xref: /linux/drivers/media/usb/gspca/gl860/gl860.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* GSPCA subdrivers for Genesys Logic webcams with the GL860 chip
3  * Subdriver core
4  *
5  * 2009/09/24 Olivier Lorin <o.lorin@laposte.net>
6  * GSPCA by Jean-Francois Moine <http://moinejf.free.fr>
7  * Thanks BUGabundo and Malmostoso for your amazing help!
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include "gspca.h"
13 #include "gl860.h"
14 
15 MODULE_AUTHOR("Olivier Lorin <o.lorin@laposte.net>");
16 MODULE_DESCRIPTION("Genesys Logic USB PC Camera Driver");
17 MODULE_LICENSE("GPL");
18 
19 /*======================== static function declarations ====================*/
20 
21 static void (*dev_init_settings)(struct gspca_dev *gspca_dev);
22 
23 static int  sd_config(struct gspca_dev *gspca_dev,
24 			const struct usb_device_id *id);
25 static int  sd_init(struct gspca_dev *gspca_dev);
26 static int  sd_isoc_init(struct gspca_dev *gspca_dev);
27 static int  sd_start(struct gspca_dev *gspca_dev);
28 static void sd_stop0(struct gspca_dev *gspca_dev);
29 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
30 			u8 *data, int len);
31 static void sd_callback(struct gspca_dev *gspca_dev);
32 
33 static int gl860_guess_sensor(struct gspca_dev *gspca_dev,
34 				u16 vendor_id, u16 product_id);
35 
36 /*============================ driver options ==============================*/
37 
38 static s32 AC50Hz = 0xff;
39 module_param(AC50Hz, int, 0644);
40 MODULE_PARM_DESC(AC50Hz, " Does AC power frequency is 50Hz? (0/1)");
41 
42 static char sensor[7];
43 module_param_string(sensor, sensor, sizeof(sensor), 0644);
44 MODULE_PARM_DESC(sensor,
45 		" Driver sensor ('MI1320'/'MI2020'/'OV9655'/'OV2640')");
46 
47 /*============================ webcam controls =============================*/
48 
49 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
50 {
51 	struct gspca_dev *gspca_dev =
52 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
53 	struct sd *sd = (struct sd *) gspca_dev;
54 
55 	switch (ctrl->id) {
56 	case V4L2_CID_BRIGHTNESS:
57 		sd->vcur.brightness = ctrl->val;
58 		break;
59 	case V4L2_CID_CONTRAST:
60 		sd->vcur.contrast = ctrl->val;
61 		break;
62 	case V4L2_CID_SATURATION:
63 		sd->vcur.saturation = ctrl->val;
64 		break;
65 	case V4L2_CID_HUE:
66 		sd->vcur.hue = ctrl->val;
67 		break;
68 	case V4L2_CID_GAMMA:
69 		sd->vcur.gamma = ctrl->val;
70 		break;
71 	case V4L2_CID_HFLIP:
72 		sd->vcur.mirror = ctrl->val;
73 		break;
74 	case V4L2_CID_VFLIP:
75 		sd->vcur.flip = ctrl->val;
76 		break;
77 	case V4L2_CID_POWER_LINE_FREQUENCY:
78 		sd->vcur.AC50Hz = ctrl->val;
79 		break;
80 	case V4L2_CID_WHITE_BALANCE_TEMPERATURE:
81 		sd->vcur.whitebal = ctrl->val;
82 		break;
83 	case V4L2_CID_SHARPNESS:
84 		sd->vcur.sharpness = ctrl->val;
85 		break;
86 	case V4L2_CID_BACKLIGHT_COMPENSATION:
87 		sd->vcur.backlight = ctrl->val;
88 		break;
89 	default:
90 		return -EINVAL;
91 	}
92 
93 	if (gspca_dev->streaming)
94 		sd->waitSet = 1;
95 
96 	return 0;
97 }
98 
99 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
100 	.s_ctrl = sd_s_ctrl,
101 };
102 
103 static int sd_init_controls(struct gspca_dev *gspca_dev)
104 {
105 	struct sd *sd = (struct sd *) gspca_dev;
106 	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
107 
108 	gspca_dev->vdev.ctrl_handler = hdl;
109 	v4l2_ctrl_handler_init(hdl, 11);
110 
111 	if (sd->vmax.brightness)
112 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_BRIGHTNESS,
113 				  0, sd->vmax.brightness, 1,
114 				  sd->vcur.brightness);
115 
116 	if (sd->vmax.contrast)
117 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_CONTRAST,
