xref: /linux/drivers/media/usb/gspca/ov519.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * OV519 driver
4  *
5  * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
6  * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
7  *
8  * This module is adapted from the ov51x-jpeg package, which itself
9  * was adapted from the ov511 driver.
10  *
11  * Original copyright for the ov511 driver is:
12  *
13  * Copyright (c) 1999-2006 Mark W. McClelland
14  * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
15  * Many improvements by Bret Wallach <bwallac1@san.rr.com>
16  * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
17  * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
18  * Changes by Claudio Matsuoka <claudio@conectiva.com>
19  *
20  * ov51x-jpeg original copyright is:
21  *
22  * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
23  * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #define MODULE_NAME "ov519"
29 
30 #include <linux/input.h>
31 #include "gspca.h"
32 
33 /* The jpeg_hdr is used by w996Xcf only */
34 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
35 #define CONEX_CAM
36 #include "jpeg.h"
37 
38 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
39 MODULE_DESCRIPTION("OV519 USB Camera Driver");
40 MODULE_LICENSE("GPL");
41 
42 /* global parameters */
43 static int frame_rate;
44 
45 /* Number of times to retry a failed I2C transaction. Increase this if you
46  * are getting "Failed to read sensor ID..." */
47 static int i2c_detect_tries = 10;
48 
49 /* ov519 device descriptor */
50 struct sd {
51 	struct gspca_dev gspca_dev;		/* !! must be the first item */
52 
53 	struct v4l2_ctrl *jpegqual;
54 	struct v4l2_ctrl *freq;
55 	struct { /* h/vflip control cluster */
56 		struct v4l2_ctrl *hflip;
57 		struct v4l2_ctrl *vflip;
58 	};
59 	struct { /* autobrightness/brightness control cluster */
60 		struct v4l2_ctrl *autobright;
61 		struct v4l2_ctrl *brightness;
62 	};
63 
64 	u8 revision;
65 
66 	u8 packet_nr;
67 
68 	char bridge;
69 #define BRIDGE_OV511		0
70 #define BRIDGE_OV511PLUS	1
71 #define BRIDGE_OV518		2
72 #define BRIDGE_OV518PLUS	3
73 #define BRIDGE_OV519		4		/* = ov530 */
74 #define BRIDGE_OVFX2		5
75 #define BRIDGE_W9968CF		6
76 #define BRIDGE_MASK		7
77 
78 	char invert_led;
79 #define BRIDGE_INVERT_LED	8
80 
81 	char snapshot_pressed;
82 	char snapshot_needs_reset;
83 
84 	/* Determined by sensor type */
85 	u8 sif;
86 
87 #define QUALITY_MIN 50
88 #define QUALITY_MAX 70
89 #define QUALITY_DEF 50
90 
91 	u8 stopped;		/* Streaming is temporarily paused */
92 	u8 first_frame;
93 
94 	u8 frame_rate;		/* current Framerate */
95 	u8 clockdiv;		/* clockdiv override */
96 
97 	s8 sensor;		/* Type of image sensor chip (SEN_*) */
98 
99 	u8 sensor_addr;
100 	u16 sensor_width;
101 	u16 sensor_height;
102 	s16 sensor_reg_cache[256];
103 
104 	u8 jpeg_hdr[JPEG_HDR_SZ];
105 };
106 enum sensors {
107 	SEN_OV2610,
108 	SEN_OV2610AE,
109 	SEN_OV3610,
110 	SEN_OV6620,
111 	SEN_OV6630,
112 	SEN_OV66308AF,
113 	SEN_OV7610,
114 	SEN_OV7620,
115 	SEN_OV7620AE,
116 	SEN_OV7640,
117 	SEN_OV7648,
118 	SEN_OV7660,
119 	SEN_OV7670,
120 	SEN_OV76BE,
121 	SEN_OV8610,
122 	SEN_OV9600,
123 };
124 
125 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
126    the ov sensors which is already present here. When we have the time we
127    really should move the sensor drivers to v4l2 sub drivers. */
128 #include "w996Xcf.c"
129 
130 /* table of the disabled controls */
131 struct ctrl_valid {
132 	unsigned int has_brightness:1;
133 	unsigned int has_contrast:1;
134 	unsigned int has_exposure:1;
135 	unsigned int has_autogain:1;
136 	unsigned int has_sat:1;
137 	unsigned int has_hvflip:1;
138 	unsigned int has_autobright:1;
139 	unsigned int has_freq:1;
140 };
141 
142 static const struct ctrl_valid valid_controls[] = {
143 	[SEN_OV2610] = {
144 		.has_exposure = 1,
145 		.has_autogain = 1,
146 	},
147 	[SEN_OV2610AE] = {
148 		.has_exposure = 1,
149 		.has_autogain = 1,
150 	},
151 	[SEN_OV3610] = {
152 		/* No controls */
153 	},
154 	[SEN_OV6620] = {
155 		.has_brightness = 1,
156 		.has_contrast = 1,
157 		.has_sat = 1,
158 		.has_autobright = 1,
159 		.has_freq = 1,
160 	},
161 	[SEN_OV6630] = {
162 		.has_brightness = 1,
163 		.has_contrast = 1,
164 		.has_sat = 1,
165 		.has_autobright = 1,
166 		.has_freq = 1,
167 	},
168 	[SEN_OV66308AF] = {
169 		.has_brightness = 1,
170 		.has_contrast = 1,
171 		.has_sat = 1,
172 		.has_autobright = 1,
173 		.has_freq = 1,
174 	},
175 	[SEN_OV7610] = {
176 		.has_brightness = 1,
177 		.has_contrast = 1,
178 		.has_sat = 1,
179 		.has_autobright = 1,
180 		.has_freq = 1,
181 	},
182 	[SEN_OV7620] = {
183 		.has_brightness = 1,
184 		.has_contrast = 1,
185 		.has_sat = 1,
186 		.has_autobright = 1,
187 		.has_freq = 1,
188 	},
189 	[SEN_OV7620AE] = {
190 		.has_brightness = 1,
191 		.has_contrast = 1,
192 		.has_sat = 1,
193 		.has_autobright = 1,
194 		.has_freq = 1,
195 	},
196 	[SEN_OV7640] = {
197 		.has_brightness = 1,
198 		.has_sat = 1,
199 		.has_freq = 1,
200 	},
201 	[SEN_OV7648] = {
202 		.has_brightness = 1,
203 		.has_sat = 1,
204 		.has_freq = 1,
205 	},
206 	[SEN_OV7660] = {
207 		.has_brightness = 1,
208 		.has_contrast = 1,
209 		.has_sat = 1,
210 		.has_hvflip = 1,
211 		.has_freq = 1,
212 	},
213 	[SEN_OV7670] = {
214 		.has_brightness = 1,
215 		.has_contrast = 1,
216 		.has_hvflip = 1,
217 		.has_freq = 1,
218 	},
219 	[SEN_OV76BE] = {
220 		.has_brightness = 1,
221 		.has_contrast = 1,
222 		.has_sat = 1,
223 		.has_autobright = 1,
224 		.has_freq = 1,
225 	},
226 	[SEN_OV8610] = {
227 		.has_brightness = 1,
228 		.has_contrast = 1,
229 		.has_sat = 1,
230 		.has_autobright = 1,
231 	},
232 	[SEN_OV9600] = {
233 		.has_exposure = 1,
234 		.has_autogain = 1,
235 	},
236 };
237 
238 static const struct v4l2_pix_format ov519_vga_mode[] = {
239 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
240 		.bytesperline = 320,
241 		.sizeimage = 320 * 240 * 3 / 8 + 590,
242 		.colorspace = V4L2_COLORSPACE_JPEG,
243 		.priv = 1},
244 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
245 		.bytesperline = 640,
246 		.sizeimage = 640 * 480 * 3 / 8 + 590,
247 		.colorspace = V4L2_COLORSPACE_JPEG,
248 		.priv = 0},
249 };
250 static const struct v4l2_pix_format ov519_sif_mode[] = {
251 	{160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
252 		.bytesperline = 160,
253 		.sizeimage = 160 * 120 * 3 / 8 + 590,
254 		.colorspace = V4L2_COLORSPACE_JPEG,
255 		.priv = 3},
256 	{176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
257 		.bytesperline = 176,
258 		.sizeimage = 176 * 144 * 3 / 8 + 590,
259 		.colorspace = V4L2_COLORSPACE_JPEG,
260 		.priv = 1},
261 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
262 		.bytesperline = 320,
263 		.sizeimage = 320 * 240 * 3 / 8 + 590,
264 		.colorspace = V4L2_COLORSPACE_JPEG,
265 		.priv = 2},
266 	{352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
267 		.bytesperline = 352,
268 		.sizeimage = 352 * 288 * 3 / 8 + 590,
269 		.colorspace = V4L2_COLORSPACE_JPEG,
270 		.priv = 0},
271 };
272 
273 /* Note some of the sizeimage values for the ov511 / ov518 may seem
274    larger then necessary, however they need to be this big as the ov511 /
275    ov518 always fills the entire isoc frame, using 0 padding bytes when
276    it doesn't have any data. So with low framerates the amount of data
277    transferred can become quite large (libv4l will remove all the 0 padding
278    in userspace). */
279 static const struct v4l2_pix_format ov518_vga_mode[] = {
280 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
281 		.bytesperline = 320,
282 		.sizeimage = 320 * 240 * 3,
283 		.colorspace = V4L2_COLORSPACE_JPEG,
284 		.priv = 1},
285 	{640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
286 		.bytesperline = 640,
287 		.sizeimage = 640 * 480 * 2,
288 		.colorspace = V4L2_COLORSPACE_JPEG,
289 		.priv = 0},
290 };
291 static const struct v4l2_pix_format ov518_sif_mode[] = {
292 	{160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
293 		.bytesperline = 160,
294 		.sizeimage = 70000,
295 		.colorspace = V4L2_COLORSPACE_JPEG,
296 		.priv = 3},
297 	{176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
298 		.bytesperline = 176,
299 		.sizeimage = 70000,
300 		.colorspace = V4L2_COLORSPACE_JPEG,
301 		.priv = 1},
302 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
303 		.bytesperline = 320,
304 		.sizeimage = 320 * 240 * 3,
305 		.colorspace = V4L2_COLORSPACE_JPEG,
306 		.priv = 2},
307 	{352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
308 		.bytesperline = 352,
309 		.sizeimage = 352 * 288 * 3,
310 		.colorspace = V4L2_COLORSPACE_JPEG,
311 		.priv = 0},
312 };
313 
314 static const struct v4l2_pix_format ov511_vga_mode[] = {
315 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
316 		.bytesperline = 320,
317 		.sizeimage = 320 * 240 * 3,
318 		.colorspace = V4L2_COLORSPACE_JPEG,
319 		.priv = 1},
320 	{640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
321 		.bytesperline = 640,
322 		.sizeimage = 640 * 480 * 2,
323 		.colorspace = V4L2_COLORSPACE_JPEG,
324 		.priv = 0},
325 };
326 static const struct v4l2_pix_format ov511_sif_mode[] = {
327 	{160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
328 		.bytesperline = 160,
329 		.sizeimage = 70000,
330 		.colorspace = V4L2_COLORSPACE_JPEG,
331 		.priv = 3},
332 	{176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
333 		.bytesperline = 176,
334 		.sizeimage = 70000,
335 		.colorspace = V4L2_COLORSPACE_JPEG,
336 		.priv = 1},
337 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
338 		.bytesperline = 320,
339 		.sizeimage = 320 * 240 * 3,
340 		.colorspace = V4L2_COLORSPACE_JPEG,
341 		.priv = 2},
342 	{352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
343 		.bytesperline = 352,
344 		.sizeimage = 352 * 288 * 3,
345 		.colorspace = V4L2_COLORSPACE_JPEG,
346 		.priv = 0},
347 };
348 
349 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
350 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
351 		.bytesperline = 800,
352 		.sizeimage = 800 * 600,
353 		.colorspace = V4L2_COLORSPACE_SRGB,
354 		.priv = 1},
355 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
356 		.bytesperline = 1600,
357 		.sizeimage = 1600 * 1200,
358 		.colorspace = V4L2_COLORSPACE_SRGB},
359 };
360 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
361 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
362 		.bytesperline = 640,
363 		.sizeimage = 640 * 480,
364 		.colorspace = V4L2_COLORSPACE_SRGB,
365 		.priv = 1},
366 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
367 		.bytesperline = 800,
368 		.sizeimage = 800 * 600,
369 		.colorspace = V4L2_COLORSPACE_SRGB,
370 		.priv = 1},
371 	{1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
372 		.bytesperline = 1024,
373 		.sizeimage = 1024 * 768,
374 		.colorspace = V4L2_COLORSPACE_SRGB,
375 		.priv = 1},
376 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
377 		.bytesperline = 1600,
378 		.sizeimage = 1600 * 1200,
379 		.colorspace = V4L2_COLORSPACE_SRGB,
380 		.priv = 0},
381 	{2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
382 		.bytesperline = 2048,
383 		.sizeimage = 2048 * 1536,
384 		.colorspace = V4L2_COLORSPACE_SRGB,
385 		.priv = 0},
386 };
387 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
388 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
389 		.bytesperline = 640,
390 		.sizeimage = 640 * 480,
391 		.colorspace = V4L2_COLORSPACE_SRGB,
392 		.priv = 1},
393 	{1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
394 		.bytesperline = 1280,
395 		.sizeimage = 1280 * 1024,
396 		.colorspace = V4L2_COLORSPACE_SRGB},
397 };
398 
399 /* Registers common to OV511 / OV518 */
400 #define R51x_FIFO_PSIZE			0x30	/* 2 bytes wide w/ OV518(+) */
401 #define R51x_SYS_RESET			0x50
402 	/* Reset type flags */
403 	#define	OV511_RESET_OMNICE	0x08
404 #define R51x_SYS_INIT			0x53
405 #define R51x_SYS_SNAP			0x52
406 #define R51x_SYS_CUST_ID		0x5f
407 #define R51x_COMP_LUT_BEGIN		0x80
408 
409 /* OV511 Camera interface register numbers */
410 #define R511_CAM_DELAY			0x10
411 #define R511_CAM_EDGE			0x11
412 #define R511_CAM_PXCNT			0x12
413 #define R511_CAM_LNCNT			0x13
414 #define R511_CAM_PXDIV			0x14
415 #define R511_CAM_LNDIV			0x15
416 #define R511_CAM_UV_EN			0x16
417 #define R511_CAM_LINE_MODE		0x17
418 #define R511_CAM_OPTS			0x18
419 
420 #define R511_SNAP_FRAME			0x19
421 #define R511_SNAP_PXCNT			0x1a
422 #define R511_SNAP_LNCNT			0x1b
423 #define R511_SNAP_PXDIV			0x1c
424 #define R511_SNAP_LNDIV			0x1d
425 #define R511_SNAP_UV_EN			0x1e
426 #define R511_SNAP_OPTS			0x1f
427 
428 #define R511_DRAM_FLOW_CTL		0x20
429 #define R511_FIFO_OPTS			0x31
430 #define R511_I2C_CTL			0x40
431 #define R511_SYS_LED_CTL		0x55	/* OV511+ only */
432 #define R511_COMP_EN			0x78
433 #define R511_COMP_LUT_EN		0x79
434 
435 /* OV518 Camera interface register numbers */
436 #define R518_GPIO_OUT			0x56	/* OV518(+) only */
437 #define R518_GPIO_CTL			0x57	/* OV518(+) only */
438 
439 /* OV519 Camera interface register numbers */
440 #define OV519_R10_H_SIZE		0x10
441 #define OV519_R11_V_SIZE		0x11
442 #define OV519_R12_X_OFFSETL		0x12
443 #define OV519_R13_X_OFFSETH		0x13
444 #define OV519_R14_Y_OFFSETL		0x14
445 #define OV519_R15_Y_OFFSETH		0x15
446 #define OV519_R16_DIVIDER		0x16
447 #define OV519_R20_DFR			0x20
448 #define OV519_R25_FORMAT		0x25
449 
450 /* OV519 System Controller register numbers */
451 #define OV519_R51_RESET1		0x51
452 #define OV519_R54_EN_CLK1		0x54
453 #define OV519_R57_SNAPSHOT		0x57
454 
455 #define OV519_GPIO_DATA_OUT0		0x71
456 #define OV519_GPIO_IO_CTRL0		0x72
457 
458 /*#define OV511_ENDPOINT_ADDRESS 1	 * Isoc endpoint number */
459 
460 /*
461  * The FX2 chip does not give us a zero length read at end of frame.
462  * It does, however, give a short read at the end of a frame, if
463  * necessary, rather than run two frames together.
464  *
465  * By choosing the right bulk transfer size, we are guaranteed to always
466  * get a short read for the last read of each frame.  Frame sizes are
467  * always a composite number (width * height, or a multiple) so if we
468  * choose a prime number, we are guaranteed that the last read of a
469  * frame will be short.
470  *
471  * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
472  * otherwise EOVERFLOW "babbling" errors occur.  I have not been able
473  * to figure out why.  [PMiller]
474  *
475  * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
476  *
477  * It isn't enough to know the number of bytes per frame, in case we
478  * have data dropouts or buffer overruns (even though the FX2 double
479  * buffers, there are some pretty strict real time constraints for
480  * isochronous transfer for larger frame sizes).
481  */
482 /*jfm: this value does not work for 800x600 - see isoc_init */
483 #define OVFX2_BULK_SIZE (13 * 4096)
484 
485 /* I2C registers */
486 #define R51x_I2C_W_SID		0x41
487 #define R51x_I2C_SADDR_3	0x42
488 #define R51x_I2C_SADDR_2	0x43
489 #define R51x_I2C_R_SID		0x44
490 #define R51x_I2C_DATA		0x45
491 #define R518_I2C_CTL		0x47	/* OV518(+) only */
492 #define OVFX2_I2C_ADDR		0x00
493 
494 /* I2C ADDRESSES */
495 #define OV7xx0_SID   0x42
496 #define OV_HIRES_SID 0x60		/* OV9xxx / OV2xxx / OV3xxx */
497 #define OV8xx0_SID   0xa0
498 #define OV6xx0_SID   0xc0
499 
500 /* OV7610 registers */
501 #define OV7610_REG_GAIN		0x00	/* gain setting (5:0) */
502 #define OV7610_REG_BLUE		0x01	/* blue channel balance */
503 #define OV7610_REG_RED		0x02	/* red channel balance */
504 #define OV7610_REG_SAT		0x03	/* saturation */
505 #define OV8610_REG_HUE		0x04	/* 04 reserved */
506 #define OV7610_REG_CNT		0x05	/* Y contrast */
507 #define OV7610_REG_BRT		0x06	/* Y brightness */
508 #define OV7610_REG_COM_C	0x14	/* misc common regs */
509 #define OV7610_REG_ID_HIGH	0x1c	/* manufacturer ID MSB */
510 #define OV7610_REG_ID_LOW	0x1d	/* manufacturer ID LSB */
511 #define OV7610_REG_COM_I	0x29	/* misc settings */
512 
513 /* OV7660 and OV7670 registers */
514 #define OV7670_R00_GAIN		0x00	/* Gain lower 8 bits (rest in vref) */
515 #define OV7670_R01_BLUE		0x01	/* blue gain */
516 #define OV7670_R02_RED		0x02	/* red gain */
517 #define OV7670_R03_VREF		0x03	/* Pieces of GAIN, VSTART, VSTOP */
518 #define OV7670_R04_COM1		0x04	/* Control 1 */
519 /*#define OV7670_R07_AECHH	0x07	 * AEC MS 5 bits */
520 #define OV7670_R0C_COM3		0x0c	/* Control 3 */
521 #define OV7670_R0D_COM4		0x0d	/* Control 4 */
522 #define OV7670_R0E_COM5		0x0e	/* All "reserved" */
523 #define OV7670_R0F_COM6		0x0f	/* Control 6 */
524 #define OV7670_R10_AECH		0x10	/* More bits of AEC value */
525 #define OV7670_R11_CLKRC	0x11	/* Clock control */
526 #define OV7670_R12_COM7		0x12	/* Control 7 */
527 #define   OV7670_COM7_FMT_VGA	 0x00
528 /*#define   OV7670_COM7_YUV	 0x00	 * YUV */
529 #define   OV7670_COM7_FMT_QVGA	 0x10	/* QVGA format */
530 #define   OV7670_COM7_FMT_MASK	 0x38
531 #define   OV7670_COM7_RESET	 0x80	/* Register reset */
532 #define OV7670_R13_COM8		0x13	/* Control 8 */
533 #define   OV7670_COM8_AEC	 0x01	/* Auto exposure enable */
534 #define   OV7670_COM8_AWB	 0x02	/* White balance enable */
535 #define   OV7670_COM8_AGC	 0x04	/* Auto gain enable */
536 #define   OV7670_COM8_BFILT	 0x20	/* Band filter enable */
537 #define   OV7670_COM8_AECSTEP	 0x40	/* Unlimited AEC step size */
538 #define   OV7670_COM8_FASTAEC	 0x80	/* Enable fast AGC/AEC */
539 #define OV7670_R14_COM9		0x14	/* Control 9 - gain ceiling */
540 #define OV7670_R15_COM10	0x15	/* Control 10 */
541 #define OV7670_R17_HSTART	0x17	/* Horiz start high bits */
542 #define OV7670_R18_HSTOP	0x18	/* Horiz stop high bits */
543 #define OV7670_R19_VSTART	0x19	/* Vert start high bits */
544 #define OV7670_R1A_VSTOP	0x1a	/* Vert stop high bits */
545 #define OV7670_R1E_MVFP		0x1e	/* Mirror / vflip */
546 #define   OV7670_MVFP_VFLIP	 0x10	/* vertical flip */
547 #define   OV7670_MVFP_MIRROR	 0x20	/* Mirror image */
548 #define OV7670_R24_AEW		0x24	/* AGC upper limit */
549 #define OV7670_R25_AEB		0x25	/* AGC lower limit */
550 #define OV7670_R26_VPT		0x26	/* AGC/AEC fast mode op region */
551 #define OV7670_R32_HREF		0x32	/* HREF pieces */
552 #define OV7670_R3A_TSLB		0x3a	/* lots of stuff */
553 #define OV7670_R3B_COM11	0x3b	/* Control 11 */
554 #define   OV7670_COM11_EXP	 0x02
555 #define   OV7670_COM11_HZAUTO	 0x10	/* Auto detect 50/60 Hz */
556 #define OV7670_R3C_COM12	0x3c	/* Control 12 */
557 #define OV7670_R3D_COM13	0x3d	/* Control 13 */
558 #define   OV7670_COM13_GAMMA	 0x80	/* Gamma enable */
559 #define   OV7670_COM13_UVSAT	 0x40	/* UV saturation auto adjustment */
560 #define OV7670_R3E_COM14	0x3e	/* Control 14 */
561 #define OV7670_R3F_EDGE		0x3f	/* Edge enhancement factor */
562 #define OV7670_R40_COM15	0x40	/* Control 15 */
563 /*#define   OV7670_COM15_R00FF	 0xc0	 *	00 to FF */
564 #define OV7670_R41_COM16	0x41	/* Control 16 */
565 #define   OV7670_COM16_AWBGAIN	 0x08	/* AWB gain enable */
566 /* end of ov7660 common registers */
567 #define OV7670_R55_BRIGHT	0x55	/* Brightness */
568 #define OV7670_R56_CONTRAS	0x56	/* Contrast control */
569 #define OV7670_R69_GFIX		0x69	/* Fix gain control */
570 /*#define OV7670_R8C_RGB444	0x8c	 * RGB 444 control */
571 #define OV7670_R9F_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
572 #define OV7670_RA0_HAECC2	0xa0	/* Hist AEC/AGC control 2 */
573 #define OV7670_RA5_BD50MAX	0xa5	/* 50hz banding step limit */
574 #define OV7670_RA6_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
575 #define OV7670_RA7_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
576 #define OV7670_RA8_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
577 #define OV7670_RA9_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
578 #define OV7670_RAA_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
579 #define OV7670_RAB_BD60MAX	0xab	/* 60hz banding step limit */
580 
581 struct ov_regvals {
582 	u8 reg;
583 	u8 val;
584 };
585 struct ov_i2c_regvals {
586 	u8 reg;
587 	u8 val;
588 };
589 
590 /* Settings for OV2610 camera chip */
591 static const struct ov_i2c_regvals norm_2610[] = {
592 	{ 0x12, 0x80 },	/* reset */
593 };
594 
595 static const struct ov_i2c_regvals norm_2610ae[] = {
596 	{0x12, 0x80},	/* reset */
597 	{0x13, 0xcd},
598 	{0x09, 0x01},
599 	{0x0d, 0x00},
600 	{0x11, 0x80},
601 	{0x12, 0x20},	/* 1600x1200 */
602 	{0x33, 0x0c},
603 	{0x35, 0x90},
604 	{0x36, 0x37},
605 /* ms-win traces */
606 	{0x11, 0x83},	/* clock / 3 ? */
607 	{0x2d, 0x00},	/* 60 Hz filter */
608 	{0x24, 0xb0},	/* normal colors */
609 	{0x25, 0x90},
610 	{0x10, 0x43},
611 };
612 
613 static const struct ov_i2c_regvals norm_3620b[] = {
614 	/*
615 	 * From the datasheet: "Note that after writing to register COMH
616 	 * (0x12) to change the sensor mode, registers related to the
617 	 * sensor’s cropping window will be reset back to their default
618 	 * values."
