1 /** 2 * OV519 driver 3 * 4 * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr> 5 * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com> 6 * 7 * This module is adapted from the ov51x-jpeg package, which itself 8 * was adapted from the ov511 driver. 9 * 10 * Original copyright for the ov511 driver is: 11 * 12 * Copyright (c) 1999-2006 Mark W. McClelland 13 * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach 14 * Many improvements by Bret Wallach <bwallac1@san.rr.com> 15 * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000) 16 * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org> 17 * Changes by Claudio Matsuoka <claudio@conectiva.com> 18 * 19 * ov51x-jpeg original copyright is: 20 * 21 * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org> 22 * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com> 23 * 24 * This program is free software; you can redistribute it and/or modify 25 * it under the terms of the GNU General Public License as published by 26 * the Free Software Foundation; either version 2 of the License, or 27 * any later version. 28 * 29 * This program is distributed in the hope that it will be useful, 30 * but WITHOUT ANY WARRANTY; without even the implied warranty of 31 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 32 * GNU General Public License for more details. 33 * 34 */ 35 36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 37 38 #define MODULE_NAME "ov519" 39 40 #include <linux/input.h> 41 #include "gspca.h" 42 43 /* The jpeg_hdr is used by w996Xcf only */ 44 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */ 45 #define CONEX_CAM 46 #include "jpeg.h" 47 48 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>"); 49 MODULE_DESCRIPTION("OV519 USB Camera Driver"); 50 MODULE_LICENSE("GPL"); 51 52 /* global parameters */ 53 static int frame_rate; 54 55 /* Number of times to retry a failed I2C transaction. Increase this if you 56 * are getting "Failed to read sensor ID..." */ 57 static int i2c_detect_tries = 10; 58 59 /* ov519 device descriptor */ 60 struct sd { 61 struct gspca_dev gspca_dev; /* !! must be the first item */ 62 63 struct v4l2_ctrl *jpegqual; 64 struct v4l2_ctrl *freq; 65 struct { /* h/vflip control cluster */ 66 struct v4l2_ctrl *hflip; 67 struct v4l2_ctrl *vflip; 68 }; 69 struct { /* autobrightness/brightness control cluster */ 70 struct v4l2_ctrl *autobright; 71 struct v4l2_ctrl *brightness; 72 }; 73 74 u8 revision; 75 76 u8 packet_nr; 77 78 char bridge; 79 #define BRIDGE_OV511 0 80 #define BRIDGE_OV511PLUS 1 81 #define BRIDGE_OV518 2 82 #define BRIDGE_OV518PLUS 3 83 #define BRIDGE_OV519 4 /* = ov530 */ 84 #define BRIDGE_OVFX2 5 85 #define BRIDGE_W9968CF 6 86 #define BRIDGE_MASK 7 87 88 char invert_led; 89 #define BRIDGE_INVERT_LED 8 90 91 char snapshot_pressed; 92 char snapshot_needs_reset; 93 94 /* Determined by sensor type */ 95 u8 sif; 96 97 #define QUALITY_MIN 50 98 #define QUALITY_MAX 70 99 #define QUALITY_DEF 50 100 101 u8 stopped; /* Streaming is temporarily paused */ 102 u8 first_frame; 103 104 u8 frame_rate; /* current Framerate */ 105 u8 clockdiv; /* clockdiv override */ 106 107 s8 sensor; /* Type of image sensor chip (SEN_*) */ 108 109 u8 sensor_addr; 110 u16 sensor_width; 111 u16 sensor_height; 112 s16 sensor_reg_cache[256]; 113 114 u8 jpeg_hdr[JPEG_HDR_SZ]; 115 }; 116 enum sensors { 117 SEN_OV2610, 118 SEN_OV2610AE, 119 SEN_OV3610, 120 SEN_OV6620, 121 SEN_OV6630, 122 SEN_OV66308AF, 123 SEN_OV7610, 124 SEN_OV7620, 125 SEN_OV7620AE, 126 SEN_OV7640, 127 SEN_OV7648, 128 SEN_OV7660, 129 SEN_OV7670, 130 SEN_OV76BE, 131 SEN_OV8610, 132 SEN_OV9600, 133 }; 134 135 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all 136 the ov sensors which is already present here. When we have the time we 137 really should move the sensor drivers to v4l2 sub drivers. */ 138 #include "w996Xcf.c" 139 140 /* table of the disabled controls */ 141 struct ctrl_valid { 142 unsigned int has_brightness:1; 143 unsigned int has_contrast:1; 144 unsigned int has_exposure:1; 145 unsigned int has_autogain:1; 146 unsigned int has_sat:1; 147 unsigned int has_hvflip:1; 148 unsigned int has_autobright:1; 149 unsigned int has_freq:1; 150 }; 151 152 static const struct ctrl_valid valid_controls[] = { 153 [SEN_OV2610] = { 154 .has_exposure = 1, 155 .has_autogain = 1, 156 }, 157 [SEN_OV2610AE] = { 158 .has_exposure = 1, 159 .has_autogain = 1, 160 }, 161 [SEN_OV3610] = { 162 /* No controls */ 163 }, 164 [SEN_OV6620] = { 165 .has_brightness = 1, 166 .has_contrast = 1, 167 .has_sat = 1, 168 .has_autobright = 1, 169 .has_freq = 1, 170 }, 171 [SEN_OV6630] = { 172 .has_brightness = 1, 173 .has_contrast = 1, 174 .has_sat = 1, 175 .has_autobright = 1, 176 .has_freq = 1, 177 }, 178 [SEN_OV66308AF] = { 179 .has_brightness = 1, 180 .has_contrast = 1, 181 .has_sat = 1, 182 .has_autobright = 1, 183 .has_freq = 1, 184 }, 185 [SEN_OV7610] = { 186 .has_brightness = 1, 187 .has_contrast = 1, 188 .has_sat = 1, 189 .has_autobright = 1, 190 .has_freq = 1, 191 }, 192 [SEN_OV7620] = { 193 .has_brightness = 1, 194 .has_contrast = 1, 195 .has_sat = 1, 196 .has_autobright = 1, 197 .has_freq = 1, 198 }, 199 [SEN_OV7620AE] = { 200 .has_brightness = 1, 201 .has_contrast = 1, 202 .has_sat = 1, 203 .has_autobright = 1, 204 .has_freq = 1, 205 }, 206 [SEN_OV7640] = { 207 .has_brightness = 1, 208 .has_sat = 1, 209 .has_freq = 1, 210 }, 211 [SEN_OV7648] = { 212 .has_brightness = 1, 213 .has_sat = 1, 214 .has_freq = 1, 215 }, 216 [SEN_OV7660] = { 217 .has_brightness = 1, 218 .has_contrast = 1, 219 .has_sat = 1, 220 .has_hvflip = 1, 221 .has_freq = 1, 222 }, 223 [SEN_OV7670] = { 224 .has_brightness = 1, 225 .has_contrast = 1, 226 .has_hvflip = 1, 227 .has_freq = 1, 228 }, 229 [SEN_OV76BE] = { 230 .has_brightness = 1, 231 .has_contrast = 1, 232 .has_sat = 1, 233 .has_autobright = 1, 234 .has_freq = 1, 235 }, 236 [SEN_OV8610] = { 237 .has_brightness = 1, 238 .has_contrast = 1, 239 .has_sat = 1, 240 .has_autobright = 1, 241 }, 242 [SEN_OV9600] = { 243 .has_exposure = 1, 244 .has_autogain = 1, 245 }, 246 }; 247 248 static const struct v4l2_pix_format ov519_vga_mode[] = { 249 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 250 .bytesperline = 320, 251 .sizeimage = 320 * 240 * 3 / 8 + 590, 252 .colorspace = V4L2_COLORSPACE_JPEG, 253 .priv = 1}, 254 {640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 255 .bytesperline = 640, 256 .sizeimage = 640 * 480 * 3 / 8 + 590, 257 .colorspace = V4L2_COLORSPACE_JPEG, 258 .priv = 0}, 259 }; 260 static const struct v4l2_pix_format ov519_sif_mode[] = { 261 {160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 262 .bytesperline = 160, 263 .sizeimage = 160 * 120 * 3 / 8 + 590, 264 .colorspace = V4L2_COLORSPACE_JPEG, 265 .priv = 3}, 266 {176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 267 .bytesperline = 176, 268 .sizeimage = 176 * 144 * 3 / 8 + 590, 269 .colorspace = V4L2_COLORSPACE_JPEG, 270 .priv = 1}, 271 {320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 272 .bytesperline = 320, 273 .sizeimage = 320 * 240 * 3 / 8 + 590, 274 .colorspace = V4L2_COLORSPACE_JPEG, 275 .priv = 2}, 276 {352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE, 277 .bytesperline = 352, 278 .sizeimage = 352 * 288 * 3 / 8 + 590, 279 .colorspace = V4L2_COLORSPACE_JPEG, 280 .priv = 0}, 281 }; 282 283 /* Note some of the sizeimage values for the ov511 / ov518 may seem 284 larger then necessary, however they need to be this big as the ov511 / 285 ov518 always fills the entire isoc frame, using 0 padding bytes when 286 it doesn't have any data. So with low framerates the amount of data 287 transferred can become quite large (libv4l will remove all the 0 padding 288 in userspace). */ 289 static const struct v4l2_pix_format ov518_vga_mode[] = { 290 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, 291 .bytesperline = 320, 292 .sizeimage = 320 * 240 * 3, 293 .colorspace = V4L2_COLORSPACE_JPEG, 294 .priv = 1}, 295 {640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, 296 .bytesperline = 640, 297 .sizeimage = 640 * 480 * 2, 298 .colorspace = V4L2_COLORSPACE_JPEG, 299 .priv = 0}, 300 }; 301 static const struct v4l2_pix_format ov518_sif_mode[] = { 302 {160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, 303 .bytesperline = 160, 304 .sizeimage = 70000, 305 .colorspace = V4L2_COLORSPACE_JPEG, 306 .priv = 3}, 307 {176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, 308 .bytesperline = 176, 309 .sizeimage = 70000, 310 .colorspace = V4L2_COLORSPACE_JPEG, 311 .priv = 1}, 312 {320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, 313 .bytesperline = 320, 314 .sizeimage = 320 * 240 * 3, 315 .colorspace = V4L2_COLORSPACE_JPEG, 316 .priv = 2}, 317 {352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE, 318 .bytesperline = 352, 319 .sizeimage = 352 * 288 * 3, 320 .colorspace = V4L2_COLORSPACE_JPEG, 321 .priv = 0}, 322 }; 323 324 static const struct v4l2_pix_format ov511_vga_mode[] = { 325 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, 326 .bytesperline = 320, 327 .sizeimage = 320 * 240 * 3, 328 .colorspace = V4L2_COLORSPACE_JPEG, 329 .priv = 1}, 330 {640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, 331 .bytesperline = 640, 332 .sizeimage = 640 * 480 * 2, 333 .colorspace = V4L2_COLORSPACE_JPEG, 334 .priv = 0}, 335 }; 336 static const struct v4l2_pix_format ov511_sif_mode[] = { 337 {160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, 338 .bytesperline = 160, 339 .sizeimage = 70000, 340 .colorspace = V4L2_COLORSPACE_JPEG, 341 .priv = 3}, 342 {176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, 343 .bytesperline = 176, 344 .sizeimage = 70000, 345 .colorspace = V4L2_COLORSPACE_JPEG, 346 .priv = 1}, 347 {320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, 348 .bytesperline = 320, 349 .sizeimage = 320 * 240 * 3, 350 .colorspace = V4L2_COLORSPACE_JPEG, 351 .priv = 2}, 352 {352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE, 353 .bytesperline = 352, 354 .sizeimage = 352 * 288 * 3, 355 .colorspace = V4L2_COLORSPACE_JPEG, 356 .priv = 0}, 357 }; 358 359 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = { 360 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 361 .bytesperline = 800, 362 .sizeimage = 800 * 600, 363 .colorspace = V4L2_COLORSPACE_SRGB, 364 .priv = 1}, 365 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 366 .bytesperline = 1600, 367 .sizeimage = 1600 * 1200, 368 .colorspace = V4L2_COLORSPACE_SRGB}, 369 }; 370 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = { 371 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 372 .bytesperline = 640, 373 .sizeimage = 640 * 480, 374 .colorspace = V4L2_COLORSPACE_SRGB, 375 .priv = 1}, 376 {800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 377 .bytesperline = 800, 378 .sizeimage = 800 * 600, 379 .colorspace = V4L2_COLORSPACE_SRGB, 380 .priv = 1}, 381 {1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 382 .bytesperline = 1024, 383 .sizeimage = 1024 * 768, 384 .colorspace = V4L2_COLORSPACE_SRGB, 385 .priv = 1}, 386 {1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 387 .bytesperline = 1600, 388 .sizeimage = 1600 * 1200, 389 .colorspace = V4L2_COLORSPACE_SRGB, 390 .priv = 0}, 391 {2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 392 .bytesperline = 2048, 393 .sizeimage = 2048 * 1536, 394 .colorspace = V4L2_COLORSPACE_SRGB, 395 .priv = 0}, 396 }; 397 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = { 398 {640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 399 .bytesperline = 640, 400 .sizeimage = 640 * 480, 401 .colorspace = V4L2_COLORSPACE_SRGB, 402 .priv = 1}, 403 {1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE, 404 .bytesperline = 1280, 405 .sizeimage = 1280 * 1024, 406 .colorspace = V4L2_COLORSPACE_SRGB}, 407 }; 408 409 /* Registers common to OV511 / OV518 */ 410 #define R51x_FIFO_PSIZE 0x30 /* 2 bytes wide w/ OV518(+) */ 411 #define R51x_SYS_RESET 0x50 412 /* Reset type flags */ 413 #define OV511_RESET_OMNICE 0x08 414 #define R51x_SYS_INIT 0x53 415 #define R51x_SYS_SNAP 0x52 416 #define R51x_SYS_CUST_ID 0x5f 417 #define R51x_COMP_LUT_BEGIN 0x80 418 419 /* OV511 Camera interface register numbers */ 420 #define R511_CAM_DELAY 0x10 421 #define R511_CAM_EDGE 0x11 422 #define R511_CAM_PXCNT 0x12 423 #define R511_CAM_LNCNT 0x13 424 #define R511_CAM_PXDIV 0x14 425 #define R511_CAM_LNDIV 0x15 426 #define R511_CAM_UV_EN 0x16 427 #define R511_CAM_LINE_MODE 0x17 428 #define R511_CAM_OPTS 0x18 429 430 #define R511_SNAP_FRAME 0x19 431 #define R511_SNAP_PXCNT 0x1a 432 #define R511_SNAP_LNCNT 0x1b 433 #define R511_SNAP_PXDIV 0x1c 434 #define R511_SNAP_LNDIV 0x1d 435 #define R511_SNAP_UV_EN 0x1e 436 #define R511_SNAP_OPTS 0x1f 437 438 #define R511_DRAM_FLOW_CTL 0x20 439 #define R511_FIFO_OPTS 0x31 440 #define R511_I2C_CTL 0x40 441 #define R511_SYS_LED_CTL 0x55 /* OV511+ only */ 442 #define R511_COMP_EN 0x78 443 #define R511_COMP_LUT_EN 0x79 444 445 /* OV518 Camera interface register numbers */ 446 #define R518_GPIO_OUT 0x56 /* OV518(+) only */ 447 #define R518_GPIO_CTL 0x57 /* OV518(+) only */ 448 449 /* OV519 Camera interface register numbers */ 450 #define OV519_R10_H_SIZE 0x10 451 #define OV519_R11_V_SIZE 0x11 452 #define OV519_R12_X_OFFSETL 0x12 453 #define OV519_R13_X_OFFSETH 0x13 454 #define OV519_R14_Y_OFFSETL 0x14 455 #define OV519_R15_Y_OFFSETH 0x15 456 #define OV519_R16_DIVIDER 0x16 457 #define OV519_R20_DFR 0x20 458 #define OV519_R25_FORMAT 0x25 459 460 /* OV519 System Controller register numbers */ 461 #define OV519_R51_RESET1 0x51 462 #define OV519_R54_EN_CLK1 0x54 463 #define OV519_R57_SNAPSHOT 0x57 464 465 #define OV519_GPIO_DATA_OUT0 0x71 466 #define OV519_GPIO_IO_CTRL0 0x72 467 468 /*#define OV511_ENDPOINT_ADDRESS 1 * Isoc endpoint number */ 469 470 /* 471 * The FX2 chip does not give us a zero length read at end of frame. 472 * It does, however, give a short read at the end of a frame, if 473 * necessary, rather than run two frames together. 474 * 475 * By choosing the right bulk transfer size, we are guaranteed to always 476 * get a short read for the last read of each frame. Frame sizes are 477 * always a composite number (width * height, or a multiple) so if we 478 * choose a prime number, we are guaranteed that the last read of a 479 * frame will be short. 480 * 481 * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB, 482 * otherwise EOVERFLOW "babbling" errors occur. I have not been able 483 * to figure out why. [PMiller] 484 * 485 * The constant (13 * 4096) is the largest "prime enough" number less than 64KB. 486 * 487 * It isn't enough to know the number of bytes per frame, in case we 488 * have data dropouts or buffer overruns (even though the FX2 double 489 * buffers, there are some pretty strict real time constraints for 490 * isochronous transfer for larger frame sizes). 491 */ 492 /*jfm: this value does not work for 800x600 - see isoc_init */ 493 #define OVFX2_BULK_SIZE (13 * 4096) 494 495 /* I2C registers */ 496 #define R51x_I2C_W_SID 0x41 497 #define R51x_I2C_SADDR_3 0x42 498 #define R51x_I2C_SADDR_2 0x43 499 #define R51x_I2C_R_SID 0x44 500 #define R51x_I2C_DATA 0x45 501 #define R518_I2C_CTL 0x47 /* OV518(+) only */ 502 #define OVFX2_I2C_ADDR 0x00 503 504 /* I2C ADDRESSES */ 505 #define OV7xx0_SID 0x42 506 #define OV_HIRES_SID 0x60 /* OV9xxx / OV2xxx / OV3xxx */ 507 #define OV8xx0_SID 0xa0 508 #define OV6xx0_SID 0xc0 509 510 /* OV7610 registers */ 511 #define OV7610_REG_GAIN 0x00 /* gain setting (5:0) */ 512 #define OV7610_REG_BLUE 0x01 /* blue channel balance */ 513 #define OV7610_REG_RED 0x02 /* red channel balance */ 514 #define OV7610_REG_SAT 0x03 /* saturation */ 515 #define OV8610_REG_HUE 0x04 /* 04 reserved */ 516 #define OV7610_REG_CNT 0x05 /* Y contrast */ 517 #define OV7610_REG_BRT 0x06 /* Y brightness */ 518 #define OV7610_REG_COM_C 0x14 /* misc common regs */ 519 #define OV7610_REG_ID_HIGH 0x1c /* manufacturer ID MSB */ 520 #define OV7610_REG_ID_LOW 0x1d /* manufacturer ID LSB */ 521 #define OV7610_REG_COM_I 0x29 /* misc settings */ 522 523 /* OV7660 and OV7670 registers */ 524 #define OV7670_R00_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */ 525 #define OV7670_R01_BLUE 0x01 /* blue gain */ 526 #define OV7670_R02_RED 0x02 /* red gain */ 527 #define OV7670_R03_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */ 528 #define OV7670_R04_COM1 0x04 /* Control 1 */ 529 /*#define OV7670_R07_AECHH 0x07 * AEC MS 5 bits */ 530 #define OV7670_R0C_COM3 0x0c /* Control 3 */ 531 #define OV7670_R0D_COM4 0x0d /* Control 4 */ 532 #define OV7670_R0E_COM5 0x0e /* All "reserved" */ 533 #define OV7670_R0F_COM6 0x0f /* Control 6 */ 534 #define OV7670_R10_AECH 0x10 /* More bits of AEC value */ 535 #define OV7670_R11_CLKRC 0x11 /* Clock control */ 536 #define OV7670_R12_COM7 0x12 /* Control 7 */ 537 #define OV7670_COM7_FMT_VGA 0x00 538 /*#define OV7670_COM7_YUV 0x00 * YUV */ 539 #define OV7670_COM7_FMT_QVGA 0x10 /* QVGA format */ 540 #define OV7670_COM7_FMT_MASK 0x38 541 #define OV7670_COM7_RESET 0x80 /* Register reset */ 542 #define OV7670_R13_COM8 0x13 /* Control 8 */ 543 #define OV7670_COM8_AEC 0x01 /* Auto exposure enable */ 544 #define OV7670_COM8_AWB 0x02 /* White balance enable */ 545 #define OV7670_COM8_AGC 0x04 /* Auto gain enable */ 546 #define OV7670_COM8_BFILT 0x20 /* Band filter enable */ 547 #define OV7670_COM8_AECSTEP 0x40 /* Unlimited AEC step size */ 548 #define OV7670_COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */ 549 #define OV7670_R14_COM9 0x14 /* Control 9 - gain ceiling */ 550 #define OV7670_R15_COM10 0x15 /* Control 10 */ 551 #define OV7670_R17_HSTART 0x17 /* Horiz start high bits */ 552 #define OV7670_R18_HSTOP 0x18 /* Horiz stop high bits */ 553 #define OV7670_R19_VSTART 0x19 /* Vert start high bits */ 554 #define OV7670_R1A_VSTOP 0x1a /* Vert stop high bits */ 555 #define OV7670_R1E_MVFP 0x1e /* Mirror / vflip */ 556 #define OV7670_MVFP_VFLIP 0x10 /* vertical flip */ 557 #define OV7670_MVFP_MIRROR 0x20 /* Mirror image */ 558 #define OV7670_R24_AEW 0x24 /* AGC upper limit */ 559 #define OV7670_R25_AEB 0x25 /* AGC lower limit */ 560 #define OV7670_R26_VPT 0x26 /* AGC/AEC fast mode op region */ 561 #define OV7670_R32_HREF 0x32 /* HREF pieces */ 562 #define OV7670_R3A_TSLB 0x3a /* lots of stuff */ 563 #define OV7670_R3B_COM11 0x3b /* Control 11 */ 564 #define OV7670_COM11_EXP 0x02 565 #define OV7670_COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */ 566 #define OV7670_R3C_COM12 0x3c /* Control 12 */ 567 #define OV7670_R3D_COM13 0x3d /* Control 13 */ 568 #define OV7670_COM13_GAMMA 0x80 /* Gamma enable */ 569 #define OV7670_COM13_UVSAT 0x40 /* UV saturation auto adjustment */ 570 #define OV7670_R3E_COM14 0x3e /* Control 14 */ 571 #define OV7670_R3F_EDGE 0x3f /* Edge enhancement factor */ 572 #define OV7670_R40_COM15 0x40 /* Control 15 */ 573 /*#define OV7670_COM15_R00FF 0xc0 * 00 to FF */ 574 #define OV7670_R41_COM16 0x41 /* Control 16 */ 575 #define OV7670_COM16_AWBGAIN 0x08 /* AWB gain enable */ 576 /* end of ov7660 common registers */ 577 #define OV7670_R55_BRIGHT 0x55 /* Brightness */ 578 #define OV7670_R56_CONTRAS 0x56 /* Contrast control */ 579 #define OV7670_R69_GFIX 0x69 /* Fix gain control */ 580 /*#define OV7670_R8C_RGB444 0x8c * RGB 444 control */ 581 #define OV7670_R9F_HAECC1 0x9f /* Hist AEC/AGC control 1 */ 582 #define OV7670_RA0_HAECC2 0xa0 /* Hist AEC/AGC control 2 */ 583 #define OV7670_RA5_BD50MAX 0xa5 /* 50hz banding step limit */ 584 #define OV7670_RA6_HAECC3 0xa6 /* Hist AEC/AGC control 3 */ 585 #define OV7670_RA7_HAECC4 0xa7 /* Hist AEC/AGC control 4 */ 586 #define OV7670_RA8_HAECC5 0xa8 /* Hist AEC/AGC control 5 */ 587 #define OV7670_RA9_HAECC6 0xa9 /* Hist AEC/AGC control 6 */ 588 #define OV7670_RAA_HAECC7 0xaa /* Hist AEC/AGC control 7 */ 589 #define OV7670_RAB_BD60MAX 0xab /* 60hz banding step limit */ 590 591 struct ov_regvals { 592 u8 reg; 593 u8 val; 594 }; 595 struct ov_i2c_regvals { 596 u8 reg; 597 u8 val; 598 }; 599 600 /* Settings for OV2610 camera chip */ 601 static const struct ov_i2c_regvals norm_2610[] = { 602 { 0x12, 0x80 }, /* reset */ 603 }; 604 605 static const struct ov_i2c_regvals norm_2610ae[] = { 606 {0x12, 0x80}, /* reset */ 607 {0x13, 0xcd}, 608 {0x09, 0x01}, 609 {0x0d, 0x00}, 610 {0x11, 0x80}, 611 {0x12, 0x20}, /* 1600x1200 */ 612 {0x33, 0x0c}, 613 {0x35, 0x90}, 614 {0x36, 0x37}, 615 /* ms-win traces */ 616 {0x11, 0x83}, /* clock / 3 ? */ 617 {0x2d, 0x00}, /* 60 Hz filter */ 618 {0x24, 0xb0}, /* normal colors */ 619 {0x25, 0x90}, 620 {0x10, 0x43}, 621 }; 622 623 static const struct ov_i2c_regvals norm_3620b[] = { 624 /* 625 * From the datasheet: "Note that after writing to register COMH 626 * (0x12) to change the sensor mode, registers related to the 627 * sensor’s cropping window will be reset back to their default 628 * values." 