118 				  0, sd->vmax.contrast, 1,
119 				  sd->vcur.contrast);
120 
121 	if (sd->vmax.saturation)
122 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_SATURATION,
123 				  0, sd->vmax.saturation, 1,
124 				  sd->vcur.saturation);
125 
126 	if (sd->vmax.hue)
127 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_HUE,
128 				  0, sd->vmax.hue, 1, sd->vcur.hue);
129 
130 	if (sd->vmax.gamma)
131 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_GAMMA,
132 				  0, sd->vmax.gamma, 1, sd->vcur.gamma);
133 
134 	if (sd->vmax.mirror)
135 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_HFLIP,
136 				  0, sd->vmax.mirror, 1, sd->vcur.mirror);
137 
138 	if (sd->vmax.flip)
139 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_VFLIP,
140 				  0, sd->vmax.flip, 1, sd->vcur.flip);
141 
142 	if (sd->vmax.AC50Hz)
143 		v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
144 				  V4L2_CID_POWER_LINE_FREQUENCY,
145 				  sd->vmax.AC50Hz, 0, sd->vcur.AC50Hz);
146 
147 	if (sd->vmax.whitebal)
148 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
149 				  V4L2_CID_WHITE_BALANCE_TEMPERATURE,
150 				  0, sd->vmax.whitebal, 1, sd->vcur.whitebal);
151 
152 	if (sd->vmax.sharpness)
153 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops, V4L2_CID_SHARPNESS,
154 				  0, sd->vmax.sharpness, 1,
155 				  sd->vcur.sharpness);
156 
157 	if (sd->vmax.backlight)
158 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
159 				  V4L2_CID_BACKLIGHT_COMPENSATION,
160 				  0, sd->vmax.backlight, 1,
161 				  sd->vcur.backlight);
162 
163 	if (hdl->error) {
164 		pr_err("Could not initialize controls\n");
165 		return hdl->error;
166 	}
167 
168 	return 0;
169 }
170 
171 /*==================== sud-driver structure initialisation =================*/
172 
173 static const struct sd_desc sd_desc_mi1320 = {
174 	.name        = MODULE_NAME,
175 	.config      = sd_config,
176 	.init        = sd_init,
177 	.init_controls = sd_init_controls,
178 	.isoc_init   = sd_isoc_init,
179 	.start       = sd_start,
180 	.stop0       = sd_stop0,
181 	.pkt_scan    = sd_pkt_scan,
182 	.dq_callback = sd_callback,
183 };
184 
185 static const struct sd_desc sd_desc_mi2020 = {
186 	.name        = MODULE_NAME,
187 	.config      = sd_config,
188 	.init        = sd_init,
189 	.init_controls = sd_init_controls,
190 	.isoc_init   = sd_isoc_init,
191 	.start       = sd_start,
192 	.stop0       = sd_stop0,
193 	.pkt_scan    = sd_pkt_scan,
194 	.dq_callback = sd_callback,
195 };
196 
197 static const struct sd_desc sd_desc_ov2640 = {
198 	.name        = MODULE_NAME,
199 	.config      = sd_config,
200 	.init        = sd_init,
201 	.init_controls = sd_init_controls,
202 	.isoc_init   = sd_isoc_init,
203 	.start       = sd_start,
204 	.stop0       = sd_stop0,
205 	.pkt_scan    = sd_pkt_scan,
206 	.dq_callback = sd_callback,
207 };
208 
209 static const struct sd_desc sd_desc_ov9655 = {
210 	.name        = MODULE_NAME,
211 	.config      = sd_config,
212 	.init        = sd_init,
213 	.init_controls = sd_init_controls,
214 	.isoc_init   = sd_isoc_init,
215 	.start       = sd_start,
216 	.stop0       = sd_stop0,
217 	.pkt_scan    = sd_pkt_scan,
218 	.dq_callback = sd_callback,
219 };
220 
221 /*=========================== sub-driver image sizes =======================*/
222 
223 static struct v4l2_pix_format mi2020_mode[] = {
224 	{ 640,  480, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
225 		.bytesperline = 640,
226 		.sizeimage = 640 * 480,
227 		.colorspace = V4L2_COLORSPACE_SRGB,
228 		.priv = 0
229 	},
230 	{ 800,  598, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
231 		.bytesperline = 800,