619 	 *
620 	 * "wait 4096 external clock ... to make sure the sensor is
621 	 * stable and ready to access registers" i.e. 160us at 24MHz
622 	 */
623 	{ 0x12, 0x80 }, /* COMH reset */
624 	{ 0x12, 0x00 }, /* QXGA, master */
625 
626 	/*
627 	 * 11 CLKRC "Clock Rate Control"
628 	 * [7] internal frequency doublers: on
629 	 * [6] video port mode: master
630 	 * [5:0] clock divider: 1
631 	 */
632 	{ 0x11, 0x80 },
633 
634 	/*
635 	 * 13 COMI "Common Control I"
636 	 *                  = 192 (0xC0) 11000000
637 	 *    COMI[7] "AEC speed selection"
638 	 *                  =   1 (0x01) 1....... "Faster AEC correction"
639 	 *    COMI[6] "AEC speed step selection"
640 	 *                  =   1 (0x01) .1...... "Big steps, fast"
641 	 *    COMI[5] "Banding filter on off"
642 	 *                  =   0 (0x00) ..0..... "Off"
643 	 *    COMI[4] "Banding filter option"
644 	 *                  =   0 (0x00) ...0.... "Main clock is 48 MHz and
645 	 *                                         the PLL is ON"
646 	 *    COMI[3] "Reserved"
647 	 *                  =   0 (0x00) ....0...
648 	 *    COMI[2] "AGC auto manual control selection"
649 	 *                  =   0 (0x00) .....0.. "Manual"
650 	 *    COMI[1] "AWB auto manual control selection"
651 	 *                  =   0 (0x00) ......0. "Manual"
652 	 *    COMI[0] "Exposure control"
653 	 *                  =   0 (0x00) .......0 "Manual"
654 	 */
655 	{ 0x13, 0xc0 },
656 
657 	/*
658 	 * 09 COMC "Common Control C"
659 	 *                  =   8 (0x08) 00001000
660 	 *    COMC[7:5] "Reserved"
661 	 *                  =   0 (0x00) 000.....
662 	 *    COMC[4] "Sleep Mode Enable"
663 	 *                  =   0 (0x00) ...0.... "Normal mode"
664 	 *    COMC[3:2] "Sensor sampling reset timing selection"
665 	 *                  =   2 (0x02) ....10.. "Longer reset time"
666 	 *    COMC[1:0] "Output drive current select"
667 	 *                  =   0 (0x00) ......00 "Weakest"
668 	 */
669 	{ 0x09, 0x08 },
670 
671 	/*
672 	 * 0C COMD "Common Control D"
673 	 *                  =   8 (0x08) 00001000
674 	 *    COMD[7] "Reserved"
675 	 *                  =   0 (0x00) 0.......
676 	 *    COMD[6] "Swap MSB and LSB at the output port"
677 	 *                  =   0 (0x00) .0...... "False"
678 	 *    COMD[5:3] "Reserved"
679 	 *                  =   1 (0x01) ..001...
680 	 *    COMD[2] "Output Average On Off"
681 	 *                  =   0 (0x00) .....0.. "Output Normal"
682 	 *    COMD[1] "Sensor precharge voltage selection"
683 	 *                  =   0 (0x00) ......0. "Selects internal
684 	 *                                         reference precharge
685 	 *                                         voltage"
686 	 *    COMD[0] "Snapshot option"
687 	 *                  =   0 (0x00) .......0 "Enable live video output
688 	 *                                         after snapshot sequence"
689 	 */
690 	{ 0x0c, 0x08 },
691 
692 	/*
693 	 * 0D COME "Common Control E"
694 	 *                  = 161 (0xA1) 10100001
695 	 *    COME[7] "Output average option"
696 	 *                  =   1 (0x01) 1....... "Output average of 4 pixels"
697 	 *    COME[6] "Anti-blooming control"
698 	 *                  =   0 (0x00) .0...... "Off"
699 	 *    COME[5:3] "Reserved"
700 	 *                  =   4 (0x04) ..100...
701 	 *    COME[2] "Clock output power down pin status"
702 	 *                  =   0 (0x00) .....0.. "Tri-state data output pin
703 	 *                                         on power down"
704 	 *    COME[1] "Data output pin status selection at power down"
705 	 *                  =   0 (0x00) ......0. "Tri-state VSYNC, PCLK,
706 	 *                                         HREF, and CHSYNC pins on
707 	 *                                         power down"
708 	 *    COME[0] "Auto zero circuit select"
709 	 *                  =   1 (0x01) .......1 "On"
710 	 */
711 	{ 0x0d, 0xa1 },
712 
713 	/*
714 	 * 0E COMF "Common Control F"
715 	 *                  = 112 (0x70) 01110000
716 	 *    COMF[7] "System clock selection"
717 	 *                  =   0 (0x00) 0....... "Use 24 MHz system clock"
718 	 *    COMF[6:4] "Reserved"
719 	 *                  =   7 (0x07) .111....
720 	 *    COMF[3] "Manual auto negative offset canceling selection"
721 	 *                  =   0 (0x00) ....0... "Auto detect negative
722 	 *                                         offset and cancel it"
723 	 *    COMF[2:0] "Reserved"
724 	 *                  =   0 (0x00) .....000
725 	 */
726 	{ 0x0e, 0x70 },
727 
728 	/*
729 	 * 0F COMG "Common Control G"
730 	 *                  =  66 (0x42) 01000010
731 	 *    COMG[7] "Optical black output selection"
732 	 *                  =   0 (0x00) 0....... "Disable"
733 	 *    COMG[6] "Black level calibrate selection"
734 	 *                  =   1 (0x01) .1...... "Use optical black pixels
735 	 *                                         to calibrate"
736 	 *    COMG[5:4] "Reserved"
737 	 *                  =   0 (0x00) ..00....
738 	 *    COMG[3] "Channel offset adjustment"
739 	 *                  =   0 (0x00) ....0... "Disable offset adjustment"
740 	 *    COMG[2] "ADC black level calibration option"
741 	 *                  =   0 (0x00) .....0.. "Use B/G line and G/R
742 	 *                                         line to calibrate each
743 	 *                                         channel's black level"
744 	 *    COMG[1] "Reserved"
745 	 *                  =   1 (0x01) ......1.
746 	 *    COMG[0] "ADC black level calibration enable"
747 	 *                  =   0 (0x00) .......0 "Disable"
748 	 */
749 	{ 0x0f, 0x42 },
750 
751 	/*
752 	 * 14 COMJ "Common Control J"
753 	 *                  = 198 (0xC6) 11000110
754 	 *    COMJ[7:6] "AGC gain ceiling"
755 	 *                  =   3 (0x03) 11...... "8x"
756 	 *    COMJ[5:4] "Reserved"
757 	 *                  =   0 (0x00) ..00....
758 	 *    COMJ[3] "Auto banding filter"
759 	 *                  =   0 (0x00) ....0... "Banding filter is always
760 	 *                                         on off depending on
761 	 *                                         COMI[5] setting"
762 	 *    COMJ[2] "VSYNC drop option"
763 	 *                  =   1 (0x01) .....1.. "SYNC is dropped if frame
764 	 *                                         data is dropped"
765 	 *    COMJ[1] "Frame data drop"
766 	 *                  =   1 (0x01) ......1. "Drop frame data if
767 	 *                                         exposure is not within
768 	 *                                         tolerance.  In AEC mode,
769 	 *                                         data is normally dropped
770 	 *                                         when data is out of
771 	 *                                         range."
772 	 *    COMJ[0] "Reserved"
773 	 *                  =   0 (0x00) .......0
774 	 */
775 	{ 0x14, 0xc6 },
776 
777 	/*
778 	 * 15 COMK "Common Control K"
779 	 *                  =   2 (0x02) 00000010
780 	 *    COMK[7] "CHSYNC pin output swap"
781 	 *                  =   0 (0x00) 0....... "CHSYNC"
782 	 *    COMK[6] "HREF pin output swap"
783 	 *                  =   0 (0x00) .0...... "HREF"
784 	 *    COMK[5] "PCLK output selection"
785 	 *                  =   0 (0x00) ..0..... "PCLK always output"
786 	 *    COMK[4] "PCLK edge selection"
787 	 *                  =   0 (0x00) ...0.... "Data valid on falling edge"
788 	 *    COMK[3] "HREF output polarity"
789 	 *                  =   0 (0x00) ....0... "positive"
790 	 *    COMK[2] "Reserved"
791 	 *                  =   0 (0x00) .....0..
792 	 *    COMK[1] "VSYNC polarity"
793 	 *                  =   1 (0x01) ......1. "negative"
794 	 *    COMK[0] "HSYNC polarity"
795 	 *                  =   0 (0x00) .......0 "positive"
796 	 */
797 	{ 0x15, 0x02 },
798 
799 	/*
800 	 * 33 CHLF "Current Control"
801 	 *                  =   9 (0x09) 00001001
802 	 *    CHLF[7:6] "Sensor current control"
803 	 *                  =   0 (0x00) 00......
804 	 *    CHLF[5] "Sensor current range control"
805 	 *                  =   0 (0x00) ..0..... "normal range"
806 	 *    CHLF[4] "Sensor current"
807 	 *                  =   0 (0x00) ...0.... "normal current"
808 	 *    CHLF[3] "Sensor buffer current control"
809 	 *                  =   1 (0x01) ....1... "half current"
810 	 *    CHLF[2] "Column buffer current control"
811 	 *                  =   0 (0x00) .....0.. "normal current"
812 	 *    CHLF[1] "Analog DSP current control"
813 	 *                  =   0 (0x00) ......0. "normal current"
814 	 *    CHLF[1] "ADC current control"
815 	 *                  =   0 (0x00) ......0. "normal current"
816 	 */
817 	{ 0x33, 0x09 },
818 
819 	/*
820 	 * 34 VBLM "Blooming Control"
821 	 *                  =  80 (0x50) 01010000
822 	 *    VBLM[7] "Hard soft reset switch"
823 	 *                  =   0 (0x00) 0....... "Hard reset"
824 	 *    VBLM[6:4] "Blooming voltage selection"
825 	 *                  =   5 (0x05) .101....
826 	 *    VBLM[3:0] "Sensor current control"
827 	 *                  =   0 (0x00) ....0000
828 	 */
829 	{ 0x34, 0x50 },
830 
831 	/*
832 	 * 36 VCHG "Sensor Precharge Voltage Control"
833 	 *                  =   0 (0x00) 00000000
834 	 *    VCHG[7] "Reserved"
835 	 *                  =   0 (0x00) 0.......
836 	 *    VCHG[6:4] "Sensor precharge voltage control"
837 	 *                  =   0 (0x00) .000....
838 	 *    VCHG[3:0] "Sensor array common reference"
839 	 *                  =   0 (0x00) ....0000
840 	 */
841 	{ 0x36, 0x00 },
842 
843 	/*
844 	 * 37 ADC "ADC Reference Control"
845 	 *                  =   4 (0x04) 00000100
846 	 *    ADC[7:4] "Reserved"
847 	 *                  =   0 (0x00) 0000....
848 	 *    ADC[3] "ADC input signal range"
849 	 *                  =   0 (0x00) ....0... "Input signal 1.0x"
850 	 *    ADC[2:0] "ADC range control"
851 	 *                  =   4 (0x04) .....100
852 	 */
853 	{ 0x37, 0x04 },
854 
855 	/*
856 	 * 38 ACOM "Analog Common Ground"
857 	 *                  =  82 (0x52) 01010010
858 	 *    ACOM[7] "Analog gain control"
859 	 *                  =   0 (0x00) 0....... "Gain 1x"
860 	 *    ACOM[6] "Analog black level calibration"
861 	 *                  =   1 (0x01) .1...... "On"
862 	 *    ACOM[5:0] "Reserved"
863 	 *                  =  18 (0x12) ..010010
864 	 */
865 	{ 0x38, 0x52 },
866 
867 	/*
868 	 * 3A FREFA "Internal Reference Adjustment"
869 	 *                  =   0 (0x00) 00000000
870 	 *    FREFA[7:0] "Range"
871 	 *                  =   0 (0x00) 00000000
872 	 */
873 	{ 0x3a, 0x00 },
874 
875 	/*
876 	 * 3C FVOPT "Internal Reference Adjustment"
877 	 *                  =  31 (0x1F) 00011111
878 	 *    FVOPT[7:0] "Range"
879 	 *                  =  31 (0x1F) 00011111
880 	 */
881 	{ 0x3c, 0x1f },
882 
883 	/*
884 	 * 44 Undocumented  =   0 (0x00) 00000000
885 	 *    44[7:0] "It's a secret"
886 	 *                  =   0 (0x00) 00000000
887 	 */
888 	{ 0x44, 0x00 },
889 
890 	/*
891 	 * 40 Undocumented  =   0 (0x00) 00000000
892 	 *    40[7:0] "It's a secret"
893 	 *                  =   0 (0x00) 00000000
894 	 */
895 	{ 0x40, 0x00 },
896 
897 	/*
898 	 * 41 Undocumented  =   0 (0x00) 00000000
899 	 *    41[7:0] "It's a secret"
900 	 *                  =   0 (0x00) 00000000
901 	 */
902 	{ 0x41, 0x00 },
903 
904 	/*
905 	 * 42 Undocumented  =   0 (0x00) 00000000
906 	 *    42[7:0] "It's a secret"
907 	 *                  =   0 (0x00) 00000000
908 	 */
909 	{ 0x42, 0x00 },
910 
911 	/*
912 	 * 43 Undocumented  =   0 (0x00) 00000000
913 	 *    43[7:0] "It's a secret"
914 	 *                  =   0 (0x00) 00000000
915 	 */
916 	{ 0x43, 0x00 },
917 
918 	/*
919 	 * 45 Undocumented  = 128 (0x80) 10000000
920 	 *    45[7:0] "It's a secret"
921 	 *                  = 128 (0x80) 10000000
922 	 */
923 	{ 0x45, 0x80 },
924 
925 	/*
926 	 * 48 Undocumented  = 192 (0xC0) 11000000
927 	 *    48[7:0] "It's a secret"
928 	 *                  = 192 (0xC0) 11000000
929 	 */
930 	{ 0x48, 0xc0 },
931 
932 	/*
933 	 * 49 Undocumented  =  25 (0x19) 00011001
934 	 *    49[7:0] "It's a secret"
935 	 *                  =  25 (0x19) 00011001
936 	 */
937 	{ 0x49, 0x19 },
938 
939 	/*
940 	 * 4B Undocumented  = 128 (0x80) 10000000
941 	 *    4B[7:0] "It's a secret"
942 	 *                  = 128 (0x80) 10000000
943 	 */
944 	{ 0x4b, 0x80 },
945 
946 	/*
947 	 * 4D Undocumented  = 196 (0xC4) 11000100
948 	 *    4D[7:0] "It's a secret"
949 	 *                  = 196 (0xC4) 11000100
950 	 */
951 	{ 0x4d, 0xc4 },
952 
953 	/*
954 	 * 35 VREF "Reference Voltage Control"
955 	 *                  =  76 (0x4c) 01001100
956 	 *    VREF[7:5] "Column high reference control"
957 	 *                  =   2 (0x02) 010..... "higher voltage"
958 	 *    VREF[4:2] "Column low reference control"
959 	 *                  =   3 (0x03) ...011.. "Highest voltage"
960 	 *    VREF[1:0] "Reserved"
961 	 *                  =   0 (0x00) ......00
962 	 */
963 	{ 0x35, 0x4c },
964 
965 	/*
966 	 * 3D Undocumented  =   0 (0x00) 00000000
967 	 *    3D[7:0] "It's a secret"
968 	 *                  =   0 (0x00) 00000000
969 	 */
970 	{ 0x3d, 0x00 },
971 
972 	/*
973 	 * 3E Undocumented  =   0 (0x00) 00000000
974 	 *    3E[7:0] "It's a secret"
975 	 *                  =   0 (0x00) 00000000
976 	 */
977 	{ 0x3e, 0x00 },
978 
979 	/*
980 	 * 3B FREFB "Internal Reference Adjustment"
981 	 *                  =  24 (0x18) 00011000
982 	 *    FREFB[7:0] "Range"
983 	 *                  =  24 (0x18) 00011000
984 	 */
985 	{ 0x3b, 0x18 },
986 
987 	/*
988 	 * 33 CHLF "Current Control"
989 	 *                  =  25 (0x19) 00011001
990 	 *    CHLF[7:6] "Sensor current control"
991 	 *                  =   0 (0x00) 00......
992 	 *    CHLF[5] "Sensor current range control"
993 	 *                  =   0 (0x00) ..0..... "normal range"
994 	 *    CHLF[4] "Sensor current"
995 	 *                  =   1 (0x01) ...1.... "double current"
996 	 *    CHLF[3] "Sensor buffer current control"
997 	 *                  =   1 (0x01) ....1... "half current"
998 	 *    CHLF[2] "Column buffer current control"
999 	 *                  =   0 (0x00) .....0.. "normal current"
1000 	 *    CHLF[1] "Analog DSP current control"
1001 	 *                  =   0 (0x00) ......0. "normal current"
1002 	 *    CHLF[1] "ADC current control"
1003 	 *                  =   0 (0x00) ......0. "normal current"
1004 	 */
1005 	{ 0x33, 0x19 },
1006 
1007 	/*
1008 	 * 34 VBLM "Blooming Control"
1009 	 *                  =  90 (0x5A) 01011010
1010 	 *    VBLM[7] "Hard soft reset switch"
1011 	 *                  =   0 (0x00) 0....... "Hard reset"
1012 	 *    VBLM[6:4] "Blooming voltage selection"
1013 	 *                  =   5 (0x05) .101....
1014 	 *    VBLM[3:0] "Sensor current control"
1015 	 *                  =  10 (0x0A) ....1010
1016 	 */
1017 	{ 0x34, 0x5a },
1018 
1019 	/*
1020 	 * 3B FREFB "Internal Reference Adjustment"
1021 	 *                  =   0 (0x00) 00000000
1022 	 *    FREFB[7:0] "Range"
1023 	 *                  =   0 (0x00) 00000000
1024 	 */
1025 	{ 0x3b, 0x00 },
1026 
1027 	/*
1028 	 * 33 CHLF "Current Control"
1029 	 *                  =   9 (0x09) 00001001
1030 	 *    CHLF[7:6] "Sensor current control"
1031 	 *                  =   0 (0x00) 00......
1032 	 *    CHLF[5] "Sensor current range control"
1033 	 *                  =   0 (0x00) ..0..... "normal range"
1034 	 *    CHLF[4] "Sensor current"
1035 	 *                  =   0 (0x00) ...0.... "normal current"
1036 	 *    CHLF[3] "Sensor buffer current control"
1037 	 *                  =   1 (0x01) ....1... "half current"
1038 	 *    CHLF[2] "Column buffer current control"
1039 	 *                  =   0 (0x00) .....0.. "normal current"
1040 	 *    CHLF[1] "Analog DSP current control"
1041 	 *                  =   0 (0x00) ......0. "normal current"
1042 	 *    CHLF[1] "ADC current control"
1043 	 *                  =   0 (0x00) ......0. "normal current"
1044 	 */
1045 	{ 0x33, 0x09 },
1046 
1047 	/*
1048 	 * 34 VBLM "Blooming Control"
1049 	 *                  =  80 (0x50) 01010000
1050 	 *    VBLM[7] "Hard soft reset switch"
1051 	 *                  =   0 (0x00) 0....... "Hard reset"
1052 	 *    VBLM[6:4] "Blooming voltage selection"
1053 	 *                  =   5 (0x05) .101....
1054 	 *    VBLM[3:0] "Sensor current control"
1055 	 *                  =   0 (0x00) ....0000
1056 	 */
1057 	{ 0x34, 0x50 },
1058 
1059 	/*
1060 	 * 12 COMH "Common Control H"
1061 	 *                  =  64 (0x40) 01000000
1062 	 *    COMH[7] "SRST"
1063 	 *                  =   0 (0x00) 0....... "No-op"
1064 	 *    COMH[6:4] "Resolution selection"
1065 	 *                  =   4 (0x04) .100.... "XGA"
1066 	 *    COMH[3] "Master slave selection"
1067 	 *                  =   0 (0x00) ....0... "Master mode"
1068 	 *    COMH[2] "Internal B/R channel option"
1069 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1070 	 *    COMH[1] "Color bar test pattern"
1071 	 *                  =   0 (0x00) ......0. "Off"
1072 	 *    COMH[0] "Reserved"
1073 	 *                  =   0 (0x00) .......0
1074 	 */
1075 	{ 0x12, 0x40 },
1076 
1077 	/*
1078 	 * 17 HREFST "Horizontal window start"
1079 	 *                  =  31 (0x1F) 00011111
1080 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1081 	 *                  =  31 (0x1F) 00011111
1082 	 */
1083 	{ 0x17, 0x1f },
1084 
1085 	/*
1086 	 * 18 HREFEND "Horizontal window end"
1087 	 *                  =  95 (0x5F) 01011111
1088 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1089 	 *                  =  95 (0x5F) 01011111
1090 	 */
1091 	{ 0x18, 0x5f },
1092 
1093 	/*
1094 	 * 19 VSTRT "Vertical window start"
1095 	 *                  =   0 (0x00) 00000000
1096 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1097 	 *                  =   0 (0x00) 00000000
1098 	 */
1099 	{ 0x19, 0x00 },
1100 
1101 	/*
1102 	 * 1A VEND "Vertical window end"
1103 	 *                  =  96 (0x60) 01100000
1104 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1105 	 *                  =  96 (0x60) 01100000
1106 	 */
1107 	{ 0x1a, 0x60 },
1108 
1109 	/*
1110 	 * 32 COMM "Common Control M"
1111 	 *                  =  18 (0x12) 00010010
1112 	 *    COMM[7:6] "Pixel clock divide option"
1113 	 *                  =   0 (0x00) 00...... "/1"
1114 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1115 	 *                  =   2 (0x02) ..010...
1116 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1117 	 *                  =   2 (0x02) .....010
1118 	 */
1119 	{ 0x32, 0x12 },
1120 
1121 	/*
1122 	 * 03 COMA "Common Control A"
1123 	 *                  =  74 (0x4A) 01001010
1124 	 *    COMA[7:4] "AWB Update Threshold"
1125 	 *                  =   4 (0x04) 0100....
1126 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1127 	 *                  =   2 (0x02) ....10..
