;
3574 		}
3575 		break;
3576 
3577 	case SEN_OV8610:
3578 		/* No framerate control ?? */
3579 		sd->clockdiv = 0;
3580 		break;
3581 	}
3582 
3583 	/* Check if we have enough bandwidth to disable compression */
3584 	fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3585 	needed = fps * sd->gspca_dev.width * sd->gspca_dev.height * 3 / 2;
3586 	/* 1000 isoc packets/sec */
3587 	if (needed > 1000 * packet_size) {
3588 		/* Enable Y and UV quantization and compression */
3589 		reg_w(sd, R511_COMP_EN, 0x07);
3590 		reg_w(sd, R511_COMP_LUT_EN, 0x03);
3591 	} else {
3592 		reg_w(sd, R511_COMP_EN, 0x06);
3593 		reg_w(sd, R511_COMP_LUT_EN, 0x00);
3594 	}
3595 
3596 	reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3597 	reg_w(sd, R51x_SYS_RESET, 0);
3598 }
3599 
3600 /* Sets up the OV518/OV518+ with the given image parameters
3601  *
3602  * OV518 needs a completely different approach, until we can figure out what
3603  * the individual registers do. Also, only 15 FPS is supported now.
3604  *
3605  * Do not put any sensor-specific code in here (including I2C I/O functions)
3606  */
3607 static void ov518_mode_init_regs(struct sd *sd)
3608 {
3609 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3610 	int hsegs, vsegs, packet_size;
3611 	struct usb_host_interface *alt;
3612 	struct usb_interface *intf;
3613 
3614 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3615 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3616 	if (!alt) {
3617 		PERR("Couldn't get altsetting\n");
3618 		sd->gspca_dev.usb_err = -EIO;
3619 		return;
3620 	}
3621 
3622 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3623 	ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3624 
3625 	/******** Set the mode ********/
3626 	reg_w(sd, 0x2b, 0);
3627 	reg_w(sd, 0x2c, 0);
3628 	reg_w(sd, 0x2d, 0);
3629 	reg_w(sd, 0x2e, 0);
3630 	reg_w(sd, 0x3b, 0);
3631 	reg_w(sd, 0x3c, 0);
3632 	reg_w(sd, 0x3d, 0);
3633 	reg_w(sd, 0x3e, 0);
3634 
3635 	if (sd->bridge == BRIDGE_OV518) {
3636 		/* Set 8-bit (YVYU) input format */
3637 		reg_w_mask(sd, 0x20, 0x08, 0x08);
3638 
3639 		/* Set 12-bit (4:2:0) output format */
3640 		reg_w_mask(sd, 0x28, 0x80, 0xf0);
3641 		reg_w_mask(sd, 0x38, 0x80, 0xf0);
3642 	} else {
3643 		reg_w(sd, 0x28, 0x80);
3644 		reg_w(sd, 0x38, 0x80);
3645 	}
3646 
3647 	hsegs = sd->gspca_dev.width / 16;
3648 	vsegs = sd->gspca_dev.height / 4;
3649 
3650 	reg_w(sd, 0x29, hsegs);
3651 	reg_w(sd, 0x2a, vsegs);
3652 
3653 	reg_w(sd, 0x39, hsegs);
3654 	reg_w(sd, 0x3a, vsegs);
3655 
3656 	/* Windows driver does this here; who knows why */
3657 	reg_w(sd, 0x2f, 0x80);
3658 
3659 	/******** Set the framerate ********/
3660 	sd->clockdiv = 1;
3661 
3662 	/* Mode independent, but framerate dependent, regs */
3663 	/* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3664 	reg_w(sd, 0x51, 0x04);
3665 	reg_w(sd, 0x22, 0x18);
3666 	reg_w(sd, 0x23, 0xff);
3667 
3668 	if (sd->bridge == BRIDGE_OV518PLUS) {
3669 		switch (sd->sensor) {
3670 		case SEN_OV7620AE:
3671 			if (sd->gspca_dev.width == 320) {
3672 				reg_w(sd, 0x20, 0x00);
3673 				reg_w(sd, 0x21, 0x19);
3674 			} else {
3675 				reg_w(sd, 0x20, 0x60);
3676 				reg_w(sd, 0x21, 0x1f);
3677 			}
3678 			break;
3679 		case SEN_OV7620:
3680 			reg_w(sd, 0x20, 0x00);
3681 			reg_w(sd, 0x21, 0x19);
3682 			break;
3683 		default:
3684 			reg_w(sd, 0x21, 0x19);
3685 		}
3686 	} else
3687 		reg_w(sd, 0x71, 0x17);	/* Compression-related? */
3688 
3689 	/* FIXME: Sensor-specific */
3690 	/* Bit 5 is what matters here. Of course, it is "reserved" */
3691 	i2c_w(sd, 0x54, 0x23);
3692 
3693 	reg_w(sd, 0x2f, 0x80);
3694 
3695 	if (sd->bridge == BRIDGE_OV518PLUS) {
3696 		reg_w(sd, 0x24, 0x94);
3697 		reg_w(sd, 0x25, 0x90);
3698 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3699 		ov518_reg_w32(sd, 0xc6,    540, 2);	/* 21ch   */
3700 		ov518_reg_w32(sd, 0xc7,    540, 2);	/* 21ch   */
3701 		ov518_reg_w32(sd, 0xc8,    108, 2);	/* 6ch    */
3702 		ov518_reg_w32(sd, 0xca, 131098, 3);	/* 2001ah */
3703 		ov518_reg_w32(sd, 0xcb,    532, 2);	/* 214h   */
3704 		ov518_reg_w32(sd, 0xcc,   2400, 2);	/* 960h   */
3705 		ov518_reg_w32(sd, 0xcd,     32, 2);	/* 20h    */
3706 		ov518_reg_w32(sd, 0xce,    608, 2);	/* 260h   */
3707 	} else {
3708 		reg_w(sd, 0x24, 0x9f);
3709 		reg_w(sd, 0x25, 0x90);
3710 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3711 		ov518_reg_w32(sd, 0xc6,    381, 2);	/* 17dh   */
3712 		ov518_reg_w32(sd, 0xc7,    381, 2);	/* 17dh   */
3713 		ov518_reg_w32(sd, 0xc8,    128, 2);	/* 80h    */
3714 		ov518_reg_w32(sd, 0xca, 183331, 3);	/* 2cc23h */
3715 		ov518_reg_w32(sd, 0xcb,    746, 2);	/* 2eah   */
3716 		ov518_reg_w32(sd, 0xcc,   1750, 2);	/* 6d6h   */
3717 		ov518_reg_w32(sd, 0xcd,     45, 2);	/* 2dh    */
3718 		ov518_reg_w32(sd, 0xce,    851, 2);	/* 353h   */
3719 	}
3720 
3721 	reg_w(sd, 0x2f, 0x80);
3722 }
3723 
3724 /* Sets up the OV519 with the given image parameters
3725  *
3726  * OV519 needs a completely different approach, until we can figure out what
3727  * the individual registers do.