629 * 630 * "wait 4096 external clock ... to make sure the sensor is 631 * stable and ready to access registers" i.e. 160us at 24MHz 632 */ 633 { 0x12, 0x80 }, /* COMH reset */ 634 { 0x12, 0x00 }, /* QXGA, master */ 635 636 /* 637 * 11 CLKRC "Clock Rate Control" 638 * [7] internal frequency doublers: on 639 * [6] video port mode: master 640 * [5:0] clock divider: 1 641 */ 642 { 0x11, 0x80 }, 643 644 /* 645 * 13 COMI "Common Control I" 646 * = 192 (0xC0) 11000000 647 * COMI[7] "AEC speed selection" 648 * = 1 (0x01) 1....... "Faster AEC correction" 649 * COMI[6] "AEC speed step selection" 650 * = 1 (0x01) .1...... "Big steps, fast" 651 * COMI[5] "Banding filter on off" 652 * = 0 (0x00) ..0..... "Off" 653 * COMI[4] "Banding filter option" 654 * = 0 (0x00) ...0.... "Main clock is 48 MHz and 655 * the PLL is ON" 656 * COMI[3] "Reserved" 657 * = 0 (0x00) ....0... 658 * COMI[2] "AGC auto manual control selection" 659 * = 0 (0x00) .....0.. "Manual" 660 * COMI[1] "AWB auto manual control selection" 661 * = 0 (0x00) ......0. "Manual" 662 * COMI[0] "Exposure control" 663 * = 0 (0x00) .......0 "Manual" 664 */ 665 { 0x13, 0xc0 }, 666 667 /* 668 * 09 COMC "Common Control C" 669 * = 8 (0x08) 00001000 670 * COMC[7:5] "Reserved" 671 * = 0 (0x00) 000..... 672 * COMC[4] "Sleep Mode Enable" 673 * = 0 (0x00) ...0.... "Normal mode" 674 * COMC[3:2] "Sensor sampling reset timing selection" 675 * = 2 (0x02) ....10.. "Longer reset time" 676 * COMC[1:0] "Output drive current select" 677 * = 0 (0x00) ......00 "Weakest" 678 */ 679 { 0x09, 0x08 }, 680 681 /* 682 * 0C COMD "Common Control D" 683 * = 8 (0x08) 00001000 684 * COMD[7] "Reserved" 685 * = 0 (0x00) 0....... 686 * COMD[6] "Swap MSB and LSB at the output port" 687 * = 0 (0x00) .0...... "False" 688 * COMD[5:3] "Reserved" 689 * = 1 (0x01) ..001... 690 * COMD[2] "Output Average On Off" 691 * = 0 (0x00) .....0.. "Output Normal" 692 * COMD[1] "Sensor precharge voltage selection" 693 * = 0 (0x00) ......0. "Selects internal 694 * reference precharge 695 * voltage" 696 * COMD[0] "Snapshot option" 697 * = 0 (0x00) .......0 "Enable live video output 698 * after snapshot sequence" 699 */ 700 { 0x0c, 0x08 }, 701 702 /* 703 * 0D COME "Common Control E" 704 * = 161 (0xA1) 10100001 705 * COME[7] "Output average option" 706 * = 1 (0x01) 1....... "Output average of 4 pixels" 707 * COME[6] "Anti-blooming control" 708 * = 0 (0x00) .0...... "Off" 709 * COME[5:3] "Reserved" 710 * = 4 (0x04) ..100... 711 * COME[2] "Clock output power down pin status" 712 * = 0 (0x00) .....0.. "Tri-state data output pin 713 * on power down" 714 * COME[1] "Data output pin status selection at power down" 715 * = 0 (0x00) ......0. "Tri-state VSYNC, PCLK, 716 * HREF, and CHSYNC pins on 717 * power down" 718 * COME[0] "Auto zero circuit select" 719 * = 1 (0x01) .......1 "On" 720 */ 721 { 0x0d, 0xa1 }, 722 723 /* 724 * 0E COMF "Common Control F" 725 * = 112 (0x70) 01110000 726 * COMF[7] "System clock selection" 727 * = 0 (0x00) 0....... "Use 24 MHz system clock" 728 * COMF[6:4] "Reserved" 729 * = 7 (0x07) .111.... 730 * COMF[3] "Manual auto negative offset canceling selection" 731 * = 0 (0x00) ....0... "Auto detect negative 732 * offset and cancel it" 733 * COMF[2:0] "Reserved" 734 * = 0 (0x00) .....000 735 */ 736 { 0x0e, 0x70 }, 737 738 /* 739 * 0F COMG "Common Control G" 740 * = 66 (0x42) 01000010 741 * COMG[7] "Optical black output selection" 742 * = 0 (0x00) 0....... "Disable" 743 * COMG[6] "Black level calibrate selection" 744 * = 1 (0x01) .1...... "Use optical black pixels 745 * to calibrate" 746 * COMG[5:4] "Reserved" 747 * = 0 (0x00) ..00.... 748 * COMG[3] "Channel offset adjustment" 749 * = 0 (0x00) ....0... "Disable offset adjustment" 750 * COMG[2] "ADC black level calibration option" 751 * = 0 (0x00) .....0.. "Use B/G line and G/R 752 * line to calibrate each 753 * channel's black level" 754 * COMG[1] "Reserved" 755 * = 1 (0x01) ......1. 756 * COMG[0] "ADC black level calibration enable" 757 * = 0 (0x00) .......0 "Disable" 758 */ 759 { 0x0f, 0x42 }, 760 761 /* 762 * 14 COMJ "Common Control J" 763 * = 198 (0xC6) 11000110 764 * COMJ[7:6] "AGC gain ceiling" 765 * = 3 (0x03) 11...... "8x" 766 * COMJ[5:4] "Reserved" 767 * = 0 (0x00) ..00.... 768 * COMJ[3] "Auto banding filter" 769 * = 0 (0x00) ....0... "Banding filter is always 770 * on off depending on 771 * COMI[5] setting" 772 * COMJ[2] "VSYNC drop option" 773 * = 1 (0x01) .....1.. "SYNC is dropped if frame 774 * data is dropped" 775 * COMJ[1] "Frame data drop" 776 * = 1 (0x01) ......1. "Drop frame data if 777 * exposure is not within 778 * tolerance. In AEC mode, 779 * data is normally dropped 780 * when data is out of 781 * range." 782 * COMJ[0] "Reserved" 783 * = 0 (0x00) .......0 784 */ 785 { 0x14, 0xc6 }, 786 787 /* 788 * 15 COMK "Common Control K" 789 * = 2 (0x02) 00000010 790 * COMK[7] "CHSYNC pin output swap" 791 * = 0 (0x00) 0....... "CHSYNC" 792 * COMK[6] "HREF pin output swap" 793 * = 0 (0x00) .0...... "HREF" 794 * COMK[5] "PCLK output selection" 795 * = 0 (0x00) ..0..... "PCLK always output" 796 * COMK[4] "PCLK edge selection" 797 * = 0 (0x00) ...0.... "Data valid on falling edge" 798 * COMK[3] "HREF output polarity" 799 * = 0 (0x00) ....0... "positive" 800 * COMK[2] "Reserved" 801 * = 0 (0x00) .....0.. 802 * COMK[1] "VSYNC polarity" 803 * = 1 (0x01) ......1. "negative" 804 * COMK[0] "HSYNC polarity" 805 * = 0 (0x00) .......0 "positive" 806 */ 807 { 0x15, 0x02 }, 808 809 /* 810 * 33 CHLF "Current Control" 811 * = 9 (0x09) 00001001 812 * CHLF[7:6] "Sensor current control" 813 * = 0 (0x00) 00...... 814 * CHLF[5] "Sensor current range control" 815 * = 0 (0x00) ..0..... "normal range" 816 * CHLF[4] "Sensor current" 817 * = 0 (0x00) ...0.... "normal current" 818 * CHLF[3] "Sensor buffer current control" 819 * = 1 (0x01) ....1... "half current" 820 * CHLF[2] "Column buffer current control" 821 * = 0 (0x00) .....0.. "normal current" 822 * CHLF[1] "Analog DSP current control" 823 * = 0 (0x00) ......0. "normal current" 824 * CHLF[1] "ADC current control" 825 * = 0 (0x00) ......0. "normal current" 826 */ 827 { 0x33, 0x09 }, 828 829 /* 830 * 34 VBLM "Blooming Control" 831 * = 80 (0x50) 01010000 832 * VBLM[7] "Hard soft reset switch" 833 * = 0 (0x00) 0....... "Hard reset" 834 * VBLM[6:4] "Blooming voltage selection" 835 * = 5 (0x05) .101.... 836 * VBLM[3:0] "Sensor current control" 837 * = 0 (0x00) ....0000 838 */ 839 { 0x34, 0x50 }, 840 841 /* 842 * 36 VCHG "Sensor Precharge Voltage Control" 843 * = 0 (0x00) 00000000 844 * VCHG[7] "Reserved" 845 * = 0 (0x00) 0....... 846 * VCHG[6:4] "Sensor precharge voltage control" 847 * = 0 (0x00) .000.... 848 * VCHG[3:0] "Sensor array common reference" 849 * = 0 (0x00) ....0000 850 */ 851 { 0x36, 0x00 }, 852 853 /* 854 * 37 ADC "ADC Reference Control" 855 * = 4 (0x04) 00000100 856 * ADC[7:4] "Reserved" 857 * = 0 (0x00) 0000.... 858 * ADC[3] "ADC input signal range" 859 * = 0 (0x00) ....0... "Input signal 1.0x" 860 * ADC[2:0] "ADC range control" 861 * = 4 (0x04) .....100 862 */ 863 { 0x37, 0x04 }, 864 865 /* 866 * 38 ACOM "Analog Common Ground" 867 * = 82 (0x52) 01010010 868 * ACOM[7] "Analog gain control" 869 * = 0 (0x00) 0....... "Gain 1x" 870 * ACOM[6] "Analog black level calibration" 871 * = 1 (0x01) .1...... "On" 872 * ACOM[5:0] "Reserved" 873 * = 18 (0x12) ..010010 874 */ 875 { 0x38, 0x52 }, 876 877 /* 878 * 3A FREFA "Internal Reference Adjustment" 879 * = 0 (0x00) 00000000 880 * FREFA[7:0] "Range" 881 * = 0 (0x00) 00000000 882 */ 883 { 0x3a, 0x00 }, 884 885 /* 886 * 3C FVOPT "Internal Reference Adjustment" 887 * = 31 (0x1F) 00011111 888 * FVOPT[7:0] "Range" 889 * = 31 (0x1F) 00011111 890 */ 891 { 0x3c, 0x1f }, 892 893 /* 894 * 44 Undocumented = 0 (0x00) 00000000 895 * 44[7:0] "It's a secret" 896 * = 0 (0x00) 00000000 897 */ 898 { 0x44, 0x00 }, 899 900 /* 901 * 40 Undocumented = 0 (0x00) 00000000 902 * 40[7:0] "It's a secret" 903 * = 0 (0x00) 00000000 904 */ 905 { 0x40, 0x00 }, 906 907 /* 908 * 41 Undocumented = 0 (0x00) 00000000 909 * 41[7:0] "It's a secret" 910 * = 0 (0x00) 00000000 911 */ 912 { 0x41, 0x00 }, 913 914 /* 915 * 42 Undocumented = 0 (0x00) 00000000 916 * 42[7:0] "It's a secret" 917 * = 0 (0x00) 00000000 918 */ 919 { 0x42, 0x00 }, 920 921 /* 922 * 43 Undocumented = 0 (0x00) 00000000 923 * 43[7:0] "It's a secret" 924 * = 0 (0x00) 00000000 925 */ 926 { 0x43, 0x00 }, 927 928 /* 929 * 45 Undocumented = 128 (0x80) 10000000 930 * 45[7:0] "It's a secret" 931 * = 128 (0x80) 10000000 932 */ 933 { 0x45, 0x80 }, 934 935 /* 936 * 48 Undocumented = 192 (0xC0) 11000000 937 * 48[7:0] "It's a secret" 938 * = 192 (0xC0) 11000000 939 */ 940 { 0x48, 0xc0 }, 941 942 /* 943 * 49 Undocumented = 25 (0x19) 00011001 944 * 49[7:0] "It's a secret" 945 * = 25 (0x19) 00011001 946 */ 947 { 0x49, 0x19 }, 948 949 /* 950 * 4B Undocumented = 128 (0x80) 10000000 951 * 4B[7:0] "It's a secret" 952 * = 128 (0x80) 10000000 953 */ 954 { 0x4b, 0x80 }, 955 956 /* 957 * 4D Undocumented = 196 (0xC4) 11000100 958 * 4D[7:0] "It's a secret" 959 * = 196 (0xC4) 11000100 960 */ 961 { 0x4d, 0xc4 }, 962 963 /* 964 * 35 VREF "Reference Voltage Control" 965 * = 76 (0x4c) 01001100 966 * VREF[7:5] "Column high reference control" 967 * = 2 (0x02) 010..... "higher voltage" 968 * VREF[4:2] "Column low reference control" 969 * = 3 (0x03) ...011.. "Highest voltage" 970 * VREF[1:0] "Reserved" 971 * = 0 (0x00) ......00 972 */ 973 { 0x35, 0x4c }, 974 975 /* 976 * 3D Undocumented = 0 (0x00) 00000000 977 * 3D[7:0] "It's a secret" 978 * = 0 (0x00) 00000000 979 */ 980 { 0x3d, 0x00 }, 981 982 /* 983 * 3E Undocumented = 0 (0x00) 00000000 984 * 3E[7:0] "It's a secret" 985 * = 0 (0x00) 00000000 986 */ 987 { 0x3e, 0x00 }, 988 989 /* 990 * 3B FREFB "Internal Reference Adjustment" 991 * = 24 (0x18) 00011000 992 * FREFB[7:0] "Range" 993 * = 24 (0x18) 00011000 994 */ 995 { 0x3b, 0x18 }, 996 997 /* 998 * 33 CHLF "Current Control" 999 * = 25 (0x19) 00011001 1000 * CHLF[7:6] "Sensor current control" 1001 * = 0 (0x00) 00...... 1002 * CHLF[5] "Sensor current range control" 1003 * = 0 (0x00) ..0..... "normal range" 1004 * CHLF[4] "Sensor current" 1005 * = 1 (0x01) ...1.... "double current" 1006 * CHLF[3] "Sensor buffer current control" 1007 * = 1 (0x01) ....1... "half current" 1008 * CHLF[2] "Column buffer current control" 1009 * = 0 (0x00) .....0.. "normal current" 1010 * CHLF[1] "Analog DSP current control" 1011 * = 0 (0x00) ......0. "normal current" 1012 * CHLF[1] "ADC current control" 1013 * = 0 (0x00) ......0. "normal current" 1014 */ 1015 { 0x33, 0x19 }, 1016 1017 /* 1018 * 34 VBLM "Blooming Control" 1019 * = 90 (0x5A) 01011010 1020 * VBLM[7] "Hard soft reset switch" 1021 * = 0 (0x00) 0....... "Hard reset" 1022 * VBLM[6:4] "Blooming voltage selection" 1023 * = 5 (0x05) .101.... 1024 * VBLM[3:0] "Sensor current control" 1025 * = 10 (0x0A) ....1010 1026 */ 1027 { 0x34, 0x5a }, 1028 1029 /* 1030 * 3B FREFB "Internal Reference Adjustment" 1031 * = 0 (0x00) 00000000 1032 * FREFB[7:0] "Range" 1033 * = 0 (0x00) 00000000 1034 */ 1035 { 0x3b, 0x00 }, 1036 1037 /* 1038 * 33 CHLF "Current Control" 1039 * = 9 (0x09) 00001001 1040 * CHLF[7:6] "Sensor current control" 1041 * = 0 (0x00) 00...... 1042 * CHLF[5] "Sensor current range control" 1043 * = 0 (0x00) ..0..... "normal range" 1044 * CHLF[4] "Sensor current" 1045 * = 0 (0x00) ...0.... "normal current" 1046 * CHLF[3] "Sensor buffer current control" 1047 * = 1 (0x01) ....1... "half current" 1048 * CHLF[2] "Column buffer current control" 1049 * = 0 (0x00) .....0.. "normal current" 1050 * CHLF[1] "Analog DSP current control" 1051 * = 0 (0x00) ......0. "normal current" 1052 * CHLF[1] "ADC current control" 1053 * = 0 (0x00) ......0. "normal current" 1054 */ 1055 { 0x33, 0x09 }, 1056 1057 /* 1058 * 34 VBLM "Blooming Control" 1059 * = 80 (0x50) 01010000 1060 * VBLM[7] "Hard soft reset switch" 1061 * = 0 (0x00) 0....... "Hard reset" 1062 * VBLM[6:4] "Blooming voltage selection" 1063 * = 5 (0x05) .101.... 1064 * VBLM[3:0] "Sensor current control" 1065 * = 0 (0x00) ....0000 1066 */ 1067 { 0x34, 0x50 }, 1068 1069 /* 1070 * 12 COMH "Common Control H" 1071 * = 64 (0x40) 01000000 1072 * COMH[7] "SRST" 1073 * = 0 (0x00) 0....... "No-op" 1074 * COMH[6:4] "Resolution selection" 1075 * = 4 (0x04) .100.... "XGA" 1076 * COMH[3] "Master slave selection" 1077 * = 0 (0x00) ....0... "Master mode" 1078 * COMH[2] "Internal B/R channel option" 1079 * = 0 (0x00) .....0.. "B/R use same channel" 1080 * COMH[1] "Color bar test pattern" 1081 * = 0 (0x00) ......0. "Off" 1082 * COMH[0] "Reserved" 1083 * = 0 (0x00) .......0 1084 */ 1085 { 0x12, 0x40 }, 1086 1087 /* 1088 * 17 HREFST "Horizontal window start" 1089 * = 31 (0x1F) 00011111 1090 * HREFST[7:0] "Horizontal window start, 8 MSBs" 1091 * = 31 (0x1F) 00011111 1092 */ 1093 { 0x17, 0x1f }, 1094 1095 /* 1096 * 18 HREFEND "Horizontal window end" 1097 * = 95 (0x5F) 01011111 1098 * HREFEND[7:0] "Horizontal Window End, 8 MSBs" 1099 * = 95 (0x5F) 01011111 1100 */ 1101 { 0x18, 0x5f }, 1102 1103 /* 1104 * 19 VSTRT "Vertical window start" 1105 * = 0 (0x00) 00000000 1106 * VSTRT[7:0] "Vertical Window Start, 8 MSBs" 1107 * = 0 (0x00) 00000000 1108 */ 1109 { 0x19, 0x00 }, 1110 1111 /* 1112 * 1A VEND "Vertical window end" 1113 * = 96 (0x60) 01100000 1114 * VEND[7:0] "Vertical Window End, 8 MSBs" 1115 * = 96 (0x60) 01100000 1116 */ 1117 { 0x1a, 0x60 }, 1118 1119 /* 1120 * 32 COMM "Common Control M" 1121 * = 18 (0x12) 00010010 1122 * COMM[7:6] "Pixel clock divide option" 1123 * = 0 (0x00) 00...... "/1" 1124 * COMM[5:3] "Horizontal window end position, 3 LSBs" 1125 * = 2 (0x02) ..010... 1126 * COMM[2:0] "Horizontal window start position, 3 LSBs" 1127 * = 2 (0x02) .....010 1128 */ 1129 { 0x32, 0x12 }, 1130 1131 /* 1132 * 03 COMA "Common Control A" 1133 * = 74 (0x4A) 01001010 1134 * COMA[7:4] "AWB Update Threshold" 1135 * = 4 (0x04) 0100.... 1136 * COMA[3:2] "Vertical window end line control 2 LSBs" 1137 * = 2 (0x02) ....10.. 1138 * COMA[1:0] "Vertical window start line control 2 LSBs" 1139 * = 2 (0x02) ......10 1140 */ 1141 { 0x03, 0x4a }, 1142 1143 /* 1144 * 11 CLKRC "Clock Rate Control" 1145 * = 128 (0x80) 10000000 1146 * CLKRC[7] "Internal frequency doublers on off seclection" 1147 * = 1 (0x01) 1....... "On" 1148 * CLKRC[6] "Digital video master slave selection" 1149 * = 0 (0x00) .0...... "Master mode, sensor 1150 * provides PCLK" 1151 * CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }" 1152 * = 0 (0x00) ..000000 1153 */ 1154 { 0x11, 0x80 }, 1155 1156 /* 1157 * 12 COMH "Common Control H" 1158 * = 0 (0x00) 00000000 1159 * COMH[7] "SRST" 1160 * = 0 (0x00) 0....... "No-op" 1161 * COMH[6:4] "Resolution selection" 1162 * = 0 (0x00) .000.... "QXGA" 1163 * COMH[3] "Master slave selection" 1164 * = 0 (0x00) ....0... "Master mode" 1165 * COMH[2] "Internal B/R channel option" 1166 * = 0 (0x00) .....0.. "B/R use same channel" 1167 * COMH[1] "Color bar test pattern" 1168 * = 0 (0x00) ......0. "Off" 1169 * COMH[0] "Reserved" 1170 * = 0 (0x00) .......0 1171 */ 1172 { 0x12, 0x00 }, 1173 1174 /* 1175 * 12 COMH "Common Control H" 1176 * = 64 (0x40) 01000000 1177 * COMH[7] "SRST" 1178 * = 0 (0x00) 0....... "No-op" 1179 * COMH[6:4] "Resolution selection" 1180 * = 4 (0x04) .100.... "XGA" 1181 * COMH[3] "Master slave selection" 1182 * = 0 (0x00) ....0... "Master mode" 1183 * COMH[2] "Internal B/R channel option" 1184 * = 0 (0x00) .....0.. "B/R use same channel" 1185 * COMH[1] "Color bar test pattern" 1186 * = 0 (0x00) ......0. "Off" 1187 * COMH[0] "Reserved" 1188 * = 0 (0x00) .......0 1189 */ 1190 { 0x12, 0x40 }, 1191 1192 /* 1193 * 17 HREFST "Horizontal window start" 1194 * = 31 (0x1F) 00011111 1195 * HREFST[7:0] "Horizontal window start, 8 MSBs" 1196 * = 31 (0x1F) 00011111 1197 */ 1198 { 0x17, 0x1f }, 1199 1200 /* 1201 * 18 HREFEND "Horizontal window end" 1202 * = 95 (0x5F) 01011111 1203 * HREFEND[7:0] "Horizontal Window End, 8 MSBs" 1204 * = 95 (0x5F) 01011111 1205 */ 1206 { 0x18, 0x5f }, 1207 1208 /* 1209 * 19 VSTRT "Vertical window start" 1210 * = 0 (0x00) 00000000 1211 * VSTRT[7:0] "Vertical Window Start, 8 MSBs" 1212 * = 0 (0x00) 00000000 1213 */ 1214 { 0x19, 0x00 }, 1215 1216 /* 1217 * 1A VEND "Vertical window end" 1218 * = 96 (0x60) 01100000 1219 * VEND[7:0] "Vertical Window End, 8 MSBs" 1220 * = 96 (0x60) 01100000 1221 */ 1222 { 0x1a, 0x60 }, 1223 1224 /* 1225 * 32 COMM "Common Control M" 1226 * = 18 (0x12) 00010010 1227 * COMM[7:6] "Pixel clock divide option" 1228 * = 0 (0x00) 00...... "/1" 1229 * COMM[5:3] "Horizontal window end position, 3 LSBs" 1230 * = 2 (0x02) ..010... 1231 * COMM[2:0] "Horizontal window start position, 3 LSBs" 1232 * = 2 (0x02) .....010 1233 */ 1234 { 0x32, 0x12 }, 1235 1236 /* 1237 * 03 COMA "Common Control A" 1238 * = 74 (0x4A) 01001010 1239 * COMA[7:4] "AWB Update Threshold" 1240 * = 4 (0x04) 0100.... 