1128 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1129 	 *                  =   2 (0x02) ......10
1130 	 */
1131 	{ 0x03, 0x4a },
1132 
1133 	/*
1134 	 * 11 CLKRC "Clock Rate Control"
1135 	 *                  = 128 (0x80) 10000000
1136 	 *    CLKRC[7] "Internal frequency doublers on off seclection"
1137 	 *                  =   1 (0x01) 1....... "On"
1138 	 *    CLKRC[6] "Digital video master slave selection"
1139 	 *                  =   0 (0x00) .0...... "Master mode, sensor
1140 	 *                                         provides PCLK"
1141 	 *    CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1142 	 *                  =   0 (0x00) ..000000
1143 	 */
1144 	{ 0x11, 0x80 },
1145 
1146 	/*
1147 	 * 12 COMH "Common Control H"
1148 	 *                  =   0 (0x00) 00000000
1149 	 *    COMH[7] "SRST"
1150 	 *                  =   0 (0x00) 0....... "No-op"
1151 	 *    COMH[6:4] "Resolution selection"
1152 	 *                  =   0 (0x00) .000.... "QXGA"
1153 	 *    COMH[3] "Master slave selection"
1154 	 *                  =   0 (0x00) ....0... "Master mode"
1155 	 *    COMH[2] "Internal B/R channel option"
1156 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1157 	 *    COMH[1] "Color bar test pattern"
1158 	 *                  =   0 (0x00) ......0. "Off"
1159 	 *    COMH[0] "Reserved"
1160 	 *                  =   0 (0x00) .......0
1161 	 */
1162 	{ 0x12, 0x00 },
1163 
1164 	/*
1165 	 * 12 COMH "Common Control H"
1166 	 *                  =  64 (0x40) 01000000
1167 	 *    COMH[7] "SRST"
1168 	 *                  =   0 (0x00) 0....... "No-op"
1169 	 *    COMH[6:4] "Resolution selection"
1170 	 *                  =   4 (0x04) .100.... "XGA"
1171 	 *    COMH[3] "Master slave selection"
1172 	 *                  =   0 (0x00) ....0... "Master mode"
1173 	 *    COMH[2] "Internal B/R channel option"
1174 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1175 	 *    COMH[1] "Color bar test pattern"
1176 	 *                  =   0 (0x00) ......0. "Off"
1177 	 *    COMH[0] "Reserved"
1178 	 *                  =   0 (0x00) .......0
1179 	 */
1180 	{ 0x12, 0x40 },
1181 
1182 	/*
1183 	 * 17 HREFST "Horizontal window start"
1184 	 *                  =  31 (0x1F) 00011111
1185 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1186 	 *                  =  31 (0x1F) 00011111
1187 	 */
1188 	{ 0x17, 0x1f },
1189 
1190 	/*
1191 	 * 18 HREFEND "Horizontal window end"
1192 	 *                  =  95 (0x5F) 01011111
1193 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1194 	 *                  =  95 (0x5F) 01011111
1195 	 */
1196 	{ 0x18, 0x5f },
1197 
1198 	/*
1199 	 * 19 VSTRT "Vertical window start"
1200 	 *                  =   0 (0x00) 00000000
1201 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1202 	 *                  =   0 (0x00) 00000000
1203 	 */
1204 	{ 0x19, 0x00 },
1205 
1206 	/*
1207 	 * 1A VEND "Vertical window end"
1208 	 *                  =  96 (0x60) 01100000
1209 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1210 	 *                  =  96 (0x60) 01100000
1211 	 */
1212 	{ 0x1a, 0x60 },
1213 
1214 	/*
1215 	 * 32 COMM "Common Control M"
1216 	 *                  =  18 (0x12) 00010010
1217 	 *    COMM[7:6] "Pixel clock divide option"
1218 	 *                  =   0 (0x00) 00...... "/1"
1219 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1220 	 *                  =   2 (0x02) ..010...
1221 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1222 	 *                  =   2 (0x02) .....010
1223 	 */
1224 	{ 0x32, 0x12 },
1225 
1226 	/*
1227 	 * 03 COMA "Common Control A"
1228 	 *                  =  74 (0x4A) 01001010
1229 	 *    COMA[7:4] "AWB Update Threshold"
1230 	 *                  =   4 (0x04) 0100....
1231 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1232 	 *                  =   2 (0x02) ....10..
1233 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1234 	 *                  =   2 (0x02) ......10
1235 	 */
1236 	{ 0x03, 0x4a },
1237 
1238 	/*
1239 	 * 02 RED "Red Gain Control"
1240 	 *                  = 175 (0xAF) 10101111
1241 	 *    RED[7] "Action"
1242 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1243 	 *    RED[6:0] "Value"
1244 	 *                  =  47 (0x2F) .0101111
1245 	 */
1246 	{ 0x02, 0xaf },
1247 
1248 	/*
1249 	 * 2D ADDVSL "VSYNC Pulse Width"
1250 	 *                  = 210 (0xD2) 11010010
1251 	 *    ADDVSL[7:0] "VSYNC pulse width, LSB"
1252 	 *                  = 210 (0xD2) 11010010
1253 	 */
1254 	{ 0x2d, 0xd2 },
1255 
1256 	/*
1257 	 * 00 GAIN          =  24 (0x18) 00011000
1258 	 *    GAIN[7:6] "Reserved"
1259 	 *                  =   0 (0x00) 00......
1260 	 *    GAIN[5] "Double"
1261 	 *                  =   0 (0x00) ..0..... "False"
1262 	 *    GAIN[4] "Double"
1263 	 *                  =   1 (0x01) ...1.... "True"
1264 	 *    GAIN[3:0] "Range"
1265 	 *                  =   8 (0x08) ....1000
1266 	 */
1267 	{ 0x00, 0x18 },
1268 
1269 	/*
1270 	 * 01 BLUE "Blue Gain Control"
1271 	 *                  = 240 (0xF0) 11110000
1272 	 *    BLUE[7] "Action"
1273 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1274 	 *    BLUE[6:0] "Value"
1275 	 *                  = 112 (0x70) .1110000
1276 	 */
1277 	{ 0x01, 0xf0 },
1278 
1279 	/*
1280 	 * 10 AEC "Automatic Exposure Control"
1281 	 *                  =  10 (0x0A) 00001010
1282 	 *    AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1283 	 *                  =  10 (0x0A) 00001010
1284 	 */
1285 	{ 0x10, 0x0a },
1286 
1287 	{ 0xe1, 0x67 },
1288 	{ 0xe3, 0x03 },
1289 	{ 0xe4, 0x26 },
1290 	{ 0xe5, 0x3e },
1291 	{ 0xf8, 0x01 },
1292 	{ 0xff, 0x01 },
1293 };
1294 
1295 static const struct ov_i2c_regvals norm_6x20[] = {
1296 	{ 0x12, 0x80 }, /* reset */
1297 	{ 0x11, 0x01 },
1298 	{ 0x03, 0x60 },
1299 	{ 0x05, 0x7f }, /* For when autoadjust is off */
1300 	{ 0x07, 0xa8 },
1301 	/* The ratio of 0x0c and 0x0d controls the white point */
1302 	{ 0x0c, 0x24 },
1303 	{ 0x0d, 0x24 },
1304 	{ 0x0f, 0x15 }, /* COMS */
1305 	{ 0x10, 0x75 }, /* AEC Exposure time */
1306 	{ 0x12, 0x24 }, /* Enable AGC */
1307 	{ 0x14, 0x04 },
1308 	/* 0x16: 0x06 helps frame stability with moving objects */
1309 	{ 0x16, 0x06 },
1310 /*	{ 0x20, 0x30 },  * Aperture correction enable */
1311 	{ 0x26, 0xb2 }, /* BLC enable */
1312 	/* 0x28: 0x05 Selects RGB format if RGB on */
1313 	{ 0x28, 0x05 },
1314 	{ 0x2a, 0x04 }, /* Disable framerate adjust */
1315 /*	{ 0x2b, 0xac },  * Framerate; Set 2a[7] first */
1316 	{ 0x2d, 0x85 },
1317 	{ 0x33, 0xa0 }, /* Color Processing Parameter */
1318 	{ 0x34, 0xd2 }, /* Max A/D range */
1319 	{ 0x38, 0x8b },
1320 	{ 0x39, 0x40 },
1321 
1322 	{ 0x3c, 0x39 }, /* Enable AEC mode changing */
1323 	{ 0x3c, 0x3c }, /* Change AEC mode */
1324 	{ 0x3c, 0x24 }, /* Disable AEC mode changing */
1325 
1326 	{ 0x3d, 0x80 },
1327 	/* These next two registers (0x4a, 0x4b) are undocumented.
1328 	 * They control the color balance */
1329 	{ 0x4a, 0x80 },
1330 	{ 0x4b, 0x80 },
1331 	{ 0x4d, 0xd2 }, /* This reduces noise a bit */
1332 	{ 0x4e, 0xc1 },
1333 	{ 0x4f, 0x04 },
1334 /* Do 50-53 have any effect? */
1335 /* Toggle 0x12[2] off and on here? */
1336 };
1337 
1338 static const struct ov_i2c_regvals norm_6x30[] = {
1339 	{ 0x12, 0x80 }, /* Reset */
1340 	{ 0x00, 0x1f }, /* Gain */
1341 	{ 0x01, 0x99 }, /* Blue gain */
1342 	{ 0x02, 0x7c }, /* Red gain */
1343 	{ 0x03, 0xc0 }, /* Saturation */
1344 	{ 0x05, 0x0a }, /* Contrast */
1345 	{ 0x06, 0x95 }, /* Brightness */
1346 	{ 0x07, 0x2d }, /* Sharpness */
1347 	{ 0x0c, 0x20 },
1348 	{ 0x0d, 0x20 },
1349 	{ 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1350 	{ 0x0f, 0x05 },
1351 	{ 0x10, 0x9a },
1352 	{ 0x11, 0x00 }, /* Pixel clock = fastest */
1353 	{ 0x12, 0x24 }, /* Enable AGC and AWB */
1354 	{ 0x13, 0x21 },
1355 	{ 0x14, 0x80 },
1356 	{ 0x15, 0x01 },
1357 	{ 0x16, 0x03 },
1358 	{ 0x17, 0x38 },
1359 	{ 0x18, 0xea },
1360 	{ 0x19, 0x04 },
1361 	{ 0x1a, 0x93 },
1362 	{ 0x1b, 0x00 },
1363 	{ 0x1e, 0xc4 },
1364 	{ 0x1f, 0x04 },
1365 	{ 0x20, 0x20 },
1366 	{ 0x21, 0x10 },
1367 	{ 0x22, 0x88 },
1368 	{ 0x23, 0xc0 }, /* Crystal circuit power level */
1369 	{ 0x25, 0x9a }, /* Increase AEC black ratio */
1370 	{ 0x26, 0xb2 }, /* BLC enable */
1371 	{ 0x27, 0xa2 },
1372 	{ 0x28, 0x00 },
1373 	{ 0x29, 0x00 },
1374 	{ 0x2a, 0x84 }, /* 60 Hz power */
1375 	{ 0x2b, 0xa8 }, /* 60 Hz power */
1376 	{ 0x2c, 0xa0 },
1377 	{ 0x2d, 0x95 }, /* Enable auto-brightness */
1378 	{ 0x2e, 0x88 },
1379 	{ 0x33, 0x26 },
1380 	{ 0x34, 0x03 },
1381 	{ 0x36, 0x8f },
1382 	{ 0x37, 0x80 },
1383 	{ 0x38, 0x83 },
1384 	{ 0x39, 0x80 },
1385 	{ 0x3a, 0x0f },
1386 	{ 0x3b, 0x3c },
1387 	{ 0x3c, 0x1a },
1388 	{ 0x3d, 0x80 },
1389 	{ 0x3e, 0x80 },
1390 	{ 0x3f, 0x0e },
1391 	{ 0x40, 0x00 }, /* White bal */
1392 	{ 0x41, 0x00 }, /* White bal */
1393 	{ 0x42, 0x80 },
1394 	{ 0x43, 0x3f }, /* White bal */
1395 	{ 0x44, 0x80 },
1396 	{ 0x45, 0x20 },
1397 	{ 0x46, 0x20 },
1398 	{ 0x47, 0x80 },
1399 	{ 0x48, 0x7f },
1400 	{ 0x49, 0x00 },
1401 	{ 0x4a, 0x00 },
1402 	{ 0x4b, 0x80 },
1403 	{ 0x4c, 0xd0 },
1404 	{ 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1405 	{ 0x4e, 0x40 },
1406 	{ 0x4f, 0x07 }, /* UV avg., col. killer: max */
1407 	{ 0x50, 0xff },
1408 	{ 0x54, 0x23 }, /* Max AGC gain: 18dB */
1409 	{ 0x55, 0xff },
1410 	{ 0x56, 0x12 },
1411 	{ 0x57, 0x81 },
1412 	{ 0x58, 0x75 },
1413 	{ 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1414 	{ 0x5a, 0x2c },
1415 	{ 0x5b, 0x0f }, /* AWB chrominance levels */
1416 	{ 0x5c, 0x10 },
1417 	{ 0x3d, 0x80 },
1418 	{ 0x27, 0xa6 },
1419 	{ 0x12, 0x20 }, /* Toggle AWB */
1420 	{ 0x12, 0x24 },
1421 };
1422 
1423 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1424  *
1425  * Register 0x0f in the 7610 has the following effects:
1426  *
1427  * 0x85 (AEC method 1): Best overall, good contrast range
1428  * 0x45 (AEC method 2): Very overexposed
1429  * 0xa5 (spec sheet default): Ok, but the black level is
1430  *	shifted resulting in loss of contrast
1431  * 0x05 (old driver setting): very overexposed, too much
1432  *	contrast
1433  */
1434 static const struct ov_i2c_regvals norm_7610[] = {
1435 	{ 0x10, 0xff },
1436 	{ 0x16, 0x06 },
1437 	{ 0x28, 0x24 },
1438 	{ 0x2b, 0xac },
1439 	{ 0x12, 0x00 },
1440 	{ 0x38, 0x81 },
1441 	{ 0x28, 0x24 },	/* 0c */
1442 	{ 0x0f, 0x85 },	/* lg's setting */
1443 	{ 0x15, 0x01 },
1444 	{ 0x20, 0x1c },
1445 	{ 0x23, 0x2a },
1446 	{ 0x24, 0x10 },
1447 	{ 0x25, 0x8a },
1448 	{ 0x26, 0xa2 },
1449 	{ 0x27, 0xc2 },
1450 	{ 0x2a, 0x04 },
1451 	{ 0x2c, 0xfe },
1452 	{ 0x2d, 0x93 },
1453 	{ 0x30, 0x71 },
1454 	{ 0x31, 0x60 },
1455 	{ 0x32, 0x26 },
1456 	{ 0x33, 0x20 },
1457 	{ 0x34, 0x48 },
1458 	{ 0x12, 0x24 },
1459 	{ 0x11, 0x01 },
1460 	{ 0x0c, 0x24 },
1461 	{ 0x0d, 0x24 },
1462 };
1463 
1464 static const struct ov_i2c_regvals norm_7620[] = {
1465 	{ 0x12, 0x80 },		/* reset */
1466 	{ 0x00, 0x00 },		/* gain */
1467 	{ 0x01, 0x80 },		/* blue gain */
1468 	{ 0x02, 0x80 },		/* red gain */
1469 	{ 0x03, 0xc0 },		/* OV7670_R03_VREF */
1470 	{ 0x06, 0x60 },
1471 	{ 0x07, 0x00 },
1472 	{ 0x0c, 0x24 },
1473 	{ 0x0c, 0x24 },
1474 	{ 0x0d, 0x24 },
1475 	{ 0x11, 0x01 },
1476 	{ 0x12, 0x24 },
1477 	{ 0x13, 0x01 },
1478 	{ 0x14, 0x84 },
1479 	{ 0x15, 0x01 },
1480 	{ 0x16, 0x03 },
1481 	{ 0x17, 0x2f },
1482 	{ 0x18, 0xcf },
1483 	{ 0x19, 0x06 },
1484 	{ 0x1a, 0xf5 },
1485 	{ 0x1b, 0x00 },
1486 	{ 0x20, 0x18 },
1487 	{ 0x21, 0x80 },
1488 	{ 0x22, 0x80 },
1489 	{ 0x23, 0x00 },
1490 	{ 0x26, 0xa2 },
1491 	{ 0x27, 0xea },
1492 	{ 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1493 	{ 0x29, 0x00 },
1494 	{ 0x2a, 0x10 },
1495 	{ 0x2b, 0x00 },
1496 	{ 0x2c, 0x88 },
1497 	{ 0x2d, 0x91 },
1498 	{ 0x2e, 0x80 },
1499 	{ 0x2f, 0x44 },
1500 	{ 0x60, 0x27 },
1501 	{ 0x61, 0x02 },
1502 	{ 0x62, 0x5f },
1503 	{ 0x63, 0xd5 },
1504 	{ 0x64, 0x57 },
1505 	{ 0x65, 0x83 },
1506 	{ 0x66, 0x55 },
1507 	{ 0x67, 0x92 },
1508 	{ 0x68, 0xcf },
1509 	{ 0x69, 0x76 },
1510 	{ 0x6a, 0x22 },
1511 	{ 0x6b, 0x00 },
1512 	{ 0x6c, 0x02 },
1513 	{ 0x6d, 0x44 },
1514 	{ 0x6e, 0x80 },
1515 	{ 0x6f, 0x1d },
1516 	{ 0x70, 0x8b },
1517 	{ 0x71, 0x00 },
1518 	{ 0x72, 0x14 },
1519 	{ 0x73, 0x54 },
1520 	{ 0x74, 0x00 },
1521 	{ 0x75, 0x8e },
1522 	{ 0x76, 0x00 },
1523 	{ 0x77, 0xff },
1524 	{ 0x78, 0x80 },
1525 	{ 0x79, 0x80 },
1526 	{ 0x7a, 0x80 },
1527 	{ 0x7b, 0xe2 },
1528 	{ 0x7c, 0x00 },
1529 };
1530 
1531 /* 7640 and 7648. The defaults should be OK for most registers. */
1532 static const struct ov_i2c_regvals norm_7640[] = {
1533 	{ 0x12, 0x80 },
1534 	{ 0x12, 0x14 },
1535 };
1536 
1537 static const struct ov_regvals init_519_ov7660[] = {
1538 	{ 0x5d,	0x03 }, /* Turn off suspend mode */
1539 	{ 0x53,	0x9b }, /* 0x9f enables the (unused) microcontroller */
1540 	{ 0x54,	0x0f }, /* bit2 (jpeg enable) */
1541 	{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
1542 	{ 0xa3,	0x18 },
1543 	{ 0xa4,	0x04 },
1544 	{ 0xa5,	0x28 },
1545 	{ 0x37,	0x00 },	/* SetUsbInit */
1546 	{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
1547 	/* Enable both fields, YUV Input, disable defect comp (why?) */
1548 	{ 0x20,	0x0c },	/* 0x0d does U <-> V swap */
1549 	{ 0x21,	0x38 },
1550 	{ 0x22,	0x1d },
1551 	{ 0x17,	0x50 }, /* undocumented */
1552 	{ 0x37,	0x00 }, /* undocumented */
1553 	{ 0x40,	0xff }, /* I2C timeout counter */
1554 	{ 0x46,	0x00 }, /* I2C clock prescaler */
1555 };
1556 static const struct ov_i2c_regvals norm_7660[] = {
1557 	{OV7670_R12_COM7, OV7670_COM7_RESET},
1558 	{OV7670_R11_CLKRC, 0x81},
1559 	{0x92, 0x00},			/* DM_LNL */
1560 	{0x93, 0x00},			/* DM_LNH */
1561 	{0x9d, 0x4c},			/* BD50ST */
1562 	{0x9e, 0x3f},			/* BD60ST */
1563 	{OV7670_R3B_COM11, 0x02},
1564 	{OV7670_R13_COM8, 0xf5},
1565 	{OV7670_R10_AECH, 0x00},
1566 	{OV7670_R00_GAIN, 0x00},
1567 	{OV7670_R01_BLUE, 0x7c},
1568 	{OV7670_R02_RED, 0x9d},
1569 	{OV7670_R12_COM7, 0x00},
1570 	{OV7670_R04_COM1, 00},
1571 	{OV7670_R18_HSTOP, 0x01},
1572 	{OV7670_R17_HSTART, 0x13},
1573 	{OV7670_R32_HREF, 0x92},
1574 	{OV7670_R19_VSTART, 0x02},
1575 	{OV7670_R1A_VSTOP, 0x7a},
1576 	{OV7670_R03_VREF, 0x00},
1577 	{OV7670_R0E_COM5, 0x04},
1578 	{OV7670_R0F_COM6, 0x62},
1579 	{OV7670_R15_COM10, 0x00},
1580 	{0x16, 0x02},			/* RSVD */
1581 	{0x1b, 0x00},			/* PSHFT */
1582 	{OV7670_R1E_MVFP, 0x01},
1583 	{0x29, 0x3c},			/* RSVD */
1584 	{0x33, 0x00},			/* CHLF */
1585 	{0x34, 0x07},			/* ARBLM */
1586 	{0x35, 0x84},			/* RSVD */
1587 	{0x36, 0x00},			/* RSVD */
1588 	{0x37, 0x04},			/* ADC */
1589 	{0x39, 0x43},			/* OFON */
1590 	{OV7670_R3A_TSLB, 0x00},
1591 	{OV7670_R3C_COM12, 0x6c},
1592 	{OV7670_R3D_COM13, 0x98},
1593 	{OV7670_R3F_EDGE, 0x23},
1594 	{OV7670_R40_COM15, 0xc1},
1595 	{OV7670_R41_COM16, 0x22},
1596 	{0x6b, 0x0a},			/* DBLV */
1597 	{0xa1, 0x08},			/* RSVD */
1598 	{0x69, 0x80},			/* HV */
1599 	{0x43, 0xf0},			/* RSVD.. */
1600 	{0x44, 0x10},
1601 	{0x45, 0x78},
1602 	{0x46, 0xa8},
1603 	{0x47, 0x60},
1604 	{0x48, 0x80},
1605 	{0x59, 0xba},
1606 	{0x5a, 0x9a},
1607 	{0x5b, 0x22},
1608 	{0x5c, 0xb9},
1609 	{0x5d, 0x9b},
1610 	{0x5e, 0x10},
1611 	{0x5f, 0xe0},
1612 	{0x60, 0x85},
1613 	{0x61, 0x60},
1614 	{0x9f, 0x9d},			/* RSVD */
1615 	{0xa0, 0xa0},			/* DSPC2 */
1616 	{0x4f, 0x60},			/* matrix */
1617 	{0x50, 0x64},
1618 	{0x51, 0x04},
1619 	{0x52, 0x18},
1620 	{0x53, 0x3c},
1621 	{0x54, 0x54},
1622 	{0x55, 0x40},
1623 	{0x56, 0x40},
1624 	{0x57, 0x40},
1625 	{0x58, 0x0d},			/* matrix sign */
1626 	{0x8b, 0xcc},			/* RSVD */
1627 	{0x8c, 0xcc},
1628 	{0x8d, 0xcf},
1629 	{0x6c, 0x40},			/* gamma curve */
1630 	{0x6d, 0xe0},
1631 	{0x6e, 0xa0},
1632 	{0x6f, 0x80},
1633 	{0x70, 0x70},
1634 	{0x71, 0x80},
1635 	{0x72, 0x60},
1636 	{0x73, 0x60},
1637 	{0x74, 0x50},
1638 	{0x75, 0x40},
1639 	{0x76, 0x38},
1640 	{0x77, 0x3c},
1641 	{0x78, 0x32},
1642 	{0x79, 0x1a},
1643 	{0x7a, 0x28},
1644 	{0x7b, 0x24},
1645 	{0x7c, 0x04},			/* gamma curve */
1646 	{0x7d, 0x12},
1647 	{0x7e, 0x26},
1648 	{0x7f, 0x46},
1649 	{0x80, 0x54},
1650 	{0x81, 0x64},
1651 	{0x82, 0x70},
1652 	{0x83, 0x7c},
1653 	{0x84, 0x86},
1654 	{0x85, 0x8e},
1655 	{0x86, 0x9c},
1656 	{0x87, 0xab},
1657 	{0x88, 0xc4},
1658 	{0x89, 0xd1},
1659 	{0x8a, 0xe5},
1660 	{OV7670_R14_COM9, 0x1e},
1661 	{OV7670_R24_AEW, 0x80},
1662 	{OV7670_R25_AEB, 0x72},
1663 	{OV7670_R26_VPT, 0xb3},
1664 	{0x62, 0x80},			/* LCC1 */
1665 	{0x63, 0x80},			/* LCC2 */
1666 	{0x64, 0x06},			/* LCC3 */
1667 	{0x65, 0x00},			/* LCC4 */
1668 	{0x66, 0x01},			/* LCC5 */
1669 	{0x94, 0x0e},			/* RSVD.. */
1670 	{0x95, 0x14},
1671 	{OV7670_R13_COM8, OV7670_COM8_FASTAEC
1672 			| OV7670_COM8_AECSTEP
1673 			| OV7670_COM8_BFILT
1674 			| 0x10
1675 			| OV7670_COM8_AGC
1676 			| OV7670_COM8_AWB
1677 			| OV7670_COM8_AEC},
1678 	{0xa1, 0xc8}
1679 };
1680 static const struct ov_i2c_regvals norm_9600[] = {
1681 	{0x12, 0x80},
1682 	{0x0c, 0x28},
1683 	{0x11, 0x80},
1684 	{0x13, 0xb5},
1685 	{0x14, 0x3e},
1686 	{0x1b, 0x04},
1687 	{0x24, 0xb0},
1688 	{0x25, 0x90},
1689 	{0x26, 0x94},
1690 	{0x35, 0x90},
1691 	{0x37, 0x07},
1692 	{0x38, 0x08},
1693 	{0x01, 0x8e},
1694 	{0x02, 0x85}
1695 };
1696 
1697 /* 7670. Defaults taken from OmniVision provided data,
1698 *  as provided by Jonathan Corbet of OLPC		*/
1699 static const struct ov_i2c_regvals norm_7670[] = {
1700 	{ OV7670_R12_COM7, OV7670_COM7_RESET },
1701 	{ OV7670_R3A_TSLB, 0x04 },		/* OV */
1702 	{ OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1703 	{ OV7670_R11_CLKRC, 0x01 },
1704 /*
1705  * Set the hardware window.  These values from OV don't entirely
1706  * make sense - hstop is less than hstart.  But they work...