3728  *
3729  * Do not put any sensor-specific code in here (including I2C I/O functions)
3730  */
3731 static void ov519_mode_init_regs(struct sd *sd)
3732 {
3733 	static const struct ov_regvals mode_init_519_ov7670[] = {
3734 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3735 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3736 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3737 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3738 		{ 0xa3,	0x18 },
3739 		{ 0xa4,	0x04 },
3740 		{ 0xa5,	0x28 },
3741 		{ 0x37,	0x00 },	/* SetUsbInit */
3742 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3743 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3744 		{ 0x20,	0x0c },
3745 		{ 0x21,	0x38 },
3746 		{ 0x22,	0x1d },
3747 		{ 0x17,	0x50 }, /* undocumented */
3748 		{ 0x37,	0x00 }, /* undocumented */
3749 		{ 0x40,	0xff }, /* I2C timeout counter */
3750 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3751 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3752 		{ 0xff,	0x00 }, /* undocumented */
3753 		/* windows reads 0x55 at this point, why? */
3754 	};
3755 
3756 	static const struct ov_regvals mode_init_519[] = {
3757 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3758 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3759 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3760 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3761 		{ 0xa3,	0x18 },
3762 		{ 0xa4,	0x04 },
3763 		{ 0xa5,	0x28 },
3764 		{ 0x37,	0x00 },	/* SetUsbInit */
3765 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3766 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3767 		{ 0x22,	0x1d },
3768 		{ 0x17,	0x50 }, /* undocumented */
3769 		{ 0x37,	0x00 }, /* undocumented */
3770 		{ 0x40,	0xff }, /* I2C timeout counter */
3771 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3772 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3773 		{ 0xff,	0x00 }, /* undocumented */
3774 		/* windows reads 0x55 at this point, why? */
3775 	};
3776 
3777 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3778 
3779 	/******** Set the mode ********/
3780 	switch (sd->sensor) {
3781 	default:
3782 		write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3783 		if (sd->sensor == SEN_OV7640 ||
3784 		    sd->sensor == SEN_OV7648) {
3785 			/* Select 8-bit input mode */
3786 			reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3787 		}
3788 		break;
3789 	case SEN_OV7660:
3790 		return;		/* done by ov519_set_mode/fr() */
3791 	case SEN_OV7670:
3792 		write_regvals(sd, mode_init_519_ov7670,
3793 				ARRAY_SIZE(mode_init_519_ov7670));
3794 		break;
3795 	}
3796 
3797 	reg_w(sd, OV519_R10_H_SIZE,	sd->gspca_dev.width >> 4);
3798 	reg_w(sd, OV519_R11_V_SIZE,	sd->gspca_dev.height >> 3);
3799 	if (sd->sensor == SEN_OV7670 &&
3800 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3801 		reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3802 	else if (sd->sensor == SEN_OV7648 &&
3803 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3804 		reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3805 	else
3806 		reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3807 	reg_w(sd, OV519_R13_X_OFFSETH,	0x00);
3808 	reg_w(sd, OV519_R14_Y_OFFSETL,	0x00);
3809 	reg_w(sd, OV519_R15_Y_OFFSETH,	0x00);
3810 	reg_w(sd, OV519_R16_DIVIDER,	0x00);
3811 	reg_w(sd, OV519_R25_FORMAT,	0x03); /* YUV422 */
3812 	reg_w(sd, 0x26,			0x00); /* Undocumented */
3813 
3814 	/******** Set the framerate ********/
3815 	if (frame_rate > 0)
3816 		sd->frame_rate = frame_rate;
3817 
3818 /* FIXME: These are only valid at the max resolution. */
3819 	sd->clockdiv = 0;
3820 	switch (sd->sensor) {
3821 	case SEN_OV7640:
3822 	case SEN_OV7648:
3823 		switch (sd->frame_rate) {
3824 		default:
3825 /*		case 30: */
3826 			reg_w(sd, 0xa4, 0x0c);
3827 			reg_w(sd, 0x23, 0xff);
3828 			break;
3829 		case 25:
3830 			reg_w(sd, 0xa4, 0x0c);
3831 			reg_w(sd, 0x23, 0x1f);
3832 			break;
3833 		case 20:
3834 			reg_w(sd, 0xa4, 0x0c);
3835 			reg_w(sd, 0x23, 0x1b);
3836 			break;
3837 		case 15:
3838 			reg_w(sd, 0xa4, 0x04);
3839 			reg_w(sd, 0x23, 0xff);
3840 			sd->clockdiv = 1;
3841 			break;
3842 		case 10:
3843 			reg_w(sd, 0xa4, 0x04);
3844 			reg_w(sd, 0x23, 0x1f);
3845 			sd->clockdiv = 1;
3846 			break;
3847 		case 5:
3848 			reg_w(sd, 0xa4, 0x04);
3849 			reg_w(sd, 0x23, 0x1b);
3850 			sd->clockdiv = 1;
3851 			break;
3852 		}
3853 		break;
3854 	case SEN_OV8610:
3855 		switch (sd->frame_rate) {
3856 		default:	/* 15 fps */
3857 /*		case 15: */
3858 			reg_w(sd, 0xa4, 0x06);
3859 			reg_w(sd, 0x23, 0xff);
3860 			break;
3861 		case 10:
3862 			reg_w(sd, 0xa4, 0x06);
3863 			reg_w(sd, 0x23, 0x1f);
3864 			break;
3865 		case 5:
3866 			reg_w(sd, 0xa4, 0x06);
3867 			reg_w(sd, 0x23, 0x1b);
3868 			break;
3869 		}
3870 		break;
3871 	case SEN_OV7670:		/* guesses, based on 7640 */
3872 		PDEBUG(D_STREAM, "Setting framerate to %d fps",
3873 				 (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3874 		reg_w(sd, 0xa4, 0x10);
3875 		switch (sd->frame_rate) {
3876 		case 30:
3877 			reg_w(sd, 0x23, 0xff);
3878 			break;
3879 		case 20:
3880 			reg_w(sd, 0x23, 0x1b);
3881 			break;
3882 		default:
3883 /*		case 15: */
3884 			reg_w(sd, 0x23, 0xff);
3885 			sd->clockdiv = 1;
3886 			break;
3887 		}
3888 		break;
3889 	}
3890 }
3891 
3892 static void mode_init_ov_sensor_regs(struct sd *sd)
3893 {
3894 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3895 	int qvga, xstart, xend, ystart, yend;
3896 	u8 v;
3897 
3898 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3899 
3900 	/******** Mode (VGA/QVGA) and sensor specific regs ********/
3901 	switch (sd->sensor) {
3902 	case SEN_OV2610:
3903 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3904 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3905 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3906 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3907 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3908 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3909 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3910 		return;
3911 	case SEN_OV2610AE: {
3912 		u8 v;
3913 
3914 		/* frame rates:
3915 		 *	10fps / 5 fps for 1600x1200
3916 		 *	40fps / 20fps for 800x600
3917 		 */
3918 		v = 80;
3919 		if (qvga) {
3920 			if (sd->frame_rate < 25)
3921 				v = 0x81;
3922 		} else {
3923 			if (sd->frame_rate < 10)
3924 				v = 0x81;
3925 		}
3926 		i2c_w(sd, 0x11, v);
3927 		i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3928 		return;
3929 	    }
3930 	case SEN_OV3610:
3931 		if (qvga) {
3932 			xstart = (1040 - gspca_dev->width) / 2 + (0x1f << 4);
3933 			ystart = (776 - gspca_dev->height) / 2;
3934 		} else {
3935 			xstart = (2076 - gspca_dev->width) / 2 + (0x10 << 4);
3936 			ystart = (1544 - gspca_dev->height) / 2;
3937 		}
3938 		xend = xstart + gspca_dev->width;
3939 		yend = ystart + gspca_dev->height;