1241 * COMA[3:2] "Vertical window end line control 2 LSBs" 1242 * = 2 (0x02) ....10.. 1243 * COMA[1:0] "Vertical window start line control 2 LSBs" 1244 * = 2 (0x02) ......10 1245 */ 1246 { 0x03, 0x4a }, 1247 1248 /* 1249 * 02 RED "Red Gain Control" 1250 * = 175 (0xAF) 10101111 1251 * RED[7] "Action" 1252 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))" 1253 * RED[6:0] "Value" 1254 * = 47 (0x2F) .0101111 1255 */ 1256 { 0x02, 0xaf }, 1257 1258 /* 1259 * 2D ADDVSL "VSYNC Pulse Width" 1260 * = 210 (0xD2) 11010010 1261 * ADDVSL[7:0] "VSYNC pulse width, LSB" 1262 * = 210 (0xD2) 11010010 1263 */ 1264 { 0x2d, 0xd2 }, 1265 1266 /* 1267 * 00 GAIN = 24 (0x18) 00011000 1268 * GAIN[7:6] "Reserved" 1269 * = 0 (0x00) 00...... 1270 * GAIN[5] "Double" 1271 * = 0 (0x00) ..0..... "False" 1272 * GAIN[4] "Double" 1273 * = 1 (0x01) ...1.... "True" 1274 * GAIN[3:0] "Range" 1275 * = 8 (0x08) ....1000 1276 */ 1277 { 0x00, 0x18 }, 1278 1279 /* 1280 * 01 BLUE "Blue Gain Control" 1281 * = 240 (0xF0) 11110000 1282 * BLUE[7] "Action" 1283 * = 1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))" 1284 * BLUE[6:0] "Value" 1285 * = 112 (0x70) .1110000 1286 */ 1287 { 0x01, 0xf0 }, 1288 1289 /* 1290 * 10 AEC "Automatic Exposure Control" 1291 * = 10 (0x0A) 00001010 1292 * AEC[7:0] "Automatic Exposure Control, 8 MSBs" 1293 * = 10 (0x0A) 00001010 1294 */ 1295 { 0x10, 0x0a }, 1296 1297 { 0xe1, 0x67 }, 1298 { 0xe3, 0x03 }, 1299 { 0xe4, 0x26 }, 1300 { 0xe5, 0x3e }, 1301 { 0xf8, 0x01 }, 1302 { 0xff, 0x01 }, 1303 }; 1304 1305 static const struct ov_i2c_regvals norm_6x20[] = { 1306 { 0x12, 0x80 }, /* reset */ 1307 { 0x11, 0x01 }, 1308 { 0x03, 0x60 }, 1309 { 0x05, 0x7f }, /* For when autoadjust is off */ 1310 { 0x07, 0xa8 }, 1311 /* The ratio of 0x0c and 0x0d controls the white point */ 1312 { 0x0c, 0x24 }, 1313 { 0x0d, 0x24 }, 1314 { 0x0f, 0x15 }, /* COMS */ 1315 { 0x10, 0x75 }, /* AEC Exposure time */ 1316 { 0x12, 0x24 }, /* Enable AGC */ 1317 { 0x14, 0x04 }, 1318 /* 0x16: 0x06 helps frame stability with moving objects */ 1319 { 0x16, 0x06 }, 1320 /* { 0x20, 0x30 }, * Aperture correction enable */ 1321 { 0x26, 0xb2 }, /* BLC enable */ 1322 /* 0x28: 0x05 Selects RGB format if RGB on */ 1323 { 0x28, 0x05 }, 1324 { 0x2a, 0x04 }, /* Disable framerate adjust */ 1325 /* { 0x2b, 0xac }, * Framerate; Set 2a[7] first */ 1326 { 0x2d, 0x85 }, 1327 { 0x33, 0xa0 }, /* Color Processing Parameter */ 1328 { 0x34, 0xd2 }, /* Max A/D range */ 1329 { 0x38, 0x8b }, 1330 { 0x39, 0x40 }, 1331 1332 { 0x3c, 0x39 }, /* Enable AEC mode changing */ 1333 { 0x3c, 0x3c }, /* Change AEC mode */ 1334 { 0x3c, 0x24 }, /* Disable AEC mode changing */ 1335 1336 { 0x3d, 0x80 }, 1337 /* These next two registers (0x4a, 0x4b) are undocumented. 1338 * They control the color balance */ 1339 { 0x4a, 0x80 }, 1340 { 0x4b, 0x80 }, 1341 { 0x4d, 0xd2 }, /* This reduces noise a bit */ 1342 { 0x4e, 0xc1 }, 1343 { 0x4f, 0x04 }, 1344 /* Do 50-53 have any effect? */ 1345 /* Toggle 0x12[2] off and on here? */ 1346 }; 1347 1348 static const struct ov_i2c_regvals norm_6x30[] = { 1349 { 0x12, 0x80 }, /* Reset */ 1350 { 0x00, 0x1f }, /* Gain */ 1351 { 0x01, 0x99 }, /* Blue gain */ 1352 { 0x02, 0x7c }, /* Red gain */ 1353 { 0x03, 0xc0 }, /* Saturation */ 1354 { 0x05, 0x0a }, /* Contrast */ 1355 { 0x06, 0x95 }, /* Brightness */ 1356 { 0x07, 0x2d }, /* Sharpness */ 1357 { 0x0c, 0x20 }, 1358 { 0x0d, 0x20 }, 1359 { 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */ 1360 { 0x0f, 0x05 }, 1361 { 0x10, 0x9a }, 1362 { 0x11, 0x00 }, /* Pixel clock = fastest */ 1363 { 0x12, 0x24 }, /* Enable AGC and AWB */ 1364 { 0x13, 0x21 }, 1365 { 0x14, 0x80 }, 1366 { 0x15, 0x01 }, 1367 { 0x16, 0x03 }, 1368 { 0x17, 0x38 }, 1369 { 0x18, 0xea }, 1370 { 0x19, 0x04 }, 1371 { 0x1a, 0x93 }, 1372 { 0x1b, 0x00 }, 1373 { 0x1e, 0xc4 }, 1374 { 0x1f, 0x04 }, 1375 { 0x20, 0x20 }, 1376 { 0x21, 0x10 }, 1377 { 0x22, 0x88 }, 1378 { 0x23, 0xc0 }, /* Crystal circuit power level */ 1379 { 0x25, 0x9a }, /* Increase AEC black ratio */ 1380 { 0x26, 0xb2 }, /* BLC enable */ 1381 { 0x27, 0xa2 }, 1382 { 0x28, 0x00 }, 1383 { 0x29, 0x00 }, 1384 { 0x2a, 0x84 }, /* 60 Hz power */ 1385 { 0x2b, 0xa8 }, /* 60 Hz power */ 1386 { 0x2c, 0xa0 }, 1387 { 0x2d, 0x95 }, /* Enable auto-brightness */ 1388 { 0x2e, 0x88 }, 1389 { 0x33, 0x26 }, 1390 { 0x34, 0x03 }, 1391 { 0x36, 0x8f }, 1392 { 0x37, 0x80 }, 1393 { 0x38, 0x83 }, 1394 { 0x39, 0x80 }, 1395 { 0x3a, 0x0f }, 1396 { 0x3b, 0x3c }, 1397 { 0x3c, 0x1a }, 1398 { 0x3d, 0x80 }, 1399 { 0x3e, 0x80 }, 1400 { 0x3f, 0x0e }, 1401 { 0x40, 0x00 }, /* White bal */ 1402 { 0x41, 0x00 }, /* White bal */ 1403 { 0x42, 0x80 }, 1404 { 0x43, 0x3f }, /* White bal */ 1405 { 0x44, 0x80 }, 1406 { 0x45, 0x20 }, 1407 { 0x46, 0x20 }, 1408 { 0x47, 0x80 }, 1409 { 0x48, 0x7f }, 1410 { 0x49, 0x00 }, 1411 { 0x4a, 0x00 }, 1412 { 0x4b, 0x80 }, 1413 { 0x4c, 0xd0 }, 1414 { 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */ 1415 { 0x4e, 0x40 }, 1416 { 0x4f, 0x07 }, /* UV avg., col. killer: max */ 1417 { 0x50, 0xff }, 1418 { 0x54, 0x23 }, /* Max AGC gain: 18dB */ 1419 { 0x55, 0xff }, 1420 { 0x56, 0x12 }, 1421 { 0x57, 0x81 }, 1422 { 0x58, 0x75 }, 1423 { 0x59, 0x01 }, /* AGC dark current comp.: +1 */ 1424 { 0x5a, 0x2c }, 1425 { 0x5b, 0x0f }, /* AWB chrominance levels */ 1426 { 0x5c, 0x10 }, 1427 { 0x3d, 0x80 }, 1428 { 0x27, 0xa6 }, 1429 { 0x12, 0x20 }, /* Toggle AWB */ 1430 { 0x12, 0x24 }, 1431 }; 1432 1433 /* Lawrence Glaister <lg@jfm.bc.ca> reports: 1434 * 1435 * Register 0x0f in the 7610 has the following effects: 1436 * 1437 * 0x85 (AEC method 1): Best overall, good contrast range 1438 * 0x45 (AEC method 2): Very overexposed 1439 * 0xa5 (spec sheet default): Ok, but the black level is 1440 * shifted resulting in loss of contrast 1441 * 0x05 (old driver setting): very overexposed, too much 1442 * contrast 1443 */ 1444 static const struct ov_i2c_regvals norm_7610[] = { 1445 { 0x10, 0xff }, 1446 { 0x16, 0x06 }, 1447 { 0x28, 0x24 }, 1448 { 0x2b, 0xac }, 1449 { 0x12, 0x00 }, 1450 { 0x38, 0x81 }, 1451 { 0x28, 0x24 }, /* 0c */ 1452 { 0x0f, 0x85 }, /* lg's setting */ 1453 { 0x15, 0x01 }, 1454 { 0x20, 0x1c }, 1455 { 0x23, 0x2a }, 1456 { 0x24, 0x10 }, 1457 { 0x25, 0x8a }, 1458 { 0x26, 0xa2 }, 1459 { 0x27, 0xc2 }, 1460 { 0x2a, 0x04 }, 1461 { 0x2c, 0xfe }, 1462 { 0x2d, 0x93 }, 1463 { 0x30, 0x71 }, 1464 { 0x31, 0x60 }, 1465 { 0x32, 0x26 }, 1466 { 0x33, 0x20 }, 1467 { 0x34, 0x48 }, 1468 { 0x12, 0x24 }, 1469 { 0x11, 0x01 }, 1470 { 0x0c, 0x24 }, 1471 { 0x0d, 0x24 }, 1472 }; 1473 1474 static const struct ov_i2c_regvals norm_7620[] = { 1475 { 0x12, 0x80 }, /* reset */ 1476 { 0x00, 0x00 }, /* gain */ 1477 { 0x01, 0x80 }, /* blue gain */ 1478 { 0x02, 0x80 }, /* red gain */ 1479 { 0x03, 0xc0 }, /* OV7670_R03_VREF */ 1480 { 0x06, 0x60 }, 1481 { 0x07, 0x00 }, 1482 { 0x0c, 0x24 }, 1483 { 0x0c, 0x24 }, 1484 { 0x0d, 0x24 }, 1485 { 0x11, 0x01 }, 1486 { 0x12, 0x24 }, 1487 { 0x13, 0x01 }, 1488 { 0x14, 0x84 }, 1489 { 0x15, 0x01 }, 1490 { 0x16, 0x03 }, 1491 { 0x17, 0x2f }, 1492 { 0x18, 0xcf }, 1493 { 0x19, 0x06 }, 1494 { 0x1a, 0xf5 }, 1495 { 0x1b, 0x00 }, 1496 { 0x20, 0x18 }, 1497 { 0x21, 0x80 }, 1498 { 0x22, 0x80 }, 1499 { 0x23, 0x00 }, 1500 { 0x26, 0xa2 }, 1501 { 0x27, 0xea }, 1502 { 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */ 1503 { 0x29, 0x00 }, 1504 { 0x2a, 0x10 }, 1505 { 0x2b, 0x00 }, 1506 { 0x2c, 0x88 }, 1507 { 0x2d, 0x91 }, 1508 { 0x2e, 0x80 }, 1509 { 0x2f, 0x44 }, 1510 { 0x60, 0x27 }, 1511 { 0x61, 0x02 }, 1512 { 0x62, 0x5f }, 1513 { 0x63, 0xd5 }, 1514 { 0x64, 0x57 }, 1515 { 0x65, 0x83 }, 1516 { 0x66, 0x55 }, 1517 { 0x67, 0x92 }, 1518 { 0x68, 0xcf }, 1519 { 0x69, 0x76 }, 1520 { 0x6a, 0x22 }, 1521 { 0x6b, 0x00 }, 1522 { 0x6c, 0x02 }, 1523 { 0x6d, 0x44 }, 1524 { 0x6e, 0x80 }, 1525 { 0x6f, 0x1d }, 1526 { 0x70, 0x8b }, 1527 { 0x71, 0x00 }, 1528 { 0x72, 0x14 }, 1529 { 0x73, 0x54 }, 1530 { 0x74, 0x00 }, 1531 { 0x75, 0x8e }, 1532 { 0x76, 0x00 }, 1533 { 0x77, 0xff }, 1534 { 0x78, 0x80 }, 1535 { 0x79, 0x80 }, 1536 { 0x7a, 0x80 }, 1537 { 0x7b, 0xe2 }, 1538 { 0x7c, 0x00 }, 1539 }; 1540 1541 /* 7640 and 7648. The defaults should be OK for most registers. */ 1542 static const struct ov_i2c_regvals norm_7640[] = { 1543 { 0x12, 0x80 }, 1544 { 0x12, 0x14 }, 1545 }; 1546 1547 static const struct ov_regvals init_519_ov7660[] = { 1548 { 0x5d, 0x03 }, /* Turn off suspend mode */ 1549 { 0x53, 0x9b }, /* 0x9f enables the (unused) microcontroller */ 1550 { 0x54, 0x0f }, /* bit2 (jpeg enable) */ 1551 { 0xa2, 0x20 }, /* a2-a5 are undocumented */ 1552 { 0xa3, 0x18 }, 1553 { 0xa4, 0x04 }, 1554 { 0xa5, 0x28 }, 1555 { 0x37, 0x00 }, /* SetUsbInit */ 1556 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */ 1557 /* Enable both fields, YUV Input, disable defect comp (why?) */ 1558 { 0x20, 0x0c }, /* 0x0d does U <-> V swap */ 1559 { 0x21, 0x38 }, 1560 { 0x22, 0x1d }, 1561 { 0x17, 0x50 }, /* undocumented */ 1562 { 0x37, 0x00 }, /* undocumented */ 1563 { 0x40, 0xff }, /* I2C timeout counter */ 1564 { 0x46, 0x00 }, /* I2C clock prescaler */ 1565 }; 1566 static const struct ov_i2c_regvals norm_7660[] = { 1567 {OV7670_R12_COM7, OV7670_COM7_RESET}, 1568 {OV7670_R11_CLKRC, 0x81}, 1569 {0x92, 0x00}, /* DM_LNL */ 1570 {0x93, 0x00}, /* DM_LNH */ 1571 {0x9d, 0x4c}, /* BD50ST */ 1572 {0x9e, 0x3f}, /* BD60ST */ 1573 {OV7670_R3B_COM11, 0x02}, 1574 {OV7670_R13_COM8, 0xf5}, 1575 {OV7670_R10_AECH, 0x00}, 1576 {OV7670_R00_GAIN, 0x00}, 1577 {OV7670_R01_BLUE, 0x7c}, 1578 {OV7670_R02_RED, 0x9d}, 1579 {OV7670_R12_COM7, 0x00}, 1580 {OV7670_R04_COM1, 00}, 1581 {OV7670_R18_HSTOP, 0x01}, 1582 {OV7670_R17_HSTART, 0x13}, 1583 {OV7670_R32_HREF, 0x92}, 1584 {OV7670_R19_VSTART, 0x02}, 1585 {OV7670_R1A_VSTOP, 0x7a}, 1586 {OV7670_R03_VREF, 0x00}, 1587 {OV7670_R0E_COM5, 0x04}, 1588 {OV7670_R0F_COM6, 0x62}, 1589 {OV7670_R15_COM10, 0x00}, 1590 {0x16, 0x02}, /* RSVD */ 1591 {0x1b, 0x00}, /* PSHFT */ 1592 {OV7670_R1E_MVFP, 0x01}, 1593 {0x29, 0x3c}, /* RSVD */ 1594 {0x33, 0x00}, /* CHLF */ 1595 {0x34, 0x07}, /* ARBLM */ 1596 {0x35, 0x84}, /* RSVD */ 1597 {0x36, 0x00}, /* RSVD */ 1598 {0x37, 0x04}, /* ADC */ 1599 {0x39, 0x43}, /* OFON */ 1600 {OV7670_R3A_TSLB, 0x00}, 1601 {OV7670_R3C_COM12, 0x6c}, 1602 {OV7670_R3D_COM13, 0x98}, 1603 {OV7670_R3F_EDGE, 0x23}, 1604 {OV7670_R40_COM15, 0xc1}, 1605 {OV7670_R41_COM16, 0x22}, 1606 {0x6b, 0x0a}, /* DBLV */ 1607 {0xa1, 0x08}, /* RSVD */ 1608 {0x69, 0x80}, /* HV */ 1609 {0x43, 0xf0}, /* RSVD.. */ 1610 {0x44, 0x10}, 1611 {0x45, 0x78}, 1612 {0x46, 0xa8}, 1613 {0x47, 0x60}, 1614 {0x48, 0x80}, 1615 {0x59, 0xba}, 1616 {0x5a, 0x9a}, 1617 {0x5b, 0x22}, 1618 {0x5c, 0xb9}, 1619 {0x5d, 0x9b}, 1620 {0x5e, 0x10}, 1621 {0x5f, 0xe0}, 1622 {0x60, 0x85}, 1623 {0x61, 0x60}, 1624 {0x9f, 0x9d}, /* RSVD */ 1625 {0xa0, 0xa0}, /* DSPC2 */ 1626 {0x4f, 0x60}, /* matrix */ 1627 {0x50, 0x64}, 1628 {0x51, 0x04}, 1629 {0x52, 0x18}, 1630 {0x53, 0x3c}, 1631 {0x54, 0x54}, 1632 {0x55, 0x40}, 1633 {0x56, 0x40}, 1634 {0x57, 0x40}, 1635 {0x58, 0x0d}, /* matrix sign */ 1636 {0x8b, 0xcc}, /* RSVD */ 1637 {0x8c, 0xcc}, 1638 {0x8d, 0xcf}, 1639 {0x6c, 0x40}, /* gamma curve */ 1640 {0x6d, 0xe0}, 1641 {0x6e, 0xa0}, 1642 {0x6f, 0x80}, 1643 {0x70, 0x70}, 1644 {0x71, 0x80}, 1645 {0x72, 0x60}, 1646 {0x73, 0x60}, 1647 {0x74, 0x50}, 1648 {0x75, 0x40}, 1649 {0x76, 0x38}, 1650 {0x77, 0x3c}, 1651 {0x78, 0x32}, 1652 {0x79, 0x1a}, 1653 {0x7a, 0x28}, 1654 {0x7b, 0x24}, 1655 {0x7c, 0x04}, /* gamma curve */ 1656 {0x7d, 0x12}, 1657 {0x7e, 0x26}, 1658 {0x7f, 0x46}, 1659 {0x80, 0x54}, 1660 {0x81, 0x64}, 1661 {0x82, 0x70}, 1662 {0x83, 0x7c}, 1663 {0x84, 0x86}, 1664 {0x85, 0x8e}, 1665 {0x86, 0x9c}, 1666 {0x87, 0xab}, 1667 {0x88, 0xc4}, 1668 {0x89, 0xd1}, 1669 {0x8a, 0xe5}, 1670 {OV7670_R14_COM9, 0x1e}, 1671 {OV7670_R24_AEW, 0x80}, 1672 {OV7670_R25_AEB, 0x72}, 1673 {OV7670_R26_VPT, 0xb3}, 1674 {0x62, 0x80}, /* LCC1 */ 1675 {0x63, 0x80}, /* LCC2 */ 1676 {0x64, 0x06}, /* LCC3 */ 1677 {0x65, 0x00}, /* LCC4 */ 1678 {0x66, 0x01}, /* LCC5 */ 1679 {0x94, 0x0e}, /* RSVD.. */ 1680 {0x95, 0x14}, 1681 {OV7670_R13_COM8, OV7670_COM8_FASTAEC 1682 | OV7670_COM8_AECSTEP 1683 | OV7670_COM8_BFILT 1684 | 0x10 1685 | OV7670_COM8_AGC 1686 | OV7670_COM8_AWB 1687 | OV7670_COM8_AEC}, 1688 {0xa1, 0xc8} 1689 }; 1690 static const struct ov_i2c_regvals norm_9600[] = { 1691 {0x12, 0x80}, 1692 {0x0c, 0x28}, 1693 {0x11, 0x80}, 1694 {0x13, 0xb5}, 1695 {0x14, 0x3e}, 1696 {0x1b, 0x04}, 1697 {0x24, 0xb0}, 1698 {0x25, 0x90}, 1699 {0x26, 0x94}, 1700 {0x35, 0x90}, 1701 {0x37, 0x07}, 1702 {0x38, 0x08}, 1703 {0x01, 0x8e}, 1704 {0x02, 0x85} 1705 }; 1706 1707 /* 7670. Defaults taken from OmniVision provided data, 1708 * as provided by Jonathan Corbet of OLPC */ 1709 static const struct ov_i2c_regvals norm_7670[] = { 1710 { OV7670_R12_COM7, OV7670_COM7_RESET }, 1711 { OV7670_R3A_TSLB, 0x04 }, /* OV */ 1712 { OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */ 1713 { OV7670_R11_CLKRC, 0x01 }, 1714 /* 1715 * Set the hardware window. These values from OV don't entirely 1716 * make sense - hstop is less than hstart. But they work... 1717 */ 1718 { OV7670_R17_HSTART, 0x13 }, 1719 { OV7670_R18_HSTOP, 0x01 }, 1720 { OV7670_R32_HREF, 0xb6 }, 1721 { OV7670_R19_VSTART, 0x02 }, 1722 { OV7670_R1A_VSTOP, 0x7a }, 1723 { OV7670_R03_VREF, 0x0a }, 1724 1725 { OV7670_R0C_COM3, 0x00 }, 1726 { OV7670_R3E_COM14, 0x00 }, 1727 /* Mystery scaling numbers */ 1728 { 0x70, 0x3a }, 1729 { 0x71, 0x35 }, 1730 { 0x72, 0x11 }, 1731 { 0x73, 0xf0 }, 1732 { 0xa2, 0x02 }, 1733 /* { OV7670_R15_COM10, 0x0 }, */ 1734 1735 /* Gamma curve values */ 1736 { 0x7a, 0x20 }, 1737 { 0x7b, 0x10 }, 1738 { 0x7c, 0x1e }, 1739 { 0x7d, 0x35 }, 1740 { 0x7e, 0x5a }, 1741 { 0x7f, 0x69 }, 1742 { 0x80, 0x76 }, 1743 { 0x81, 0x80 }, 1744 { 0x82, 0x88 }, 1745 { 0x83, 0x8f }, 1746 { 0x84, 0x96 }, 1747 { 0x85, 0xa3 }, 1748 { 0x86, 0xaf }, 1749 { 0x87, 0xc4 }, 1750 { 0x88, 0xd7 }, 1751 { 0x89, 0xe8 }, 1752 1753 /* AGC and AEC parameters. Note we start by disabling those features, 1754 then turn them only after tweaking the values. */ 1755 { OV7670_R13_COM8, OV7670_COM8_FASTAEC 1756 | OV7670_COM8_AECSTEP 1757 | OV7670_COM8_BFILT }, 1758 { OV7670_R00_GAIN, 0x00 }, 1759 { OV7670_R10_AECH, 0x00 }, 1760 { OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */ 1761 { OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */ 1762 { OV7670_RA5_BD50MAX, 0x05 }, 1763 { OV7670_RAB_BD60MAX, 0x07 }, 1764 { OV7670_R24_AEW, 0x95 }, 1765 { OV7670_R25_AEB, 0x33 }, 1766 { OV7670_R26_VPT, 0xe3 }, 1767 { OV7670_R9F_HAECC1, 0x78 }, 1768 { OV7670_RA0_HAECC2, 0x68 }, 1769 { 0xa1, 0x03 }, /* magic */ 1770 { OV7670_RA6_HAECC3, 0xd8 }, 1771 { OV7670_RA7_HAECC4, 0xd8 }, 1772 { OV7670_RA8_HAECC5, 0xf0 }, 1773 { OV7670_RA9_HAECC6, 0x90 }, 1774 { OV7670_RAA_HAECC7, 0x94 }, 1775 { OV7670_R13_COM8, OV7670_COM8_FASTAEC 1776 | OV7670_COM8_AECSTEP 1777 | OV7670_COM8_BFILT 1778 | OV7670_COM8_AGC 1779 | OV7670_COM8_AEC }, 1780 1781 /* Almost all of these are magic "reserved" values. */ 1782 { OV7670_R0E_COM5, 0x61 }, 1783 { OV7670_R0F_COM6, 0x4b }, 1784 { 0x16, 0x02 }, 1785 { OV7670_R1E_MVFP, 0x07 }, 1786 { 0x21, 0x02 }, 1787 { 0x22, 0x91 }, 1788 { 0x29, 0x07 }, 1789 { 0x33, 0x0b }, 1790 { 0x35, 0x0b }, 1791 { 0x37, 0x1d }, 1792 { 0x38, 0x71 }, 1793 { 0x39, 0x2a }, 1794 { OV7670_R3C_COM12, 0x78 }, 1795 { 0x4d, 0x40 }, 1796 { 0x4e, 0x20 }, 1797 { OV7670_R69_GFIX, 0x00 }, 1798 { 0x6b, 0x4a }, 1799 { 0x74, 0x10 }, 1800 { 0x8d, 0x4f }, 1801 { 0x8e, 0x00 }, 1802 { 0x8f, 0x00 }, 1803 { 0x90, 0x00 }, 1804 { 0x91, 0x00 }, 1805 { 0x96, 0x00 }, 1806 { 0x9a, 0x00 }, 1807 { 0xb0, 0x84 }, 1808 { 0xb1, 0x0c }, 1809 { 0xb2, 0x0e }, 1810 { 0xb3, 0x82 }, 1811 { 0xb8, 0x0a }, 1812 1813 /* More reserved magic, some of which tweaks white balance */ 1814 { 0x43, 0x0a }, 1815 { 0x44, 0xf0 }, 1816 { 0x45, 0x34 }, 1817 { 0x46, 0x58 }, 1818 { 0x47, 0x28 }, 1819 { 0x48, 0x3a }, 1820 { 0x59, 0x88 }, 1821 { 0x5a, 0x88 }, 1822 { 0x5b, 0x44 }, 1823 { 0x5c, 0x67 }, 1824 { 0x5d, 0x49 }, 1825 { 0x5e, 0x0e }, 1826 { 0x6c, 0x0a }, 1827 { 0x6d, 0x55 }, 1828 { 0x6e, 0x11 }, 1829 { 0x6f, 0x9f }, /* "9e for advance AWB" */ 1830 { 0x6a, 0x40 }, 1831 { OV7670_R01_BLUE, 0x40 }, 1832 { OV7670_R02_RED, 0x60 }, 1833 { OV7670_R13_COM8, OV7670_COM8_FASTAEC 1834 | OV7670_COM8_AECSTEP 1835 | OV7670_COM8_BFILT 1836 | OV7670_COM8_AGC 1837 | OV7670_COM8_AEC 1838 | OV7670_COM8_AWB }, 1839 1840 /* Matrix coefficients */ 1841 { 0x4f, 0x80 }, 1842 { 0x50, 0x80 }, 1843 { 0x51, 0x00 }, 1844 { 0x52, 0x22 }, 1845 { 0x53, 0x5e }, 1846 { 0x54, 0x80 }, 1847 { 0x58, 0x9e }, 1848 1849 { OV7670_R41_COM16, OV7670_COM16_AWBGAIN }, 1850 { OV7670_R3F_EDGE, 0x00 }, 1851 { 0x75, 0x05 }, 1852 { 0x76, 0xe1 }, 1853 { 0x4c, 0x00 }, 1854 { 0x77, 0x01 }, 1855 { OV7670_R3D_COM13, OV7670_COM13_GAMMA 1856 | OV7670_COM13_UVSAT 1857 | 2}, /* was 3 */ 1858 { 0x4b, 0x09 }, 1859 { 0xc9, 0x60 }, 1860 { OV7670_R41_COM16, 0x38 }, 1861 { 0x56, 0x40 }, 1862 1863 { 0x34, 0x11 }, 1864 { OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO }, 1865 { 0xa4, 0x88 }, 1866 { 0x96, 0x00 }, 1867 { 0x97, 0x30 }, 1868 { 0x98, 0x20 }, 1869 { 0x99, 0x30 }, 1870 { 0x9a, 0x84 }, 1871 { 0x9b, 0x29 }, 1872 { 0x9c, 0x03 }, 1873 { 0x9d, 0x4c }, 1874 { 0x9e, 0x3f }, 1875 { 0x78, 0x04 }, 1876 1877 /* Extra-weird stuff. Some sort of multiplexor register */ 1878 { 0x79, 0x01 }, 1879 { 0xc8, 0xf0 }, 1880 { 0x79, 0x0f }, 1881 { 0xc8, 0x00 }, 1882 { 0x79, 0x10 }, 1883 { 0xc8, 0x7e }, 1884 { 0x79, 0x0a }, 1885 { 0xc8, 0x80 }, 1886 { 0x79, 0x0b }, 1887 { 0xc8, 0x01 }, 1888 { 0x79, 0x0c }, 1889 { 0xc8, 0x0f }, 1890 { 0x79, 0x0d }, 1891 { 0xc8, 0x20 }, 1892 { 0x79, 0x09 }, 1893 { 0xc8, 0x80 }, 1894 { 0x79, 0x02 }, 1895 { 0xc8, 0xc0 }, 1896 { 0x79, 0x03 }, 1897 { 0xc8, 0x40 }, 1898 { 0x79, 0x05 }, 1899 { 0xc8, 0x30 }, 1900 { 0x79, 0x26 }, 1901 }; 1902 1903 static const struct ov_i2c_regvals norm_8610[] = { 1904 { 0x12, 0x80 }, 1905 { 0x00, 0x00 }, 1906 { 0x01, 0x80 }, 1907 { 0x02, 0x80 }, 1908 { 0x03, 0xc0 }, 1909 { 0x04, 0x30 }, 1910 { 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */ 1911 { 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */ 1912 { 0x0a, 0x86 }, 1913 { 0x0b, 0xb0 }, 1914 { 0x0c, 0x20 }, 1915 { 0x0d, 0x20 }, 1916 { 0x11, 0x01 }, 1917 { 0x12, 0x25 }, 1918 { 0x13, 0x01 }, 1919 { 0x14, 0x04 }, 1920 { 0x15, 0x01 }, /* Lin and Win think different about UV order */ 1921 { 0x16, 0x03 }, 1922 { 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */ 1923 { 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */ 1924 { 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */ 1925 { 0x1a, 0xf5 }, 1926 { 0x1b, 0x00 }, 1927 { 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */ 1928 { 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */ 1929 { 