1707  */
1708 	{ OV7670_R17_HSTART, 0x13 },
1709 	{ OV7670_R18_HSTOP, 0x01 },
1710 	{ OV7670_R32_HREF, 0xb6 },
1711 	{ OV7670_R19_VSTART, 0x02 },
1712 	{ OV7670_R1A_VSTOP, 0x7a },
1713 	{ OV7670_R03_VREF, 0x0a },
1714 
1715 	{ OV7670_R0C_COM3, 0x00 },
1716 	{ OV7670_R3E_COM14, 0x00 },
1717 /* Mystery scaling numbers */
1718 	{ 0x70, 0x3a },
1719 	{ 0x71, 0x35 },
1720 	{ 0x72, 0x11 },
1721 	{ 0x73, 0xf0 },
1722 	{ 0xa2, 0x02 },
1723 /*	{ OV7670_R15_COM10, 0x0 }, */
1724 
1725 /* Gamma curve values */
1726 	{ 0x7a, 0x20 },
1727 	{ 0x7b, 0x10 },
1728 	{ 0x7c, 0x1e },
1729 	{ 0x7d, 0x35 },
1730 	{ 0x7e, 0x5a },
1731 	{ 0x7f, 0x69 },
1732 	{ 0x80, 0x76 },
1733 	{ 0x81, 0x80 },
1734 	{ 0x82, 0x88 },
1735 	{ 0x83, 0x8f },
1736 	{ 0x84, 0x96 },
1737 	{ 0x85, 0xa3 },
1738 	{ 0x86, 0xaf },
1739 	{ 0x87, 0xc4 },
1740 	{ 0x88, 0xd7 },
1741 	{ 0x89, 0xe8 },
1742 
1743 /* AGC and AEC parameters.  Note we start by disabling those features,
1744    then turn them only after tweaking the values. */
1745 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1746 			 | OV7670_COM8_AECSTEP
1747 			 | OV7670_COM8_BFILT },
1748 	{ OV7670_R00_GAIN, 0x00 },
1749 	{ OV7670_R10_AECH, 0x00 },
1750 	{ OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1751 	{ OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1752 	{ OV7670_RA5_BD50MAX, 0x05 },
1753 	{ OV7670_RAB_BD60MAX, 0x07 },
1754 	{ OV7670_R24_AEW, 0x95 },
1755 	{ OV7670_R25_AEB, 0x33 },
1756 	{ OV7670_R26_VPT, 0xe3 },
1757 	{ OV7670_R9F_HAECC1, 0x78 },
1758 	{ OV7670_RA0_HAECC2, 0x68 },
1759 	{ 0xa1, 0x03 }, /* magic */
1760 	{ OV7670_RA6_HAECC3, 0xd8 },
1761 	{ OV7670_RA7_HAECC4, 0xd8 },
1762 	{ OV7670_RA8_HAECC5, 0xf0 },
1763 	{ OV7670_RA9_HAECC6, 0x90 },
1764 	{ OV7670_RAA_HAECC7, 0x94 },
1765 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1766 			| OV7670_COM8_AECSTEP
1767 			| OV7670_COM8_BFILT
1768 			| OV7670_COM8_AGC
1769 			| OV7670_COM8_AEC },
1770 
1771 /* Almost all of these are magic "reserved" values.  */
1772 	{ OV7670_R0E_COM5, 0x61 },
1773 	{ OV7670_R0F_COM6, 0x4b },
1774 	{ 0x16, 0x02 },
1775 	{ OV7670_R1E_MVFP, 0x07 },
1776 	{ 0x21, 0x02 },
1777 	{ 0x22, 0x91 },
1778 	{ 0x29, 0x07 },
1779 	{ 0x33, 0x0b },
1780 	{ 0x35, 0x0b },
1781 	{ 0x37, 0x1d },
1782 	{ 0x38, 0x71 },
1783 	{ 0x39, 0x2a },
1784 	{ OV7670_R3C_COM12, 0x78 },
1785 	{ 0x4d, 0x40 },
1786 	{ 0x4e, 0x20 },
1787 	{ OV7670_R69_GFIX, 0x00 },
1788 	{ 0x6b, 0x4a },
1789 	{ 0x74, 0x10 },
1790 	{ 0x8d, 0x4f },
1791 	{ 0x8e, 0x00 },
1792 	{ 0x8f, 0x00 },
1793 	{ 0x90, 0x00 },
1794 	{ 0x91, 0x00 },
1795 	{ 0x96, 0x00 },
1796 	{ 0x9a, 0x00 },
1797 	{ 0xb0, 0x84 },
1798 	{ 0xb1, 0x0c },
1799 	{ 0xb2, 0x0e },
1800 	{ 0xb3, 0x82 },
1801 	{ 0xb8, 0x0a },
1802 
1803 /* More reserved magic, some of which tweaks white balance */
1804 	{ 0x43, 0x0a },
1805 	{ 0x44, 0xf0 },
1806 	{ 0x45, 0x34 },
1807 	{ 0x46, 0x58 },
1808 	{ 0x47, 0x28 },
1809 	{ 0x48, 0x3a },
1810 	{ 0x59, 0x88 },
1811 	{ 0x5a, 0x88 },
1812 	{ 0x5b, 0x44 },
1813 	{ 0x5c, 0x67 },
1814 	{ 0x5d, 0x49 },
1815 	{ 0x5e, 0x0e },
1816 	{ 0x6c, 0x0a },
1817 	{ 0x6d, 0x55 },
1818 	{ 0x6e, 0x11 },
1819 	{ 0x6f, 0x9f },			/* "9e for advance AWB" */
1820 	{ 0x6a, 0x40 },
1821 	{ OV7670_R01_BLUE, 0x40 },
1822 	{ OV7670_R02_RED, 0x60 },
1823 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1824 			| OV7670_COM8_AECSTEP
1825 			| OV7670_COM8_BFILT
1826 			| OV7670_COM8_AGC
1827 			| OV7670_COM8_AEC
1828 			| OV7670_COM8_AWB },
1829 
1830 /* Matrix coefficients */
1831 	{ 0x4f, 0x80 },
1832 	{ 0x50, 0x80 },
1833 	{ 0x51, 0x00 },
1834 	{ 0x52, 0x22 },
1835 	{ 0x53, 0x5e },
1836 	{ 0x54, 0x80 },
1837 	{ 0x58, 0x9e },
1838 
1839 	{ OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1840 	{ OV7670_R3F_EDGE, 0x00 },
1841 	{ 0x75, 0x05 },
1842 	{ 0x76, 0xe1 },
1843 	{ 0x4c, 0x00 },
1844 	{ 0x77, 0x01 },
1845 	{ OV7670_R3D_COM13, OV7670_COM13_GAMMA
1846 			  | OV7670_COM13_UVSAT
1847 			  | 2},		/* was 3 */
1848 	{ 0x4b, 0x09 },
1849 	{ 0xc9, 0x60 },
1850 	{ OV7670_R41_COM16, 0x38 },
1851 	{ 0x56, 0x40 },
1852 
1853 	{ 0x34, 0x11 },
1854 	{ OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1855 	{ 0xa4, 0x88 },
1856 	{ 0x96, 0x00 },
1857 	{ 0x97, 0x30 },
1858 	{ 0x98, 0x20 },
1859 	{ 0x99, 0x30 },
1860 	{ 0x9a, 0x84 },
1861 	{ 0x9b, 0x29 },
1862 	{ 0x9c, 0x03 },
1863 	{ 0x9d, 0x4c },
1864 	{ 0x9e, 0x3f },
1865 	{ 0x78, 0x04 },
1866 
1867 /* Extra-weird stuff.  Some sort of multiplexor register */
1868 	{ 0x79, 0x01 },
1869 	{ 0xc8, 0xf0 },
1870 	{ 0x79, 0x0f },
1871 	{ 0xc8, 0x00 },
1872 	{ 0x79, 0x10 },
1873 	{ 0xc8, 0x7e },
1874 	{ 0x79, 0x0a },
1875 	{ 0xc8, 0x80 },
1876 	{ 0x79, 0x0b },
1877 	{ 0xc8, 0x01 },
1878 	{ 0x79, 0x0c },
1879 	{ 0xc8, 0x0f },
1880 	{ 0x79, 0x0d },
1881 	{ 0xc8, 0x20 },
1882 	{ 0x79, 0x09 },
1883 	{ 0xc8, 0x80 },
1884 	{ 0x79, 0x02 },
1885 	{ 0xc8, 0xc0 },
1886 	{ 0x79, 0x03 },
1887 	{ 0xc8, 0x40 },
1888 	{ 0x79, 0x05 },
1889 	{ 0xc8, 0x30 },
1890 	{ 0x79, 0x26 },
1891 };
1892 
1893 static const struct ov_i2c_regvals norm_8610[] = {
1894 	{ 0x12, 0x80 },
1895 	{ 0x00, 0x00 },
1896 	{ 0x01, 0x80 },
1897 	{ 0x02, 0x80 },
1898 	{ 0x03, 0xc0 },
1899 	{ 0x04, 0x30 },
1900 	{ 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1901 	{ 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1902 	{ 0x0a, 0x86 },
1903 	{ 0x0b, 0xb0 },
1904 	{ 0x0c, 0x20 },
1905 	{ 0x0d, 0x20 },
1906 	{ 0x11, 0x01 },
1907 	{ 0x12, 0x25 },
1908 	{ 0x13, 0x01 },
1909 	{ 0x14, 0x04 },
1910 	{ 0x15, 0x01 }, /* Lin and Win think different about UV order */
1911 	{ 0x16, 0x03 },
1912 	{ 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1913 	{ 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1914 	{ 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1915 	{ 0x1a, 0xf5 },
1916 	{ 0x1b, 0x00 },
1917 	{ 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1918 	{ 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1919 	{ 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1920 	{ 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1921 	{ 0x26, 0xa2 },
1922 	{ 0x27, 0xea },
1923 	{ 0x28, 0x00 },
1924 	{ 0x29, 0x00 },
1925 	{ 0x2a, 0x80 },
1926 	{ 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1927 	{ 0x2c, 0xac },
1928 	{ 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1929 	{ 0x2e, 0x80 },
1930 	{ 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1931 	{ 0x4c, 0x00 },
1932 	{ 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1933 	{ 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1934 	{ 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1935 	{ 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1936 	{ 0x63, 0xff },
1937 	{ 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1938 			 * maybe that's wrong */
1939 	{ 0x65, 0x00 },
1940 	{ 0x66, 0x55 },
1941 	{ 0x67, 0xb0 },
1942 	{ 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1943 	{ 0x69, 0x02 },
1944 	{ 0x6a, 0x22 },
1945 	{ 0x6b, 0x00 },
1946 	{ 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1947 			 * deleting bit7 colors the first images red */
1948 	{ 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1949 	{ 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1950 	{ 0x6f, 0x01 },
1951 	{ 0x70, 0x8b },
1952 	{ 0x71, 0x00 },
1953 	{ 0x72, 0x14 },
1954 	{ 0x73, 0x54 },
1955 	{ 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1956 	{ 0x75, 0x0e },
1957 	{ 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1958 	{ 0x77, 0xff },
1959 	{ 0x78, 0x80 },
1960 	{ 0x79, 0x80 },
1961 	{ 0x7a, 0x80 },
1962 	{ 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1963 	{ 0x7c, 0x00 },
1964 	{ 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1965 	{ 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1966 	{ 0x7f, 0xfb },
1967 	{ 0x80, 0x28 },
1968 	{ 0x81, 0x00 },
1969 	{ 0x82, 0x23 },
1970 	{ 0x83, 0x0b },
1971 	{ 0x84, 0x00 },
1972 	{ 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1973 	{ 0x86, 0xc9 },
1974 	{ 0x87, 0x00 },
1975 	{ 0x88, 0x00 },
1976 	{ 0x89, 0x01 },
1977 	{ 0x12, 0x20 },
1978 	{ 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1979 };
1980 
1981 static unsigned char ov7670_abs_to_sm(unsigned char v)
1982 {
1983 	if (v > 127)
1984 		return v & 0x7f;
1985 	return (128 - v) | 0x80;
1986 }
1987 
1988 /* Write a OV519 register */
1989 static void reg_w(struct sd *sd, u16 index, u16 value)
1990 {
1991 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
1992 	int ret, req = 0;
1993 
1994 	if (sd->gspca_dev.usb_err < 0)
1995 		return;
1996 
1997 	/* Avoid things going to fast for the bridge with a xhci host */
1998 	udelay(150);
1999 
2000 	switch (sd->bridge) {
2001 	case BRIDGE_OV511:
2002 	case BRIDGE_OV511PLUS:
2003 		req = 2;
2004 		break;
2005 	case BRIDGE_OVFX2:
2006 		req = 0x0a;
2007 		/* fall through */
2008 	case BRIDGE_W9968CF:
2009 		gspca_dbg(gspca_dev, D_USBO, "SET %02x %04x %04x\n",
2010 			  req, value, index);
2011 		ret = usb_control_msg(sd->gspca_dev.dev,
2012 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2013 			req,
2014 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2015 			value, index, NULL, 0, 500);
2016 		goto leave;
2017 	default:
2018 		req = 1;
2019 	}
2020 
2021 	gspca_dbg(gspca_dev, D_USBO, "SET %02x 0000 %04x %02x\n",
2022 		  req, index, value);
2023 	sd->gspca_dev.usb_buf[0] = value;
2024 	ret = usb_control_msg(sd->gspca_dev.dev,
2025 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2026 			req,
2027 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2028 			0, index,
2029 			sd->gspca_dev.usb_buf, 1, 500);
2030 leave:
2031 	if (ret < 0) {
2032 		gspca_err(gspca_dev, "reg_w %02x failed %d\n", index, ret);
2033 		sd->gspca_dev.usb_err = ret;
2034 		return;
2035 	}
2036 }
2037 
2038 /* Read from a OV519 register, note not valid for the w9968cf!! */
2039 /* returns: negative is error, pos or zero is data */
2040 static int reg_r(struct sd *sd, u16 index)
2041 {
2042 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2043 	int ret;
2044 	int req;
2045 
2046 	if (sd->gspca_dev.usb_err < 0)
2047 		return -1;
2048 
2049 	switch (sd->bridge) {
2050 	case BRIDGE_OV511:
2051 	case BRIDGE_OV511PLUS:
2052 		req = 3;
2053 		break;
2054 	case BRIDGE_OVFX2:
2055 		req = 0x0b;
2056 		break;
2057 	default:
2058 		req = 1;
2059 	}
2060 
2061 	/* Avoid things going to fast for the bridge with a xhci host */
2062 	udelay(150);
2063 	ret = usb_control_msg(sd->gspca_dev.dev,
2064 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2065 			req,
2066 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2067 			0, index, sd->gspca_dev.usb_buf, 1, 500);
2068 
2069 	if (ret >= 0) {
2070 		ret = sd->gspca_dev.usb_buf[0];
2071 		gspca_dbg(gspca_dev, D_USBI, "GET %02x 0000 %04x %02x\n",
2072 			  req, index, ret);
2073 	} else {
2074 		gspca_err(gspca_dev, "reg_r %02x failed %d\n", index, ret);
2075 		sd->gspca_dev.usb_err = ret;
2076 	}
2077 
2078 	return ret;
2079 }
2080 
2081 /* Read 8 values from a OV519 register */
2082 static int reg_r8(struct sd *sd,
2083 		  u16 index)
2084 {
2085 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2086 	int ret;
2087 
2088 	if (sd->gspca_dev.usb_err < 0)
2089 		return -1;
2090 
2091 	/* Avoid things going to fast for the bridge with a xhci host */
2092 	udelay(150);
2093 	ret = usb_control_msg(sd->gspca_dev.dev,
2094 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2095 			1,			/* REQ_IO */
2096 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2097 			0, index, sd->gspca_dev.usb_buf, 8, 500);
2098 
2099 	if (ret >= 0) {
2100 		ret = sd->gspca_dev.usb_buf[0];
2101 	} else {
2102 		gspca_err(gspca_dev, "reg_r8 %02x failed %d\n", index, ret);
2103 		sd->gspca_dev.usb_err = ret;
2104 	}
2105 
2106 	return ret;
2107 }
2108 
2109 /*
2110  * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2111  * the same position as 1's in "mask" are cleared and set to "value". Bits
2112  * that are in the same position as 0's in "mask" are preserved, regardless
2113  * of their respective state in "value".
2114  */
2115 static void reg_w_mask(struct sd *sd,
2116 			u16 index,
2117 			u8 value,
2118 			u8 mask)
2119 {
2120 	int ret;
2121 	u8 oldval;
2122 
2123 	if (mask != 0xff) {
2124 		value &= mask;			/* Enforce mask on value */
2125 		ret = reg_r(sd, index);
2126 		if (ret < 0)
2127 			return;
2128 
2129 		oldval = ret & ~mask;		/* Clear the masked bits */
2130 		value |= oldval;		/* Set the desired bits */
2131 	}
2132 	reg_w(sd, index, value);
2133 }
2134 
2135 /*
2136  * Writes multiple (n) byte value to a single register. Only valid with certain
2137  * registers (0x30 and 0xc4 - 0xce).
2138  */
2139 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2140 {
2141 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2142 	int ret;
2143 
2144 	if (sd->gspca_dev.usb_err < 0)
2145 		return;
2146 
2147 	*((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2148 
2149 	/* Avoid things going to fast for the bridge with a xhci host */
2150 	udelay(150);
2151 	ret = usb_control_msg(sd->gspca_dev.dev,
2152 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2153 			1 /* REG_IO */,
2154 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2155 			0, index,
2156 			sd->gspca_dev.usb_buf, n, 500);
2157 	if (ret < 0) {
2158 		gspca_err(gspca_dev, "reg_w32 %02x failed %d\n", index, ret);
2159 		sd->gspca_dev.usb_err = ret;
2160 	}
2161 }
2162 
2163 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2164 {
2165 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2166 	int rc, retries;
2167 
2168 	gspca_dbg(gspca_dev, D_USBO, "ov511_i2c_w %02x %02x\n", reg, value);
2169 
2170 	/* Three byte write cycle */
2171 	for (retries = 6; ; ) {
2172 		/* Select camera register */
2173 		reg_w(sd, R51x_I2C_SADDR_3, reg);
2174 
2175 		/* Write "value" to I2C data port of OV511 */
2176 		reg_w(sd, R51x_I2C_DATA, value);
2177 
2178 		/* Initiate 3-byte write cycle */
2179 		reg_w(sd, R511_I2C_CTL, 0x01);
2180 
2181 		do {
2182 			rc = reg_r(sd, R511_I2C_CTL);
2183 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2184 
2185 		if (rc < 0)
2186 			return;
2187 
2188 		if ((rc & 2) == 0) /* Ack? */
2189 			break;
2190 		if (--retries < 0) {
2191 			gspca_dbg(gspca_dev, D_USBO, "i2c write retries exhausted\n");
2192 			return;
2193 		}
2194 	}
2195 }
2196 
2197 static int ov511_i2c_r(struct sd *sd, u8 reg)
2198 {
2199 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2200 	int rc, value, retries;
2201 
2202 	/* Two byte write cycle */
2203 	for (retries = 6; ; ) {
2204 		/* Select camera register */
2205 		reg_w(sd, R51x_I2C_SADDR_2, reg);
2206 
2207 		/* Initiate 2-byte write cycle */
2208 		reg_w(sd, R511_I2C_CTL, 0x03);
2209 
2210 		do {
2211 			rc = reg_r(sd, R511_I2C_CTL);
2212 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2213 
2214 		if (rc < 0)
2215 			return rc;
2216 
2217 		if ((rc & 2) == 0) /* Ack? */
2218 			break;
2219 
2220 		/* I2C abort */
2221 		reg_w(sd, R511_I2C_CTL, 0x10);
2222 
2223 		if (--retries < 0) {
2224 			gspca_dbg(gspca_dev, D_USBI, "i2c write retries exhausted\n");
2225 			return -1;
2226 		}
2227 	}
2228 
2229 	/* Two byte read cycle */
2230 	for (retries = 6; ; ) {
2231 		/* Initiate 2-byte read cycle */
2232 		reg_w(sd, R511_I2C_CTL, 0x05);
2233 
2234 		do {
2235 			rc = reg_r(sd, R511_I2C_CTL);
2236 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2237 
2238 		if (rc < 0)
2239 			return rc;
2240 
2241 		if ((rc & 2) == 0) /* Ack? */
2242 			break;
2243 
2244 		/* I2C abort */
2245 		reg_w(sd, R511_I2C_CTL, 0x10);
2246 
2247 		if (--retries < 0) {
2248 			gspca_dbg(gspca_dev, D_USBI, "i2c read retries exhausted\n");
2249 			return -1;
2250 		}
2251 	}
2252 
2253 	value = reg_r(sd, R51x_I2C_DATA);
2254 
2255 	gspca_dbg(gspca_dev, D_USBI, "ov511_i2c_r %02x %02x\n", reg, value);
2256 
2257 	/* This is needed to make i2c_w() work */
2258 	reg_w(sd, R511_I2C_CTL, 0x05);
2259 
2260 	return value;
2261 }
2262 
2263 /*
2264  * The OV518 I2C I/O procedure is different, hence, this function.
2265  * This is normally only called from i2c_w(). Note that this function
2266  * always succeeds regardless of whether the sensor is present and working.