3940 		/* Writing to the COMH register resets the other windowing regs
3941 		   to their default values, so we must do this first. */
3942 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3943 		i2c_w_mask(sd, 0x32,
3944 			   (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3945 			   0x3f);
3946 		i2c_w_mask(sd, 0x03,
3947 			   (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3948 			   0x0f);
3949 		i2c_w(sd, 0x17, xstart >> 4);
3950 		i2c_w(sd, 0x18, xend >> 4);
3951 		i2c_w(sd, 0x19, ystart >> 3);
3952 		i2c_w(sd, 0x1a, yend >> 3);
3953 		return;
3954 	case SEN_OV8610:
3955 		/* For OV8610 qvga means qsvga */
3956 		i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3957 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3958 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3959 		i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3960 		i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3961 		break;
3962 	case SEN_OV7610:
3963 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3964 		i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3965 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3966 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3967 		break;
3968 	case SEN_OV7620:
3969 	case SEN_OV7620AE:
3970 	case SEN_OV76BE:
3971 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3972 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3973 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3974 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3975 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3976 		i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3977 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3978 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3979 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3980 		if (sd->sensor == SEN_OV76BE)
3981 			i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3982 		break;
3983 	case SEN_OV7640:
3984 	case SEN_OV7648:
3985 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3986 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3987 		/* Setting this undocumented bit in qvga mode removes a very
3988 		   annoying vertical shaking of the image */
3989 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3990 		/* Unknown */
3991 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3992 		/* Allow higher automatic gain (to allow higher framerates) */
3993 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3994 		i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3995 		break;
3996 	case SEN_OV7670:
3997 		/* set COM7_FMT_VGA or COM7_FMT_QVGA
3998 		 * do we need to set anything else?
3999 		 *	HSTART etc are set in set_ov_sensor_window itself */
4000 		i2c_w_mask(sd, OV7670_R12_COM7,
4001 			 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
4002 			 OV7670_COM7_FMT_MASK);
4003 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4004 		i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4005 				OV7670_COM8_AWB);
4006 		if (qvga) {		/* QVGA from ov7670.c by
4007 					 * Jonathan Corbet */
4008 			xstart = 164;
4009 			xend = 28;
4010 			ystart = 14;
4011 			yend = 494;
4012 		} else {		/* VGA */
4013 			xstart = 158;
4014 			xend = 14;
4015 			ystart = 10;
4016 			yend = 490;
4017 		}
4018 		/* OV7670 hardware window registers are split across
4019 		 * multiple locations */
4020 		i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4021 		i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4022 		v = i2c_r(sd, OV7670_R32_HREF);
4023 		v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4024 		msleep(10);	/* need to sleep between read and write to
4025 				 * same reg! */
4026 		i2c_w(sd, OV7670_R32_HREF, v);
4027 
4028 		i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4029 		i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4030 		v = i2c_r(sd, OV7670_R03_VREF);
4031 		v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4032 		msleep(10);	/* need to sleep between read and write to
4033 				 * same reg! */
4034 		i2c_w(sd, OV7670_R03_VREF, v);
4035 		break;
4036 	case SEN_OV6620:
4037 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4038 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4039 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4040 		break;
4041 	case SEN_OV6630:
4042 	case SEN_OV66308AF:
4043 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4044 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4045 		break;
4046 	case SEN_OV9600: {
4047 		const struct ov_i2c_regvals *vals;
4048 		static const struct ov_i2c_regvals sxga_15[] = {
4049 			{0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4050 		};
4051 		static const struct ov_i2c_regvals sxga_7_5[] = {
4052 			{0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4053 		};
4054 		static const struct ov_i2c_regvals vga_30[] = {
4055 			{0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4056 		};
4057 		static const struct ov_i2c_regvals vga_15[] = {
4058 			{0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4059 		};
4060 
4061 		/* frame rates:
4062 		 *	15fps / 7.5 fps for 1280x1024
4063 		 *	30fps / 15fps for 640x480
4064 		 */
4065 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4066 		if (qvga)
4067 			vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4068 		else
4069 			vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4070 		write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4071 		return;
4072 	    }
4073 	default:
4074 		return;
4075 	}
4076 
4077 	/******** Clock programming ********/
4078 	i2c_w(sd, 0x11, sd->clockdiv);
4079 }
4080 
4081 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4082 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
4083 {
4084 	struct sd *sd = (struct sd *) gspca_dev;
4085 
4086 	if (sd->gspca_dev.streaming)
4087 		reg_w(sd, OV519_R51_RESET1, 0x0f);	/* block stream */
4088 	i2c_w_mask(sd, OV7670_R1E_MVFP,
4089 		OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip,
4090 		OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4091 	if (sd->gspca_dev.streaming)
4092 		reg_w(sd, OV519_R51_RESET1, 0x00);	/* restart stream */
4093 }
4094 
4095 static void set_ov_sensor_window(struct sd *sd)
4096 {
4097 	struct gspca_dev *gspca_dev;
4098 	int qvga, crop;
4099 	int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4100 
4101 	/* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4102 	switch (sd->sensor) {
4103 	case SEN_OV2610:
4104 	case SEN_OV2610AE:
4105 	case SEN_OV3610:
4106 	case SEN_OV7670:
4107 	case SEN_OV9600:
4108 		mode_init_ov_sensor_regs(sd);
4109 		return;
4110 	case SEN_OV7660:
4111 		ov519_set_mode(sd);
4112 		ov519_set_fr(sd);
4113 		return;
4114 	}
4115 
4116 	gspca_dev = &sd->gspca_dev;
4117 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4118 	crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4119 
4120 	/* The different sensor ICs handle setting up of window differently.