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */ 1930 { 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */ 1931 { 0x26, 0xa2 }, 1932 { 0x27, 0xea }, 1933 { 0x28, 0x00 }, 1934 { 0x29, 0x00 }, 1935 { 0x2a, 0x80 }, 1936 { 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */ 1937 { 0x2c, 0xac }, 1938 { 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */ 1939 { 0x2e, 0x80 }, 1940 { 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */ 1941 { 0x4c, 0x00 }, 1942 { 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */ 1943 { 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */ 1944 { 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */ 1945 { 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */ 1946 { 0x63, 0xff }, 1947 { 0x64, 0x53 }, /* new windrv 090403 says 0x57, 1948 * maybe thats wrong */ 1949 { 0x65, 0x00 }, 1950 { 0x66, 0x55 }, 1951 { 0x67, 0xb0 }, 1952 { 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */ 1953 { 0x69, 0x02 }, 1954 { 0x6a, 0x22 }, 1955 { 0x6b, 0x00 }, 1956 { 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but 1957 * deleting bit7 colors the first images red */ 1958 { 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */ 1959 { 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */ 1960 { 0x6f, 0x01 }, 1961 { 0x70, 0x8b }, 1962 { 0x71, 0x00 }, 1963 { 0x72, 0x14 }, 1964 { 0x73, 0x54 }, 1965 { 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */ 1966 { 0x75, 0x0e }, 1967 { 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */ 1968 { 0x77, 0xff }, 1969 { 0x78, 0x80 }, 1970 { 0x79, 0x80 }, 1971 { 0x7a, 0x80 }, 1972 { 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */ 1973 { 0x7c, 0x00 }, 1974 { 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */ 1975 { 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */ 1976 { 0x7f, 0xfb }, 1977 { 0x80, 0x28 }, 1978 { 0x81, 0x00 }, 1979 { 0x82, 0x23 }, 1980 { 0x83, 0x0b }, 1981 { 0x84, 0x00 }, 1982 { 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */ 1983 { 0x86, 0xc9 }, 1984 { 0x87, 0x00 }, 1985 { 0x88, 0x00 }, 1986 { 0x89, 0x01 }, 1987 { 0x12, 0x20 }, 1988 { 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */ 1989 }; 1990 1991 static unsigned char ov7670_abs_to_sm(unsigned char v) 1992 { 1993 if (v > 127) 1994 return v & 0x7f; 1995 return (128 - v) | 0x80; 1996 } 1997 1998 /* Write a OV519 register */ 1999 static void reg_w(struct sd *sd, u16 index, u16 value) 2000 { 2001 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2002 int ret, req = 0; 2003 2004 if (sd->gspca_dev.usb_err < 0) 2005 return; 2006 2007 /* Avoid things going to fast for the bridge with a xhci host */ 2008 udelay(150); 2009 2010 switch (sd->bridge) { 2011 case BRIDGE_OV511: 2012 case BRIDGE_OV511PLUS: 2013 req = 2; 2014 break; 2015 case BRIDGE_OVFX2: 2016 req = 0x0a; 2017 /* fall through */ 2018 case BRIDGE_W9968CF: 2019 PDEBUG(D_USBO, "SET %02x %04x %04x", 2020 req, value, index); 2021 ret = usb_control_msg(sd->gspca_dev.dev, 2022 usb_sndctrlpipe(sd->gspca_dev.dev, 0), 2023 req, 2024 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 2025 value, index, NULL, 0, 500); 2026 goto leave; 2027 default: 2028 req = 1; 2029 } 2030 2031 PDEBUG(D_USBO, "SET %02x 0000 %04x %02x", 2032 req, index, value); 2033 sd->gspca_dev.usb_buf[0] = value; 2034 ret = usb_control_msg(sd->gspca_dev.dev, 2035 usb_sndctrlpipe(sd->gspca_dev.dev, 0), 2036 req, 2037 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 2038 0, index, 2039 sd->gspca_dev.usb_buf, 1, 500); 2040 leave: 2041 if (ret < 0) { 2042 PERR("reg_w %02x failed %d\n", index, ret); 2043 sd->gspca_dev.usb_err = ret; 2044 return; 2045 } 2046 } 2047 2048 /* Read from a OV519 register, note not valid for the w9968cf!! */ 2049 /* returns: negative is error, pos or zero is data */ 2050 static int reg_r(struct sd *sd, u16 index) 2051 { 2052 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2053 int ret; 2054 int req; 2055 2056 if (sd->gspca_dev.usb_err < 0) 2057 return -1; 2058 2059 switch (sd->bridge) { 2060 case BRIDGE_OV511: 2061 case BRIDGE_OV511PLUS: 2062 req = 3; 2063 break; 2064 case BRIDGE_OVFX2: 2065 req = 0x0b; 2066 break; 2067 default: 2068 req = 1; 2069 } 2070 2071 /* Avoid things going to fast for the bridge with a xhci host */ 2072 udelay(150); 2073 ret = usb_control_msg(sd->gspca_dev.dev, 2074 usb_rcvctrlpipe(sd->gspca_dev.dev, 0), 2075 req, 2076 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 2077 0, index, sd->gspca_dev.usb_buf, 1, 500); 2078 2079 if (ret >= 0) { 2080 ret = sd->gspca_dev.usb_buf[0]; 2081 PDEBUG(D_USBI, "GET %02x 0000 %04x %02x", 2082 req, index, ret); 2083 } else { 2084 PERR("reg_r %02x failed %d\n", index, ret); 2085 sd->gspca_dev.usb_err = ret; 2086 } 2087 2088 return ret; 2089 } 2090 2091 /* Read 8 values from a OV519 register */ 2092 static int reg_r8(struct sd *sd, 2093 u16 index) 2094 { 2095 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2096 int ret; 2097 2098 if (sd->gspca_dev.usb_err < 0) 2099 return -1; 2100 2101 /* Avoid things going to fast for the bridge with a xhci host */ 2102 udelay(150); 2103 ret = usb_control_msg(sd->gspca_dev.dev, 2104 usb_rcvctrlpipe(sd->gspca_dev.dev, 0), 2105 1, /* REQ_IO */ 2106 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 2107 0, index, sd->gspca_dev.usb_buf, 8, 500); 2108 2109 if (ret >= 0) { 2110 ret = sd->gspca_dev.usb_buf[0]; 2111 } else { 2112 PERR("reg_r8 %02x failed %d\n", index, ret); 2113 sd->gspca_dev.usb_err = ret; 2114 } 2115 2116 return ret; 2117 } 2118 2119 /* 2120 * Writes bits at positions specified by mask to an OV51x reg. Bits that are in 2121 * the same position as 1's in "mask" are cleared and set to "value". Bits 2122 * that are in the same position as 0's in "mask" are preserved, regardless 2123 * of their respective state in "value". 2124 */ 2125 static void reg_w_mask(struct sd *sd, 2126 u16 index, 2127 u8 value, 2128 u8 mask) 2129 { 2130 int ret; 2131 u8 oldval; 2132 2133 if (mask != 0xff) { 2134 value &= mask; /* Enforce mask on value */ 2135 ret = reg_r(sd, index); 2136 if (ret < 0) 2137 return; 2138 2139 oldval = ret & ~mask; /* Clear the masked bits */ 2140 value |= oldval; /* Set the desired bits */ 2141 } 2142 reg_w(sd, index, value); 2143 } 2144 2145 /* 2146 * Writes multiple (n) byte value to a single register. Only valid with certain 2147 * registers (0x30 and 0xc4 - 0xce). 2148 */ 2149 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n) 2150 { 2151 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2152 int ret; 2153 2154 if (sd->gspca_dev.usb_err < 0) 2155 return; 2156 2157 *((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value); 2158 2159 /* Avoid things going to fast for the bridge with a xhci host */ 2160 udelay(150); 2161 ret = usb_control_msg(sd->gspca_dev.dev, 2162 usb_sndctrlpipe(sd->gspca_dev.dev, 0), 2163 1 /* REG_IO */, 2164 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 2165 0, index, 2166 sd->gspca_dev.usb_buf, n, 500); 2167 if (ret < 0) { 2168 PERR("reg_w32 %02x failed %d\n", index, ret); 2169 sd->gspca_dev.usb_err = ret; 2170 } 2171 } 2172 2173 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value) 2174 { 2175 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2176 int rc, retries; 2177 2178 PDEBUG(D_USBO, "ov511_i2c_w %02x %02x", reg, value); 2179 2180 /* Three byte write cycle */ 2181 for (retries = 6; ; ) { 2182 /* Select camera register */ 2183 reg_w(sd, R51x_I2C_SADDR_3, reg); 2184 2185 /* Write "value" to I2C data port of OV511 */ 2186 reg_w(sd, R51x_I2C_DATA, value); 2187 2188 /* Initiate 3-byte write cycle */ 2189 reg_w(sd, R511_I2C_CTL, 0x01); 2190 2191 do { 2192 rc = reg_r(sd, R511_I2C_CTL); 2193 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */ 2194 2195 if (rc < 0) 2196 return; 2197 2198 if ((rc & 2) == 0) /* Ack? */ 2199 break; 2200 if (--retries < 0) { 2201 PDEBUG(D_USBO, "i2c write retries exhausted"); 2202 return; 2203 } 2204 } 2205 } 2206 2207 static int ov511_i2c_r(struct sd *sd, u8 reg) 2208 { 2209 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2210 int rc, value, retries; 2211 2212 /* Two byte write cycle */ 2213 for (retries = 6; ; ) { 2214 /* Select camera register */ 2215 reg_w(sd, R51x_I2C_SADDR_2, reg); 2216 2217 /* Initiate 2-byte write cycle */ 2218 reg_w(sd, R511_I2C_CTL, 0x03); 2219 2220 do { 2221 rc = reg_r(sd, R511_I2C_CTL); 2222 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */ 2223 2224 if (rc < 0) 2225 return rc; 2226 2227 if ((rc & 2) == 0) /* Ack? */ 2228 break; 2229 2230 /* I2C abort */ 2231 reg_w(sd, R511_I2C_CTL, 0x10); 2232 2233 if (--retries < 0) { 2234 PDEBUG(D_USBI, "i2c write retries exhausted"); 2235 return -1; 2236 } 2237 } 2238 2239 /* Two byte read cycle */ 2240 for (retries = 6; ; ) { 2241 /* Initiate 2-byte read cycle */ 2242 reg_w(sd, R511_I2C_CTL, 0x05); 2243 2244 do { 2245 rc = reg_r(sd, R511_I2C_CTL); 2246 } while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */ 2247 2248 if (rc < 0) 2249 return rc; 2250 2251 if ((rc & 2) == 0) /* Ack? */ 2252 break; 2253 2254 /* I2C abort */ 2255 reg_w(sd, R511_I2C_CTL, 0x10); 2256 2257 if (--retries < 0) { 2258 PDEBUG(D_USBI, "i2c read retries exhausted"); 2259 return -1; 2260 } 2261 } 2262 2263 value = reg_r(sd, R51x_I2C_DATA); 2264 2265 PDEBUG(D_USBI, "ov511_i2c_r %02x %02x", reg, value); 2266 2267 /* This is needed to make i2c_w() work */ 2268 reg_w(sd, R511_I2C_CTL, 0x05); 2269 2270 return value; 2271 } 2272 2273 /* 2274 * The OV518 I2C I/O procedure is different, hence, this function. 2275 * This is normally only called from i2c_w(). Note that this function 2276 * always succeeds regardless of whether the sensor is present and working. 2277 */ 2278 static void ov518_i2c_w(struct sd *sd, 2279 u8 reg, 2280 u8 value) 2281 { 2282 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2283 2284 PDEBUG(D_USBO, "ov518_i2c_w %02x %02x", reg, value); 2285 2286 /* Select camera register */ 2287 reg_w(sd, R51x_I2C_SADDR_3, reg); 2288 2289 /* Write "value" to I2C data port of OV511 */ 2290 reg_w(sd, R51x_I2C_DATA, value); 2291 2292 /* Initiate 3-byte write cycle */ 2293 reg_w(sd, R518_I2C_CTL, 0x01); 2294 2295 /* wait for write complete */ 2296 msleep(4); 2297 reg_r8(sd, R518_I2C_CTL); 2298 } 2299 2300 /* 2301 * returns: negative is error, pos or zero is data 2302 * 2303 * The OV518 I2C I/O procedure is different, hence, this function. 2304 * This is normally only called from i2c_r(). Note that this function 2305 * always succeeds regardless of whether the sensor is present and working. 2306 */ 2307 static int ov518_i2c_r(struct sd *sd, u8 reg) 2308 { 2309 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2310 int value; 2311 2312 /* Select camera register */ 2313 reg_w(sd, R51x_I2C_SADDR_2, reg); 2314 2315 /* Initiate 2-byte write cycle */ 2316 reg_w(sd, R518_I2C_CTL, 0x03); 2317 reg_r8(sd, R518_I2C_CTL); 2318 2319 /* Initiate 2-byte read cycle */ 2320 reg_w(sd, R518_I2C_CTL, 0x05); 2321 reg_r8(sd, R518_I2C_CTL); 2322 2323 value = reg_r(sd, R51x_I2C_DATA); 2324 PDEBUG(D_USBI, "ov518_i2c_r %02x %02x", reg, value); 2325 return value; 2326 } 2327 2328 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value) 2329 { 2330 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2331 int ret; 2332 2333 if (sd->gspca_dev.usb_err < 0) 2334 return; 2335 2336 ret = usb_control_msg(sd->gspca_dev.dev, 2337 usb_sndctrlpipe(sd->gspca_dev.dev, 0), 2338 0x02, 2339 USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 2340 (u16) value, (u16) reg, NULL, 0, 500); 2341 2342 if (ret < 0) { 2343 PERR("ovfx2_i2c_w %02x failed %d\n", reg, ret); 2344 sd->gspca_dev.usb_err = ret; 2345 } 2346 2347 PDEBUG(D_USBO, "ovfx2_i2c_w %02x %02x", reg, value); 2348 } 2349 2350 static int ovfx2_i2c_r(struct sd *sd, u8 reg) 2351 { 2352 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2353 int ret; 2354 2355 if (sd->gspca_dev.usb_err < 0) 2356 return -1; 2357 2358 ret = usb_control_msg(sd->gspca_dev.dev, 2359 usb_rcvctrlpipe(sd->gspca_dev.dev, 0), 2360 0x03, 2361 USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, 2362 0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500); 2363 2364 if (ret >= 0) { 2365 ret = sd->gspca_dev.usb_buf[0]; 2366 PDEBUG(D_USBI, "ovfx2_i2c_r %02x %02x", reg, ret); 2367 } else { 2368 PERR("ovfx2_i2c_r %02x failed %d\n", reg, ret); 2369 sd->gspca_dev.usb_err = ret; 2370 } 2371 2372 return ret; 2373 } 2374 2375 static void i2c_w(struct sd *sd, u8 reg, u8 value) 2376 { 2377 if (sd->sensor_reg_cache[reg] == value) 2378 return; 2379 2380 switch (sd->bridge) { 2381 case BRIDGE_OV511: 2382 case BRIDGE_OV511PLUS: 2383 ov511_i2c_w(sd, reg, value); 2384 break; 2385 case BRIDGE_OV518: 2386 case BRIDGE_OV518PLUS: 2387 case BRIDGE_OV519: 2388 ov518_i2c_w(sd, reg, value); 2389 break; 2390 case BRIDGE_OVFX2: 2391 ovfx2_i2c_w(sd, reg, value); 2392 break; 2393 case BRIDGE_W9968CF: 2394 w9968cf_i2c_w(sd, reg, value); 2395 break; 2396 } 2397 2398 if (sd->gspca_dev.usb_err >= 0) { 2399 /* Up on sensor reset empty the register cache */ 2400 if (reg == 0x12 && (value & 0x80)) 2401 memset(sd->sensor_reg_cache, -1, 2402 sizeof(sd->sensor_reg_cache)); 2403 else 2404 sd->sensor_reg_cache[reg] = value; 2405 } 2406 } 2407 2408 static int i2c_r(struct sd *sd, u8 reg) 2409 { 2410 int ret = -1; 2411 2412 if (sd->sensor_reg_cache[reg] != -1) 2413 return sd->sensor_reg_cache[reg]; 2414 2415 switch (sd->bridge) { 2416 case BRIDGE_OV511: 2417 case BRIDGE_OV511PLUS: 2418 ret = ov511_i2c_r(sd, reg); 2419 break; 2420 case BRIDGE_OV518: 2421 case BRIDGE_OV518PLUS: 2422 case BRIDGE_OV519: 2423 ret = ov518_i2c_r(sd, reg); 2424 break; 2425 case BRIDGE_OVFX2: 2426 ret = ovfx2_i2c_r(sd, reg); 2427 break; 2428 case BRIDGE_W9968CF: 2429 ret = w9968cf_i2c_r(sd, reg); 2430 break; 2431 } 2432 2433 if (ret >= 0) 2434 sd->sensor_reg_cache[reg] = ret; 2435 2436 return ret; 2437 } 2438 2439 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in 2440 * the same position as 1's in "mask" are cleared and set to "value". Bits 2441 * that are in the same position as 0's in "mask" are preserved, regardless 2442 * of their respective state in "value". 2443 */ 2444 static void i2c_w_mask(struct sd *sd, 2445 u8 reg, 2446 u8 value, 2447 u8 mask) 2448 { 2449 int rc; 2450 u8 oldval; 2451 2452 value &= mask; /* Enforce mask on value */ 2453 rc = i2c_r(sd, reg); 2454 if (rc < 0) 2455 return; 2456 oldval = rc & ~mask; /* Clear the masked bits */ 2457 value |= oldval; /* Set the desired bits */ 2458 i2c_w(sd, reg, value); 2459 } 2460 2461 /* Temporarily stops OV511 from functioning. Must do this before changing 2462 * registers while the camera is streaming */ 2463 static inline void ov51x_stop(struct sd *sd) 2464 { 2465 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2466 2467 PDEBUG(D_STREAM, "stopping"); 2468 sd->stopped = 1; 2469 switch (sd->bridge) { 2470 case BRIDGE_OV511: 2471 case BRIDGE_OV511PLUS: 2472 reg_w(sd, R51x_SYS_RESET, 0x3d); 2473 break; 2474 case BRIDGE_OV518: 2475 case BRIDGE_OV518PLUS: 2476 reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a); 2477 break; 2478 case BRIDGE_OV519: 2479 reg_w(sd, OV519_R51_RESET1, 0x0f); 2480 reg_w(sd, OV519_R51_RESET1, 0x00); 2481 reg_w(sd, 0x22, 0x00); /* FRAR */ 2482 break; 2483 case BRIDGE_OVFX2: 2484 reg_w_mask(sd, 0x0f, 0x00, 0x02); 2485 break; 2486 case BRIDGE_W9968CF: 2487 reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */ 2488 break; 2489 } 2490 } 2491 2492 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not 2493 * actually stopped (for performance). */ 2494 static inline void ov51x_restart(struct sd *sd) 2495 { 2496 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2497 2498 PDEBUG(D_STREAM, "restarting"); 2499 if (!sd->stopped) 2500 return; 2501 sd->stopped = 0; 2502 2503 /* Reinitialize the stream */ 2504 switch (sd->bridge) { 2505 case BRIDGE_OV511: 2506 case BRIDGE_OV511PLUS: 2507 reg_w(sd, R51x_SYS_RESET, 0x00); 2508 break; 2509 case BRIDGE_OV518: 2510 case BRIDGE_OV518PLUS: 2511 reg_w(sd, 0x2f, 0x80); 2512 reg_w(sd, R51x_SYS_RESET, 0x00); 2513 break; 2514 case BRIDGE_OV519: 2515 reg_w(sd, OV519_R51_RESET1, 0x0f); 2516 reg_w(sd, OV519_R51_RESET1, 0x00); 2517 reg_w(sd, 0x22, 0x1d); /* FRAR */ 2518 break; 2519 case BRIDGE_OVFX2: 2520 reg_w_mask(sd, 0x0f, 0x02, 0x02); 2521 break; 2522 case BRIDGE_W9968CF: 2523 reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */ 2524 break; 2525 } 2526 } 2527 2528 static void ov51x_set_slave_ids(struct sd *sd, u8 slave); 2529 2530 /* This does an initial reset of an OmniVision sensor and ensures that I2C 2531 * is synchronized. Returns <0 on failure. 2532 */ 2533 static int init_ov_sensor(struct sd *sd, u8 slave) 2534 { 2535 int i; 2536 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2537 2538 ov51x_set_slave_ids(sd, slave); 2539 2540 /* Reset the sensor */ 2541 i2c_w(sd, 0x12, 0x80); 2542 2543 /* Wait for it to initialize */ 2544 msleep(150); 2545 2546 for (i = 0; i < i2c_detect_tries; i++) { 2547 if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f && 2548 i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) { 2549 PDEBUG(D_PROBE, "I2C synced in %d attempt(s)", i); 2550 return 0; 2551 } 2552 2553 /* Reset the sensor */ 2554 i2c_w(sd, 0x12, 0x80); 2555 2556 /* Wait for it to initialize */ 2557 msleep(150); 2558 2559 /* Dummy read to sync I2C */ 2560 if (i2c_r(sd, 0x00) < 0) 2561 return -1; 2562 } 2563 return -1; 2564 } 2565 2566 /* Set the read and write slave IDs. The "slave" argument is the write slave, 2567 * and the read slave will be set to (slave + 1). 2568 * This should not be called from outside the i2c I/O functions. 