2267  */
2268 static void ov518_i2c_w(struct sd *sd,
2269 		u8 reg,
2270 		u8 value)
2271 {
2272 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2273 
2274 	gspca_dbg(gspca_dev, D_USBO, "ov518_i2c_w %02x %02x\n", reg, value);
2275 
2276 	/* Select camera register */
2277 	reg_w(sd, R51x_I2C_SADDR_3, reg);
2278 
2279 	/* Write "value" to I2C data port of OV511 */
2280 	reg_w(sd, R51x_I2C_DATA, value);
2281 
2282 	/* Initiate 3-byte write cycle */
2283 	reg_w(sd, R518_I2C_CTL, 0x01);
2284 
2285 	/* wait for write complete */
2286 	msleep(4);
2287 	reg_r8(sd, R518_I2C_CTL);
2288 }
2289 
2290 /*
2291  * returns: negative is error, pos or zero is data
2292  *
2293  * The OV518 I2C I/O procedure is different, hence, this function.
2294  * This is normally only called from i2c_r(). Note that this function
2295  * always succeeds regardless of whether the sensor is present and working.
2296  */
2297 static int ov518_i2c_r(struct sd *sd, u8 reg)
2298 {
2299 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2300 	int value;
2301 
2302 	/* Select camera register */
2303 	reg_w(sd, R51x_I2C_SADDR_2, reg);
2304 
2305 	/* Initiate 2-byte write cycle */
2306 	reg_w(sd, R518_I2C_CTL, 0x03);
2307 	reg_r8(sd, R518_I2C_CTL);
2308 
2309 	/* Initiate 2-byte read cycle */
2310 	reg_w(sd, R518_I2C_CTL, 0x05);
2311 	reg_r8(sd, R518_I2C_CTL);
2312 
2313 	value = reg_r(sd, R51x_I2C_DATA);
2314 	gspca_dbg(gspca_dev, D_USBI, "ov518_i2c_r %02x %02x\n", reg, value);
2315 	return value;
2316 }
2317 
2318 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2319 {
2320 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2321 	int ret;
2322 
2323 	if (sd->gspca_dev.usb_err < 0)
2324 		return;
2325 
2326 	ret = usb_control_msg(sd->gspca_dev.dev,
2327 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2328 			0x02,
2329 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2330 			(u16) value, (u16) reg, NULL, 0, 500);
2331 
2332 	if (ret < 0) {
2333 		gspca_err(gspca_dev, "ovfx2_i2c_w %02x failed %d\n", reg, ret);
2334 		sd->gspca_dev.usb_err = ret;
2335 	}
2336 
2337 	gspca_dbg(gspca_dev, D_USBO, "ovfx2_i2c_w %02x %02x\n", reg, value);
2338 }
2339 
2340 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2341 {
2342 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2343 	int ret;
2344 
2345 	if (sd->gspca_dev.usb_err < 0)
2346 		return -1;
2347 
2348 	ret = usb_control_msg(sd->gspca_dev.dev,
2349 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2350 			0x03,
2351 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2352 			0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2353 
2354 	if (ret >= 0) {
2355 		ret = sd->gspca_dev.usb_buf[0];
2356 		gspca_dbg(gspca_dev, D_USBI, "ovfx2_i2c_r %02x %02x\n",
2357 			  reg, ret);
2358 	} else {
2359 		gspca_err(gspca_dev, "ovfx2_i2c_r %02x failed %d\n", reg, ret);
2360 		sd->gspca_dev.usb_err = ret;
2361 	}
2362 
2363 	return ret;
2364 }
2365 
2366 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2367 {
2368 	if (sd->sensor_reg_cache[reg] == value)
2369 		return;
2370 
2371 	switch (sd->bridge) {
2372 	case BRIDGE_OV511:
2373 	case BRIDGE_OV511PLUS:
2374 		ov511_i2c_w(sd, reg, value);
2375 		break;
2376 	case BRIDGE_OV518:
2377 	case BRIDGE_OV518PLUS:
2378 	case BRIDGE_OV519:
2379 		ov518_i2c_w(sd, reg, value);
2380 		break;
2381 	case BRIDGE_OVFX2:
2382 		ovfx2_i2c_w(sd, reg, value);
2383 		break;
2384 	case BRIDGE_W9968CF:
2385 		w9968cf_i2c_w(sd, reg, value);
2386 		break;
2387 	}
2388 
2389 	if (sd->gspca_dev.usb_err >= 0) {
2390 		/* Up on sensor reset empty the register cache */
2391 		if (reg == 0x12 && (value & 0x80))
2392 			memset(sd->sensor_reg_cache, -1,
2393 				sizeof(sd->sensor_reg_cache));
2394 		else
2395 			sd->sensor_reg_cache[reg] = value;
2396 	}
2397 }
2398 
2399 static int i2c_r(struct sd *sd, u8 reg)
2400 {
2401 	int ret = -1;
2402 
2403 	if (sd->sensor_reg_cache[reg] != -1)
2404 		return sd->sensor_reg_cache[reg];
2405 
2406 	switch (sd->bridge) {
2407 	case BRIDGE_OV511:
2408 	case BRIDGE_OV511PLUS:
2409 		ret = ov511_i2c_r(sd, reg);
2410 		break;
2411 	case BRIDGE_OV518:
2412 	case BRIDGE_OV518PLUS:
2413 	case BRIDGE_OV519:
2414 		ret = ov518_i2c_r(sd, reg);
2415 		break;
2416 	case BRIDGE_OVFX2:
2417 		ret = ovfx2_i2c_r(sd, reg);
2418 		break;
2419 	case BRIDGE_W9968CF:
2420 		ret = w9968cf_i2c_r(sd, reg);
2421 		break;
2422 	}
2423 
2424 	if (ret >= 0)
2425 		sd->sensor_reg_cache[reg] = ret;
2426 
2427 	return ret;
2428 }
2429 
2430 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2431  * the same position as 1's in "mask" are cleared and set to "value". Bits
2432  * that are in the same position as 0's in "mask" are preserved, regardless
2433  * of their respective state in "value".
2434  */
2435 static void i2c_w_mask(struct sd *sd,
2436 			u8 reg,
2437 			u8 value,
2438 			u8 mask)
2439 {
2440 	int rc;
2441 	u8 oldval;
2442 
2443 	value &= mask;			/* Enforce mask on value */
2444 	rc = i2c_r(sd, reg);
2445 	if (rc < 0)
2446 		return;
2447 	oldval = rc & ~mask;		/* Clear the masked bits */
2448 	value |= oldval;		/* Set the desired bits */
2449 	i2c_w(sd, reg, value);
2450 }
2451 
2452 /* Temporarily stops OV511 from functioning. Must do this before changing
2453  * registers while the camera is streaming */
2454 static inline void ov51x_stop(struct sd *sd)
2455 {
2456 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2457 
2458 	gspca_dbg(gspca_dev, D_STREAM, "stopping\n");
2459 	sd->stopped = 1;
2460 	switch (sd->bridge) {
2461 	case BRIDGE_OV511:
2462 	case BRIDGE_OV511PLUS:
2463 		reg_w(sd, R51x_SYS_RESET, 0x3d);
2464 		break;
2465 	case BRIDGE_OV518:
2466 	case BRIDGE_OV518PLUS:
2467 		reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2468 		break;
2469 	case BRIDGE_OV519:
2470 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2471 		reg_w(sd, OV519_R51_RESET1, 0x00);
2472 		reg_w(sd, 0x22, 0x00);		/* FRAR */
2473 		break;
2474 	case BRIDGE_OVFX2:
2475 		reg_w_mask(sd, 0x0f, 0x00, 0x02);
2476 		break;
2477 	case BRIDGE_W9968CF:
2478 		reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2479 		break;
2480 	}
2481 }
2482 
2483 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2484  * actually stopped (for performance). */
2485 static inline void ov51x_restart(struct sd *sd)
2486 {
2487 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2488 
2489 	gspca_dbg(gspca_dev, D_STREAM, "restarting\n");
2490 	if (!sd->stopped)
2491 		return;
2492 	sd->stopped = 0;
2493 
2494 	/* Reinitialize the stream */
2495 	switch (sd->bridge) {
2496 	case BRIDGE_OV511:
2497 	case BRIDGE_OV511PLUS:
2498 		reg_w(sd, R51x_SYS_RESET, 0x00);
2499 		break;
2500 	case BRIDGE_OV518:
2501 	case BRIDGE_OV518PLUS:
2502 		reg_w(sd, 0x2f, 0x80);
2503 		reg_w(sd, R51x_SYS_RESET, 0x00);
2504 		break;
2505 	case BRIDGE_OV519:
2506 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2507 		reg_w(sd, OV519_R51_RESET1, 0x00);
2508 		reg_w(sd, 0x22, 0x1d);		/* FRAR */
2509 		break;
2510 	case BRIDGE_OVFX2:
2511 		reg_w_mask(sd, 0x0f, 0x02, 0x02);
2512 		break;
2513 	case BRIDGE_W9968CF:
2514 		reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2515 		break;
2516 	}
2517 }
2518 
2519 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2520 
2521 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2522  * is synchronized. Returns <0 on failure.
2523  */
2524 static int init_ov_sensor(struct sd *sd, u8 slave)
2525 {
2526 	int i;
2527 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2528 
2529 	ov51x_set_slave_ids(sd, slave);
2530 
2531 	/* Reset the sensor */
2532 	i2c_w(sd, 0x12, 0x80);
2533 
2534 	/* Wait for it to initialize */
2535 	msleep(150);
2536 
2537 	for (i = 0; i < i2c_detect_tries; i++) {
2538 		if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2539 		    i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2540 			gspca_dbg(gspca_dev, D_PROBE, "I2C synced in %d attempt(s)\n",
2541 				  i);
2542 			return 0;
2543 		}
2544 
2545 		/* Reset the sensor */
2546 		i2c_w(sd, 0x12, 0x80);
2547 
2548 		/* Wait for it to initialize */
2549 		msleep(150);
2550 
2551 		/* Dummy read to sync I2C */
2552 		if (i2c_r(sd, 0x00) < 0)
2553 			return -1;
2554 	}
2555 	return -1;
2556 }
2557 
2558 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2559  * and the read slave will be set to (slave + 1).
2560  * This should not be called from outside the i2c I/O functions.
2561  * Sets I2C read and write slave IDs. Returns <0 for error
2562  */
2563 static void ov51x_set_slave_ids(struct sd *sd,
2564 				u8 slave)
2565 {
2566 	switch (sd->bridge) {
2567 	case BRIDGE_OVFX2:
2568 		reg_w(sd, OVFX2_I2C_ADDR, slave);
2569 		return;
2570 	case BRIDGE_W9968CF:
2571 		sd->sensor_addr = slave;
2572 		return;
2573 	}
2574 
2575 	reg_w(sd, R51x_I2C_W_SID, slave);
2576 	reg_w(sd, R51x_I2C_R_SID, slave + 1);
2577 }
2578 
2579 static void write_regvals(struct sd *sd,
2580 			 const struct ov_regvals *regvals,
2581 			 int n)
2582 {
2583 	while (--n >= 0) {
2584 		reg_w(sd, regvals->reg, regvals->val);
2585 		regvals++;
2586 	}
2587 }
2588 
2589 static void write_i2c_regvals(struct sd *sd,
2590 			const struct ov_i2c_regvals *regvals,
2591 			int n)
2592 {
2593 	while (--n >= 0) {
2594 		i2c_w(sd, regvals->reg, regvals->val);
2595 		regvals++;
2596 	}
2597 }
2598 
2599 /****************************************************************************
2600  *
2601  * OV511 and sensor configuration
2602  *
2603  ***************************************************************************/
2604 
2605 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
2606 static void ov_hires_configure(struct sd *sd)
2607 {
2608 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2609 	int high, low;
2610 
2611 	if (sd->bridge != BRIDGE_OVFX2) {
2612 		gspca_err(gspca_dev, "error hires sensors only supported with ovfx2\n");
2613 		return;
2614 	}
2615 
2616 	gspca_dbg(gspca_dev, D_PROBE, "starting ov hires configuration\n");
2617 
2618 	/* Detect sensor (sub)type */
2619 	high = i2c_r(sd, 0x0a);
2620 	low = i2c_r(sd, 0x0b);
2621 	/* info("%x, %x", high, low); */
2622 	switch (high) {
2623 	case 0x96:
2624 		switch (low) {
2625 		case 0x40:
2626 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV2610\n");
2627 			sd->sensor = SEN_OV2610;
2628 			return;
2629 		case 0x41:
2630 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV2610AE\n");
2631 			sd->sensor = SEN_OV2610AE;
2632 			return;
2633 		case 0xb1:
2634 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV9600\n");
2635 			sd->sensor = SEN_OV9600;
2636 			return;
2637 		}
2638 		break;
2639 	case 0x36:
2640 		if ((low & 0x0f) == 0x00) {
2641 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV3610\n");
2642 			sd->sensor = SEN_OV3610;
2643 			return;
2644 		}
2645 		break;
2646 	}
2647 	gspca_err(gspca_dev, "Error unknown sensor type: %02x%02x\n",
2648 		  high, low);
2649 }
2650 
2651 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2652  * the same register settings as the OV8610, since they are very similar.
2653  */
2654 static void ov8xx0_configure(struct sd *sd)
2655 {
2656 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2657 	int rc;
2658 
2659 	gspca_dbg(gspca_dev, D_PROBE, "starting ov8xx0 configuration\n");
2660 
2661 	/* Detect sensor (sub)type */
2662 	rc = i2c_r(sd, OV7610_REG_COM_I);
2663 	if (rc < 0) {
2664 		gspca_err(gspca_dev, "Error detecting sensor type\n");
2665 		return;
2666 	}
2667 	if ((rc & 3) == 1)
2668 		sd->sensor = SEN_OV8610;
2669 	else
2670 		gspca_err(gspca_dev, "Unknown image sensor version: %d\n",
2671 			  rc & 3);
2672 }
2673 
2674 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2675  * the same register settings as the OV7610, since they are very similar.
2676  */
2677 static void ov7xx0_configure(struct sd *sd)
2678 {
2679 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2680 	int rc, high, low;
2681 
2682 	gspca_dbg(gspca_dev, D_PROBE, "starting OV7xx0 configuration\n");
2683 
2684 	/* Detect sensor (sub)type */
2685 	rc = i2c_r(sd, OV7610_REG_COM_I);
2686 
2687 	/* add OV7670 here
2688 	 * it appears to be wrongly detected as a 7610 by default */
2689 	if (rc < 0) {
2690 		gspca_err(gspca_dev, "Error detecting sensor type\n");
2691 		return;
2692 	}
2693 	if ((rc & 3) == 3) {
2694 		/* quick hack to make OV7670s work */
2695 		high = i2c_r(sd, 0x0a);
2696 		low = i2c_r(sd, 0x0b);
2697 		/* info("%x, %x", high, low); */
2698 		if (high == 0x76 && (low & 0xf0) == 0x70) {
2699 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV76%02x\n",
2700 				  low);
2701 			sd->sensor = SEN_OV7670;
2702 		} else {
2703 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7610\n");
2704 			sd->sensor = SEN_OV7610;
2705 		}
2706 	} else if ((rc & 3) == 1) {
2707 		/* I don't know what's different about the 76BE yet. */
2708 		if (i2c_r(sd, 0x15) & 1) {
2709 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7620AE\n");
2710 			sd->sensor = SEN_OV7620AE;
2711 		} else {
2712 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV76BE\n");
2713 			sd->sensor = SEN_OV76BE;
2714 		}
2715 	} else if ((rc & 3) == 0) {
2716 		/* try to read product id registers */
2717 		high = i2c_r(sd, 0x0a);
2718 		if (high < 0) {
2719 			gspca_err(gspca_dev, "Error detecting camera chip PID\n");
2720 			return;
2721 		}
2722 		low = i2c_r(sd, 0x0b);
2723 		if (low < 0) {
2724 			gspca_err(gspca_dev, "Error detecting camera chip VER\n");
2725 			return;
2726 		}
2727 		if (high == 0x76) {
2728 			switch (low) {
2729 			case 0x30:
2730 				gspca_err(gspca_dev, "Sensor is an OV7630/OV7635\n");
2731 				gspca_err(gspca_dev, "7630 is not supported by this driver\n");
2732 				return;
2733 			case 0x40:
2734 				gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7645\n");
2735 				sd->sensor = SEN_OV7640; /* FIXME */
2736 				break;
2737 			case 0x45:
2738 				gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7645B\n");
2739 				sd->sensor = SEN_OV7640; /* FIXME */
2740 				break;
2741 			case 0x48:
2742 				gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7648\n");
2743 				sd->sensor = SEN_OV7648;
2744 				break;
2745 			case 0x60:
2746 				gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV7660\n");
2747 				sd->sensor = SEN_OV7660;
2748 				break;
2749 			default:
2750 				gspca_err(gspca_dev, "Unknown sensor: 0x76%02x\n",
2751 					  low);
2752 				return;
2753 			}
2754 		} else {
2755 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7620\n");
2756 			sd->sensor = SEN_OV7620;
2757 		}
2758 	} else {
2759 		gspca_err(gspca_dev, "Unknown image sensor version: %d\n",
2760 			  rc & 3);
2761 	}
2762 }
2763 
2764 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
2765 static void ov6xx0_configure(struct sd *sd)
2766 {
2767 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2768 	int rc;
2769 
2770 	gspca_dbg(gspca_dev, D_PROBE, "starting OV6xx0 configuration\n");
2771 
2772 	/* Detect sensor (sub)type */
2773 	rc = i2c_r(sd, OV7610_REG_COM_I);
2774 	if (rc < 0) {
2775 		gspca_err(gspca_dev, "Error detecting sensor type\n");
2776 		return;
2777 	}
2778 
2779 	/* Ugh. The first two bits are the version bits, but
2780 	 * the entire register value must be used. I guess OVT
2781 	 * underestimated how many variants they would make. */
2782 	switch (rc) {
2783 	case 0x00:
2784 		sd->sensor = SEN_OV6630;
2785 		pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2786 		break;
2787 	case 0x01:
2788 		sd->sensor = SEN_OV6620;
2789 		gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV6620\n");
2790 		break;
2791 	case 0x02:
2792 		sd->sensor = SEN_OV6630;
2793 		gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV66308AE\n");
2794 		break;
2795 	case 0x03:
2796 		sd->sensor = SEN_OV66308AF;
2797 		gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV66308AF\n");
2798 		break;
2799 	case 0x90:
2800 		sd->sensor = SEN_OV6630;
2801 		pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2802 		break;
2803 	default:
2804 		gspca_err(gspca_dev, "FATAL: Unknown sensor version: 0x%02x\n",
2805 			  rc);
2806 		return;
2807 	}
2808 
2809 	/* Set sensor-specific vars */
2810 	sd->sif = 1;
2811 }
2812 
2813 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
2814 static void ov51x_led_control(struct sd *sd, int on)
2815 {
2816 	if (sd->invert_led)
2817 		on = !on;
2818 
2819 	switch (sd->bridge) {
2820 	/* OV511 has no LED control */
2821 	case BRIDGE_OV511PLUS:
2822 		reg_w(sd, R511_SYS_LED_CTL, on);
2823 		break;
2824 	case BRIDGE_OV518:
2825 	case BRIDGE_OV518PLUS:
2826 		reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2827 		break;
2828 	case BRIDGE_OV519:
2829 		reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2830 		break;
2831 	}
2832 }
2833 
2834 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2835 {
2836 	struct sd *sd = (struct sd *) gspca_dev;
2837 
2838 	if (!sd->snapshot_needs_reset)
2839 		return;
2840 
2841 	/* Note it is important that we clear sd->snapshot_needs_reset,
2842 	   before actually clearing the snapshot state in the bridge
2843 	   otherwise we might race with the pkt_scan interrupt handler */
2844 	sd->snapshot_needs_reset = 0;
2845 
2846 	switch (sd->bridge) {
2847 	case BRIDGE_OV511:
2848 	case BRIDGE_OV511PLUS:
2849 		reg_w(sd, R51x_SYS_SNAP, 0x02);
2850 		reg_w(sd, R51x_SYS_SNAP, 0x00);
2851 		break;
2852 	case BRIDGE_OV518:
2853 	case BRIDGE_OV518PLUS:
2854 		reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2855 		reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2856 		break;
2857 	case BRIDGE_OV519:
2858 		reg_w(sd, R51x_SYS_RESET, 0x40);
2859 		reg_w(sd, R51x_SYS_RESET, 0x00);
2860 		break;
2861 	}
2862 }
2863 
2864 static void ov51x_upload_quan_tables(struct sd *sd)
2865 {
2866 	static const unsigned char yQuanTable511[] = {
2867 		0, 1, 1, 2, 2, 3, 3, 4,
2868 		1, 1, 1, 2, 2, 3, 4, 4,
2869 		1, 1, 2, 2, 3, 4, 4, 4,
2870 		2, 2, 2, 3, 4, 4, 4, 4,
2871 		2, 2, 3, 4, 4, 5, 5, 5,
2872 		3, 3, 4, 4, 5, 5, 5, 5,
2873 		3, 4, 4, 4, 5, 5, 5, 5,
2874 		4, 4, 4, 4, 5, 5, 5, 5
2875 	};
2876 
2877 	static const unsigned char uvQuanTable511[] = {
2878 		0, 2, 2, 3, 4, 4, 4, 4,
2879 		2, 2, 2, 4, 4, 4, 4, 4,
2880 		2, 2, 3, 4, 4, 4, 4, 4,
2881 		3, 4, 4, 4, 4, 4, 4, 4,
2882 		4, 4, 4, 4, 4, 4, 4, 4,
2883 		4, 4, 4, 4, 4, 4, 4, 4,
2884 		4, 4, 4, 4, 4, 4, 4, 4,
2885 		4, 4, 4, 4, 4, 4, 4, 4
2886 	};
2887 
2888 	/* OV518 quantization tables are 8x4 (instead of 8x8) */
2889 	static const unsigned char yQuanTable518[] = {
2890 		5, 4, 5, 6, 6, 7, 7, 7,
2891 		5, 5, 5, 5, 6, 7, 7, 7,
2892 		6, 6, 6, 6, 7, 7, 7, 8,
2893 		7, 7, 6, 7, 7, 7, 8, 8
2894 	};
2895 	static const unsigned char uvQuanTable518[] = {
2896 		6, 6, 6, 7, 7, 7, 7, 7,
2897 		6, 6, 6, 7, 7, 7, 7, 7,
2898 		6, 6, 6, 7, 7, 7, 7, 8,
2899 		7, 7, 7, 7, 7, 7, 8, 8
2900 	};
2901 
2902 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2903 	const unsigned char *pYTable, *pUVTable;
2904 	unsigned char val0, val1;
2905 	int i, size, reg = R51x_COMP_LUT_BEGIN;
2906 
2907 	gspca_dbg(gspca_dev, D_PROBE, "Uploading quantization tables\n");
2908 
2909 	if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2910 		pYTable = yQuanTable511;
2911 		pUVTable = uvQuanTable511;
2912 		size = 32;
2913 	} else {
2914 		pYTable = yQuanTable518;
2915 		pUVTable = uvQuanTable518;
2916 		size = 16;
2917 	}
2918 
2919 	for (i = 0; i < size; i++) {
2920 		val0 = *pYTable++;
2921 		val1 = *pYTable++;
2922 		val0 &= 0x0f;
2923 		val1 &= 0x0f;
2924 		val0 |= val1 << 4;
2925 		reg_w(sd, reg, val0);
2926 
2927 		val0 = *pUVTable++;
2928 		val1 = *pUVTable++;
2929 		val0 &= 0x0f;
2930 		val1 &= 0x0f;
2931 		val0 |= val1 << 4;
2932 		reg_w(sd, reg + size, val0);
2933 
2934 		reg++;
2935 	}
2936 }
2937 
2938 /* This initializes the OV511/OV511+ and the sensor */
2939 static void ov511_configure(struct gspca_dev *gspca_dev)
2940 {
2941 	struct sd *sd = (struct sd *) gspca_dev;
2942 
2943 	/* For 511 and 511+ */
2944 	static const struct ov_regvals init_511[] = {
2945 		{ R51x_SYS_RESET,	0x7f },
2946 		{ R51x_SYS_INIT,	0x01 },
2947 		{ R51x_SYS_RESET,	0x7f },
2948 		{ R51x_SYS_INIT,	0x01 },
2949 		{ R51x_SYS_RESET,	0x3f },
2950 		{ R51x_SYS_INIT,	0x01 },
2951 		{ R51x_SYS_RESET,	0x3d },
2952 	};
2953 
2954 	static const struct ov_regvals norm_511[] = {
2955 		{ R511_DRAM_FLOW_CTL,	0x01 },
2956 		{ R51x_SYS_SNAP,	0x00 },
2957 		{ R51x_SYS_SNAP,	0x02 },
2958 		{ R51x_SYS_SNAP,	0x00 },
2959 		{ R511_FIFO_OPTS,	0x1f },
2960 		{ R511_COMP_EN,		0x00 },
2961 		{ R511_COMP_LUT_EN,	0x03 },
2962 	};
2963 
2964 	static const struct ov_regvals norm_511_p[] = {
2965 		{ R511_DRAM_FLOW_CTL,	0xff },
2966 		{ R51x_SYS_SNAP,	0x00 },
2967 		{ R51x_SYS_SNAP,	0x02 },
2968 		{ R51x_SYS_SNAP,	0x00 },
2969 		{ R511_FIFO_OPTS,	0xff },
2970 		{ R511_COMP_EN,		0x00 },
2971 		{ R511_COMP_LUT_EN,	0x03 },
2972 	};
2973 
2974 	static const struct ov_regvals compress_511[] = {
2975 		{ 0x70, 0x1f },
2976 		{ 0x71, 0x05 },
2977 		{ 0x72, 0x06 },