4121 	 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4122 	switch (sd->sensor) {
4123 	case SEN_OV8610:
4124 		hwsbase = 0x1e;
4125 		hwebase = 0x1e;
4126 		vwsbase = 0x02;
4127 		vwebase = 0x02;
4128 		break;
4129 	case SEN_OV7610:
4130 	case SEN_OV76BE:
4131 		hwsbase = 0x38;
4132 		hwebase = 0x3a;
4133 		vwsbase = vwebase = 0x05;
4134 		break;
4135 	case SEN_OV6620:
4136 	case SEN_OV6630:
4137 	case SEN_OV66308AF:
4138 		hwsbase = 0x38;
4139 		hwebase = 0x3a;
4140 		vwsbase = 0x05;
4141 		vwebase = 0x06;
4142 		if (sd->sensor == SEN_OV66308AF && qvga)
4143 			/* HDG: this fixes U and V getting swapped */
4144 			hwsbase++;
4145 		if (crop) {
4146 			hwsbase += 8;
4147 			hwebase += 8;
4148 			vwsbase += 11;
4149 			vwebase += 11;
4150 		}
4151 		break;
4152 	case SEN_OV7620:
4153 	case SEN_OV7620AE:
4154 		hwsbase = 0x2f;		/* From 7620.SET (spec is wrong) */
4155 		hwebase = 0x2f;
4156 		vwsbase = vwebase = 0x05;
4157 		break;
4158 	case SEN_OV7640:
4159 	case SEN_OV7648:
4160 		hwsbase = 0x1a;
4161 		hwebase = 0x1a;
4162 		vwsbase = vwebase = 0x03;
4163 		break;
4164 	default:
4165 		return;
4166 	}
4167 
4168 	switch (sd->sensor) {
4169 	case SEN_OV6620:
4170 	case SEN_OV6630:
4171 	case SEN_OV66308AF:
4172 		if (qvga) {		/* QCIF */
4173 			hwscale = 0;
4174 			vwscale = 0;
4175 		} else {		/* CIF */
4176 			hwscale = 1;
4177 			vwscale = 1;	/* The datasheet says 0;
4178 					 * it's wrong */
4179 		}
4180 		break;
4181 	case SEN_OV8610:
4182 		if (qvga) {		/* QSVGA */
4183 			hwscale = 1;
4184 			vwscale = 1;
4185 		} else {		/* SVGA */
4186 			hwscale = 2;
4187 			vwscale = 2;
4188 		}
4189 		break;
4190 	default:			/* SEN_OV7xx0 */
4191 		if (qvga) {		/* QVGA */
4192 			hwscale = 1;
4193 			vwscale = 0;
4194 		} else {		/* VGA */
4195 			hwscale = 2;
4196 			vwscale = 1;
4197 		}
4198 	}
4199 
4200 	mode_init_ov_sensor_regs(sd);
4201 
4202 	i2c_w(sd, 0x17, hwsbase);
4203 	i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4204 	i2c_w(sd, 0x19, vwsbase);
4205 	i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4206 }
4207 
4208 /* -- start the camera -- */
4209 static int sd_start(struct gspca_dev *gspca_dev)
4210 {
4211 	struct sd *sd = (struct sd *) gspca_dev;
4212 
4213 	/* Default for most bridges, allow bridge_mode_init_regs to override */
4214 	sd->sensor_width = sd->gspca_dev.width;
4215 	sd->sensor_height = sd->gspca_dev.height;
4216 
4217 	switch (sd->bridge) {
4218 	case BRIDGE_OV511:
4219 	case BRIDGE_OV511PLUS:
4220 		ov511_mode_init_regs(sd);
4221 		break;
4222 	case BRIDGE_OV518:
4223 	case BRIDGE_OV518PLUS:
4224 		ov518_mode_init_regs(sd);
4225 		break;
4226 	case BRIDGE_OV519:
4227 		ov519_mode_init_regs(sd);
4228 		break;
4229 	/* case BRIDGE_OVFX2: nothing to do */
4230 	case BRIDGE_W9968CF:
4231 		w9968cf_mode_init_regs(sd);
4232 		break;
4233 	}
4234 
4235 	set_ov_sensor_window(sd);
4236 
4237 	/* Force clear snapshot state in case the snapshot button was
4238 	   pressed while we weren't streaming */
4239 	sd->snapshot_needs_reset = 1;
4240 	sd_reset_snapshot(gspca_dev);
4241 
4242 	sd->first_frame = 3;
4243 
4244 	ov51x_restart(sd);
4245 	ov51x_led_control(sd, 1);
4246 	return gspca_dev->usb_err;
4247 }
4248 
4249 static void sd_stopN(struct gspca_dev *gspca_dev)
4250 {
4251 	struct sd *sd = (struct sd *) gspca_dev;
4252 
4253 	ov51x_stop(sd);
4254 	ov51x_led_control(sd, 0);
4255 }
4256 
4257 static void sd_stop0(struct gspca_dev *gspca_dev)
4258 {
4259 	struct sd *sd = (struct sd *) gspca_dev;
4260 
4261 	if (!sd->gspca_dev.present)
4262 		return;
4263 	if (sd->bridge == BRIDGE_W9968CF)
4264 		w9968cf_stop0(sd);
4265 
4266 #if IS_ENABLED(CONFIG_INPUT)
4267 	/* If the last button state is pressed, release it now! */
4268 	if (sd->snapshot_pressed) {
4269 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4270 		input_sync(gspca_dev->input_dev);
4271 		sd->snapshot_pressed = 0;
4272 	}
4273 #endif
4274 	if (sd->bridge == BRIDGE_OV519)
4275 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4276 }
4277 
4278 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4279 {
4280 	struct sd *sd = (struct sd *) gspca_dev;
4281 
4282 	if (sd->snapshot_pressed != state) {
4283 #if IS_ENABLED(CONFIG_INPUT)
4284 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4285 		input_sync(gspca_dev->input_dev);
4286 #endif
4287 		if (state)
4288 			sd->snapshot_needs_reset = 1;
4289 
4290 		sd->snapshot_pressed = state;
4291 	} else {
4292 		/* On the ov511 / ov519 we need to reset the button state
4293 		   multiple times, as resetting does not work as long as the
4294 		   button stays pressed */
4295 		switch (sd->bridge) {
4296 		case BRIDGE_OV511:
4297 		case BRIDGE_OV511PLUS:
4298 		case BRIDGE_OV519:
4299 			if (state)
4300 				sd->snapshot_needs_reset = 1;
4301 			break;
4302 		}
4303 	}
4304 }
4305 
4306 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4307 			u8 *in,			/* isoc packet */
4308 			int len)		/* iso packet length */
4309 {
4310 	struct sd *sd = (struct sd *) gspca_dev;
4311 
4312 	/* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4313 	 * byte non-zero. The EOF packet has image width/height in the
4314 	 * 10th and 11th bytes. The 9th byte is given as follows:
4315 	 *
4316 	 * bit 7: EOF
4317 	 *     6: compression enabled
4318 	 *     5: 422/420/400 modes
4319 	 *     4: 422/420/400 modes
4320 	 *     3: 1
4321 	 *     2: snapshot button on
4322 	 *     1: snapshot frame
4323 	 *     0: even/odd field
4324 	 */
4325 	if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4326 	    (in[8] & 0x08)) {
4327 		ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4328 		if (in[8] & 0x80) {
4329 			/* Frame end */
4330 			if ((in[9] + 1) * 8 != gspca_dev->width ||
4331 			    (in[10] + 1) * 8 != gspca_dev->height) {
4332 				PERR("Invalid frame size, got: %dx%d,"
4333 					" requested: %dx%d\n",
4334 					(in[9] + 1) * 8, (in[10] + 1) * 8,
4335 					gspca_dev->width, gspca_dev->height);
4336 				gspca_dev->last_packet_type = DISCARD_PACKET;
4337 				return;
4338 			}
4339 			/* Add 11 byte footer to frame, might be useful */