2569 * Sets I2C read and write slave IDs. Returns <0 for error 2570 */ 2571 static void ov51x_set_slave_ids(struct sd *sd, 2572 u8 slave) 2573 { 2574 switch (sd->bridge) { 2575 case BRIDGE_OVFX2: 2576 reg_w(sd, OVFX2_I2C_ADDR, slave); 2577 return; 2578 case BRIDGE_W9968CF: 2579 sd->sensor_addr = slave; 2580 return; 2581 } 2582 2583 reg_w(sd, R51x_I2C_W_SID, slave); 2584 reg_w(sd, R51x_I2C_R_SID, slave + 1); 2585 } 2586 2587 static void write_regvals(struct sd *sd, 2588 const struct ov_regvals *regvals, 2589 int n) 2590 { 2591 while (--n >= 0) { 2592 reg_w(sd, regvals->reg, regvals->val); 2593 regvals++; 2594 } 2595 } 2596 2597 static void write_i2c_regvals(struct sd *sd, 2598 const struct ov_i2c_regvals *regvals, 2599 int n) 2600 { 2601 while (--n >= 0) { 2602 i2c_w(sd, regvals->reg, regvals->val); 2603 regvals++; 2604 } 2605 } 2606 2607 /**************************************************************************** 2608 * 2609 * OV511 and sensor configuration 2610 * 2611 ***************************************************************************/ 2612 2613 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */ 2614 static void ov_hires_configure(struct sd *sd) 2615 { 2616 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2617 int high, low; 2618 2619 if (sd->bridge != BRIDGE_OVFX2) { 2620 PERR("error hires sensors only supported with ovfx2\n"); 2621 return; 2622 } 2623 2624 PDEBUG(D_PROBE, "starting ov hires configuration"); 2625 2626 /* Detect sensor (sub)type */ 2627 high = i2c_r(sd, 0x0a); 2628 low = i2c_r(sd, 0x0b); 2629 /* info("%x, %x", high, low); */ 2630 switch (high) { 2631 case 0x96: 2632 switch (low) { 2633 case 0x40: 2634 PDEBUG(D_PROBE, "Sensor is a OV2610"); 2635 sd->sensor = SEN_OV2610; 2636 return; 2637 case 0x41: 2638 PDEBUG(D_PROBE, "Sensor is a OV2610AE"); 2639 sd->sensor = SEN_OV2610AE; 2640 return; 2641 case 0xb1: 2642 PDEBUG(D_PROBE, "Sensor is a OV9600"); 2643 sd->sensor = SEN_OV9600; 2644 return; 2645 } 2646 break; 2647 case 0x36: 2648 if ((low & 0x0f) == 0x00) { 2649 PDEBUG(D_PROBE, "Sensor is a OV3610"); 2650 sd->sensor = SEN_OV3610; 2651 return; 2652 } 2653 break; 2654 } 2655 PERR("Error unknown sensor type: %02x%02x\n", high, low); 2656 } 2657 2658 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses 2659 * the same register settings as the OV8610, since they are very similar. 2660 */ 2661 static void ov8xx0_configure(struct sd *sd) 2662 { 2663 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2664 int rc; 2665 2666 PDEBUG(D_PROBE, "starting ov8xx0 configuration"); 2667 2668 /* Detect sensor (sub)type */ 2669 rc = i2c_r(sd, OV7610_REG_COM_I); 2670 if (rc < 0) { 2671 PERR("Error detecting sensor type"); 2672 return; 2673 } 2674 if ((rc & 3) == 1) 2675 sd->sensor = SEN_OV8610; 2676 else 2677 PERR("Unknown image sensor version: %d\n", rc & 3); 2678 } 2679 2680 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses 2681 * the same register settings as the OV7610, since they are very similar. 2682 */ 2683 static void ov7xx0_configure(struct sd *sd) 2684 { 2685 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2686 int rc, high, low; 2687 2688 PDEBUG(D_PROBE, "starting OV7xx0 configuration"); 2689 2690 /* Detect sensor (sub)type */ 2691 rc = i2c_r(sd, OV7610_REG_COM_I); 2692 2693 /* add OV7670 here 2694 * it appears to be wrongly detected as a 7610 by default */ 2695 if (rc < 0) { 2696 PERR("Error detecting sensor type\n"); 2697 return; 2698 } 2699 if ((rc & 3) == 3) { 2700 /* quick hack to make OV7670s work */ 2701 high = i2c_r(sd, 0x0a); 2702 low = i2c_r(sd, 0x0b); 2703 /* info("%x, %x", high, low); */ 2704 if (high == 0x76 && (low & 0xf0) == 0x70) { 2705 PDEBUG(D_PROBE, "Sensor is an OV76%02x", low); 2706 sd->sensor = SEN_OV7670; 2707 } else { 2708 PDEBUG(D_PROBE, "Sensor is an OV7610"); 2709 sd->sensor = SEN_OV7610; 2710 } 2711 } else if ((rc & 3) == 1) { 2712 /* I don't know what's different about the 76BE yet. */ 2713 if (i2c_r(sd, 0x15) & 1) { 2714 PDEBUG(D_PROBE, "Sensor is an OV7620AE"); 2715 sd->sensor = SEN_OV7620AE; 2716 } else { 2717 PDEBUG(D_PROBE, "Sensor is an OV76BE"); 2718 sd->sensor = SEN_OV76BE; 2719 } 2720 } else if ((rc & 3) == 0) { 2721 /* try to read product id registers */ 2722 high = i2c_r(sd, 0x0a); 2723 if (high < 0) { 2724 PERR("Error detecting camera chip PID\n"); 2725 return; 2726 } 2727 low = i2c_r(sd, 0x0b); 2728 if (low < 0) { 2729 PERR("Error detecting camera chip VER\n"); 2730 return; 2731 } 2732 if (high == 0x76) { 2733 switch (low) { 2734 case 0x30: 2735 PERR("Sensor is an OV7630/OV7635\n"); 2736 PERR("7630 is not supported by this driver\n"); 2737 return; 2738 case 0x40: 2739 PDEBUG(D_PROBE, "Sensor is an OV7645"); 2740 sd->sensor = SEN_OV7640; /* FIXME */ 2741 break; 2742 case 0x45: 2743 PDEBUG(D_PROBE, "Sensor is an OV7645B"); 2744 sd->sensor = SEN_OV7640; /* FIXME */ 2745 break; 2746 case 0x48: 2747 PDEBUG(D_PROBE, "Sensor is an OV7648"); 2748 sd->sensor = SEN_OV7648; 2749 break; 2750 case 0x60: 2751 PDEBUG(D_PROBE, "Sensor is a OV7660"); 2752 sd->sensor = SEN_OV7660; 2753 break; 2754 default: 2755 PERR("Unknown sensor: 0x76%02x\n", low); 2756 return; 2757 } 2758 } else { 2759 PDEBUG(D_PROBE, "Sensor is an OV7620"); 2760 sd->sensor = SEN_OV7620; 2761 } 2762 } else { 2763 PERR("Unknown image sensor version: %d\n", rc & 3); 2764 } 2765 } 2766 2767 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */ 2768 static void ov6xx0_configure(struct sd *sd) 2769 { 2770 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2771 int rc; 2772 2773 PDEBUG(D_PROBE, "starting OV6xx0 configuration"); 2774 2775 /* Detect sensor (sub)type */ 2776 rc = i2c_r(sd, OV7610_REG_COM_I); 2777 if (rc < 0) { 2778 PERR("Error detecting sensor type\n"); 2779 return; 2780 } 2781 2782 /* Ugh. The first two bits are the version bits, but 2783 * the entire register value must be used. I guess OVT 2784 * underestimated how many variants they would make. */ 2785 switch (rc) { 2786 case 0x00: 2787 sd->sensor = SEN_OV6630; 2788 pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n"); 2789 break; 2790 case 0x01: 2791 sd->sensor = SEN_OV6620; 2792 PDEBUG(D_PROBE, "Sensor is an OV6620"); 2793 break; 2794 case 0x02: 2795 sd->sensor = SEN_OV6630; 2796 PDEBUG(D_PROBE, "Sensor is an OV66308AE"); 2797 break; 2798 case 0x03: 2799 sd->sensor = SEN_OV66308AF; 2800 PDEBUG(D_PROBE, "Sensor is an OV66308AF"); 2801 break; 2802 case 0x90: 2803 sd->sensor = SEN_OV6630; 2804 pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n"); 2805 break; 2806 default: 2807 PERR("FATAL: Unknown sensor version: 0x%02x\n", rc); 2808 return; 2809 } 2810 2811 /* Set sensor-specific vars */ 2812 sd->sif = 1; 2813 } 2814 2815 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */ 2816 static void ov51x_led_control(struct sd *sd, int on) 2817 { 2818 if (sd->invert_led) 2819 on = !on; 2820 2821 switch (sd->bridge) { 2822 /* OV511 has no LED control */ 2823 case BRIDGE_OV511PLUS: 2824 reg_w(sd, R511_SYS_LED_CTL, on); 2825 break; 2826 case BRIDGE_OV518: 2827 case BRIDGE_OV518PLUS: 2828 reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02); 2829 break; 2830 case BRIDGE_OV519: 2831 reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1); 2832 break; 2833 } 2834 } 2835 2836 static void sd_reset_snapshot(struct gspca_dev *gspca_dev) 2837 { 2838 struct sd *sd = (struct sd *) gspca_dev; 2839 2840 if (!sd->snapshot_needs_reset) 2841 return; 2842 2843 /* Note it is important that we clear sd->snapshot_needs_reset, 2844 before actually clearing the snapshot state in the bridge 2845 otherwise we might race with the pkt_scan interrupt handler */ 2846 sd->snapshot_needs_reset = 0; 2847 2848 switch (sd->bridge) { 2849 case BRIDGE_OV511: 2850 case BRIDGE_OV511PLUS: 2851 reg_w(sd, R51x_SYS_SNAP, 0x02); 2852 reg_w(sd, R51x_SYS_SNAP, 0x00); 2853 break; 2854 case BRIDGE_OV518: 2855 case BRIDGE_OV518PLUS: 2856 reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */ 2857 reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */ 2858 break; 2859 case BRIDGE_OV519: 2860 reg_w(sd, R51x_SYS_RESET, 0x40); 2861 reg_w(sd, R51x_SYS_RESET, 0x00); 2862 break; 2863 } 2864 } 2865 2866 static void ov51x_upload_quan_tables(struct sd *sd) 2867 { 2868 const unsigned char yQuanTable511[] = { 2869 0, 1, 1, 2, 2, 3, 3, 4, 2870 1, 1, 1, 2, 2, 3, 4, 4, 2871 1, 1, 2, 2, 3, 4, 4, 4, 2872 2, 2, 2, 3, 4, 4, 4, 4, 2873 2, 2, 3, 4, 4, 5, 5, 5, 2874 3, 3, 4, 4, 5, 5, 5, 5, 2875 3, 4, 4, 4, 5, 5, 5, 5, 2876 4, 4, 4, 4, 5, 5, 5, 5 2877 }; 2878 2879 const unsigned char uvQuanTable511[] = { 2880 0, 2, 2, 3, 4, 4, 4, 4, 2881 2, 2, 2, 4, 4, 4, 4, 4, 2882 2, 2, 3, 4, 4, 4, 4, 4, 2883 3, 4, 4, 4, 4, 4, 4, 4, 2884 4, 4, 4, 4, 4, 4, 4, 4, 2885 4, 4, 4, 4, 4, 4, 4, 4, 2886 4, 4, 4, 4, 4, 4, 4, 4, 2887 4, 4, 4, 4, 4, 4, 4, 4 2888 }; 2889 2890 /* OV518 quantization tables are 8x4 (instead of 8x8) */ 2891 const unsigned char yQuanTable518[] = { 2892 5, 4, 5, 6, 6, 7, 7, 7, 2893 5, 5, 5, 5, 6, 7, 7, 7, 2894 6, 6, 6, 6, 7, 7, 7, 8, 2895 7, 7, 6, 7, 7, 7, 8, 8 2896 }; 2897 const unsigned char uvQuanTable518[] = { 2898 6, 6, 6, 7, 7, 7, 7, 7, 2899 6, 6, 6, 7, 7, 7, 7, 7, 2900 6, 6, 6, 7, 7, 7, 7, 8, 2901 7, 7, 7, 7, 7, 7, 8, 8 2902 }; 2903 2904 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 2905 const unsigned char *pYTable, *pUVTable; 2906 unsigned char val0, val1; 2907 int i, size, reg = R51x_COMP_LUT_BEGIN; 2908 2909 PDEBUG(D_PROBE, "Uploading quantization tables"); 2910 2911 if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) { 2912 pYTable = yQuanTable511; 2913 pUVTable = uvQuanTable511; 2914 size = 32; 2915 } else { 2916 pYTable = yQuanTable518; 2917 pUVTable = uvQuanTable518; 2918 size = 16; 2919 } 2920 2921 for (i = 0; i < size; i++) { 2922 val0 = *pYTable++; 2923 val1 = *pYTable++; 2924 val0 &= 0x0f; 2925 val1 &= 0x0f; 2926 val0 |= val1 << 4; 2927 reg_w(sd, reg, val0); 2928 2929 val0 = *pUVTable++; 2930 val1 = *pUVTable++; 2931 val0 &= 0x0f; 2932 val1 &= 0x0f; 2933 val0 |= val1 << 4; 2934 reg_w(sd, reg + size, val0); 2935 2936 reg++; 2937 } 2938 } 2939 2940 /* This initializes the OV511/OV511+ and the sensor */ 2941 static void ov511_configure(struct gspca_dev *gspca_dev) 2942 { 2943 struct sd *sd = (struct sd *) gspca_dev; 2944 2945 /* For 511 and 511+ */ 2946 const struct ov_regvals init_511[] = { 2947 { R51x_SYS_RESET, 0x7f }, 2948 { R51x_SYS_INIT, 0x01 }, 2949 { R51x_SYS_RESET, 0x7f }, 2950 { R51x_SYS_INIT, 0x01 }, 2951 { R51x_SYS_RESET, 0x3f }, 2952 { R51x_SYS_INIT, 0x01 }, 2953 { R51x_SYS_RESET, 0x3d }, 2954 }; 2955 2956 const struct ov_regvals norm_511[] = { 2957 { R511_DRAM_FLOW_CTL, 0x01 }, 2958 { R51x_SYS_SNAP, 0x00 }, 2959 { R51x_SYS_SNAP, 0x02 }, 2960 { R51x_SYS_SNAP, 0x00 }, 2961 { R511_FIFO_OPTS, 0x1f }, 2962 { R511_COMP_EN, 0x00 }, 2963 { R511_COMP_LUT_EN, 0x03 }, 2964 }; 2965 2966 const struct ov_regvals norm_511_p[] = { 2967 { R511_DRAM_FLOW_CTL, 0xff }, 2968 { R51x_SYS_SNAP, 0x00 }, 2969 { R51x_SYS_SNAP, 0x02 }, 2970 { R51x_SYS_SNAP, 0x00 }, 2971 { R511_FIFO_OPTS, 0xff }, 2972 { R511_COMP_EN, 0x00 }, 2973 { R511_COMP_LUT_EN, 0x03 }, 2974 }; 2975 2976 const struct ov_regvals compress_511[] = { 2977 { 0x70, 0x1f }, 2978 { 0x71, 0x05 }, 2979 { 0x72, 0x06 }, 2980 { 0x73, 0x06 }, 2981 { 0x74, 0x14 }, 2982 { 0x75, 0x03 }, 2983 { 0x76, 0x04 }, 2984 { 0x77, 0x04 }, 2985 }; 2986 2987 PDEBUG(D_PROBE, "Device custom id %x", reg_r(sd, R51x_SYS_CUST_ID)); 2988 2989 write_regvals(sd, init_511, ARRAY_SIZE(init_511)); 2990 2991 switch (sd->bridge) { 2992 case BRIDGE_OV511: 2993 write_regvals(sd, norm_511, ARRAY_SIZE(norm_511)); 2994 break; 2995 case BRIDGE_OV511PLUS: 2996 write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p)); 2997 break; 2998 } 2999 3000 /* Init compression */ 3001 write_regvals(sd, compress_511, ARRAY_SIZE(compress_511)); 3002 3003 ov51x_upload_quan_tables(sd); 3004 } 3005 3006 /* This initializes the OV518/OV518+ and the sensor */ 3007 static void ov518_configure(struct gspca_dev *gspca_dev) 3008 { 3009 struct sd *sd = (struct sd *) gspca_dev; 3010 3011 /* For 518 and 518+ */ 3012 const struct ov_regvals init_518[] = { 3013 { R51x_SYS_RESET, 0x40 }, 3014 { R51x_SYS_INIT, 0xe1 }, 3015 { R51x_SYS_RESET, 0x3e }, 3016 { R51x_SYS_INIT, 0xe1 }, 3017 { R51x_SYS_RESET, 0x00 }, 3018 { R51x_SYS_INIT, 0xe1 }, 3019 { 0x46, 0x00 }, 3020 { 0x5d, 0x03 }, 3021 }; 3022 3023 const struct ov_regvals norm_518[] = { 3024 { R51x_SYS_SNAP, 0x02 }, /* Reset */ 3025 { R51x_SYS_SNAP, 0x01 }, /* Enable */ 3026 { 0x31, 0x0f }, 3027 { 0x5d, 0x03 }, 3028 { 0x24, 0x9f }, 3029 { 0x25, 0x90 }, 3030 { 0x20, 0x00 }, 3031 { 0x51, 0x04 }, 3032 { 0x71, 0x19 }, 3033 { 0x2f, 0x80 }, 3034 }; 3035 3036 const struct ov_regvals norm_518_p[] = { 3037 { R51x_SYS_SNAP, 0x02 }, /* Reset */ 3038 { R51x_SYS_SNAP, 0x01 }, /* Enable */ 3039 { 0x31, 0x0f }, 3040 { 0x5d, 0x03 }, 3041 { 0x24, 0x9f }, 3042 { 0x25, 0x90 }, 3043 { 0x20, 0x60 }, 3044 { 0x51, 0x02 }, 3045 { 0x71, 0x19 }, 3046 { 0x40, 0xff }, 3047 { 0x41, 0x42 }, 3048 { 0x46, 0x00 }, 3049 { 0x33, 0x04 }, 3050 { 0x21, 0x19 }, 3051 { 0x3f, 0x10 }, 3052 { 0x2f, 0x80 }, 3053 }; 3054 3055 /* First 5 bits of custom ID reg are a revision ID on OV518 */ 3056 sd->revision = reg_r(sd, R51x_SYS_CUST_ID) & 0x1f; 3057 PDEBUG(D_PROBE, "Device revision %d", sd->revision); 3058 3059 write_regvals(sd, init_518, ARRAY_SIZE(init_518)); 3060 3061 /* Set LED GPIO pin to output mode */ 3062 reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02); 3063 3064 switch (sd->bridge) { 3065 case BRIDGE_OV518: 3066 write_regvals(sd, norm_518, ARRAY_SIZE(norm_518)); 3067 break; 3068 case BRIDGE_OV518PLUS: 3069 write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p)); 3070 break; 3071 } 3072 3073 ov51x_upload_quan_tables(sd); 3074 3075 reg_w(sd, 0x2f, 0x80); 3076 } 3077 3078 static void ov519_configure(struct sd *sd) 3079 { 3080 static const struct ov_regvals init_519[] = { 3081 { 0x5a, 0x6d }, /* EnableSystem */ 3082 { 0x53, 0x9b }, /* don't enable the microcontroller */ 3083 { OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */ 3084 { 0x5d, 0x03 }, 3085 { 0x49, 0x01 }, 3086 { 0x48, 0x00 }, 3087 /* Set LED pin to output mode. Bit 4 must be cleared or sensor 3088 * detection will fail. This deserves further investigation. */ 3089 { OV519_GPIO_IO_CTRL0, 0xee }, 3090 { OV519_R51_RESET1, 0x0f }, 3091 { OV519_R51_RESET1, 0x00 }, 3092 { 0x22, 0x00 }, 3093 /* windows reads 0x55 at this point*/ 3094 }; 3095 3096 write_regvals(sd, init_519, ARRAY_SIZE(init_519)); 3097 } 3098 3099 static void ovfx2_configure(struct sd *sd) 3100 { 3101 static const struct ov_regvals init_fx2[] = { 3102 { 0x00, 0x60 }, 3103 { 0x02, 0x01 }, 3104 { 0x0f, 0x1d }, 3105 { 0xe9, 0x82 }, 3106 { 0xea, 0xc7 }, 3107 { 0xeb, 0x10 }, 3108 { 0xec, 0xf6 }, 3109 }; 3110 3111 sd->stopped = 1; 3112 3113 write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2)); 3114 } 3115 3116 /* set the mode */ 3117 /* This function works for ov7660 only */ 3118 static void ov519_set_mode(struct sd *sd) 3119 { 3120 static const struct ov_regvals bridge_ov7660[2][10] = { 3121 {{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00}, 3122 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c}, 3123 {0x25, 0x01}, {0x26, 0x00}}, 3124 {{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00}, 3125 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c}, 3126 {0x25, 0x03}, {0x26, 0x00}} 3127 }; 3128 static const struct ov_i2c_regvals sensor_ov7660[2][3] = { 3129 {{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}}, 3130 {{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}} 3131 }; 3132 static const struct ov_i2c_regvals sensor_ov7660_2[] = { 3133 {OV7670_R17_HSTART, 0x13}, 3134 {OV7670_R18_HSTOP, 0x01}, 3135 {OV7670_R32_HREF, 0x92}, 3136 {OV7670_R19_VSTART, 0x02}, 3137 {OV7670_R1A_VSTOP, 0x7a}, 3138 {OV7670_R03_VREF, 0x00}, 3139 /* {0x33, 0x00}, */ 3140 /* {0x34, 0x07}, */ 3141 /* {0x36, 0x00}, */ 3142 /* {0x6b, 0x0a}, */ 3143 }; 3144 3145 write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode], 3146 ARRAY_SIZE(bridge_ov7660[0])); 3147 write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode], 3148 ARRAY_SIZE(sensor_ov7660[0])); 3149 write_i2c_regvals(sd, sensor_ov7660_2, 3150 ARRAY_SIZE(sensor_ov7660_2)); 3151 } 3152 3153 /* set the frame rate */ 3154 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */ 3155 static void ov519_set_fr(struct sd *sd) 3156 { 3157 int fr; 3158 u8 clock; 3159 /* frame rate table with indices: 3160 * - mode = 0: 320x240, 1: 640x480 3161 * - fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5 3162 * - reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock) 3163 */ 3164 static const u8 fr_tb[2][6][3] = { 3165 {{0x04, 0xff, 0x00}, 3166 {0x04, 0x1f, 0x00}, 3167 {0x04, 0x1b, 0x00}, 3168 {0x04, 0x15, 0x00}, 3169 {0x04, 0x09, 0x00}, 3170 {0x04, 0x01, 0x00}}, 3171 {{0x0c, 0xff, 0x00}, 3172 {0x0c, 0x1f, 0x00}, 3173 {0x0c, 0x1b, 0x00}, 3174 {0x04, 0xff, 0x01}, 3175 {0x04, 0x1f, 0x01}, 3176 {0x04, 0x1b, 0x01}}, 3177 }; 3178 3179 if (frame_rate > 0) 3180 sd->frame_rate = frame_rate; 3181 if (sd->frame_rate >= 30) 3182 fr = 0; 3183 else if (sd->frame_rate >= 25) 3184 fr = 1; 3185 else if (sd->frame_rate >= 20) 3186 fr = 2; 3187 else if (sd->frame_rate >= 15) 3188 fr = 3; 3189 else if (sd->frame_rate >= 10) 3190 fr = 4; 3191 else 3192 fr = 5; 3193 reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]); 3194 reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]); 3195 clock = fr_tb[sd->gspca_dev.curr_mode][fr][2]; 3196 if (sd->sensor == SEN_OV7660) 3197 clock |= 0x80; /* enable double clock */ 3198 ov518_i2c_w(sd, OV7670_R11_CLKRC, clock); 3199 } 3200 3201 static void setautogain(struct gspca_dev *gspca_dev, s32 val) 3202 { 3203 struct sd *sd = (struct sd *) gspca_dev; 3204 3205 i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05); 3206 } 3207 3208 /* this function is called at probe time */ 3209 static int sd_config(struct gspca_dev *gspca_dev, 3210 const struct usb_device_id *id) 3211 { 3212 struct sd *sd = (struct sd *) gspca_dev; 3213 struct cam *cam = &gspca_dev->cam; 3214 3215 sd->bridge = id->driver_info & BRIDGE_MASK; 3216 sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0; 3217 3218 switch (sd->bridge) { 3219 case BRIDGE_OV511: 3220 case BRIDGE_OV511PLUS: 3221 cam->cam_mode = ov511_vga_mode; 3222 cam->nmodes = ARRAY_SIZE(ov511_vga_mode); 3223 break; 3224 case BRIDGE_OV518: 3225 case BRIDGE_OV518PLUS: 3226 cam->cam_mode = ov518_vga_mode; 3227 cam->nmodes = ARRAY_SIZE(ov518_vga_mode); 3228 break; 3229 case BRIDGE_OV519: 3230 cam->cam_mode = ov519_vga_mode; 3231 cam->nmodes = ARRAY_SIZE(ov519_vga_mode); 3232 break; 3233 case BRIDGE_OVFX2: 3234 cam->cam_mode = ov519_vga_mode; 3235 cam->nmodes = ARRAY_SIZE(ov519_vga_mode); 3236 cam->bulk_size = OVFX2_BULK_SIZE; 3237 cam->bulk_nurbs = MAX_NURBS; 3238 cam->bulk = 1; 3239 break; 3240 case BRIDGE_W9968CF: 3241 cam->cam_mode = w9968cf_vga_mode; 3242 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode); 3243 break; 3244 } 3245 3246 sd->frame_rate = 15; 3247 3248 return 0; 3249 } 3250 3251 /* this function is called at probe and resume time */ 3252 static int sd_init(struct gspca_dev *gspca_dev) 3253 { 3254 struct sd *sd = (struct sd *) gspca_dev; 3255 struct cam *cam = &gspca_dev->cam; 3256 3257 switch (sd->bridge) { 3258 case BRIDGE_OV511: 3259 case BRIDGE_OV511PLUS: 3260 ov511_configure(gspca_dev); 3261 break; 3262 case BRIDGE_OV518: 3263 case BRIDGE_OV518PLUS: 3264 ov518_configure(gspca_dev); 3265 break; 3266 case BRIDGE_OV519: 3267 ov519_configure(sd); 3268 break; 3269 case BRIDGE_OVFX2: 3270 ovfx2_configure(sd); 3271 break; 3272 case BRIDGE_W9968CF: 3273 w9968cf_configure(sd); 3274 break; 3275 } 3276 3277 /* The OV519 must be more aggressive about sensor detection since 3278 * I2C write will never fail if the sensor is not present. We have 3279 * to try to initialize