2978 		{ 0x73, 0x06 },
2979 		{ 0x74, 0x14 },
2980 		{ 0x75, 0x03 },
2981 		{ 0x76, 0x04 },
2982 		{ 0x77, 0x04 },
2983 	};
2984 
2985 	gspca_dbg(gspca_dev, D_PROBE, "Device custom id %x\n",
2986 		  reg_r(sd, R51x_SYS_CUST_ID));
2987 
2988 	write_regvals(sd, init_511, ARRAY_SIZE(init_511));
2989 
2990 	switch (sd->bridge) {
2991 	case BRIDGE_OV511:
2992 		write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
2993 		break;
2994 	case BRIDGE_OV511PLUS:
2995 		write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
2996 		break;
2997 	}
2998 
2999 	/* Init compression */
3000 	write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3001 
3002 	ov51x_upload_quan_tables(sd);
3003 }
3004 
3005 /* This initializes the OV518/OV518+ and the sensor */
3006 static void ov518_configure(struct gspca_dev *gspca_dev)
3007 {
3008 	struct sd *sd = (struct sd *) gspca_dev;
3009 
3010 	/* For 518 and 518+ */
3011 	static const struct ov_regvals init_518[] = {
3012 		{ R51x_SYS_RESET,	0x40 },
3013 		{ R51x_SYS_INIT,	0xe1 },
3014 		{ R51x_SYS_RESET,	0x3e },
3015 		{ R51x_SYS_INIT,	0xe1 },
3016 		{ R51x_SYS_RESET,	0x00 },
3017 		{ R51x_SYS_INIT,	0xe1 },
3018 		{ 0x46,			0x00 },
3019 		{ 0x5d,			0x03 },
3020 	};
3021 
3022 	static const struct ov_regvals norm_518[] = {
3023 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3024 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3025 		{ 0x31,			0x0f },
3026 		{ 0x5d,			0x03 },
3027 		{ 0x24,			0x9f },
3028 		{ 0x25,			0x90 },
3029 		{ 0x20,			0x00 },
3030 		{ 0x51,			0x04 },
3031 		{ 0x71,			0x19 },
3032 		{ 0x2f,			0x80 },
3033 	};
3034 
3035 	static const struct ov_regvals norm_518_p[] = {
3036 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3037 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3038 		{ 0x31,			0x0f },
3039 		{ 0x5d,			0x03 },
3040 		{ 0x24,			0x9f },
3041 		{ 0x25,			0x90 },
3042 		{ 0x20,			0x60 },
3043 		{ 0x51,			0x02 },
3044 		{ 0x71,			0x19 },
3045 		{ 0x40,			0xff },
3046 		{ 0x41,			0x42 },
3047 		{ 0x46,			0x00 },
3048 		{ 0x33,			0x04 },
3049 		{ 0x21,			0x19 },
3050 		{ 0x3f,			0x10 },
3051 		{ 0x2f,			0x80 },
3052 	};
3053 
3054 	/* First 5 bits of custom ID reg are a revision ID on OV518 */
3055 	sd->revision = reg_r(sd, R51x_SYS_CUST_ID) & 0x1f;
3056 	gspca_dbg(gspca_dev, D_PROBE, "Device revision %d\n", sd->revision);
3057 
3058 	write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3059 
3060 	/* Set LED GPIO pin to output mode */
3061 	reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3062 
3063 	switch (sd->bridge) {
3064 	case BRIDGE_OV518:
3065 		write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3066 		break;
3067 	case BRIDGE_OV518PLUS:
3068 		write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3069 		break;
3070 	}
3071 
3072 	ov51x_upload_quan_tables(sd);
3073 
3074 	reg_w(sd, 0x2f, 0x80);
3075 }
3076 
3077 static void ov519_configure(struct sd *sd)
3078 {
3079 	static const struct ov_regvals init_519[] = {
3080 		{ 0x5a, 0x6d }, /* EnableSystem */
3081 		{ 0x53, 0x9b }, /* don't enable the microcontroller */
3082 		{ OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3083 		{ 0x5d, 0x03 },
3084 		{ 0x49, 0x01 },
3085 		{ 0x48, 0x00 },
3086 		/* Set LED pin to output mode. Bit 4 must be cleared or sensor
3087 		 * detection will fail. This deserves further investigation. */
3088 		{ OV519_GPIO_IO_CTRL0,   0xee },
3089 		{ OV519_R51_RESET1, 0x0f },
3090 		{ OV519_R51_RESET1, 0x00 },
3091 		{ 0x22, 0x00 },
3092 		/* windows reads 0x55 at this point*/
3093 	};
3094 
3095 	write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3096 }
3097 
3098 static void ovfx2_configure(struct sd *sd)
3099 {
3100 	static const struct ov_regvals init_fx2[] = {
3101 		{ 0x00, 0x60 },
3102 		{ 0x02, 0x01 },
3103 		{ 0x0f, 0x1d },
3104 		{ 0xe9, 0x82 },
3105 		{ 0xea, 0xc7 },
3106 		{ 0xeb, 0x10 },
3107 		{ 0xec, 0xf6 },
3108 	};
3109 
3110 	sd->stopped = 1;
3111 
3112 	write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3113 }
3114 
3115 /* set the mode */
3116 /* This function works for ov7660 only */
3117 static void ov519_set_mode(struct sd *sd)
3118 {
3119 	static const struct ov_regvals bridge_ov7660[2][10] = {
3120 		{{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3121 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3122 		 {0x25, 0x01}, {0x26, 0x00}},
3123 		{{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3124 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3125 		 {0x25, 0x03}, {0x26, 0x00}}
3126 	};
3127 	static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3128 		{{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3129 		{{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3130 	};
3131 	static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3132 		{OV7670_R17_HSTART, 0x13},
3133 		{OV7670_R18_HSTOP, 0x01},
3134 		{OV7670_R32_HREF, 0x92},
3135 		{OV7670_R19_VSTART, 0x02},
3136 		{OV7670_R1A_VSTOP, 0x7a},
3137 		{OV7670_R03_VREF, 0x00},
3138 /*		{0x33, 0x00}, */
3139 /*		{0x34, 0x07}, */
3140 /*		{0x36, 0x00}, */
3141 /*		{0x6b, 0x0a}, */
3142 	};
3143 
3144 	write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3145 			ARRAY_SIZE(bridge_ov7660[0]));
3146 	write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3147 			ARRAY_SIZE(sensor_ov7660[0]));
3148 	write_i2c_regvals(sd, sensor_ov7660_2,
3149 			ARRAY_SIZE(sensor_ov7660_2));
3150 }
3151 
3152 /* set the frame rate */
3153 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
3154 static void ov519_set_fr(struct sd *sd)
3155 {
3156 	int fr;
3157 	u8 clock;
3158 	/* frame rate table with indices:
3159 	 *	- mode = 0: 320x240, 1: 640x480
3160 	 *	- fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3161 	 *	- reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3162 	 */
3163 	static const u8 fr_tb[2][6][3] = {
3164 		{{0x04, 0xff, 0x00},
3165 		 {0x04, 0x1f, 0x00},
3166 		 {0x04, 0x1b, 0x00},
3167 		 {0x04, 0x15, 0x00},
3168 		 {0x04, 0x09, 0x00},
3169 		 {0x04, 0x01, 0x00}},
3170 		{{0x0c, 0xff, 0x00},
3171 		 {0x0c, 0x1f, 0x00},
3172 		 {0x0c, 0x1b, 0x00},
3173 		 {0x04, 0xff, 0x01},
3174 		 {0x04, 0x1f, 0x01},
3175 		 {0x04, 0x1b, 0x01}},
3176 	};
3177 
3178 	if (frame_rate > 0)
3179 		sd->frame_rate = frame_rate;
3180 	if (sd->frame_rate >= 30)
3181 		fr = 0;
3182 	else if (sd->frame_rate >= 25)
3183 		fr = 1;
3184 	else if (sd->frame_rate >= 20)
3185 		fr = 2;
3186 	else if (sd->frame_rate >= 15)
3187 		fr = 3;
3188 	else if (sd->frame_rate >= 10)
3189 		fr = 4;
3190 	else
3191 		fr = 5;
3192 	reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3193 	reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3194 	clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3195 	if (sd->sensor == SEN_OV7660)
3196 		clock |= 0x80;		/* enable double clock */
3197 	ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3198 }
3199 
3200 static void setautogain(struct gspca_dev *gspca_dev, s32 val)
3201 {
3202 	struct sd *sd = (struct sd *) gspca_dev;
3203 
3204 	i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05);
3205 }
3206 
3207 /* this function is called at probe time */
3208 static int sd_config(struct gspca_dev *gspca_dev,
3209 			const struct usb_device_id *id)
3210 {
3211 	struct sd *sd = (struct sd *) gspca_dev;
3212 	struct cam *cam = &gspca_dev->cam;
3213 
3214 	sd->bridge = id->driver_info & BRIDGE_MASK;
3215 	sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3216 
3217 	switch (sd->bridge) {
3218 	case BRIDGE_OV511:
3219 	case BRIDGE_OV511PLUS:
3220 		cam->cam_mode = ov511_vga_mode;
3221 		cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3222 		break;
3223 	case BRIDGE_OV518:
3224 	case BRIDGE_OV518PLUS:
3225 		cam->cam_mode = ov518_vga_mode;
3226 		cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3227 		break;
3228 	case BRIDGE_OV519:
3229 		cam->cam_mode = ov519_vga_mode;
3230 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3231 		break;
3232 	case BRIDGE_OVFX2:
3233 		cam->cam_mode = ov519_vga_mode;
3234 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3235 		cam->bulk_size = OVFX2_BULK_SIZE;
3236 		cam->bulk_nurbs = MAX_NURBS;
3237 		cam->bulk = 1;
3238 		break;
3239 	case BRIDGE_W9968CF:
3240 		cam->cam_mode = w9968cf_vga_mode;
3241 		cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3242 		break;
3243 	}
3244 
3245 	sd->frame_rate = 15;
3246 
3247 	return 0;
3248 }
3249 
3250 /* this function is called at probe and resume time */
3251 static int sd_init(struct gspca_dev *gspca_dev)
3252 {
3253 	struct sd *sd = (struct sd *) gspca_dev;
3254 	struct cam *cam = &gspca_dev->cam;
3255 
3256 	switch (sd->bridge) {
3257 	case BRIDGE_OV511:
3258 	case BRIDGE_OV511PLUS:
3259 		ov511_configure(gspca_dev);
3260 		break;
3261 	case BRIDGE_OV518:
3262 	case BRIDGE_OV518PLUS:
3263 		ov518_configure(gspca_dev);
3264 		break;
3265 	case BRIDGE_OV519:
3266 		ov519_configure(sd);
3267 		break;
3268 	case BRIDGE_OVFX2:
3269 		ovfx2_configure(sd);
3270 		break;
3271 	case BRIDGE_W9968CF:
3272 		w9968cf_configure(sd);
3273 		break;
3274 	}
3275 
3276 	/* The OV519 must be more aggressive about sensor detection since
3277 	 * I2C write will never fail if the sensor is not present. We have
3278 	 * to try to initialize the sensor to detect its presence */
3279 	sd->sensor = -1;
3280 
3281 	/* Test for 76xx */
3282 	if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3283 		ov7xx0_configure(sd);
3284 
3285 	/* Test for 6xx0 */
3286 	} else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3287 		ov6xx0_configure(sd);
3288 
3289 	/* Test for 8xx0 */
3290 	} else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3291 		ov8xx0_configure(sd);
3292 
3293 	/* Test for 3xxx / 2xxx */
3294 	} else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3295 		ov_hires_configure(sd);
3296 	} else {
3297 		gspca_err(gspca_dev, "Can't determine sensor slave IDs\n");
3298 		goto error;
3299 	}
3300 
3301 	if (sd->sensor < 0)
3302 		goto error;
3303 
3304 	ov51x_led_control(sd, 0);	/* turn LED off */
3305 
3306 	switch (sd->bridge) {
3307 	case BRIDGE_OV511:
3308 	case BRIDGE_OV511PLUS:
3309 		if (sd->sif) {
3310 			cam->cam_mode = ov511_sif_mode;
3311 			cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3312 		}
3313 		break;
3314 	case BRIDGE_OV518:
3315 	case BRIDGE_OV518PLUS:
3316 		if (sd->sif) {
3317 			cam->cam_mode = ov518_sif_mode;
3318 			cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3319 		}
3320 		break;
3321 	case BRIDGE_OV519:
3322 		if (sd->sif) {
3323 			cam->cam_mode = ov519_sif_mode;
3324 			cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3325 		}
3326 		break;
3327 	case BRIDGE_OVFX2:
3328 		switch (sd->sensor) {
3329 		case SEN_OV2610:
3330 		case SEN_OV2610AE:
3331 			cam->cam_mode = ovfx2_ov2610_mode;
3332 			cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3333 			break;
3334 		case SEN_OV3610:
3335 			cam->cam_mode = ovfx2_ov3610_mode;
3336 			cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3337 			break;
3338 		case SEN_OV9600:
3339 			cam->cam_mode = ovfx2_ov9600_mode;
3340 			cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3341 			break;
3342 		default:
3343 			if (sd->sif) {
3344 				cam->cam_mode = ov519_sif_mode;
3345 				cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3346 			}
3347 			break;
3348 		}
3349 		break;
3350 	case BRIDGE_W9968CF:
3351 		if (sd->sif)
3352 			cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3353 
3354 		/* w9968cf needs initialisation once the sensor is known */
3355 		w9968cf_init(sd);
3356 		break;
3357 	}
3358 
3359 	/* initialize the sensor */
3360 	switch (sd->sensor) {
3361 	case SEN_OV2610:
3362 		write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3363 
3364 		/* Enable autogain, autoexpo, awb, bandfilter */
3365 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3366 		break;
3367 	case SEN_OV2610AE:
3368 		write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3369 
3370 		/* enable autoexpo */
3371 		i2c_w_mask(sd, 0x13, 0x05, 0x05);
3372 		break;
3373 	case SEN_OV3610:
3374 		write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3375 
3376 		/* Enable autogain, autoexpo, awb, bandfilter */
3377 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3378 		break;
3379 	case SEN_OV6620:
3380 		write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3381 		break;
3382 	case SEN_OV6630:
3383 	case SEN_OV66308AF:
3384 		write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3385 		break;
3386 	default:
3387 /*	case SEN_OV7610: */
3388 /*	case SEN_OV76BE: */
3389 		write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3390 		i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3391 		break;
3392 	case SEN_OV7620:
3393 	case SEN_OV7620AE:
3394 		write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3395 		break;
3396 	case SEN_OV7640:
3397 	case SEN_OV7648:
3398 		write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3399 		break;
3400 	case SEN_OV7660:
3401 		i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3402 		msleep(14);
3403 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3404 		write_regvals(sd, init_519_ov7660,
3405 				ARRAY_SIZE(init_519_ov7660));
3406 		write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3407 		sd->gspca_dev.curr_mode = 1;	/* 640x480 */
3408 		ov519_set_mode(sd);
3409 		ov519_set_fr(sd);
3410 		sd_reset_snapshot(gspca_dev);
3411 		ov51x_restart(sd);
3412 		ov51x_stop(sd);			/* not in win traces */
3413 		ov51x_led_control(sd, 0);
3414 		break;
3415 	case SEN_OV7670:
3416 		write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3417 		break;
3418 	case SEN_OV8610:
3419 		write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3420 		break;
3421 	case SEN_OV9600:
3422 		write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3423 
3424 		/* enable autoexpo */
3425 /*		i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3426 		break;
3427 	}
3428 	return gspca_dev->usb_err;
3429 error:
3430 	gspca_err(gspca_dev, "OV519 Config failed\n");
3431 	return -EINVAL;
3432 }
3433 
3434 /* function called at start time before URB creation */
3435 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3436 {
3437 	struct sd *sd = (struct sd *) gspca_dev;
3438 
3439 	switch (sd->bridge) {
3440 	case BRIDGE_OVFX2:
3441 		if (gspca_dev->pixfmt.width != 800)
3442 			gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3443 		else
3444 			gspca_dev->cam.bulk_size = 7 * 4096;
3445 		break;
3446 	}
3447 	return 0;
3448 }
3449 
3450 /* Set up the OV511/OV511+ with the given image parameters.
3451  *
3452  * Do not put any sensor-specific code in here (including I2C I/O functions)
3453  */
3454 static void ov511_mode_init_regs(struct sd *sd)
3455 {
3456 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3457 	int hsegs, vsegs, packet_size, fps, needed;
3458 	int interlaced = 0;
3459 	struct usb_host_interface *alt;
3460 	struct usb_interface *intf;
3461 
3462 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3463 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3464 	if (!alt) {
3465 		gspca_err(gspca_dev, "Couldn't get altsetting\n");
3466 		sd->gspca_dev.usb_err = -EIO;
3467 		return;
3468 	}
3469 
3470 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3471 	reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3472 
3473 	reg_w(sd, R511_CAM_UV_EN, 0x01);
3474 	reg_w(sd, R511_SNAP_UV_EN, 0x01);
3475 	reg_w(sd, R511_SNAP_OPTS, 0x03);
3476 
3477 	/* Here I'm assuming that snapshot size == image size.
3478 	 * I hope that's always true. --claudio
3479 	 */
3480 	hsegs = (sd->gspca_dev.pixfmt.width >> 3) - 1;
3481 	vsegs = (sd->gspca_dev.pixfmt.height >> 3) - 1;
3482 
3483 	reg_w(sd, R511_CAM_PXCNT, hsegs);
3484 	reg_w(sd, R511_CAM_LNCNT, vsegs);
3485 	reg_w(sd, R511_CAM_PXDIV, 0x00);
3486 	reg_w(sd, R511_CAM_LNDIV, 0x00);
3487 
3488 	/* YUV420, low pass filter on */
3489 	reg_w(sd, R511_CAM_OPTS, 0x03);
3490 
3491 	/* Snapshot additions */
3492 	reg_w(sd, R511_SNAP_PXCNT, hsegs);
3493 	reg_w(sd, R511_SNAP_LNCNT, vsegs);
3494 	reg_w(sd, R511_SNAP_PXDIV, 0x00);
3495 	reg_w(sd, R511_SNAP_LNDIV, 0x00);
3496 
3497 	/******** Set the framerate ********/
3498 	if (frame_rate > 0)
3499 		sd->frame_rate = frame_rate;
3500 
3501 	switch (sd->sensor) {
3502 	case SEN_OV6620:
3503 		/* No framerate control, doesn't like higher rates yet */
3504 		sd->clockdiv = 3;
3505 		break;
3506 
3507 	/* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3508 	   for more sensors we need to do this for them too */
3509 	case SEN_OV7620:
3510 	case SEN_OV7620AE:
3511 	case SEN_OV7640:
3512 	case SEN_OV7648:
3513 	case SEN_OV76BE:
3514 		if (sd->gspca_dev.pixfmt.width == 320)
3515 			interlaced = 1;
3516 		/* Fall through */
3517 	case SEN_OV6630:
3518 	case SEN_OV7610:
3519 	case SEN_OV7670:
3520 		switch (sd->frame_rate) {
3521 		case 30:
3522 		case 25:
3523 			/* Not enough bandwidth to do 640x480 @ 30 fps */
3524 			if (sd->gspca_dev.pixfmt.width != 640) {
3525 				sd->clockdiv = 0;
3526 				break;
3527 			}
3528 			/* For 640x480 case */
3529 			/* fall through */
3530 		default:
3531 /*		case 20: */
3532 /*		case 15: */
3533 			sd->clockdiv = 1;
3534 			break;
3535 		case 10:
3536 			sd->clockdiv = 2;
3537 			break;
3538 		case 5:
3539 			sd->clockdiv = 5;
3540 			break;
3541 		}
3542 		if (interlaced) {
3543 			sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3544 			/* Higher then 10 does not work */
3545 			if (sd->clockdiv > 10)
3546 				sd->clockdiv = 10;
3547 		}
3548 		break;
3549 
3550 	case SEN_OV8610:
3551 		/* No framerate control ?? */
3552 		sd->clockdiv = 0;
3553 		break;
3554 	}
3555 
3556 	/* Check if we have enough bandwidth to disable compression */
3557 	fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3558 	needed = fps * sd->gspca_dev.pixfmt.width *
3559 			sd->gspca_dev.pixfmt.height * 3 / 2;
3560 	/* 1000 isoc packets/sec */
3561 	if (needed > 1000 * packet_size) {
3562 		/* Enable Y and UV quantization and compression */
3563 		reg_w(sd, R511_COMP_EN, 0x07);
3564 		reg_w(sd, R511_COMP_LUT_EN, 0x03);
3565 	} else {
3566 		reg_w(sd, R511_COMP_EN, 0x06);
3567 		reg_w(sd, R511_COMP_LUT_EN, 0x00);
3568 	}
3569 
3570 	reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3571 	reg_w(sd, R51x_SYS_RESET, 0);
3572 }
3573 
3574 /* Sets up the OV518/OV518+ with the given image parameters
3575  *
3576  * OV518 needs a completely different approach, until we can figure out what
3577  * the individual registers do. Also, only 15 FPS is supported now.
3578  *
3579  * Do not put any sensor-specific code in here (including I2C I/O functions)
3580  */
3581 static void ov518_mode_init_regs(struct sd *sd)
3582 {
3583 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3584 	int hsegs, vsegs, packet_size;
3585 	struct usb_host_interface *alt;
3586 	struct usb_interface *intf;
3587 
3588 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3589 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3590 	if (!alt) {
3591 		gspca_err(gspca_dev, "Couldn't get altsetting\n");
3592 		sd->gspca_dev.usb_err = -EIO;
3593 		return;
3594 	}
3595 
3596 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3597 	ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3598 
3599 	/******** Set the mode ********/
3600 	reg_w(sd, 0x2b, 0);
3601 	reg_w(sd, 0x2c, 0);
3602 	reg_w(sd, 0x2d, 0);
3603 	reg_w(sd, 0x2e, 0);
3604 	reg_w(sd, 0x3b, 0);
3605 	reg_w(sd, 0x3c, 0);
3606 	reg_w(sd, 0x3d, 0);
3607 	reg_w(sd, 0x3e, 0);
3608 
3609 	if (sd->bridge == BRIDGE_OV518) {
3610 		/* Set 8-bit (YVYU) input format */
3611 		reg_w_mask(sd, 0x20, 0x08, 0x08);
3612 
3613 		/* Set 12-bit (4:2:0) output format */
3614 		reg_w_mask(sd, 0x28, 0x80, 0xf0);
3615 		reg_w_mask(sd, 0x38, 0x80, 0xf0);
3616 	} else {
3617 		reg_w(sd, 0x28, 0x80);
3618 		reg_w(sd, 0x38, 0x80);
3619 	}
3620 
3621 	hsegs = sd->gspca_dev.pixfmt.width / 16;
3622 	vsegs = sd->gspca_dev.pixfmt.height / 4;
3623 
3624 	reg_w(sd, 0x29, hsegs);
3625 	reg_w(sd, 0x2a, vsegs);
3626 
3627 	reg_w(sd, 0x39, hsegs);
3628 	reg_w(sd, 0x3a, vsegs);
3629 
3630 	/* Windows driver does this here; who knows why */
3631 	reg_w(sd, 0x2f, 0x80);
3632 
3633 	/******** Set the framerate ********/
3634 	if (sd->bridge == BRIDGE_OV518PLUS && sd->revision == 0 &&
3635 					      sd->sensor == SEN_OV7620AE)
3636 		sd->clockdiv = 0;
3637 	else
3638 		sd->clockdiv = 1;
3639 
3640 	/* Mode independent, but framerate dependent, regs */
3641 	/* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3642 	reg_w(sd, 0x51, 0x04);
3643 	reg_w(sd, 0x22, 0x18);
3644 	reg_w(sd, 0x23, 0xff);
3645 
3646 	if (sd->bridge == BRIDGE_OV518PLUS) {
3647 		switch (sd->sensor) {
3648 		case SEN_OV7620AE:
3649 			/*
3650 			 * HdG: 640x480 needs special handling on device
3651 			 * revision 2, we check for device revision > 0 to
3652 			 * avoid regressions, as we don't know the correct
3653 			 * thing todo for revision 1.