4340 			gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4341 			return;
4342 		} else {
4343 			/* Frame start */
4344 			gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4345 			sd->packet_nr = 0;
4346 		}
4347 	}
4348 
4349 	/* Ignore the packet number */
4350 	len--;
4351 
4352 	/* intermediate packet */
4353 	gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4354 }
4355 
4356 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4357 			u8 *data,			/* isoc packet */
4358 			int len)			/* iso packet length */
4359 {
4360 	struct sd *sd = (struct sd *) gspca_dev;
4361 
4362 	/* A false positive here is likely, until OVT gives me
4363 	 * the definitive SOF/EOF format */
4364 	if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4365 		ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4366 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4367 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4368 		sd->packet_nr = 0;
4369 	}
4370 
4371 	if (gspca_dev->last_packet_type == DISCARD_PACKET)
4372 		return;
4373 
4374 	/* Does this device use packet numbers ? */
4375 	if (len & 7) {
4376 		len--;
4377 		if (sd->packet_nr == data[len])
4378 			sd->packet_nr++;
4379 		/* The last few packets of the frame (which are all 0's
4380 		   except that they may contain part of the footer), are
4381 		   numbered 0 */
4382 		else if (sd->packet_nr == 0 || data[len]) {
4383 			PERR("Invalid packet nr: %d (expect: %d)",
4384 				(int)data[len], (int)sd->packet_nr);
4385 			gspca_dev->last_packet_type = DISCARD_PACKET;
4386 			return;
4387 		}
4388 	}
4389 
4390 	/* intermediate packet */
4391 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4392 }
4393 
4394 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4395 			u8 *data,			/* isoc packet */
4396 			int len)			/* iso packet length */
4397 {
4398 	/* Header of ov519 is 16 bytes:
4399 	 *     Byte     Value      Description
4400 	 *	0	0xff	magic
4401 	 *	1	0xff	magic
4402 	 *	2	0xff	magic
4403 	 *	3	0xXX	0x50 = SOF, 0x51 = EOF
4404 	 *	9	0xXX	0x01 initial frame without data,
4405 	 *			0x00 standard frame with image
4406 	 *	14	Lo	in EOF: length of image data / 8
4407 	 *	15	Hi
4408 	 */
4409 
4410 	if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4411 		switch (data[3]) {
4412 		case 0x50:		/* start of frame */
4413 			/* Don't check the button state here, as the state
4414 			   usually (always ?) changes at EOF and checking it
4415 			   here leads to unnecessary snapshot state resets. */
4416 #define HDRSZ 16
4417 			data += HDRSZ;
4418 			len -= HDRSZ;
4419 #undef HDRSZ
4420 			if (data[0] == 0xff || data[1] == 0xd8)
4421 				gspca_frame_add(gspca_dev, FIRST_PACKET,
4422 						data, len);
4423 			else
4424 				gspca_dev->last_packet_type = DISCARD_PACKET;
4425 			return;
4426 		case 0x51:		/* end of frame */
4427 			ov51x_handle_button(gspca_dev, data[11] & 1);
4428 			if (data[9] != 0)
4429 				gspca_dev->last_packet_type = DISCARD_PACKET;
4430 			gspca_frame_add(gspca_dev, LAST_PACKET,
4431 					NULL, 0);
4432 			return;
4433 		}
4434 	}
4435 
4436 	/* intermediate packet */
4437 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4438 }
4439 
4440 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4441 			u8 *data,			/* isoc packet */
4442 			int len)			/* iso packet length */
4443 {
4444 	struct sd *sd = (struct sd *) gspca_dev;
4445 
4446 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4447 
4448 	/* A short read signals EOF */
4449 	if (len < gspca_dev->cam.bulk_size) {
4450 		/* If the frame is short, and it is one of the first ones
4451 		   the sensor and bridge are still syncing, so drop it. */
4452 		if (sd->first_frame) {
4453 			sd->first_frame--;
4454 			if (gspca_dev->image_len <
4455 				  sd->gspca_dev.width * sd->gspca_dev.height)
4456 				gspca_dev->last_packet_type = DISCARD_PACKET;
4457 		}
4458 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4459 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4460 	}
4461 }
4462 
4463 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4464 			u8 *data,			/* isoc packet */
4465 			int len)			/* iso packet length */
4466 {
4467 	struct sd *sd = (struct sd *) gspca_dev;
4468 
4469 	switch (sd->bridge) {
4470 	case BRIDGE_OV511:
4471 	case BRIDGE_OV511PLUS:
4472 		ov511_pkt_scan(gspca_dev, data, len);
4473 		break;
4474 	case BRIDGE_OV518:
4475 	case BRIDGE_OV518PLUS:
4476 		ov518_pkt_scan(gspca_dev, data, len);
4477 		break;
4478 	case BRIDGE_OV519:
4479 		ov519_pkt_scan(gspca_dev, data, len);
4480 		break;
4481 	case BRIDGE_OVFX2:
4482 		ovfx2_pkt_scan(gspca_dev, data, len);
4483 		break;
4484 	case BRIDGE_W9968CF:
4485 		w9968cf_pkt_scan(gspca_dev, data, len);
4486 		break;
4487 	}
4488 }
4489 
4490 /* -- management routines -- */
4491 
4492 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
4493 {
4494 	struct sd *sd = (struct sd *) gspca_dev;
4495 	static const struct ov_i2c_regvals brit_7660[][7] = {
4496 		{{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4497 			{0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4498 		{{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4499 			{0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4500 		{{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4501 			{0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4502 		{{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4503 			{0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4504 		{{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4505 			{0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4506 		{{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4507 			{0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4508 		{{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4509 			{0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4510 	};
4511 
4512 	switch (sd->sensor) {
4513 	case SEN_OV8610:
4514 	case SEN_OV7610:
4515 	case SEN_OV76BE:
4516 	case SEN_OV6620:
4517 	case SEN_OV6630:
4518 	case SEN_OV66308AF:
4519 	case SEN_OV7640:
4520 	case SEN_OV7648:
4521 		i2c_w(sd, OV7610_REG_BRT, val);
4522 		break;