the sensor to detect its presence */ 3280 sd->sensor = -1; 3281 3282 /* Test for 76xx */ 3283 if (init_ov_sensor(sd, OV7xx0_SID) >= 0) { 3284 ov7xx0_configure(sd); 3285 3286 /* Test for 6xx0 */ 3287 } else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) { 3288 ov6xx0_configure(sd); 3289 3290 /* Test for 8xx0 */ 3291 } else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) { 3292 ov8xx0_configure(sd); 3293 3294 /* Test for 3xxx / 2xxx */ 3295 } else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) { 3296 ov_hires_configure(sd); 3297 } else { 3298 PERR("Can't determine sensor slave IDs\n"); 3299 goto error; 3300 } 3301 3302 if (sd->sensor < 0) 3303 goto error; 3304 3305 ov51x_led_control(sd, 0); /* turn LED off */ 3306 3307 switch (sd->bridge) { 3308 case BRIDGE_OV511: 3309 case BRIDGE_OV511PLUS: 3310 if (sd->sif) { 3311 cam->cam_mode = ov511_sif_mode; 3312 cam->nmodes = ARRAY_SIZE(ov511_sif_mode); 3313 } 3314 break; 3315 case BRIDGE_OV518: 3316 case BRIDGE_OV518PLUS: 3317 if (sd->sif) { 3318 cam->cam_mode = ov518_sif_mode; 3319 cam->nmodes = ARRAY_SIZE(ov518_sif_mode); 3320 } 3321 break; 3322 case BRIDGE_OV519: 3323 if (sd->sif) { 3324 cam->cam_mode = ov519_sif_mode; 3325 cam->nmodes = ARRAY_SIZE(ov519_sif_mode); 3326 } 3327 break; 3328 case BRIDGE_OVFX2: 3329 switch (sd->sensor) { 3330 case SEN_OV2610: 3331 case SEN_OV2610AE: 3332 cam->cam_mode = ovfx2_ov2610_mode; 3333 cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode); 3334 break; 3335 case SEN_OV3610: 3336 cam->cam_mode = ovfx2_ov3610_mode; 3337 cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode); 3338 break; 3339 case SEN_OV9600: 3340 cam->cam_mode = ovfx2_ov9600_mode; 3341 cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode); 3342 break; 3343 default: 3344 if (sd->sif) { 3345 cam->cam_mode = ov519_sif_mode; 3346 cam->nmodes = ARRAY_SIZE(ov519_sif_mode); 3347 } 3348 break; 3349 } 3350 break; 3351 case BRIDGE_W9968CF: 3352 if (sd->sif) 3353 cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1; 3354 3355 /* w9968cf needs initialisation once the sensor is known */ 3356 w9968cf_init(sd); 3357 break; 3358 } 3359 3360 /* initialize the sensor */ 3361 switch (sd->sensor) { 3362 case SEN_OV2610: 3363 write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610)); 3364 3365 /* Enable autogain, autoexpo, awb, bandfilter */ 3366 i2c_w_mask(sd, 0x13, 0x27, 0x27); 3367 break; 3368 case SEN_OV2610AE: 3369 write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae)); 3370 3371 /* enable autoexpo */ 3372 i2c_w_mask(sd, 0x13, 0x05, 0x05); 3373 break; 3374 case SEN_OV3610: 3375 write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b)); 3376 3377 /* Enable autogain, autoexpo, awb, bandfilter */ 3378 i2c_w_mask(sd, 0x13, 0x27, 0x27); 3379 break; 3380 case SEN_OV6620: 3381 write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20)); 3382 break; 3383 case SEN_OV6630: 3384 case SEN_OV66308AF: 3385 write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30)); 3386 break; 3387 default: 3388 /* case SEN_OV7610: */ 3389 /* case SEN_OV76BE: */ 3390 write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610)); 3391 i2c_w_mask(sd, 0x0e, 0x00, 0x40); 3392 break; 3393 case SEN_OV7620: 3394 case SEN_OV7620AE: 3395 write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620)); 3396 break; 3397 case SEN_OV7640: 3398 case SEN_OV7648: 3399 write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640)); 3400 break; 3401 case SEN_OV7660: 3402 i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET); 3403 msleep(14); 3404 reg_w(sd, OV519_R57_SNAPSHOT, 0x23); 3405 write_regvals(sd, init_519_ov7660, 3406 ARRAY_SIZE(init_519_ov7660)); 3407 write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660)); 3408 sd->gspca_dev.curr_mode = 1; /* 640x480 */ 3409 ov519_set_mode(sd); 3410 ov519_set_fr(sd); 3411 sd_reset_snapshot(gspca_dev); 3412 ov51x_restart(sd); 3413 ov51x_stop(sd); /* not in win traces */ 3414 ov51x_led_control(sd, 0); 3415 break; 3416 case SEN_OV7670: 3417 write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670)); 3418 break; 3419 case SEN_OV8610: 3420 write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610)); 3421 break; 3422 case SEN_OV9600: 3423 write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600)); 3424 3425 /* enable autoexpo */ 3426 /* i2c_w_mask(sd, 0x13, 0x05, 0x05); */ 3427 break; 3428 } 3429 return gspca_dev->usb_err; 3430 error: 3431 PERR("OV519 Config failed"); 3432 return -EINVAL; 3433 } 3434 3435 /* function called at start time before URB creation */ 3436 static int sd_isoc_init(struct gspca_dev *gspca_dev) 3437 { 3438 struct sd *sd = (struct sd *) gspca_dev; 3439 3440 switch (sd->bridge) { 3441 case BRIDGE_OVFX2: 3442 if (gspca_dev->pixfmt.width != 800) 3443 gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE; 3444 else 3445 gspca_dev->cam.bulk_size = 7 * 4096; 3446 break; 3447 } 3448 return 0; 3449 } 3450 3451 /* Set up the OV511/OV511+ with the given image parameters. 3452 * 3453 * Do not put any sensor-specific code in here (including I2C I/O functions) 3454 */ 3455 static void ov511_mode_init_regs(struct sd *sd) 3456 { 3457 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 3458 int hsegs, vsegs, packet_size, fps, needed; 3459 int interlaced = 0; 3460 struct usb_host_interface *alt; 3461 struct usb_interface *intf; 3462 3463 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface); 3464 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt); 3465 if (!alt) { 3466 PERR("Couldn't get altsetting\n"); 3467 sd->gspca_dev.usb_err = -EIO; 3468 return; 3469 } 3470 3471 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize); 3472 reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5); 3473 3474 reg_w(sd, R511_CAM_UV_EN, 0x01); 3475 reg_w(sd, R511_SNAP_UV_EN, 0x01); 3476 reg_w(sd, R511_SNAP_OPTS, 0x03); 3477 3478 /* Here I'm assuming that snapshot size == image size. 3479 * I hope that's always true. --claudio 3480 */ 3481 hsegs = (sd->gspca_dev.pixfmt.width >> 3) - 1; 3482 vsegs = (sd->gspca_dev.pixfmt.height >> 3) - 1; 3483 3484 reg_w(sd, R511_CAM_PXCNT, hsegs); 3485 reg_w(sd, R511_CAM_LNCNT, vsegs); 3486 reg_w(sd, R511_CAM_PXDIV, 0x00); 3487 reg_w(sd, R511_CAM_LNDIV, 0x00); 3488 3489 /* YUV420, low pass filter on */ 3490 reg_w(sd, R511_CAM_OPTS, 0x03); 3491 3492 /* Snapshot additions */ 3493 reg_w(sd, R511_SNAP_PXCNT, hsegs); 3494 reg_w(sd, R511_SNAP_LNCNT, vsegs); 3495 reg_w(sd, R511_SNAP_PXDIV, 0x00); 3496 reg_w(sd, R511_SNAP_LNDIV, 0x00); 3497 3498 /******** Set the framerate ********/ 3499 if (frame_rate > 0) 3500 sd->frame_rate = frame_rate; 3501 3502 switch (sd->sensor) { 3503 case SEN_OV6620: 3504 /* No framerate control, doesn't like higher rates yet */ 3505 sd->clockdiv = 3; 3506 break; 3507 3508 /* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed 3509 for more sensors we need to do this for them too */ 3510 case SEN_OV7620: 3511 case SEN_OV7620AE: 3512 case SEN_OV7640: 3513 case SEN_OV7648: 3514 case SEN_OV76BE: 3515 if (sd->gspca_dev.pixfmt.width == 320) 3516 interlaced = 1; 3517 /* Fall through */ 3518 case SEN_OV6630: 3519 case SEN_OV7610: 3520 case SEN_OV7670: 3521 switch (sd->frame_rate) { 3522 case 30: 3523 case 25: 3524 /* Not enough bandwidth to do 640x480 @ 30 fps */ 3525 if (sd->gspca_dev.pixfmt.width != 640) { 3526 sd->clockdiv = 0; 3527 break; 3528 } 3529 /* For 640x480 case */ 3530 /* fall through */ 3531 default: 3532 /* case 20: */ 3533 /* case 15: */ 3534 sd->clockdiv = 1; 3535 break; 3536 case 10: 3537 sd->clockdiv = 2; 3538 break; 3539 case 5: 3540 sd->clockdiv = 5; 3541 break; 3542 } 3543 if (interlaced) { 3544 sd->clockdiv = (sd->clockdiv + 1) * 2 - 1; 3545 /* Higher then 10 does not work */ 3546 if (sd->clockdiv > 10) 3547 sd->clockdiv = 10; 3548 } 3549 break; 3550 3551 case SEN_OV8610: 3552 /* No framerate control ?? */ 3553 sd->clockdiv = 0; 3554 break; 3555 } 3556 3557 /* Check if we have enough bandwidth to disable compression */ 3558 fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1; 3559 needed = fps * sd->gspca_dev.pixfmt.width * 3560 sd->gspca_dev.pixfmt.height * 3 / 2; 3561 /* 1000 isoc packets/sec */ 3562 if (needed > 1000 * packet_size) { 3563 /* Enable Y and UV quantization and compression */ 3564 reg_w(sd, R511_COMP_EN, 0x07); 3565 reg_w(sd, R511_COMP_LUT_EN, 0x03); 3566 } else { 3567 reg_w(sd, R511_COMP_EN, 0x06); 3568 reg_w(sd, R511_COMP_LUT_EN, 0x00); 3569 } 3570 3571 reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE); 3572 reg_w(sd, R51x_SYS_RESET, 0); 3573 } 3574 3575 /* Sets up the OV518/OV518+ with the given image parameters 3576 * 3577 * OV518 needs a completely different approach, until we can figure out what 3578 * the individual registers do. Also, only 15 FPS is supported now. 3579 * 3580 * Do not put any sensor-specific code in here (including I2C I/O functions) 3581 */ 3582 static void ov518_mode_init_regs(struct sd *sd) 3583 { 3584 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 3585 int hsegs, vsegs, packet_size; 3586 struct usb_host_interface *alt; 3587 struct usb_interface *intf; 3588 3589 intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface); 3590 alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt); 3591 if (!alt) { 3592 PERR("Couldn't get altsetting\n"); 3593 sd->gspca_dev.usb_err = -EIO; 3594 return; 3595 } 3596 3597 packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize); 3598 ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2); 3599 3600 /******** Set the mode ********/ 3601 reg_w(sd, 0x2b, 0); 3602 reg_w(sd, 0x2c, 0); 3603 reg_w(sd, 0x2d, 0); 3604 reg_w(sd, 0x2e, 0); 3605 reg_w(sd, 0x3b, 0); 3606 reg_w(sd, 0x3c, 0); 3607 reg_w(sd, 0x3d, 0); 3608 reg_w(sd, 0x3e, 0); 3609 3610 if (sd->bridge == BRIDGE_OV518) { 3611 /* Set 8-bit (YVYU) input format */ 3612 reg_w_mask(sd, 0x20, 0x08, 0x08); 3613 3614 /* Set 12-bit (4:2:0) output format */ 3615 reg_w_mask(sd, 0x28, 0x80, 0xf0); 3616 reg_w_mask(sd, 0x38, 0x80, 0xf0); 3617 } else { 3618 reg_w(sd, 0x28, 0x80); 3619 reg_w(sd, 0x38, 0x80); 3620 } 3621 3622 hsegs = sd->gspca_dev.pixfmt.width / 16; 3623 vsegs = sd->gspca_dev.pixfmt.height / 4; 3624 3625 reg_w(sd, 0x29, hsegs); 3626 reg_w(sd, 0x2a, vsegs); 3627 3628 reg_w(sd, 0x39, hsegs); 3629 reg_w(sd, 0x3a, vsegs); 3630 3631 /* Windows driver does this here; who knows why */ 3632 reg_w(sd, 0x2f, 0x80); 3633 3634 /******** Set the framerate ********/ 3635 if (sd->bridge == BRIDGE_OV518PLUS && sd->revision == 0 && 3636 sd->sensor == SEN_OV7620AE) 3637 sd->clockdiv = 0; 3638 else 3639 sd->clockdiv = 1; 3640 3641 /* Mode independent, but framerate dependent, regs */ 3642 /* 0x51: Clock divider; Only works on some cams which use 2 crystals */ 3643 reg_w(sd, 0x51, 0x04); 3644 reg_w(sd, 0x22, 0x18); 3645 reg_w(sd, 0x23, 0xff); 3646 3647 if (sd->bridge == BRIDGE_OV518PLUS) { 3648 switch (sd->sensor) { 3649 case SEN_OV7620AE: 3650 /* 3651 * HdG: 640x480 needs special handling on device 3652 * revision 2, we check for device revison > 0 to 3653 * avoid regressions, as we don't know the correct 3654 * thing todo for revision 1. 3655 * 3656 * Also this likely means we don't need to 3657 * differentiate between the OV7620 and OV7620AE, 3658 * earlier testing hitting this same problem likely 3659 * happened to be with revision < 2 cams using an 3660 * OV7620 and revision 2 cams using an OV7620AE. 3661 */ 3662 if (sd->revision > 0 && 3663 sd->gspca_dev.pixfmt.width == 640) { 3664 reg_w(sd, 0x20, 0x60); 3665 reg_w(sd, 0x21, 0x1f); 3666 } else { 3667 reg_w(sd, 0x20, 0x00); 3668 reg_w(sd, 0x21, 0x19); 3669 } 3670 break; 3671 case SEN_OV7620: 3672 reg_w(sd, 0x20, 0x00); 3673 reg_w(sd, 0x21, 0x19); 3674 break; 3675 default: 3676 reg_w(sd, 0x21, 0x19); 3677 } 3678 } else 3679 reg_w(sd, 0x71, 0x17); /* Compression-related? */ 3680 3681 /* FIXME: Sensor-specific */ 3682 /* Bit 5 is what matters here. Of course, it is "reserved" */ 3683 i2c_w(sd, 0x54, 0x23); 3684 3685 reg_w(sd, 0x2f, 0x80); 3686 3687 if (sd->bridge == BRIDGE_OV518PLUS) { 3688 reg_w(sd, 0x24, 0x94); 3689 reg_w(sd, 0x25, 0x90); 3690 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */ 3691 ov518_reg_w32(sd, 0xc6, 540, 2); /* 21ch */ 3692 ov518_reg_w32(sd, 0xc7, 540, 2); /* 21ch */ 3693 ov518_reg_w32(sd, 0xc8, 108, 2); /* 6ch */ 3694 ov518_reg_w32(sd, 0xca, 131098, 3); /* 2001ah */ 3695 ov518_reg_w32(sd, 0xcb, 532, 2); /* 214h */ 3696 ov518_reg_w32(sd, 0xcc, 2400, 2); /* 960h */ 3697 ov518_reg_w32(sd, 0xcd, 32, 2); /* 20h */ 3698 ov518_reg_w32(sd, 0xce, 608, 2); /* 260h */ 3699 } else { 3700 reg_w(sd, 0x24, 0x9f); 3701 reg_w(sd, 0x25, 0x90); 3702 ov518_reg_w32(sd, 0xc4, 400, 2); /* 190h */ 3703 ov518_reg_w32(sd, 0xc6, 381, 2); /* 17dh */ 3704 ov518_reg_w32(sd, 0xc7, 381, 2); /* 17dh */ 3705 ov518_reg_w32(sd, 0xc8, 128, 2); /* 80h */ 3706 ov518_reg_w32(sd, 0xca, 183331, 3); /* 2cc23h */ 3707 ov518_reg_w32(sd, 0xcb, 746, 2); /* 2eah */ 3708 ov518_reg_w32(sd, 0xcc, 1750, 2); /* 6d6h */ 3709 ov518_reg_w32(sd, 0xcd, 45, 2); /* 2dh */ 3710 ov518_reg_w32(sd, 0xce, 851, 2); /* 353h */ 3711 } 3712 3713 reg_w(sd, 0x2f, 0x80); 3714 } 3715 3716 /* Sets up the OV519 with the given image parameters 3717 * 3718 * OV519 needs a completely different approach, until we can figure out what 3719 * the individual registers do. 3720 * 3721 * Do not put any sensor-specific code in here (including I2C I/O functions) 3722 */ 3723 static void ov519_mode_init_regs(struct sd *sd) 3724 { 3725 static const struct ov_regvals mode_init_519_ov7670[] = { 3726 { 0x5d, 0x03 }, /* Turn off suspend mode */ 3727 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */ 3728 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */ 3729 { 0xa2, 0x20 }, /* a2-a5 are undocumented */ 3730 { 0xa3, 0x18 }, 3731 { 0xa4, 0x04 }, 3732 { 0xa5, 0x28 }, 3733 { 0x37, 0x00 }, /* SetUsbInit */ 3734 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */ 3735 /* Enable both fields, YUV Input, disable defect comp (why?) */ 3736 { 0x20, 0x0c }, 3737 { 0x21, 0x38 }, 3738 { 0x22, 0x1d }, 3739 { 0x17, 0x50 }, /* undocumented */ 3740 { 0x37, 0x00 }, /* undocumented */ 3741 { 0x40, 0xff }, /* I2C timeout counter */ 3742 { 0x46, 0x00 }, /* I2C clock prescaler */ 3743 { 0x59, 0x04 }, /* new from windrv 090403 */ 3744 { 0xff, 0x00 }, /* undocumented */ 3745 /* windows reads 0x55 at this point, why? */ 3746 }; 3747 3748 static const struct ov_regvals mode_init_519[] = { 3749 { 0x5d, 0x03 }, /* Turn off suspend mode */ 3750 { 0x53, 0x9f }, /* was 9b in 1.65-1.08 */ 3751 { OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */ 3752 { 0xa2, 0x20 }, /* a2-a5 are undocumented */ 3753 { 0xa3, 0x18 }, 3754 { 0xa4, 0x04 }, 3755 { 0xa5, 0x28 }, 3756 { 0x37, 0x00 }, /* SetUsbInit */ 3757 { 0x55, 0x02 }, /* 4.096 Mhz audio clock */ 3758 /* Enable both fields, YUV Input, disable defect comp (why?) */ 3759 { 0x22, 0x1d }, 3760 { 0x17, 0x50 }, /* undocumented */ 3761 { 0x37, 0x00 }, /* undocumented */ 3762 { 0x40, 0xff }, /* I2C timeout counter */ 3763 { 0x46, 0x00 }, /* I2C clock prescaler */ 3764 { 0x59, 0x04 }, /* new from windrv 090403 */ 3765 { 0xff, 0x00 }, /* undocumented */ 3766 /* windows reads 0x55 at this point, why? */ 3767 }; 3768 3769 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 3770 3771 /******** Set the mode ********/ 3772 switch (sd->sensor) { 3773 default: 3774 write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519)); 3775 if (sd->sensor == SEN_OV7640 || 3776 sd->sensor == SEN_OV7648) { 3777 /* Select 8-bit input mode */ 3778 reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10); 3779 } 3780 break; 3781 case SEN_OV7660: 3782 return; /* done by ov519_set_mode/fr() */ 3783 case SEN_OV7670: 3784 write_regvals(sd, mode_init_519_ov7670, 3785 ARRAY_SIZE(mode_init_519_ov7670)); 3786 break; 3787 } 3788 3789 reg_w(sd, OV519_R10_H_SIZE, sd->gspca_dev.pixfmt.width >> 4); 3790 reg_w(sd, OV519_R11_V_SIZE, sd->gspca_dev.pixfmt.height >> 3); 3791 if (sd->sensor == SEN_OV7670 && 3792 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv) 3793 reg_w(sd, OV519_R12_X_OFFSETL, 0x04); 3794 else if (sd->sensor == SEN_OV7648 && 3795 sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv) 3796 reg_w(sd, OV519_R12_X_OFFSETL, 0x01); 3797 else 3798 reg_w(sd, OV519_R12_X_OFFSETL, 0x00); 3799 reg_w(sd, OV519_R13_X_OFFSETH, 0x00); 3800 reg_w(sd, OV519_R14_Y_OFFSETL, 0x00); 3801 reg_w(sd, OV519_R15_Y_OFFSETH, 0x00); 3802 reg_w(sd, OV519_R16_DIVIDER, 0x00); 3803 reg_w(sd, OV519_R25_FORMAT, 0x03); /* YUV422 */ 3804 reg_w(sd, 0x26, 0x00); /* Undocumented */ 3805 3806 /******** Set the framerate ********/ 3807 if (frame_rate > 0) 3808 sd->frame_rate = frame_rate; 3809 3810 /* FIXME: These are only valid at the max resolution. */ 3811 sd->clockdiv = 0; 3812 switch (sd->sensor) { 3813 case SEN_OV7640: 3814 case SEN_OV7648: 3815 switch (sd->frame_rate) { 3816 default: 3817 /* case 30: */ 3818 reg_w(sd, 0xa4, 0x0c); 3819 reg_w(sd, 0x23, 0xff); 3820 break; 3821 case 25: 3822 reg_w(sd, 0xa4, 0x0c); 3823 reg_w(sd, 0x23, 0x1f); 3824 break; 3825 case 20: 3826 reg_w(sd, 0xa4, 0x0c); 3827 reg_w(sd, 0x23, 0x1b); 3828 break; 3829 case 15: 3830 reg_w(sd, 0xa4, 0x04); 3831 reg_w(sd, 0x23, 0xff); 3832 sd->clockdiv = 1; 3833 break; 3834 case 10: 3835 reg_w(sd, 0xa4, 0x04); 3836 reg_w(sd, 0x23, 0x1f); 3837 sd->clockdiv = 1; 3838 break; 3839 case 5: 3840 reg_w(sd, 0xa4, 0x04); 3841 reg_w(sd, 0x23, 0x1b); 3842 sd->clockdiv = 1; 3843 break; 3844 } 3845 break; 3846 case SEN_OV8610: 3847 switch (sd->frame_rate) { 3848 default: /* 15 fps */ 3849 /* case 15: */ 3850 reg_w(sd, 0xa4, 0x06); 3851 reg_w(sd, 0x23, 0xff); 3852 break; 3853 case 10: 3854 reg_w(sd, 0xa4, 0x06); 3855 reg_w(sd, 0x23, 0x1f); 3856 break; 3857 case 5: 3858 reg_w(sd, 0xa4, 0x06); 3859 reg_w(sd, 0x23, 0x1b); 3860 break; 3861 } 3862 break; 3863 case SEN_OV7670: /* guesses, based on 7640 */ 3864 PDEBUG(D_STREAM, "Setting framerate to %d fps", 3865 (sd->frame_rate == 0) ? 15 : sd->frame_rate); 3866 reg_w(sd, 0xa4, 0x10); 3867 switch (sd->frame_rate) { 3868 case 30: 3869 reg_w(sd, 0x23, 0xff); 3870 break; 3871 case 20: 3872 reg_w(sd, 0x23, 0x1b); 3873 break; 3874 default: 3875 /* case 15: */ 3876 reg_w(sd, 0x23, 0xff); 3877 sd->clockdiv = 1; 3878 break; 3879 } 3880 break; 3881 } 3882 } 3883 3884 static void mode_init_ov_sensor_regs(struct sd *sd) 3885 { 3886 struct gspca_dev *gspca_dev = (struct gspca_dev *)sd; 3887 int qvga, xstart, xend, ystart, yend; 3888 u8 v; 3889 3890 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1; 3891 3892 /******** Mode (VGA/QVGA) and sensor specific regs ********/ 3893 switch (sd->sensor) { 3894 case SEN_OV2610: 3895 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); 3896 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20); 3897 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a); 3898 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60); 3899 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40); 3900 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0); 3901 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20); 3902 return; 3903 case SEN_OV2610AE: { 3904 u8 v; 3905 3906 /* frame rates: 3907 * 10fps / 5 fps for 1600x1200 3908 * 40fps / 20fps for 800x600 3909 */ 3910 v = 80; 3911 if (qvga) { 3912 if (sd->frame_rate < 25) 3913 v = 0x81; 3914 } else { 3915 if (sd->frame_rate < 10) 3916 v = 0x81; 3917 } 3918 i2c_w(sd, 0x11, v); 3919 i2c_w(sd, 0x12, qvga ? 