3654 			 *
3655 			 * Also this likely means we don't need to
3656 			 * differentiate between the OV7620 and OV7620AE,
3657 			 * earlier testing hitting this same problem likely
3658 			 * happened to be with revision < 2 cams using an
3659 			 * OV7620 and revision 2 cams using an OV7620AE.
3660 			 */
3661 			if (sd->revision > 0 &&
3662 					sd->gspca_dev.pixfmt.width == 640) {
3663 				reg_w(sd, 0x20, 0x60);
3664 				reg_w(sd, 0x21, 0x1f);
3665 			} else {
3666 				reg_w(sd, 0x20, 0x00);
3667 				reg_w(sd, 0x21, 0x19);
3668 			}
3669 			break;
3670 		case SEN_OV7620:
3671 			reg_w(sd, 0x20, 0x00);
3672 			reg_w(sd, 0x21, 0x19);
3673 			break;
3674 		default:
3675 			reg_w(sd, 0x21, 0x19);
3676 		}
3677 	} else
3678 		reg_w(sd, 0x71, 0x17);	/* Compression-related? */
3679 
3680 	/* FIXME: Sensor-specific */
3681 	/* Bit 5 is what matters here. Of course, it is "reserved" */
3682 	i2c_w(sd, 0x54, 0x23);
3683 
3684 	reg_w(sd, 0x2f, 0x80);
3685 
3686 	if (sd->bridge == BRIDGE_OV518PLUS) {
3687 		reg_w(sd, 0x24, 0x94);
3688 		reg_w(sd, 0x25, 0x90);
3689 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3690 		ov518_reg_w32(sd, 0xc6,    540, 2);	/* 21ch   */
3691 		ov518_reg_w32(sd, 0xc7,    540, 2);	/* 21ch   */
3692 		ov518_reg_w32(sd, 0xc8,    108, 2);	/* 6ch    */
3693 		ov518_reg_w32(sd, 0xca, 131098, 3);	/* 2001ah */
3694 		ov518_reg_w32(sd, 0xcb,    532, 2);	/* 214h   */
3695 		ov518_reg_w32(sd, 0xcc,   2400, 2);	/* 960h   */
3696 		ov518_reg_w32(sd, 0xcd,     32, 2);	/* 20h    */
3697 		ov518_reg_w32(sd, 0xce,    608, 2);	/* 260h   */
3698 	} else {
3699 		reg_w(sd, 0x24, 0x9f);
3700 		reg_w(sd, 0x25, 0x90);
3701 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3702 		ov518_reg_w32(sd, 0xc6,    381, 2);	/* 17dh   */
3703 		ov518_reg_w32(sd, 0xc7,    381, 2);	/* 17dh   */
3704 		ov518_reg_w32(sd, 0xc8,    128, 2);	/* 80h    */
3705 		ov518_reg_w32(sd, 0xca, 183331, 3);	/* 2cc23h */
3706 		ov518_reg_w32(sd, 0xcb,    746, 2);	/* 2eah   */
3707 		ov518_reg_w32(sd, 0xcc,   1750, 2);	/* 6d6h   */
3708 		ov518_reg_w32(sd, 0xcd,     45, 2);	/* 2dh    */
3709 		ov518_reg_w32(sd, 0xce,    851, 2);	/* 353h   */
3710 	}
3711 
3712 	reg_w(sd, 0x2f, 0x80);
3713 }
3714 
3715 /* Sets up the OV519 with the given image parameters
3716  *
3717  * OV519 needs a completely different approach, until we can figure out what
3718  * the individual registers do.
3719  *
3720  * Do not put any sensor-specific code in here (including I2C I/O functions)
3721  */
3722 static void ov519_mode_init_regs(struct sd *sd)
3723 {
3724 	static const struct ov_regvals mode_init_519_ov7670[] = {
3725 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3726 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3727 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3728 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3729 		{ 0xa3,	0x18 },
3730 		{ 0xa4,	0x04 },
3731 		{ 0xa5,	0x28 },
3732 		{ 0x37,	0x00 },	/* SetUsbInit */
3733 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3734 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3735 		{ 0x20,	0x0c },
3736 		{ 0x21,	0x38 },
3737 		{ 0x22,	0x1d },
3738 		{ 0x17,	0x50 }, /* undocumented */
3739 		{ 0x37,	0x00 }, /* undocumented */
3740 		{ 0x40,	0xff }, /* I2C timeout counter */
3741 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3742 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3743 		{ 0xff,	0x00 }, /* undocumented */
3744 		/* windows reads 0x55 at this point, why? */
3745 	};
3746 
3747 	static const struct ov_regvals mode_init_519[] = {
3748 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3749 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3750 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3751 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3752 		{ 0xa3,	0x18 },
3753 		{ 0xa4,	0x04 },
3754 		{ 0xa5,	0x28 },
3755 		{ 0x37,	0x00 },	/* SetUsbInit */
3756 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3757 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3758 		{ 0x22,	0x1d },
3759 		{ 0x17,	0x50 }, /* undocumented */
3760 		{ 0x37,	0x00 }, /* undocumented */
3761 		{ 0x40,	0xff }, /* I2C timeout counter */
3762 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3763 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3764 		{ 0xff,	0x00 }, /* undocumented */
3765 		/* windows reads 0x55 at this point, why? */
3766 	};
3767 
3768 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3769 
3770 	/******** Set the mode ********/
3771 	switch (sd->sensor) {
3772 	default:
3773 		write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3774 		if (sd->sensor == SEN_OV7640 ||
3775 		    sd->sensor == SEN_OV7648) {
3776 			/* Select 8-bit input mode */
3777 			reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3778 		}
3779 		break;
3780 	case SEN_OV7660:
3781 		return;		/* done by ov519_set_mode/fr() */
3782 	case SEN_OV7670:
3783 		write_regvals(sd, mode_init_519_ov7670,
3784 				ARRAY_SIZE(mode_init_519_ov7670));
3785 		break;
3786 	}
3787 
3788 	reg_w(sd, OV519_R10_H_SIZE,	sd->gspca_dev.pixfmt.width >> 4);
3789 	reg_w(sd, OV519_R11_V_SIZE,	sd->gspca_dev.pixfmt.height >> 3);
3790 	if (sd->sensor == SEN_OV7670 &&
3791 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3792 		reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3793 	else if (sd->sensor == SEN_OV7648 &&
3794 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3795 		reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3796 	else
3797 		reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3798 	reg_w(sd, OV519_R13_X_OFFSETH,	0x00);
3799 	reg_w(sd, OV519_R14_Y_OFFSETL,	0x00);
3800 	reg_w(sd, OV519_R15_Y_OFFSETH,	0x00);
3801 	reg_w(sd, OV519_R16_DIVIDER,	0x00);
3802 	reg_w(sd, OV519_R25_FORMAT,	0x03); /* YUV422 */
3803 	reg_w(sd, 0x26,			0x00); /* Undocumented */
3804 
3805 	/******** Set the framerate ********/
3806 	if (frame_rate > 0)
3807 		sd->frame_rate = frame_rate;
3808 
3809 /* FIXME: These are only valid at the max resolution. */
3810 	sd->clockdiv = 0;
3811 	switch (sd->sensor) {
3812 	case SEN_OV7640:
3813 	case SEN_OV7648:
3814 		switch (sd->frame_rate) {
3815 		default:
3816 /*		case 30: */
3817 			reg_w(sd, 0xa4, 0x0c);
3818 			reg_w(sd, 0x23, 0xff);
3819 			break;
3820 		case 25:
3821 			reg_w(sd, 0xa4, 0x0c);
3822 			reg_w(sd, 0x23, 0x1f);
3823 			break;
3824 		case 20:
3825 			reg_w(sd, 0xa4, 0x0c);
3826 			reg_w(sd, 0x23, 0x1b);
3827 			break;
3828 		case 15:
3829 			reg_w(sd, 0xa4, 0x04);
3830 			reg_w(sd, 0x23, 0xff);
3831 			sd->clockdiv = 1;
3832 			break;
3833 		case 10:
3834 			reg_w(sd, 0xa4, 0x04);
3835 			reg_w(sd, 0x23, 0x1f);
3836 			sd->clockdiv = 1;
3837 			break;
3838 		case 5:
3839 			reg_w(sd, 0xa4, 0x04);
3840 			reg_w(sd, 0x23, 0x1b);
3841 			sd->clockdiv = 1;
3842 			break;
3843 		}
3844 		break;
3845 	case SEN_OV8610:
3846 		switch (sd->frame_rate) {
3847 		default:	/* 15 fps */
3848 /*		case 15: */
3849 			reg_w(sd, 0xa4, 0x06);
3850 			reg_w(sd, 0x23, 0xff);
3851 			break;
3852 		case 10:
3853 			reg_w(sd, 0xa4, 0x06);
3854 			reg_w(sd, 0x23, 0x1f);
3855 			break;
3856 		case 5:
3857 			reg_w(sd, 0xa4, 0x06);
3858 			reg_w(sd, 0x23, 0x1b);
3859 			break;
3860 		}
3861 		break;
3862 	case SEN_OV7670:		/* guesses, based on 7640 */
3863 		gspca_dbg(gspca_dev, D_STREAM, "Setting framerate to %d fps\n",
3864 			  (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3865 		reg_w(sd, 0xa4, 0x10);
3866 		switch (sd->frame_rate) {
3867 		case 30:
3868 			reg_w(sd, 0x23, 0xff);
3869 			break;
3870 		case 20:
3871 			reg_w(sd, 0x23, 0x1b);
3872 			break;
3873 		default:
3874 /*		case 15: */
3875 			reg_w(sd, 0x23, 0xff);
3876 			sd->clockdiv = 1;
3877 			break;
3878 		}
3879 		break;
3880 	}
3881 }
3882 
3883 static void mode_init_ov_sensor_regs(struct sd *sd)
3884 {
3885 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3886 	int qvga, xstart, xend, ystart, yend;
3887 	u8 v;
3888 
3889 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3890 
3891 	/******** Mode (VGA/QVGA) and sensor specific regs ********/
3892 	switch (sd->sensor) {
3893 	case SEN_OV2610:
3894 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3895 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3896 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3897 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3898 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3899 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3900 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3901 		return;
3902 	case SEN_OV2610AE: {
3903 		u8 v;
3904 
3905 		/* frame rates:
3906 		 *	10fps / 5 fps for 1600x1200
3907 		 *	40fps / 20fps for 800x600
3908 		 */
3909 		v = 80;
3910 		if (qvga) {
3911 			if (sd->frame_rate < 25)
3912 				v = 0x81;
3913 		} else {
3914 			if (sd->frame_rate < 10)
3915 				v = 0x81;
3916 		}
3917 		i2c_w(sd, 0x11, v);
3918 		i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3919 		return;
3920 	    }
3921 	case SEN_OV3610:
3922 		if (qvga) {
3923 			xstart = (1040 - gspca_dev->pixfmt.width) / 2 +
3924 				(0x1f << 4);
3925 			ystart = (776 - gspca_dev->pixfmt.height) / 2;
3926 		} else {
3927 			xstart = (2076 - gspca_dev->pixfmt.width) / 2 +
3928 				(0x10 << 4);
3929 			ystart = (1544 - gspca_dev->pixfmt.height) / 2;
3930 		}
3931 		xend = xstart + gspca_dev->pixfmt.width;
3932 		yend = ystart + gspca_dev->pixfmt.height;
3933 		/* Writing to the COMH register resets the other windowing regs
3934 		   to their default values, so we must do this first. */
3935 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3936 		i2c_w_mask(sd, 0x32,
3937 			   (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3938 			   0x3f);
3939 		i2c_w_mask(sd, 0x03,
3940 			   (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3941 			   0x0f);
3942 		i2c_w(sd, 0x17, xstart >> 4);
3943 		i2c_w(sd, 0x18, xend >> 4);
3944 		i2c_w(sd, 0x19, ystart >> 3);
3945 		i2c_w(sd, 0x1a, yend >> 3);
3946 		return;
3947 	case SEN_OV8610:
3948 		/* For OV8610 qvga means qsvga */
3949 		i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3950 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3951 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3952 		i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3953 		i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3954 		break;
3955 	case SEN_OV7610:
3956 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3957 		i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3958 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3959 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3960 		break;
3961 	case SEN_OV7620:
3962 	case SEN_OV7620AE:
3963 	case SEN_OV76BE:
3964 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3965 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3966 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3967 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3968 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3969 		i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
3970 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3971 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3972 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3973 		if (sd->sensor == SEN_OV76BE)
3974 			i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3975 		break;
3976 	case SEN_OV7640:
3977 	case SEN_OV7648:
3978 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3979 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3980 		/* Setting this undocumented bit in qvga mode removes a very
3981 		   annoying vertical shaking of the image */
3982 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3983 		/* Unknown */
3984 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3985 		/* Allow higher automatic gain (to allow higher framerates) */
3986 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3987 		i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
3988 		break;
3989 	case SEN_OV7670:
3990 		/* set COM7_FMT_VGA or COM7_FMT_QVGA
3991 		 * do we need to set anything else?
3992 		 *	HSTART etc are set in set_ov_sensor_window itself */
3993 		i2c_w_mask(sd, OV7670_R12_COM7,
3994 			 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
3995 			 OV7670_COM7_FMT_MASK);
3996 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3997 		i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
3998 				OV7670_COM8_AWB);
3999 		if (qvga) {		/* QVGA from ov7670.c by
4000 					 * Jonathan Corbet */
4001 			xstart = 164;
4002 			xend = 28;
4003 			ystart = 14;
4004 			yend = 494;
4005 		} else {		/* VGA */
4006 			xstart = 158;
4007 			xend = 14;
4008 			ystart = 10;
4009 			yend = 490;
4010 		}
4011 		/* OV7670 hardware window registers are split across
4012 		 * multiple locations */
4013 		i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4014 		i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4015 		v = i2c_r(sd, OV7670_R32_HREF);
4016 		v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4017 		msleep(10);	/* need to sleep between read and write to
4018 				 * same reg! */
4019 		i2c_w(sd, OV7670_R32_HREF, v);
4020 
4021 		i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4022 		i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4023 		v = i2c_r(sd, OV7670_R03_VREF);
4024 		v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4025 		msleep(10);	/* need to sleep between read and write to
4026 				 * same reg! */
4027 		i2c_w(sd, OV7670_R03_VREF, v);
4028 		break;
4029 	case SEN_OV6620:
4030 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4031 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4032 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4033 		break;
4034 	case SEN_OV6630:
4035 	case SEN_OV66308AF:
4036 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4037 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4038 		break;
4039 	case SEN_OV9600: {
4040 		const struct ov_i2c_regvals *vals;
4041 		static const struct ov_i2c_regvals sxga_15[] = {
4042 			{0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4043 		};
4044 		static const struct ov_i2c_regvals sxga_7_5[] = {
4045 			{0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4046 		};
4047 		static const struct ov_i2c_regvals vga_30[] = {
4048 			{0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4049 		};
4050 		static const struct ov_i2c_regvals vga_15[] = {
4051 			{0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4052 		};
4053 
4054 		/* frame rates:
4055 		 *	15fps / 7.5 fps for 1280x1024
4056 		 *	30fps / 15fps for 640x480
4057 		 */
4058 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4059 		if (qvga)
4060 			vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4061 		else
4062 			vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4063 		write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4064 		return;
4065 	    }
4066 	default:
4067 		return;
4068 	}
4069 
4070 	/******** Clock programming ********/
4071 	i2c_w(sd, 0x11, sd->clockdiv);
4072 }
4073 
4074 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
4075 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
4076 {
4077 	struct sd *sd = (struct sd *) gspca_dev;
4078 
4079 	if (sd->gspca_dev.streaming)
4080 		reg_w(sd, OV519_R51_RESET1, 0x0f);	/* block stream */
4081 	i2c_w_mask(sd, OV7670_R1E_MVFP,
4082 		OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip,
4083 		OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4084 	if (sd->gspca_dev.streaming)
4085 		reg_w(sd, OV519_R51_RESET1, 0x00);	/* restart stream */
4086 }
4087 
4088 static void set_ov_sensor_window(struct sd *sd)
4089 {
4090 	struct gspca_dev *gspca_dev;
4091 	int qvga, crop;
4092 	int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4093 
4094 	/* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4095 	switch (sd->sensor) {
4096 	case SEN_OV2610:
4097 	case SEN_OV2610AE:
4098 	case SEN_OV3610:
4099 	case SEN_OV7670:
4100 	case SEN_OV9600:
4101 		mode_init_ov_sensor_regs(sd);
4102 		return;
4103 	case SEN_OV7660:
4104 		ov519_set_mode(sd);
4105 		ov519_set_fr(sd);
4106 		return;
4107 	}
4108 
4109 	gspca_dev = &sd->gspca_dev;
4110 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4111 	crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4112 
4113 	/* The different sensor ICs handle setting up of window differently.