4523 	case SEN_OV7620:
4524 	case SEN_OV7620AE:
4525 		i2c_w(sd, OV7610_REG_BRT, val);
4526 		break;
4527 	case SEN_OV7660:
4528 		write_i2c_regvals(sd, brit_7660[val],
4529 				ARRAY_SIZE(brit_7660[0]));
4530 		break;
4531 	case SEN_OV7670:
4532 /*win trace
4533  *		i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4534 		i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4535 		break;
4536 	}
4537 }
4538 
4539 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
4540 {
4541 	struct sd *sd = (struct sd *) gspca_dev;
4542 	static const struct ov_i2c_regvals contrast_7660[][31] = {
4543 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4544 		 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4545 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4546 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4547 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4548 		 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4549 		 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4550 		 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4551 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4552 		 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4553 		 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4554 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4555 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4556 		 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4557 		 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4558 		 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4559 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4560 		 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4561 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4562 		 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4563 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4564 		 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4565 		 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4566 		 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4567 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4568 		 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4569 		 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4570 		 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4571 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4572 		 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4573 		 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4574 		 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4575 		{{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4576 		 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4577 		 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4578 		 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4579 		 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4580 		 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4581 		 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4582 		 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4583 		{{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4584 		 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4585 		 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4586 		 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4587 		 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4588 		 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4589 		 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4590 		 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4591 		{{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4592 		 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4593 		 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4594 		 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4595 		 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4596 		 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4597 		 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4598 		 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4599 	};
4600 
4601 	switch (sd->sensor) {
4602 	case SEN_OV7610:
4603 	case SEN_OV6620:
4604 		i2c_w(sd, OV7610_REG_CNT, val);
4605 		break;
4606 	case SEN_OV6630:
4607 	case SEN_OV66308AF:
4608 		i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4609 		break;
4610 	case SEN_OV8610: {
4611 		static const u8 ctab[] = {
4612 			0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4613 		};
4614 
4615 		/* Use Y gamma control instead. Bit 0 enables it. */
4616 		i2c_w(sd, 0x64, ctab[val >> 5]);
4617 		break;
4618 	    }
4619 	case SEN_OV7620:
4620 	case SEN_OV7620AE: {
4621 		static const u8 ctab[] = {
4622 			0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4623 			0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4624 		};
4625 
4626 		/* Use Y gamma control instead. Bit 0 enables it. */
4627 		i2c_w(sd, 0x64, ctab[val >> 4]);
4628 		break;
4629 	    }
4630 	case SEN_OV7660:
4631 		write_i2c_regvals(sd, contrast_7660[val],
4632 					ARRAY_SIZE(contrast_7660[0]));
4633 		break;
4634 	case SEN_OV7670:
4635 		/* check that this isn't just the same as ov7610 */
4636 		i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4637 		break;
4638 	}
4639 }
4640 
4641 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
4642 {
4643 	struct sd *sd = (struct sd *) gspca_dev;
4644 
4645 	i2c_w(sd, 0x10, val);
4646 }
4647 
4648 static void setcolors(struct gspca_dev *gspca_dev, s32 val)
4649 {
4650 	struct sd *sd = (struct sd *) gspca_dev;
4651 	static const struct ov_i2c_regvals colors_7660[][6] = {
4652 		{{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4653 		 {0x53, 0x19}, {0x54, 0x23}},
4654 		{{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4655 		 {0x53, 0x2c}, {0x54, 0x3e}},
4656 		{{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4657 		 {0x53, 0x40}, {0x54, 0x59}},
4658 		{{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4659 		 {0x53, 0x53}, {0x54, 0x73}},
4660 		{{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4661 		 {0x53, 0x66}, {0x54, 0x8e}},
4662 	};
4663 
4664 	switch (sd->sensor) {
4665 	case SEN_OV8610:
4666 	case SEN_OV7610:
4667 	case SEN_OV76BE:
4668 	case SEN_OV6620:
4669 	case SEN_OV6630:
4670 	case SEN_OV66308AF:
4671 		i2c_w(sd, OV7610_REG_SAT, val);
4672 		break;
4673 	case SEN_OV7620:
4674 	case SEN_OV7620AE:
4675 		/* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4676 /*		rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4677 		if (rc < 0)
4678 			goto out; */
4679 		i2c_w(sd, OV7610_REG_SAT, val);
4680 		break;
4681 	case SEN_OV7640:
4682 	case SEN_OV7648:
4683 		i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4684 		break;
4685 	case SEN_OV7660:
4686 		write_i2c_regvals(sd, colors_7660[val],
4687 					ARRAY_SIZE(colors_7660[0]));
4688 		break;
4689 	case SEN_OV7670:
4690 		/* supported later once I work out how to do it
4691 		 * transparently fail now! */
4692 		/* set REG_COM13 values for UV sat auto mode */
4693 		break;
4694 	}
4695 }
4696 
4697 static void setautobright(struct gspca_dev *gspca_dev, s32 val)
4698 {
4699 	struct sd *sd = (struct sd *) gspca_dev;
4700 
4701 	i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10);
4702 }
4703 
4704 static void setfreq_i(struct sd *sd, s32 val)
4705 {
4706 	if (sd->sensor == SEN_OV7660
4707 	 || sd->sensor == SEN_OV7670) {
4708 		switch (val) {
4709 		case 0: /* Banding filter disabled */
4710 			i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4711 			break;
4712 		case 1: /* 50 hz */
4713 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4714 				   OV7670_COM8_BFILT);
4715 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4716 			break;
4717 		case 2: /* 60 hz */
4718 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4719 				   OV7670_COM8_BFILT);
4720 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4721 			break;
4722 		case 3: /* Auto hz - ov7670 only */
4723 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4724 				   OV7670_COM8_BFILT);
4725 			i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4726 				   0x18);
4727 			break;
4728 		}
4729 	} else {
4730 		switch (val) {
4731 		case 0: /* Banding filter disabled */
4732 			i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4733 			i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4734 			break;
4735 		case 1: /* 50 hz (filter on and framerate adj) */
4736 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4737 			i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4738 			/* 20 fps -> 16.667 fps */
4739 			if (sd->sensor == SEN_OV6620 ||
4740 			    sd->sensor == SEN_OV6630 ||
4741 			    sd->sensor == SEN_OV66308AF)
4742 				i2c_w(sd, 0x2b, 0x5e);
4743 			else
4744 				i2c_w(sd, 0x2b, 0xac);
4745 			break;
4746 		case 2: /* 60 hz (filter on, ...) */
4747 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4748 			if (sd->sensor == SEN_OV6620 ||
4749 			    sd->sensor == SEN_OV6630 ||
4750 			    sd->sensor == SEN_OV66308AF) {
4751 				/* 20 fps -> 15 fps */
4752 				i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4753 				i2c_w(sd, 0x2b, 0xa8);
4754 			} else {
4755 				/* no framerate adj. */
4756 				i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4757 			}
4758 			break;
4759 		}
4760 	}
4761 }
4762 
4763 static void setfreq(struct gspca_dev *gspca_dev, s32 val)
4764 {
4765 	struct sd *sd = (struct sd *) gspca_dev;
4766 
4767 	setfreq_i(sd, val);
4768 
4769 	/* Ugly but necessary */
4770 	if (sd->bridge == BRIDGE_W9968CF)
4771 		w9968cf_set_crop_window(sd);
4772 }
4773 
4774 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4775 			struct v4l2_jpegcompression *jcomp)
4776 {
4777 	struct sd *sd = (struct sd *) gspca_dev;
4778 
4779 	if (sd->bridge != BRIDGE_W9968CF)
4780 		return -ENOTTY;
4781 
4782 	memset(jcomp, 0, sizeof *jcomp);
4783 	jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual);
4784 	jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4785 			      V4L2_JPEG_MARKER_DRI;
4786 	return 0;
4787 }
4788 
4789 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4790 			const struct v4l2_jpegcompression *jcomp)
4791 {
4792 	struct sd *sd = (struct sd *) gspca_dev;
4793 
4794 	if (sd->bridge != BRIDGE_W9968CF)
4795 		return -ENOTTY;
4796 
4797 	v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality);
4798 	return 0;
4799 }
4800 
4801 static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
4802 {
4803 	struct gspca_dev *gspca_dev =
4804 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4805 	struct sd *sd = (struct sd *)gspca_dev;
4806 
4807 	gspca_dev->usb_err = 0;
4808 
4809 	switch (ctrl->id) {
4810 	case V4L2_CID_AUTOGAIN:
4811 		gspca_dev->exposure->val = i2c_r(sd, 0x10);
4812 		break;
4813 	}
4814 	return 0;
4815 }
4816 
4817 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
4818 {
4819 	struct gspca_dev *gspca_dev =
4820 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4821 	struct sd *sd = (struct sd *)gspca_dev;
4822 
4823 	gspca_dev->usb_err = 0;
4824 
4825 	if (!gspca_dev->streaming)
4826 		return 0;
4827 
4828 	switch (ctrl->id) {
4829 	case V4L2_CID_BRIGHTNESS:
4830 		setbrightness(gspca_dev, ctrl->val);
4831 		break;
4832 	case V4L2_CID_CONTRAST:
4833 		setcontrast(gspca_dev, ctrl->val);
4834 		break;
4835 	case V4L2_CID_POWER_LINE_FREQUENCY:
4836 		setfreq(gspca_dev, ctrl->val);
4837 		break;
4838 	case V4L2_CID_AUTOBRIGHTNESS:
4839 		if (ctrl->is_new)
4840 			setautobright(gspca_dev, ctrl->val);
4841 		if (!ctrl->val && sd->brightness->is_new)
4842 			setbrightness(gspca_dev, sd->brightness->val);
4843 		break;
4844 	case V4L2_CID_SATURATION:
4845 		setcolors(gspca_dev, ctrl->val);
4846 		break;
4847 	case V4L2_CID_HFLIP:
4848 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
4849 		break;
4850 	case V4L2_CID_AUTOGAIN:
4851 		if (ctrl->is_new)
4852 			setautogain(gspca_dev, ctrl->val);
4853 		if (!ctrl->val && gspca_dev->exposure->is_new)
4854 			setexposure(gspca_dev, gspca_dev->exposure->val);
4855 		break;
4856 	case V4L2_CID_JPEG_COMPRESSION_QUALITY:
4857 		return -EBUSY; /* Should never happen, as we grab the ctrl */
4858 	}
4859 	return gspca_dev->usb_err;
4860 }
4861 
4862 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
4863 	.g_volatile_ctrl = sd_g_volatile_ctrl,