0x60 : 0x20); 3920 return; 3921 } 3922 case SEN_OV3610: 3923 if (qvga) { 3924 xstart = (1040 - gspca_dev->pixfmt.width) / 2 + 3925 (0x1f << 4); 3926 ystart = (776 - gspca_dev->pixfmt.height) / 2; 3927 } else { 3928 xstart = (2076 - gspca_dev->pixfmt.width) / 2 + 3929 (0x10 << 4); 3930 ystart = (1544 - gspca_dev->pixfmt.height) / 2; 3931 } 3932 xend = xstart + gspca_dev->pixfmt.width; 3933 yend = ystart + gspca_dev->pixfmt.height; 3934 /* Writing to the COMH register resets the other windowing regs 3935 to their default values, so we must do this first. */ 3936 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0); 3937 i2c_w_mask(sd, 0x32, 3938 (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7), 3939 0x3f); 3940 i2c_w_mask(sd, 0x03, 3941 (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3), 3942 0x0f); 3943 i2c_w(sd, 0x17, xstart >> 4); 3944 i2c_w(sd, 0x18, xend >> 4); 3945 i2c_w(sd, 0x19, ystart >> 3); 3946 i2c_w(sd, 0x1a, yend >> 3); 3947 return; 3948 case SEN_OV8610: 3949 /* For OV8610 qvga means qsvga */ 3950 i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5); 3951 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */ 3952 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */ 3953 i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */ 3954 i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */ 3955 break; 3956 case SEN_OV7610: 3957 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); 3958 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e); 3959 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */ 3960 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */ 3961 break; 3962 case SEN_OV7620: 3963 case SEN_OV7620AE: 3964 case SEN_OV76BE: 3965 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); 3966 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20); 3967 i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a); 3968 i2c_w(sd, 0x25, qvga ? 0x30 : 0x60); 3969 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40); 3970 i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0); 3971 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20); 3972 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */ 3973 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */ 3974 if (sd->sensor == SEN_OV76BE) 3975 i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e); 3976 break; 3977 case SEN_OV7640: 3978 case SEN_OV7648: 3979 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); 3980 i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20); 3981 /* Setting this undocumented bit in qvga mode removes a very 3982 annoying vertical shaking of the image */ 3983 i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40); 3984 /* Unknown */ 3985 i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0); 3986 /* Allow higher automatic gain (to allow higher framerates) */ 3987 i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20); 3988 i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */ 3989 break; 3990 case SEN_OV7670: 3991 /* set COM7_FMT_VGA or COM7_FMT_QVGA 3992 * do we need to set anything else? 3993 * HSTART etc are set in set_ov_sensor_window itself */ 3994 i2c_w_mask(sd, OV7670_R12_COM7, 3995 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA, 3996 OV7670_COM7_FMT_MASK); 3997 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */ 3998 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB, 3999 OV7670_COM8_AWB); 4000 if (qvga) { /* QVGA from ov7670.c by 4001 * Jonathan Corbet */ 4002 xstart = 164; 4003 xend = 28; 4004 ystart = 14; 4005 yend = 494; 4006 } else { /* VGA */ 4007 xstart = 158; 4008 xend = 14; 4009 ystart = 10; 4010 yend = 490; 4011 } 4012 /* OV7670 hardware window registers are split across 4013 * multiple locations */ 4014 i2c_w(sd, OV7670_R17_HSTART, xstart >> 3); 4015 i2c_w(sd, OV7670_R18_HSTOP, xend >> 3); 4016 v = i2c_r(sd, OV7670_R32_HREF); 4017 v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07); 4018 msleep(10); /* need to sleep between read and write to 4019 * same reg! */ 4020 i2c_w(sd, OV7670_R32_HREF, v); 4021 4022 i2c_w(sd, OV7670_R19_VSTART, ystart >> 2); 4023 i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2); 4024 v = i2c_r(sd, OV7670_R03_VREF); 4025 v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03); 4026 msleep(10); /* need to sleep between read and write to 4027 * same reg! */ 4028 i2c_w(sd, OV7670_R03_VREF, v); 4029 break; 4030 case SEN_OV6620: 4031 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); 4032 i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */ 4033 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */ 4034 break; 4035 case SEN_OV6630: 4036 case SEN_OV66308AF: 4037 i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20); 4038 i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */ 4039 break; 4040 case SEN_OV9600: { 4041 const struct ov_i2c_regvals *vals; 4042 static const struct ov_i2c_regvals sxga_15[] = { 4043 {0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75} 4044 }; 4045 static const struct ov_i2c_regvals sxga_7_5[] = { 4046 {0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75} 4047 }; 4048 static const struct ov_i2c_regvals vga_30[] = { 4049 {0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60} 4050 }; 4051 static const struct ov_i2c_regvals vga_15[] = { 4052 {0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70} 4053 }; 4054 4055 /* frame rates: 4056 * 15fps / 7.5 fps for 1280x1024 4057 * 30fps / 15fps for 640x480 4058 */ 4059 i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40); 4060 if (qvga) 4061 vals = sd->frame_rate < 30 ? vga_15 : vga_30; 4062 else 4063 vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15; 4064 write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15)); 4065 return; 4066 } 4067 default: 4068 return; 4069 } 4070 4071 /******** Clock programming ********/ 4072 i2c_w(sd, 0x11, sd->clockdiv); 4073 } 4074 4075 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */ 4076 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip) 4077 { 4078 struct sd *sd = (struct sd *) gspca_dev; 4079 4080 if (sd->gspca_dev.streaming) 4081 reg_w(sd, OV519_R51_RESET1, 0x0f); /* block stream */ 4082 i2c_w_mask(sd, OV7670_R1E_MVFP, 4083 OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip, 4084 OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP); 4085 if (sd->gspca_dev.streaming) 4086 reg_w(sd, OV519_R51_RESET1, 0x00); /* restart stream */ 4087 } 4088 4089 static void set_ov_sensor_window(struct sd *sd) 4090 { 4091 struct gspca_dev *gspca_dev; 4092 int qvga, crop; 4093 int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale; 4094 4095 /* mode setup is fully handled in mode_init_ov_sensor_regs for these */ 4096 switch (sd->sensor) { 4097 case SEN_OV2610: 4098 case SEN_OV2610AE: 4099 case SEN_OV3610: 4100 case SEN_OV7670: 4101 case SEN_OV9600: 4102 mode_init_ov_sensor_regs(sd); 4103 return; 4104 case SEN_OV7660: 4105 ov519_set_mode(sd); 4106 ov519_set_fr(sd); 4107 return; 4108 } 4109 4110 gspca_dev = &sd->gspca_dev; 4111 qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1; 4112 crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2; 4113 4114 /* The different sensor ICs handle setting up of window differently. 4115 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */ 4116 switch (sd->sensor) { 4117 case SEN_OV8610: 4118 hwsbase = 0x1e; 4119 hwebase = 0x1e; 4120 vwsbase = 0x02; 4121 vwebase = 0x02; 4122 break; 4123 case SEN_OV7610: 4124 case SEN_OV76BE: 4125 hwsbase = 0x38; 4126 hwebase = 0x3a; 4127 vwsbase = vwebase = 0x05; 4128 break; 4129 case SEN_OV6620: 4130 case SEN_OV6630: 4131 case SEN_OV66308AF: 4132 hwsbase = 0x38; 4133 hwebase = 0x3a; 4134 vwsbase = 0x05; 4135 vwebase = 0x06; 4136 if (sd->sensor == SEN_OV66308AF && qvga) 4137 /* HDG: this fixes U and V getting swapped */ 4138 hwsbase++; 4139 if (crop) { 4140 hwsbase += 8; 4141 hwebase += 8; 4142 vwsbase += 11; 4143 vwebase += 11; 4144 } 4145 break; 4146 case SEN_OV7620: 4147 case SEN_OV7620AE: 4148 hwsbase = 0x2f; /* From 7620.SET (spec is wrong) */ 4149 hwebase = 0x2f; 4150 vwsbase = vwebase = 0x05; 4151 break; 4152 case SEN_OV7640: 4153 case SEN_OV7648: 4154 hwsbase = 0x1a; 4155 hwebase = 0x1a; 4156 vwsbase = vwebase = 0x03; 4157 break; 4158 default: 4159 return; 4160 } 4161 4162 switch (sd->sensor) { 4163 case SEN_OV6620: 4164 case SEN_OV6630: 4165 case SEN_OV66308AF: 4166 if (qvga) { /* QCIF */ 4167 hwscale = 0; 4168 vwscale = 0; 4169 } else { /* CIF */ 4170 hwscale = 1; 4171 vwscale = 1; /* The datasheet says 0; 4172 * it's wrong */ 4173 } 4174 break; 4175 case SEN_OV8610: 4176 if (qvga) { /* QSVGA */ 4177 hwscale = 1; 4178 vwscale = 1; 4179 } else { /* SVGA */ 4180 hwscale = 2; 4181 vwscale = 2; 4182 } 4183 break; 4184 default: /* SEN_OV7xx0 */ 4185 if (qvga) { /* QVGA */ 4186 hwscale = 1; 4187 vwscale = 0; 4188 } else { /* VGA */ 4189 hwscale = 2; 4190 vwscale = 1; 4191 } 4192 } 4193 4194 mode_init_ov_sensor_regs(sd); 4195 4196 i2c_w(sd, 0x17, hwsbase); 4197 i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale)); 4198 i2c_w(sd, 0x19, vwsbase); 4199 i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale)); 4200 } 4201 4202 /* -- start the camera -- */ 4203 static int sd_start(struct gspca_dev *gspca_dev) 4204 { 4205 struct sd *sd = (struct sd *) gspca_dev; 4206 4207 /* Default for most bridges, allow bridge_mode_init_regs to override */ 4208 sd->sensor_width = sd->gspca_dev.pixfmt.width; 4209 sd->sensor_height = sd->gspca_dev.pixfmt.height; 4210 4211 switch (sd->bridge) { 4212 case BRIDGE_OV511: 4213 case BRIDGE_OV511PLUS: 4214 ov511_mode_init_regs(sd); 4215 break; 4216 case BRIDGE_OV518: 4217 case BRIDGE_OV518PLUS: 4218 ov518_mode_init_regs(sd); 4219 break; 4220 case BRIDGE_OV519: 4221 ov519_mode_init_regs(sd); 4222 break; 4223 /* case BRIDGE_OVFX2: nothing to do */ 4224 case BRIDGE_W9968CF: 4225 w9968cf_mode_init_regs(sd); 4226 break; 4227 } 4228 4229 set_ov_sensor_window(sd); 4230 4231 /* Force clear snapshot state in case the snapshot button was 4232 pressed while we weren't streaming */ 4233 sd->snapshot_needs_reset = 1; 4234 sd_reset_snapshot(gspca_dev); 4235 4236 sd->first_frame = 3; 4237 4238 ov51x_restart(sd); 4239 ov51x_led_control(sd, 1); 4240 return gspca_dev->usb_err; 4241 } 4242 4243 static void sd_stopN(struct gspca_dev *gspca_dev) 4244 { 4245 struct sd *sd = (struct sd *) gspca_dev; 4246 4247 ov51x_stop(sd); 4248 ov51x_led_control(sd, 0); 4249 } 4250 4251 static void sd_stop0(struct gspca_dev *gspca_dev) 4252 { 4253 struct sd *sd = (struct sd *) gspca_dev; 4254 4255 if (!sd->gspca_dev.present) 4256 return; 4257 if (sd->bridge == BRIDGE_W9968CF) 4258 w9968cf_stop0(sd); 4259 4260 #if IS_ENABLED(CONFIG_INPUT) 4261 /* If the last button state is pressed, release it now! */ 4262 if (sd->snapshot_pressed) { 4263 input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0); 4264 input_sync(gspca_dev->input_dev); 4265 sd->snapshot_pressed = 0; 4266 } 4267 #endif 4268 if (sd->bridge == BRIDGE_OV519) 4269 reg_w(sd, OV519_R57_SNAPSHOT, 0x23); 4270 } 4271 4272 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state) 4273 { 4274 struct sd *sd = (struct sd *) gspca_dev; 4275 4276 if (sd->snapshot_pressed != state) { 4277 #if IS_ENABLED(CONFIG_INPUT) 4278 input_report_key(gspca_dev->input_dev, KEY_CAMERA, state); 4279 input_sync(gspca_dev->input_dev); 4280 #endif 4281 if (state) 4282 sd->snapshot_needs_reset = 1; 4283 4284 sd->snapshot_pressed = state; 4285 } else { 4286 /* On the ov511 / ov519 we need to reset the button state 4287 multiple times, as resetting does not work as long as the 4288 button stays pressed */ 4289 switch (sd->bridge) { 4290 case BRIDGE_OV511: 4291 case BRIDGE_OV511PLUS: 4292 case BRIDGE_OV519: 4293 if (state) 4294 sd->snapshot_needs_reset = 1; 4295 break; 4296 } 4297 } 4298 } 4299 4300 static void ov511_pkt_scan(struct gspca_dev *gspca_dev, 4301 u8 *in, /* isoc packet */ 4302 int len) /* iso packet length */ 4303 { 4304 struct sd *sd = (struct sd *) gspca_dev; 4305 4306 /* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th 4307 * byte non-zero. The EOF packet has image width/height in the 4308 * 10th and 11th bytes. The 9th byte is given as follows: 4309 * 4310 * bit 7: EOF 4311 * 6: compression enabled 4312 * 5: 422/420/400 modes 4313 * 4: 422/420/400 modes 4314 * 3: 1 4315 * 2: snapshot button on 4316 * 1: snapshot frame 4317 * 0: even/odd field 4318 */ 4319 if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) && 4320 (in[8] & 0x08)) { 4321 ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1); 4322 if (in[8] & 0x80) { 4323 /* Frame end */ 4324 if ((in[9] + 1) * 8 != gspca_dev->pixfmt.width || 4325 (in[10] + 1) * 8 != gspca_dev->pixfmt.height) { 4326 PERR("Invalid frame size, got: %dx%d, requested: %dx%d\n", 4327 (in[9] + 1) * 8, (in[10] + 1) * 8, 4328 gspca_dev->pixfmt.width, 4329 gspca_dev->pixfmt.height); 4330 gspca_dev->last_packet_type = DISCARD_PACKET; 4331 return; 4332 } 4333 /* Add 11 byte footer to frame, might be useful */ 4334 gspca_frame_add(gspca_dev, LAST_PACKET, in, 11); 4335 return; 4336 } else { 4337 /* Frame start */ 4338 gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0); 4339 sd->packet_nr = 0; 4340 } 4341 } 4342 4343 /* Ignore the packet number */ 4344 len--; 4345 4346 /* intermediate packet */ 4347 gspca_frame_add(gspca_dev, INTER_PACKET, in, len); 4348 } 4349 4350 static void ov518_pkt_scan(struct gspca_dev *gspca_dev, 4351 u8 *data, /* isoc packet */ 4352 int len) /* iso packet length */ 4353 { 4354 struct sd *sd = (struct sd *) gspca_dev; 4355 4356 /* A false positive here is likely, until OVT gives me 4357 * the definitive SOF/EOF format */ 4358 if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) { 4359 ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1); 4360 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0); 4361 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0); 4362 sd->packet_nr = 0; 4363 } 4364 4365 if (gspca_dev->last_packet_type == DISCARD_PACKET) 4366 return; 4367 4368 /* Does this device use packet numbers ? */ 4369 if (len & 7) { 4370 len--; 4371 if (sd->packet_nr == data[len]) 4372 sd->packet_nr++; 4373 /* The last few packets of the frame (which are all 0's 4374 except that they may contain part of the footer), are 4375 numbered 0 */ 4376 else if (sd->packet_nr == 0 || data[len]) { 4377 PERR("Invalid packet nr: %d (expect: %d)", 4378 (int)data[len], (int)sd->packet_nr); 4379 gspca_dev->last_packet_type = DISCARD_PACKET; 4380 return; 4381 } 4382 } 4383 4384 /* intermediate packet */ 4385 gspca_frame_add(gspca_dev, INTER_PACKET, data, len); 4386 } 4387 4388 static void ov519_pkt_scan(struct gspca_dev *gspca_dev, 4389 u8 *data, /* isoc packet */ 4390 int len) /* iso packet length */ 4391 { 4392 /* Header of ov519 is 16 bytes: 4393 * Byte Value Description 4394 * 0 0xff magic 4395 * 1 0xff magic 4396 * 2 0xff magic 4397 * 3 0xXX 0x50 = SOF, 0x51 = EOF 4398 * 9 0xXX 0x01 initial frame without data, 4399 * 0x00 standard frame with image 4400 * 14 Lo in EOF: length of image data / 8 4401 * 15 Hi 4402 */ 4403 4404 if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) { 4405 switch (data[3]) { 4406 case 0x50: /* start of frame */ 4407 /* Don't check the button state here, as the state 4408 usually (always ?) changes at EOF and checking it 4409 here leads to unnecessary snapshot state resets. */ 4410 #define HDRSZ 16 4411 data += HDRSZ; 4412 len -= HDRSZ; 4413 #undef HDRSZ 4414 if (data[0] == 0xff || data[1] == 0xd8) 4415 gspca_frame_add(gspca_dev, FIRST_PACKET, 4416 data, len); 4417 else 4418 gspca_dev->last_packet_type = DISCARD_PACKET; 4419 return; 4420 case 0x51: /* end of frame */ 4421 ov51x_handle_button(gspca_dev, data[11] & 1); 4422 if (data[9] != 0) 4423 gspca_dev->last_packet_type = DISCARD_PACKET; 4424 gspca_frame_add(gspca_dev, LAST_PACKET, 4425 NULL, 0); 4426 return; 4427 } 4428 } 4429 4430 /* intermediate packet */ 4431 gspca_frame_add(gspca_dev, INTER_PACKET, data, len); 4432 } 4433 4434 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev, 4435 u8 *data, /* isoc packet */ 4436 int len) /* iso packet length */ 4437 { 4438 struct sd *sd = (struct sd *) gspca_dev; 4439 4440 gspca_frame_add(gspca_dev, INTER_PACKET, data, len); 4441 4442 /* A short read signals EOF */ 4443 if (len < gspca_dev->cam.bulk_size) { 4444 /* If the frame is short, and it is one of the first ones 4445 the sensor and bridge are still syncing, so drop it. */ 4446 if (sd->first_frame) { 4447 sd->first_frame--; 4448 if (gspca_dev->image_len < 4449 sd->gspca_dev.pixfmt.width * 4450 sd->gspca_dev.pixfmt.height) 4451 gspca_dev->last_packet_type = DISCARD_PACKET; 4452 } 4453 gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0); 4454 gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0); 4455 } 4456 } 4457 4458 static void sd_pkt_scan(struct gspca_dev *gspca_dev, 4459 u8 *data, /* isoc packet */ 4460 int len) /* iso packet length */ 4461 { 4462 struct sd *sd = (struct sd *) gspca_dev; 4463 4464 switch (sd->bridge) { 4465 case BRIDGE_OV511: 4466 case BRIDGE_OV511PLUS: 4467 ov511_pkt_scan(gspca_dev, data, len); 4468 break; 4469 case BRIDGE_OV518: 4470 case BRIDGE_OV518PLUS: 4471 ov518_pkt_scan(gspca_dev, data, len); 4472 break; 4473 case BRIDGE_OV519: 4474 ov519_pkt_scan(gspca_dev, data, len); 4475 break; 4476 case BRIDGE_OVFX2: 4477 ovfx2_pkt_scan(gspca_dev, data, len); 4478 break; 4479 case BRIDGE_W9968CF: 4480 w9968cf_pkt_scan(gspca_dev, data, len); 4481 break; 4482 } 4483 } 4484 4485 /* -- management routines -- */ 4486 4487 static void setbrightness(struct gspca_dev *gspca_dev, s32 val) 4488 { 4489 struct sd *sd = (struct sd *) gspca_dev; 4490 static const struct ov_i2c_regvals brit_7660[][7] = { 4491 {{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90}, 4492 {0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}}, 4493 {{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1}, 4494 {0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}}, 4495 {{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2}, 