4114 	 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4115 	switch (sd->sensor) {
4116 	case SEN_OV8610:
4117 		hwsbase = 0x1e;
4118 		hwebase = 0x1e;
4119 		vwsbase = 0x02;
4120 		vwebase = 0x02;
4121 		break;
4122 	case SEN_OV7610:
4123 	case SEN_OV76BE:
4124 		hwsbase = 0x38;
4125 		hwebase = 0x3a;
4126 		vwsbase = vwebase = 0x05;
4127 		break;
4128 	case SEN_OV6620:
4129 	case SEN_OV6630:
4130 	case SEN_OV66308AF:
4131 		hwsbase = 0x38;
4132 		hwebase = 0x3a;
4133 		vwsbase = 0x05;
4134 		vwebase = 0x06;
4135 		if (sd->sensor == SEN_OV66308AF && qvga)
4136 			/* HDG: this fixes U and V getting swapped */
4137 			hwsbase++;
4138 		if (crop) {
4139 			hwsbase += 8;
4140 			hwebase += 8;
4141 			vwsbase += 11;
4142 			vwebase += 11;
4143 		}
4144 		break;
4145 	case SEN_OV7620:
4146 	case SEN_OV7620AE:
4147 		hwsbase = 0x2f;		/* From 7620.SET (spec is wrong) */
4148 		hwebase = 0x2f;
4149 		vwsbase = vwebase = 0x05;
4150 		break;
4151 	case SEN_OV7640:
4152 	case SEN_OV7648:
4153 		hwsbase = 0x1a;
4154 		hwebase = 0x1a;
4155 		vwsbase = vwebase = 0x03;
4156 		break;
4157 	default:
4158 		return;
4159 	}
4160 
4161 	switch (sd->sensor) {
4162 	case SEN_OV6620:
4163 	case SEN_OV6630:
4164 	case SEN_OV66308AF:
4165 		if (qvga) {		/* QCIF */
4166 			hwscale = 0;
4167 			vwscale = 0;
4168 		} else {		/* CIF */
4169 			hwscale = 1;
4170 			vwscale = 1;	/* The datasheet says 0;
4171 					 * it's wrong */
4172 		}
4173 		break;
4174 	case SEN_OV8610:
4175 		if (qvga) {		/* QSVGA */
4176 			hwscale = 1;
4177 			vwscale = 1;
4178 		} else {		/* SVGA */
4179 			hwscale = 2;
4180 			vwscale = 2;
4181 		}
4182 		break;
4183 	default:			/* SEN_OV7xx0 */
4184 		if (qvga) {		/* QVGA */
4185 			hwscale = 1;
4186 			vwscale = 0;
4187 		} else {		/* VGA */
4188 			hwscale = 2;
4189 			vwscale = 1;
4190 		}
4191 	}
4192 
4193 	mode_init_ov_sensor_regs(sd);
4194 
4195 	i2c_w(sd, 0x17, hwsbase);
4196 	i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4197 	i2c_w(sd, 0x19, vwsbase);
4198 	i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4199 }
4200 
4201 /* -- start the camera -- */
4202 static int sd_start(struct gspca_dev *gspca_dev)
4203 {
4204 	struct sd *sd = (struct sd *) gspca_dev;
4205 
4206 	/* Default for most bridges, allow bridge_mode_init_regs to override */
4207 	sd->sensor_width = sd->gspca_dev.pixfmt.width;
4208 	sd->sensor_height = sd->gspca_dev.pixfmt.height;
4209 
4210 	switch (sd->bridge) {
4211 	case BRIDGE_OV511:
4212 	case BRIDGE_OV511PLUS:
4213 		ov511_mode_init_regs(sd);
4214 		break;
4215 	case BRIDGE_OV518:
4216 	case BRIDGE_OV518PLUS:
4217 		ov518_mode_init_regs(sd);
4218 		break;
4219 	case BRIDGE_OV519:
4220 		ov519_mode_init_regs(sd);
4221 		break;
4222 	/* case BRIDGE_OVFX2: nothing to do */
4223 	case BRIDGE_W9968CF:
4224 		w9968cf_mode_init_regs(sd);
4225 		break;
4226 	}
4227 
4228 	set_ov_sensor_window(sd);
4229 
4230 	/* Force clear snapshot state in case the snapshot button was
4231 	   pressed while we weren't streaming */
4232 	sd->snapshot_needs_reset = 1;
4233 	sd_reset_snapshot(gspca_dev);
4234 
4235 	sd->first_frame = 3;
4236 
4237 	ov51x_restart(sd);
4238 	ov51x_led_control(sd, 1);
4239 	return gspca_dev->usb_err;
4240 }
4241 
4242 static void sd_stopN(struct gspca_dev *gspca_dev)
4243 {
4244 	struct sd *sd = (struct sd *) gspca_dev;
4245 
4246 	ov51x_stop(sd);
4247 	ov51x_led_control(sd, 0);
4248 }
4249 
4250 static void sd_stop0(struct gspca_dev *gspca_dev)
4251 {
4252 	struct sd *sd = (struct sd *) gspca_dev;
4253 
4254 	if (!sd->gspca_dev.present)
4255 		return;
4256 	if (sd->bridge == BRIDGE_W9968CF)
4257 		w9968cf_stop0(sd);
4258 
4259 #if IS_ENABLED(CONFIG_INPUT)
4260 	/* If the last button state is pressed, release it now! */
4261 	if (sd->snapshot_pressed) {
4262 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4263 		input_sync(gspca_dev->input_dev);
4264 		sd->snapshot_pressed = 0;
4265 	}
4266 #endif
4267 	if (sd->bridge == BRIDGE_OV519)
4268 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4269 }
4270 
4271 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4272 {
4273 	struct sd *sd = (struct sd *) gspca_dev;
4274 
4275 	if (sd->snapshot_pressed != state) {
4276 #if IS_ENABLED(CONFIG_INPUT)
4277 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4278 		input_sync(gspca_dev->input_dev);
4279 #endif
4280 		if (state)
4281 			sd->snapshot_needs_reset = 1;
4282 
4283 		sd->snapshot_pressed = state;
4284 	} else {
4285 		/* On the ov511 / ov519 we need to reset the button state
4286 		   multiple times, as resetting does not work as long as the
4287 		   button stays pressed */
4288 		switch (sd->bridge) {
4289 		case BRIDGE_OV511:
4290 		case BRIDGE_OV511PLUS:
4291 		case BRIDGE_OV519:
4292 			if (state)
4293 				sd->snapshot_needs_reset = 1;
4294 			break;
4295 		}
4296 	}
4297 }
4298 
4299 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4300 			u8 *in,			/* isoc packet */
4301 			int len)		/* iso packet length */
4302 {
4303 	struct sd *sd = (struct sd *) gspca_dev;
4304 
4305 	/* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4306 	 * byte non-zero. The EOF packet has image width/height in the
4307 	 * 10th and 11th bytes. The 9th byte is given as follows:
4308 	 *
4309 	 * bit 7: EOF
4310 	 *     6: compression enabled
4311 	 *     5: 422/420/400 modes
4312 	 *     4: 422/420/400 modes
4313 	 *     3: 1
4314 	 *     2: snapshot button on
4315 	 *     1: snapshot frame
4316 	 *     0: even/odd field
4317 	 */
4318 	if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4319 	    (in[8] & 0x08)) {
4320 		ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4321 		if (in[8] & 0x80) {
4322 			/* Frame end */
4323 			if ((in[9] + 1) * 8 != gspca_dev->pixfmt.width ||
4324 			    (in[10] + 1) * 8 != gspca_dev->pixfmt.height) {
4325 				gspca_err(gspca_dev, "Invalid frame size, got: %dx%d, requested: %dx%d\n",
4326 					  (in[9] + 1) * 8, (in[10] + 1) * 8,
4327 					  gspca_dev->pixfmt.width,
4328 					  gspca_dev->pixfmt.height);
4329 				gspca_dev->last_packet_type = DISCARD_PACKET;
4330 				return;
4331 			}
4332 			/* Add 11 byte footer to frame, might be useful */
4333 			gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4334 			return;
4335 		} else {
4336 			/* Frame start */
4337 			gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4338 			sd->packet_nr = 0;
4339 		}
4340 	}
4341 
4342 	/* Ignore the packet number */
4343 	len--;
4344 
4345 	/* intermediate packet */
4346 	gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4347 }
4348 
4349 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4350 			u8 *data,			/* isoc packet */
4351 			int len)			/* iso packet length */
4352 {
4353 	struct sd *sd = (struct sd *) gspca_dev;
4354 
4355 	/* A false positive here is likely, until OVT gives me
4356 	 * the definitive SOF/EOF format */
4357 	if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4358 		ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4359 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4360 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4361 		sd->packet_nr = 0;
4362 	}
4363 
4364 	if (gspca_dev->last_packet_type == DISCARD_PACKET)
4365 		return;
4366 
4367 	/* Does this device use packet numbers ? */
4368 	if (len & 7) {
4369 		len--;
4370 		if (sd->packet_nr == data[len])
4371 			sd->packet_nr++;
4372 		/* The last few packets of the frame (which are all 0's
4373 		   except that they may contain part of the footer), are
4374 		   numbered 0 */
4375 		else if (sd->packet_nr == 0 || data[len]) {
4376 			gspca_err(gspca_dev, "Invalid packet nr: %d (expect: %d)\n",
4377 				  (int)data[len], (int)sd->packet_nr);
4378 			gspca_dev->last_packet_type = DISCARD_PACKET;
4379 			return;
4380 		}
4381 	}
4382 
4383 	/* intermediate packet */
4384 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4385 }
4386 
4387 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4388 			u8 *data,			/* isoc packet */
4389 			int len)			/* iso packet length */
4390 {
4391 	/* Header of ov519 is 16 bytes:
4392 	 *     Byte     Value      Description
4393 	 *	0	0xff	magic
4394 	 *	1	0xff	magic
4395 	 *	2	0xff	magic
4396 	 *	3	0xXX	0x50 = SOF, 0x51 = EOF
4397 	 *	9	0xXX	0x01 initial frame without data,
4398 	 *			0x00 standard frame with image
4399 	 *	14	Lo	in EOF: length of image data / 8
4400 	 *	15	Hi
4401 	 */
4402 
4403 	if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4404 		switch (data[3]) {
4405 		case 0x50:		/* start of frame */
4406 			/* Don't check the button state here, as the state
4407 			   usually (always ?) changes at EOF and checking it
4408 			   here leads to unnecessary snapshot state resets. */
4409 #define HDRSZ 16
4410 			data += HDRSZ;
4411 			len -= HDRSZ;
4412 #undef HDRSZ
4413 			if (data[0] == 0xff || data[1] == 0xd8)
4414 				gspca_frame_add(gspca_dev, FIRST_PACKET,
4415 						data, len);
4416 			else
4417 				gspca_dev->last_packet_type = DISCARD_PACKET;
4418 			return;
4419 		case 0x51:		/* end of frame */
4420 			ov51x_handle_button(gspca_dev, data[11] & 1);
4421 			if (data[9] != 0)
4422 				gspca_dev->last_packet_type = DISCARD_PACKET;
4423 			gspca_frame_add(gspca_dev, LAST_PACKET,
4424 					NULL, 0);
4425 			return;
4426 		}
4427 	}
4428 
4429 	/* intermediate packet */
4430 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4431 }
4432 
4433 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4434 			u8 *data,			/* isoc packet */
4435 			int len)			/* iso packet length */
4436 {
4437 	struct sd *sd = (struct sd *) gspca_dev;
4438 
4439 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4440 
4441 	/* A short read signals EOF */
4442 	if (len < gspca_dev->cam.bulk_size) {
4443 		/* If the frame is short, and it is one of the first ones
4444 		   the sensor and bridge are still syncing, so drop it. */
4445 		if (sd->first_frame) {
4446 			sd->first_frame--;
4447 			if (gspca_dev->image_len <
4448 				  sd->gspca_dev.pixfmt.width *
4449 					sd->gspca_dev.pixfmt.height)
4450 				gspca_dev->last_packet_type = DISCARD_PACKET;
4451 		}
4452 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4453 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4454 	}
4455 }
4456 
4457 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4458 			u8 *data,			/* isoc packet */
4459 			int len)			/* iso packet length */
4460 {
4461 	struct sd *sd = (struct sd *) gspca_dev;
4462 
4463 	switch (sd->bridge) {
4464 	case BRIDGE_OV511:
4465 	case BRIDGE_OV511PLUS:
4466 		ov511_pkt_scan(gspca_dev, data, len);
4467 		break;
4468 	case BRIDGE_OV518:
4469 	case BRIDGE_OV518PLUS:
4470 		ov518_pkt_scan(gspca_dev, data, len);
4471 		break;
4472 	case BRIDGE_OV519:
4473 		ov519_pkt_scan(gspca_dev, data, len);
4474 		break;
4475 	case BRIDGE_OVFX2:
4476 		ovfx2_pkt_scan(gspca_dev, data, len);
4477 		break;
4478 	case BRIDGE_W9968CF:
4479 		w9968cf_pkt_scan(gspca_dev, data, len);
4480 		break;
4481 	}
4482 }
4483 
4484 /* -- management routines -- */
4485 
4486 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
4487 {
4488 	struct sd *sd = (struct sd *) gspca_dev;
4489 	static const struct ov_i2c_regvals brit_7660[][7] = {
4490 		{{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4491 			{0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4492 		{{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4493 			{0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4494 		{{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4495 			{0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4496 		{{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4497 			{0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4498 		{{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4499 			{0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4500 		{{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4501 			{0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4502 		{{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4503 			{0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4504 	};
4505 
4506 	switch (sd->sensor) {
4507 	case SEN_OV8610:
4508 	case SEN_OV7610:
4509 	case SEN_OV76BE:
4510 	case SEN_OV6620:
4511 	case SEN_OV6630:
4512 	case SEN_OV66308AF:
4513 	case SEN_OV7640:
4514 	case SEN_OV7648:
4515 		i2c_w(sd, OV7610_REG_BRT, val);
4516 		break;
4517 	case SEN_OV7620:
4518 	case SEN_OV7620AE:
4519 		i2c_w(sd, OV7610_REG_BRT, val);
4520 		break;
4521 	case SEN_OV7660:
4522 		write_i2c_regvals(sd, brit_7660[val],
4523 				ARRAY_SIZE(brit_7660[0]));
4524 		break;
4525 	case SEN_OV7670:
4526 /*win trace
4527  *		i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4528 		i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4529 		break;
4530 	}
4531 }
4532 
4533 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
4534 {
4535 	struct sd *sd = (struct sd *) gspca_dev;
4536 	static const struct ov_i2c_regvals contrast_7660[][31] = {
4537 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4538 		 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4539 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4540 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4541 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4542 		 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4543 		 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4544 		 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4545 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4546 		 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4547 		 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4548 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4549 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4550 		 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4551 		 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4552 		 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4553 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4554 		 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4555 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4556 		 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4557 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4558 		 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4559 		 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4560 		 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4561 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4562 		 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4563 		 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4564 		 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4565 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4566 		 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4567 		 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4568 		 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4569 		{{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4570 		 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4571 		 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4572 		 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4573 		 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4574 		 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4575 		 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4576 		 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4577 		{{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4578 		 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4579 		 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4580 		 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4581 		 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4582 		 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4583 		 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4584 		 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4585 		{{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4586 		 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4587 		 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4588 		 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4589 		 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4590 		 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4591 		 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4592 		 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4593 	};
4594 
4595 	switch (sd->sensor) {
4596 	case SEN_OV7610:
4597 	case SEN_OV6620:
4598 		i2c_w(sd, OV7610_REG_CNT, val);
4599 		break;
4600 	case SEN_OV6630:
4601 	case SEN_OV66308AF:
4602 		i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4603 		break;
4604 	case SEN_OV8610: {
4605 		static const u8 ctab[] = {
4606 			0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4607 		};
4608 
4609 		/* Use Y gamma control instead. Bit 0 enables it. */
4610 		i2c_w(sd, 0x64, ctab[val >> 5]);
4611 		break;
4612 	    }
4613 	case SEN_OV7620:
4614 	case SEN_OV7620AE: {
4615 		static const u8 ctab[] = {
4616 			0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4617 			0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4618 		};
4619 
4620 		/* Use Y gamma control instead. Bit 0 enables it. */
4621 		i2c_w(sd, 0x64, ctab[val >> 4]);
4622 		break;
4623 	    }
4624 	case SEN_OV7660:
4625 		write_i2c_regvals(sd, contrast_7660[val],
4626 					ARRAY_SIZE(contrast_7660[0]));
4627 		break;
4628 	case SEN_OV7670:
4629 		/* check that this isn't just the same as ov7610 */
4630 		i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4631 		break;
4632 	}
4633 }
4634 
4635 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
4636 {
4637 	struct sd *sd = (struct sd *) gspca_dev;
4638 
4639 	i2c_w(sd, 0x10, val);
4640 }
4641 
4642 static void setcolors(struct gspca_dev *gspca_dev, s32 val)
4643 {
4644 	struct sd *sd = (struct sd *) gspca_dev;
4645 	static const struct ov_i2c_regvals colors_7660[][6] = {
4646 		{{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4647 		 {0x53, 0x19}, {0x54, 0x23}},
4648 		{{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4649 		 {0x53, 0x2c}, {0x54, 0x3e}},
4650 		{{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4651 		 {0x53, 0x40}, {0x54, 0x59}},
4652 		{{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4653 		 {0x53, 0x53}, {0x54, 0x73}},
4654 		{{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4655 		 {0x53, 0x66}, {0x54, 0x8e}},
4656 	};
4657 
4658 	switch (sd->sensor) {
4659 	case SEN_OV8610:
4660 	case SEN_OV7610:
4661 	case SEN_OV76BE:
4662 	case SEN_OV6620:
4663 	case SEN_OV6630:
4664 	case SEN_OV66308AF:
4665 		i2c_w(sd, OV7610_REG_SAT, val);
4666 		break;
4667 	case SEN_OV7620:
4668 	case SEN_OV7620AE:
4669 		/* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4670 /*		rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4671 		if (rc < 0)
4672 			goto out; */
4673 		i2c_w(sd, OV7610_REG_SAT, val);
4674 		break;
4675 	case SEN_OV7640:
4676 	case SEN_OV7648:
4677 		i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4678 		break;
4679 	case SEN_OV7660:
4680 		write_i2c_regvals(sd, colors_7660[val],
4681 					ARRAY_SIZE(colors_7660[0]));
4682 		break;
4683 	case SEN_OV7670:
4684 		/* supported later once I work out how to do it
4685 		 * transparently fail now! */
4686 		/* set REG_COM13 values for UV sat auto mode */
4687 		break;
4688 	}
4689 }
4690 
4691 static void setautobright(struct gspca_dev *gspca_dev, s32 val)
4692 {
4693 	struct sd *sd = (struct sd *) gspca_dev;
4694 
4695 	i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10);
4696 }
4697 
4698 static void setfreq_i(struct sd *sd, s32 val)
4699 {
4700 	if (sd->sensor == SEN_OV7660
4701 	 || sd->sensor == SEN_OV7670) {
4702 		switch (val) {
4703 		case 0: /* Banding filter disabled */
4704 			i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4705 			break;
4706 		case 1: /* 50 hz */
4707 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4708 				   OV7670_COM8_BFILT);
4709 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4710 			break;
4711 		case 2: /* 60 hz */
4712 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4713 				   OV7670_COM8_BFILT);
4714 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4715 			break;
4716 		case 3: /* Auto hz - ov7670 only */
4717 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4718 				   OV7670_COM8_BFILT);
4719 			i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4720 				   0x18);
4721 			break;
4722 		}
4723 	} else {
4724 		switch (val) {
4725 		case 0: /* Banding filter disabled */
4726 			i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4727 			i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4728 			break;
4729 		case 1: /* 50 hz (filter on and framerate adj) */
4730 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4731 			i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4732 			/* 20 fps -> 16.667 fps */
4733 			if (sd->sensor == SEN_OV6620 ||
4734 			    sd->sensor == SEN_OV6630 ||
4735 			    sd->sensor == SEN_OV66308AF)
4736 				i2c_w(sd, 0x2b, 0x5e);
4737 			else
4738 				i2c_w(sd, 0x2b, 0xac);
4739 			break;
4740 		case 2: /* 60 hz (filter on, ...) */
4741 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4742 			if (sd->sensor == SEN_OV6620 ||
4743 			    sd->sensor == SEN_OV6630 ||
4744 			    sd->sensor == SEN_OV66308AF) {
4745 				/* 20 fps -> 15 fps */
4746 				i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4747 				i2c_w(sd, 0x2b, 0xa8);
4748 			} else {
4749 				/* no framerate adj. */
4750 				i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4751 			}
4752 			break;
4753 		}
4754 	}
4755 }
4756 
4757 static void setfreq(struct gspca_dev *gspca_dev, s32 val)
4758 {
4759 	struct sd *sd = (struct sd *) gspca_dev;
4760 
4761 	setfreq_i(sd, val);
4762 
4763 	/* Ugly but necessary */
4764 	if (sd->bridge == BRIDGE_W9968CF)
4765 		w9968cf_set_crop_window(sd);
4766 }
4767 
4768 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4769 			struct v4l2_jpegcompression *jcomp)
4770 {
4771 	struct sd *sd = (struct sd *) gspca_dev;
4772 
4773 	if (sd->bridge != BRIDGE_W9968CF)
4774 		return -ENOTTY;
4775 
4776 	memset(jcomp, 0, sizeof *jcomp);
4777 	jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual);
4778 	jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4779 			      V4L2_JPEG_MARKER_DRI;
4780 	return 0;
4781 }
4782 
4783 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4784 			const struct v4l2_jpegcompression *jcomp)
4785 {
4786 	struct sd *sd = (struct sd *) gspca_dev;
4787 
4788 	if (sd->bridge != BRIDGE_W9968CF)
4789 		return -ENOTTY;
4790 
4791 	v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality);
4792 	return 0;
4793 }
4794 
4795 static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
4796 {
4797 	struct gspca_dev *gspca_dev =
4798 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4799 	struct sd *sd = (struct sd *)gspca_dev;
4800 
4801 	gspca_dev->usb_err = 0;
4802 
4803 	switch (ctrl->id) {
4804 	case V4L2_CID_AUTOGAIN:
4805 		gspca_dev->exposure->val = i2c_r(sd, 0x10);
4806 		break;
4807 	}
4808 	return 0;
4809 }
4810 
4811 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
4812 {
4813 	struct gspca_dev *gspca_dev =
4814 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4815 	struct sd *sd = (struct sd *)gspca_dev;
4816 
4817 	gspca_dev->usb_err = 0;
4818 
4819 	if (!gspca_dev->streaming)
4820 		return 0;
4821 
4822 	switch (ctrl->id) {
4823 	case V4L2_CID_BRIGHTNESS:
4824 		setbrightness(gspca_dev, ctrl->val);
4825 		break;
4826 	case V4L2_CID_CONTRAST:
4827 		setcontrast(gspca_dev, ctrl->val);
4828 		break;
4829 	case V4L2_CID_POWER_LINE_FREQUENCY:
4830 		setfreq(gspca_dev, ctrl->val);
4831 		break;
4832 	case V4L2_CID_AUTOBRIGHTNESS:
4833 		if (ctrl->is_new)
4834 			setautobright(gspca_dev, ctrl->val);
4835 		if (!ctrl->val && sd->brightness->is_new)
4836 			setbrightness(gspca_dev, sd->brightness->val);
4837 		break;
4838 	case V4L2_CID_SATURATION:
4839 		setcolors(gspca_dev, ctrl->val);
4840 		break;
4841 	case V4L2_CID_HFLIP:
4842 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
4843 		break;
4844 	case V4L2_CID_AUTOGAIN:
4845 		if (ctrl->is_new)
4846 			setautogain(gspca_dev, ctrl->val);
4847 		if (!ctrl->val && gspca_dev->exposure->is_new)
4848 			setexposure(gspca_dev, gspca_dev->exposure->val);
4849 		break;
4850 	case V4L2_CID_JPEG_COMPRESSION_QUALITY:
4851 		return -EBUSY; /* Should never happen, as we grab the ctrl */
4852 	}
4853 	return gspca_dev->usb_err;
4854 }
4855 
4856 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
4857 	.g_volatile_ctrl = sd_g_volatile_ctrl,
4858 	.s_ctrl = sd_s_ctrl,
4859 };
4860 
4861 static int sd_init_controls(struct gspca_dev *gspca_dev)
4862 {
4863 	struct sd *sd = (struct sd *)gspca_dev;
4864 	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
4865 
4866 	gspca_dev->vdev.ctrl_handler = hdl;
4867 	v4l2_ctrl_handler_init(hdl, 10);
4868 	if (valid_controls[sd->sensor].has_brightness)
4869 		sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4870 			V4L2_CID_BRIGHTNESS, 0,
4871 			sd->sensor == SEN_OV7660 ? 6 : 255, 1,
4872 			sd->sensor == SEN_OV7660 ? 3 : 127);
4873 	if (valid_controls[sd->sensor].has_contrast) {
4874 		if (sd->sensor == SEN_OV7660)
4875 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4876 				V4L2_CID_CONTRAST, 0, 6, 1, 3);
4877 		else
4878 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4879 				V4L2_CID_CONTRAST, 0, 255, 1,
4880 				(sd->sensor == SEN_OV6630 ||
4881 				 sd->sensor == SEN_OV66308AF) ? 200 : 127);
4882 	}
4883 	if (valid_controls[sd->sensor].has_sat)
4884 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4885 			V4L2_CID_SATURATION, 0,
4886 			sd->sensor == SEN_OV7660 ? 4 : 255, 1,
4887 			sd->sensor == SEN_OV7660 ? 2 : 127);
4888 	if (valid_controls[sd->sensor].has_exposure)
4889 		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4890 			V4L2_CID_EXPOSURE, 0, 255, 1, 127);
4891 	if (valid_controls[sd->sensor].has_hvflip) {
4892 		sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4893 			V4L2_CID_HFLIP, 0, 1, 1, 0);
4894 		sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4895 			V4L2_CID_VFLIP, 0, 1, 1, 0);
4896 	}
4897 	if (valid_controls[sd->sensor].has_autobright)
4898 		sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4899 			V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1);
4900 	if (valid_controls[sd->sensor].has_autogain)
4901 		gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4902 			V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
4903 	if (valid_controls[sd->sensor].has_freq) {
4904 		if (sd->sensor == SEN_OV7670)
4905 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4906 				V4L2_CID_POWER_LINE_FREQUENCY,
4907 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
4908 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
4909 		else
4910 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4911 				V4L2_CID_POWER_LINE_FREQUENCY,
4912 				V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
4913 	}
4914 	if (sd->bridge == BRIDGE_W9968CF)
4915 		sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4916 			V4L2_CID_JPEG_COMPRESSION_QUALITY,
4917 			QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF);
4918 
4919 	if (hdl->error) {
4920 		gspca_err(gspca_dev, "Could not initialize controls\n");
4921 		return hdl->error;
4922 	}
4923 	if (gspca_dev->autogain)
4924 		v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true);
4925 	if (sd->autobright)
4926 		v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false);
4927 	if (sd->hflip)
4928 		v4l2_ctrl_cluster(2, &sd->hflip);
4929 	return 0;
4930 }
4931 
4932 /* sub-driver description */
4933 static const struct sd_desc sd_desc = {
4934 	.name = MODULE_NAME,
4935 	.config = sd_config,
4936 	.init = sd_init,
4937 	.init_controls = sd_init_controls,
4938 	.isoc_init = sd_isoc_init,
4939 	.start = sd_start,
4940 	.stopN = sd_stopN,
4941 	.stop0 = sd_stop0,
4942 	.pkt_scan = sd_pkt_scan,
4943 	.dq_callback = sd_reset_snapshot,
4944 	.get_jcomp = sd_get_jcomp,
4945 	.set_jcomp = sd_set_jcomp,
4946 #if IS_ENABLED(CONFIG_INPUT)
4947 	.other_input = 1,
4948 #endif
4949 };
4950 
4951 /* -- module initialisation -- */
4952 static const struct usb_device_id device_table[] = {
4953 	{USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4954 	{USB_DEVICE(0x041e, 0x4052),
4955 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4956 	{USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4957 	{USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4958 	{USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4959 	{USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
4960 	{USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4961 	{USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
4962 	{USB_DEVICE(0x045e, 0x028c),
4963 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4964 	{USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4965 	{USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4966 	{USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4967 	{USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4968 	{USB_DEVICE(0x05a9, 0x0519),
4969 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4970 	{USB_DEVICE(0x05a9, 0x0530),
4971 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4972 	{USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
4973 	{USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
4974 	{USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
4975 	{USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
4976 	{USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
4977 	{USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
4978 	{USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
4979 	{USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
4980 	{USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
4981 	{USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
4982 	{}
4983 };
4984 
4985 MODULE_DEVICE_TABLE(usb, device_table);
4986 
4987 /* -- device connect -- */
4988 static int sd_probe(struct usb_interface *intf,
4989 			const struct usb_device_id *id)
4990 {
4991 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
4992 				THIS_MODULE);
4993 }
4994 
4995 static struct usb_driver sd_driver = {
4996 	.name = MODULE_NAME,
4997 	.id_table = device_table,
4998 	.probe = sd_probe,
4999 	.disconnect = gspca_disconnect,
5000 #ifdef CONFIG_PM
5001 	.suspend = gspca_suspend,
5002 	.resume = gspca_resume,
5003 	.reset_resume = gspca_resume,
5004 #endif
5005 };
5006 
5007 module_usb_driver(sd_driver);
5008 
5009 module_param(frame_rate, int, 0644);
5010 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");
5011