4864 	.s_ctrl = sd_s_ctrl,
4865 };
4866 
4867 static int sd_init_controls(struct gspca_dev *gspca_dev)
4868 {
4869 	struct sd *sd = (struct sd *)gspca_dev;
4870 	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
4871 
4872 	gspca_dev->vdev.ctrl_handler = hdl;
4873 	v4l2_ctrl_handler_init(hdl, 10);
4874 	if (valid_controls[sd->sensor].has_brightness)
4875 		sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4876 			V4L2_CID_BRIGHTNESS, 0,
4877 			sd->sensor == SEN_OV7660 ? 6 : 255, 1,
4878 			sd->sensor == SEN_OV7660 ? 3 : 127);
4879 	if (valid_controls[sd->sensor].has_contrast) {
4880 		if (sd->sensor == SEN_OV7660)
4881 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4882 				V4L2_CID_CONTRAST, 0, 6, 1, 3);
4883 		else
4884 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4885 				V4L2_CID_CONTRAST, 0, 255, 1,
4886 				(sd->sensor == SEN_OV6630 ||
4887 				 sd->sensor == SEN_OV66308AF) ? 200 : 127);
4888 	}
4889 	if (valid_controls[sd->sensor].has_sat)
4890 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4891 			V4L2_CID_SATURATION, 0,
4892 			sd->sensor == SEN_OV7660 ? 4 : 255, 1,
4893 			sd->sensor == SEN_OV7660 ? 2 : 127);
4894 	if (valid_controls[sd->sensor].has_exposure)
4895 		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4896 			V4L2_CID_EXPOSURE, 0, 255, 1, 127);
4897 	if (valid_controls[sd->sensor].has_hvflip) {
4898 		sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4899 			V4L2_CID_HFLIP, 0, 1, 1, 0);
4900 		sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4901 			V4L2_CID_VFLIP, 0, 1, 1, 0);
4902 	}
4903 	if (valid_controls[sd->sensor].has_autobright)
4904 		sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4905 			V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1);
4906 	if (valid_controls[sd->sensor].has_autogain)
4907 		gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4908 			V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
4909 	if (valid_controls[sd->sensor].has_freq) {
4910 		if (sd->sensor == SEN_OV7670)
4911 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4912 				V4L2_CID_POWER_LINE_FREQUENCY,
4913 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
4914 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
4915 		else
4916 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4917 				V4L2_CID_POWER_LINE_FREQUENCY,
4918 				V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
4919 	}
4920 	if (sd->bridge == BRIDGE_W9968CF)
4921 		sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4922 			V4L2_CID_JPEG_COMPRESSION_QUALITY,
4923 			QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF);
4924 
4925 	if (hdl->error) {
4926 		PERR("Could not initialize controls\n");
4927 		return hdl->error;
4928 	}
4929 	if (gspca_dev->autogain)
4930 		v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true);
4931 	if (sd->autobright)
4932 		v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false);
4933 	if (sd->hflip)
4934 		v4l2_ctrl_cluster(2, &sd->hflip);
4935 	return 0;
4936 }
4937 
4938 /* sub-driver description */
4939 static const struct sd_desc sd_desc = {
4940 	.name = MODULE_NAME,
4941 	.config = sd_config,
4942 	.init = sd_init,
4943 	.init_controls = sd_init_controls,
4944 	.isoc_init = sd_isoc_init,
4945 	.start = sd_start,
4946 	.stopN = sd_stopN,
4947 	.stop0 = sd_stop0,
4948 	.pkt_scan = sd_pkt_scan,
4949 	.dq_callback = sd_reset_snapshot,
4950 	.get_jcomp = sd_get_jcomp,
4951 	.set_jcomp = sd_set_jcomp,
4952 #if IS_ENABLED(CONFIG_INPUT)
4953 	.other_input = 1,
4954 #endif
4955 };
4956 
4957 /* -- module initialisation -- */
4958 static const struct usb_device_id device_table[] = {
4959 	{USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4960 	{USB_DEVICE(0x041e, 0x4052),
4961 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4962 	{USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4963 	{USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4964 	{USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4965 	{USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
4966 	{USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4967 	{USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
4968 	{USB_DEVICE(0x045e, 0x028c),
4969 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4970 	{USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4971 	{USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4972 	{USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4973 	{USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4974 	{USB_DEVICE(0x05a9, 0x0519),
4975 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4976 	{USB_DEVICE(0x05a9, 0x0530),
4977 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4978 	{USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4979 	{USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4980 	{USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4981 	{USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4982 	{USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4983 	{USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4984 	{USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4985 	{USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4986 	{USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4987 	{USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
4988 	{}
4989 };
4990 
4991 MODULE_DEVICE_TABLE(usb, device_table);
4992 
4993 /* -- device connect -- */
4994 static int sd_probe(struct usb_interface *intf,
4995 			const struct usb_device_id *id)
4996 {
4997 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4998 				THIS_MODULE);
4999 }
5000 
5001 static struct usb_driver sd_driver = {
5002 	.name = MODULE_NAME,
5003 	.id_table = device_table,
5004 	.probe = sd_probe,
5005 	.disconnect = gspca_disconnect,
5006 #ifdef CONFIG_PM
5007 	.suspend = gspca_suspend,
5008 	.resume = gspca_resume,
5009 	.reset_resume = gspca_resume,
5010 #endif
5011 };
5012 
5013 module_usb_driver(sd_driver);
5014 
5015 module_param(frame_rate, int, 0644);
5016 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");
5017