4496 {0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}}, 4497 {{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3}, 4498 {0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}}, 4499 {{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3}, 4500 {0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}}, 4501 {{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3}, 4502 {0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}}, 4503 {{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4}, 4504 {0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}} 4505 }; 4506 4507 switch (sd->sensor) { 4508 case SEN_OV8610: 4509 case SEN_OV7610: 4510 case SEN_OV76BE: 4511 case SEN_OV6620: 4512 case SEN_OV6630: 4513 case SEN_OV66308AF: 4514 case SEN_OV7640: 4515 case SEN_OV7648: 4516 i2c_w(sd, OV7610_REG_BRT, val); 4517 break; 4518 case SEN_OV7620: 4519 case SEN_OV7620AE: 4520 i2c_w(sd, OV7610_REG_BRT, val); 4521 break; 4522 case SEN_OV7660: 4523 write_i2c_regvals(sd, brit_7660[val], 4524 ARRAY_SIZE(brit_7660[0])); 4525 break; 4526 case SEN_OV7670: 4527 /*win trace 4528 * i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */ 4529 i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val)); 4530 break; 4531 } 4532 } 4533 4534 static void setcontrast(struct gspca_dev *gspca_dev, s32 val) 4535 { 4536 struct sd *sd = (struct sd *) gspca_dev; 4537 static const struct ov_i2c_regvals contrast_7660[][31] = { 4538 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0}, 4539 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30}, 4540 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24}, 4541 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34}, 4542 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65}, 4543 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83}, 4544 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f}, 4545 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}}, 4546 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94}, 4547 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30}, 4548 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24}, 4549 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31}, 4550 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62}, 4551 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81}, 4552 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1}, 4553 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}}, 4554 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84}, 4555 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40}, 4556 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24}, 4557 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34}, 4558 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d}, 4559 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81}, 4560 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e}, 4561 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}}, 4562 {{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70}, 4563 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48}, 4564 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34}, 4565 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22}, 4566 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58}, 4567 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80}, 4568 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9}, 4569 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}}, 4570 {{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80}, 4571 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60}, 4572 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38}, 4573 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e}, 4574 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46}, 4575 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c}, 4576 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4}, 4577 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}}, 4578 {{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80}, 4579 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30}, 4580 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50}, 4581 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08}, 4582 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a}, 4583 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b}, 4584 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3}, 4585 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}}, 4586 {{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60}, 4587 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8}, 4588 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c}, 4589 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04}, 4590 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22}, 4591 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b}, 4592 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde}, 4593 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}}, 4594 }; 4595 4596 switch (sd->sensor) { 4597 case SEN_OV7610: 4598 case SEN_OV6620: 4599 i2c_w(sd, OV7610_REG_CNT, val); 4600 break; 4601 case SEN_OV6630: 4602 case SEN_OV66308AF: 4603 i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f); 4604 break; 4605 case SEN_OV8610: { 4606 static const u8 ctab[] = { 4607 0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f 4608 }; 4609 4610 /* Use Y gamma control instead. Bit 0 enables it. */ 4611 i2c_w(sd, 0x64, ctab[val >> 5]); 4612 break; 4613 } 4614 case SEN_OV7620: 4615 case SEN_OV7620AE: { 4616 static const u8 ctab[] = { 4617 0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57, 4618 0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff 4619 }; 4620 4621 /* Use Y gamma control instead. Bit 0 enables it. */ 4622 i2c_w(sd, 0x64, ctab[val >> 4]); 4623 break; 4624 } 4625 case SEN_OV7660: 4626 write_i2c_regvals(sd, contrast_7660[val], 4627 ARRAY_SIZE(contrast_7660[0])); 4628 break; 4629 case SEN_OV7670: 4630 /* check that this isn't just the same as ov7610 */ 4631 i2c_w(sd, OV7670_R56_CONTRAS, val >> 1); 4632 break; 4633 } 4634 } 4635 4636 static void setexposure(struct gspca_dev *gspca_dev, s32 val) 4637 { 4638 struct sd *sd = (struct sd *) gspca_dev; 4639 4640 i2c_w(sd, 0x10, val); 4641 } 4642 4643 static void setcolors(struct gspca_dev *gspca_dev, s32 val) 4644 { 4645 struct sd *sd = (struct sd *) gspca_dev; 4646 static const struct ov_i2c_regvals colors_7660[][6] = { 4647 {{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a}, 4648 {0x53, 0x19}, {0x54, 0x23}}, 4649 {{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11}, 4650 {0x53, 0x2c}, {0x54, 0x3e}}, 4651 {{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19}, 4652 {0x53, 0x40}, {0x54, 0x59}}, 4653 {{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20}, 4654 {0x53, 0x53}, {0x54, 0x73}}, 4655 {{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28}, 4656 {0x53, 0x66}, {0x54, 0x8e}}, 4657 }; 4658 4659 switch (sd->sensor) { 4660 case SEN_OV8610: 4661 case SEN_OV7610: 4662 case SEN_OV76BE: 4663 case SEN_OV6620: 4664 case SEN_OV6630: 4665 case SEN_OV66308AF: 4666 i2c_w(sd, OV7610_REG_SAT, val); 4667 break; 4668 case SEN_OV7620: 4669 case SEN_OV7620AE: 4670 /* Use UV gamma control instead. Bits 0 & 7 are reserved. */ 4671 /* rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e); 4672 if (rc < 0) 4673 goto out; */ 4674 i2c_w(sd, OV7610_REG_SAT, val); 4675 break; 4676 case SEN_OV7640: 4677 case SEN_OV7648: 4678 i2c_w(sd, OV7610_REG_SAT, val & 0xf0); 4679 break; 4680 case SEN_OV7660: 4681 write_i2c_regvals(sd, colors_7660[val], 4682 ARRAY_SIZE(colors_7660[0])); 4683 break; 4684 case SEN_OV7670: 4685 /* supported later once I work out how to do it 4686 * transparently fail now! */ 4687 /* set REG_COM13 values for UV sat auto mode */ 4688 break; 4689 } 4690 } 4691 4692 static void setautobright(struct gspca_dev *gspca_dev, s32 val) 4693 { 4694 struct sd *sd = (struct sd *) gspca_dev; 4695 4696 i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10); 4697 } 4698 4699 static void setfreq_i(struct sd *sd, s32 val) 4700 { 4701 if (sd->sensor == SEN_OV7660 4702 || sd->sensor == SEN_OV7670) { 4703 switch (val) { 4704 case 0: /* Banding filter disabled */ 4705 i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT); 4706 break; 4707 case 1: /* 50 hz */ 4708 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT, 4709 OV7670_COM8_BFILT); 4710 i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18); 4711 break; 4712 case 2: /* 60 hz */ 4713 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT, 4714 OV7670_COM8_BFILT); 4715 i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18); 4716 break; 4717 case 3: /* Auto hz - ov7670 only */ 4718 i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT, 4719 OV7670_COM8_BFILT); 4720 i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO, 4721 0x18); 4722 break; 4723 } 4724 } else { 4725 switch (val) { 4726 case 0: /* Banding filter disabled */ 4727 i2c_w_mask(sd, 0x2d, 0x00, 0x04); 4728 i2c_w_mask(sd, 0x2a, 0x00, 0x80); 4729 break; 4730 case 1: /* 50 hz (filter on and framerate adj) */ 4731 i2c_w_mask(sd, 0x2d, 0x04, 0x04); 4732 i2c_w_mask(sd, 0x2a, 0x80, 0x80); 4733 /* 20 fps -> 16.667 fps */ 4734 if (sd->sensor == SEN_OV6620 || 4735 sd->sensor == SEN_OV6630 || 4736 sd->sensor == SEN_OV66308AF) 4737 i2c_w(sd, 0x2b, 0x5e); 4738 else 4739 i2c_w(sd, 0x2b, 0xac); 4740 break; 4741 case 2: /* 60 hz (filter on, ...) */ 4742 i2c_w_mask(sd, 0x2d, 0x04, 0x04); 4743 if (sd->sensor == SEN_OV6620 || 4744 sd->sensor == SEN_OV6630 || 4745 sd->sensor == SEN_OV66308AF) { 4746 /* 20 fps -> 15 fps */ 4747 i2c_w_mask(sd, 0x2a, 0x80, 0x80); 4748 i2c_w(sd, 0x2b, 0xa8); 4749 } else { 4750 /* no framerate adj. */ 4751 i2c_w_mask(sd, 0x2a, 0x00, 0x80); 4752 } 4753 break; 4754 } 4755 } 4756 } 4757 4758 static void setfreq(struct gspca_dev *gspca_dev, s32 val) 4759 { 4760 struct sd *sd = (struct sd *) gspca_dev; 4761 4762 setfreq_i(sd, val); 4763 4764 /* Ugly but necessary */ 4765 if (sd->bridge == BRIDGE_W9968CF) 4766 w9968cf_set_crop_window(sd); 4767 } 4768 4769 static int sd_get_jcomp(struct gspca_dev *gspca_dev, 4770 struct v4l2_jpegcompression *jcomp) 4771 { 4772 struct sd *sd = (struct sd *) gspca_dev; 4773 4774 if (sd->bridge != BRIDGE_W9968CF) 4775 return -ENOTTY; 4776 4777 memset(jcomp, 0, sizeof *jcomp); 4778 jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual); 4779 jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT | 4780 V4L2_JPEG_MARKER_DRI; 4781 return 0; 4782 } 4783 4784 static int sd_set_jcomp(struct gspca_dev *gspca_dev, 4785 const struct v4l2_jpegcompression *jcomp) 4786 { 4787 struct sd *sd = (struct sd *) gspca_dev; 4788 4789 if (sd->bridge != BRIDGE_W9968CF) 4790 return -ENOTTY; 4791 4792 v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality); 4793 return 0; 4794 } 4795 4796 static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl) 4797 { 4798 struct gspca_dev *gspca_dev = 4799 container_of(ctrl->handler, struct gspca_dev, ctrl_handler); 4800 struct sd *sd = (struct sd *)gspca_dev; 4801 4802 gspca_dev->usb_err = 0; 4803 4804 switch (ctrl->id) { 4805 case V4L2_CID_AUTOGAIN: 4806 gspca_dev->exposure->val = i2c_r(sd, 0x10); 4807 break; 4808 } 4809 return 0; 4810 } 4811 4812 static int sd_s_ctrl(struct v4l2_ctrl *ctrl) 4813 { 4814 struct gspca_dev *gspca_dev = 4815 container_of(ctrl->handler, struct gspca_dev, ctrl_handler); 4816 struct sd *sd = (struct sd *)gspca_dev; 4817 4818 gspca_dev->usb_err = 0; 4819 4820 if (!gspca_dev->streaming) 4821 return 0; 4822 4823 switch (ctrl->id) { 4824 case V4L2_CID_BRIGHTNESS: 4825 setbrightness(gspca_dev, ctrl->val); 4826 break; 4827 case V4L2_CID_CONTRAST: 4828 setcontrast(gspca_dev, ctrl->val); 4829 break; 4830 case V4L2_CID_POWER_LINE_FREQUENCY: 4831 setfreq(gspca_dev, ctrl->val); 4832 break; 4833 case V4L2_CID_AUTOBRIGHTNESS: 4834 if (ctrl->is_new) 4835 setautobright(gspca_dev, ctrl->val); 4836 if (!ctrl->val && sd->brightness->is_new) 4837 setbrightness(gspca_dev, sd->brightness->val); 4838 break; 4839 case V4L2_CID_SATURATION: 4840 setcolors(gspca_dev, ctrl->val); 4841 break; 4842 case V4L2_CID_HFLIP: 4843 sethvflip(gspca_dev, ctrl->val, sd->vflip->val); 4844 break; 4845 case V4L2_CID_AUTOGAIN: 4846 if (ctrl->is_new) 4847 setautogain(gspca_dev, ctrl->val); 4848 if (!ctrl->val && gspca_dev->exposure->is_new) 4849 setexposure(gspca_dev, gspca_dev->exposure->val); 4850 break; 4851 case V4L2_CID_JPEG_COMPRESSION_QUALITY: 4852 return -EBUSY; /* Should never happen, as we grab the ctrl */ 4853 } 4854 return gspca_dev->usb_err; 4855 } 4856 4857 static const struct v4l2_ctrl_ops sd_ctrl_ops = { 4858 .g_volatile_ctrl = sd_g_volatile_ctrl, 4859 .s_ctrl = sd_s_ctrl, 4860 }; 4861 4862 static int sd_init_controls(struct gspca_dev *gspca_dev) 4863 { 4864 struct sd *sd = (struct sd *)gspca_dev; 4865 struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler; 4866 4867 gspca_dev->vdev.ctrl_handler = hdl; 4868 v4l2_ctrl_handler_init(hdl, 10); 4869 if (valid_controls[sd->sensor].has_brightness) 4870 sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4871 V4L2_CID_BRIGHTNESS, 0, 4872 sd->sensor == SEN_OV7660 ? 6 : 255, 1, 4873 sd->sensor == SEN_OV7660 ? 3 : 127); 4874 if (valid_controls[sd->sensor].has_contrast) { 4875 if (sd->sensor == SEN_OV7660) 4876 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4877 V4L2_CID_CONTRAST, 0, 6, 1, 3); 4878 else 4879 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4880 V4L2_CID_CONTRAST, 0, 255, 1, 4881 (sd->sensor == SEN_OV6630 || 4882 sd->sensor == SEN_OV66308AF) ? 200 : 127); 4883 } 4884 if (valid_controls[sd->sensor].has_sat) 4885 v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4886 V4L2_CID_SATURATION, 0, 4887 sd->sensor == SEN_OV7660 ? 4 : 255, 1, 4888 sd->sensor == SEN_OV7660 ? 2 : 127); 4889 if (valid_controls[sd->sensor].has_exposure) 4890 gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4891 V4L2_CID_EXPOSURE, 0, 255, 1, 127); 4892 if (valid_controls[sd->sensor].has_hvflip) { 4893 sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4894 V4L2_CID_HFLIP, 0, 1, 1, 0); 4895 sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4896 V4L2_CID_VFLIP, 0, 1, 1, 0); 4897 } 4898 if (valid_controls[sd->sensor].has_autobright) 4899 sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4900 V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1); 4901 if (valid_controls[sd->sensor].has_autogain) 4902 gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4903 V4L2_CID_AUTOGAIN, 0, 1, 1, 1); 4904 if (valid_controls[sd->sensor].has_freq) { 4905 if (sd->sensor == SEN_OV7670) 4906 sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops, 4907 V4L2_CID_POWER_LINE_FREQUENCY, 4908 V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0, 4909 V4L2_CID_POWER_LINE_FREQUENCY_AUTO); 4910 else 4911 sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops, 4912 V4L2_CID_POWER_LINE_FREQUENCY, 4913 V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0); 4914 } 4915 if (sd->bridge == BRIDGE_W9968CF) 4916 sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, 4917 V4L2_CID_JPEG_COMPRESSION_QUALITY, 4918 QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF); 4919 4920 if (hdl->error) { 4921 PERR("Could not initialize controls\n"); 4922 return hdl->error; 4923 } 4924 if (gspca_dev->autogain) 4925 v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true); 4926 if (sd->autobright) 4927 v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false); 4928 if (sd->hflip) 4929 v4l2_ctrl_cluster(2, &sd->hflip); 4930 return 0; 4931 } 4932 4933 /* sub-driver description */ 4934 static const struct sd_desc sd_desc = { 4935 .name = MODULE_NAME, 4936 .config = sd_config, 4937 .init = sd_init, 4938 .init_controls = sd_init_controls, 4939 .isoc_init = sd_isoc_init, 4940 .start = sd_start, 4941 .stopN = sd_stopN, 4942 .stop0 = sd_stop0, 4943 .pkt_scan = sd_pkt_scan, 4944 .dq_callback = sd_reset_snapshot, 4945 .get_jcomp = sd_get_jcomp, 4946 .set_jcomp = sd_set_jcomp, 4947 #if IS_ENABLED(CONFIG_INPUT) 4948 .other_input = 1, 4949 #endif 4950 }; 4951 4952 /* -- module initialisation -- */ 4953 static const struct usb_device_id device_table[] = { 4954 {USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF }, 4955 {USB_DEVICE(0x041e, 0x4052), 4956 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED }, 4957 {USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 }, 4958 {USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 }, 4959 {USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 }, 4960 {USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 }, 4961 {USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 }, 4962 {USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 }, 4963 {USB_DEVICE(0x045e, 0x028c), 4964 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED }, 4965 {USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 }, 4966 {USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 }, 4967 {USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 }, 4968 {USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 }, 4969 {USB_DEVICE(0x05a9, 0x0519), 4970 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED }, 4971 {USB_DEVICE(0x05a9, 0x0530), 4972 .driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED }, 4973 {USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 }, 4974 {USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 }, 4975 {USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 }, 4976 {USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS }, 4977 {USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS }, 4978 {USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS }, 4979 {USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 }, 4980 {USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 }, 4981 {USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF }, 4982 {USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 }, 4983 {} 4984 }; 4985 4986 MODULE_DEVICE_TABLE(usb, device_table); 4987 4988 /* -- device connect -- */ 4989 static int sd_probe(struct usb_interface *intf, 4990 const struct usb_device_id *id) 4991 { 4992 return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd), 4993 THIS_MODULE); 4994 } 4995 4996 static struct usb_driver sd_driver = { 4997 .name = MODULE_NAME, 4998 .id_table = device_table, 4999 .probe = sd_probe, 5000 .disconnect = gspca_disconnect, 5001 #ifdef CONFIG_PM 5002 .suspend = gspca_suspend, 5003 .resume = gspca_resume, 5004 .reset_resume = gspca_resume, 5005 #endif 5006 }; 5007 5008 module_usb_driver(sd_driver); 5009 5010 module_param(frame_rate, int, 0644); 5011 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)"); 5012