232 		.sizeimage = 800 * 598,
233 		.colorspace = V4L2_COLORSPACE_SRGB,
234 		.priv = 1
235 	},
236 	{1280, 1024, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
237 		.bytesperline = 1280,
238 		.sizeimage = 1280 * 1024,
239 		.colorspace = V4L2_COLORSPACE_SRGB,
240 		.priv = 2
241 	},
242 	{1600, 1198, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
243 		.bytesperline = 1600,
244 		.sizeimage = 1600 * 1198,
245 		.colorspace = V4L2_COLORSPACE_SRGB,
246 		.priv = 3
247 	},
248 };
249 
250 static struct v4l2_pix_format ov2640_mode[] = {
251 	{ 640,  480, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
252 		.bytesperline = 640,
253 		.sizeimage = 640 * 480,
254 		.colorspace = V4L2_COLORSPACE_SRGB,
255 		.priv = 0
256 	},
257 	{ 800,  600, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
258 		.bytesperline = 800,
259 		.sizeimage = 800 * 600,
260 		.colorspace = V4L2_COLORSPACE_SRGB,
261 		.priv = 1
262 	},
263 	{1280,  960, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
264 		.bytesperline = 1280,
265 		.sizeimage = 1280 * 960,
266 		.colorspace = V4L2_COLORSPACE_SRGB,
267 		.priv = 2
268 	},
269 	{1600, 1200, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
270 		.bytesperline = 1600,
271 		.sizeimage = 1600 * 1200,
272 		.colorspace = V4L2_COLORSPACE_SRGB,
273 		.priv = 3
274 	},
275 };
276 
277 static struct v4l2_pix_format mi1320_mode[] = {
278 	{ 640,  480, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
279 		.bytesperline = 640,
280 		.sizeimage = 640 * 480,
281 		.colorspace = V4L2_COLORSPACE_SRGB,
282 		.priv = 0
283 	},
284 	{ 800,  600, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
285 		.bytesperline = 800,
286 		.sizeimage = 800 * 600,
287 		.colorspace = V4L2_COLORSPACE_SRGB,
288 		.priv = 1
289 	},
290 	{1280,  960, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
291 		.bytesperline = 1280,
292 		.sizeimage = 1280 * 960,
293 		.colorspace = V4L2_COLORSPACE_SRGB,
294 		.priv = 2
295 	},
296 };
297 
298 static struct v4l2_pix_format ov9655_mode[] = {
299 	{ 640,  480, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
300 		.bytesperline = 640,
301 		.sizeimage = 640 * 480,
302 		.colorspace = V4L2_COLORSPACE_SRGB,
303 		.priv = 0
304 	},
305 	{1280,  960, V4L2_PIX_FMT_SGBRG8, V4L2_FIELD_NONE,
306 		.bytesperline = 1280,
307 		.sizeimage = 1280 * 960,
308 		.colorspace = V4L2_COLORSPACE_SRGB,
309 		.priv = 1
310 	},
311 };
312 
313 /*========================= sud-driver functions ===========================*/
314 
315 /* This function is called at probe time */
316 static int sd_config(struct gspca_dev *gspca_dev,
317 			const struct usb_device_id *id)
318 {
319 	struct sd *sd = (struct sd *) gspca_dev;
320 	struct cam *cam;
321 	u16 vendor_id, product_id;
322 
323 	/* Get USB VendorID and ProductID */
324 	vendor_id  = id->idVendor;
325 	product_id = id->idProduct;
326 
327 	sd->nbRightUp = 1;
328 	sd->nbIm = -1;
329 
330 	sd->sensor = 0xff;
331 	if (strcmp(sensor, "MI1320") == 0)
332 		sd->sensor = ID_MI1320;
333 	else if (strcmp(sensor, "OV2640") == 0)
334 		sd->sensor = ID_OV2640;
335 	else if (strcmp(sensor, "OV9655") == 0)
336 		sd->sensor = ID_OV9655;
337 	else if (strcmp(sensor, "MI2020") == 0)
338 		sd->sensor = ID_MI2020;
339 
340 	/* Get sensor and set the suitable init/start/../stop functions */
341 	if (gl860_guess_sensor(gspca_dev, vendor_id, product_id) == -1)
342 		return -1;
343 
344 	cam = &gspca_dev->cam;
345 
346 	switch (sd->sensor) {
347 	case ID_MI1320:
348 		gspca_dev->sd_desc = &sd_desc_mi1320;
349 		cam->cam_mode = mi1320_mode;
350 		cam->nmodes = ARRAY_SIZE(mi1320_mode);
351 		dev_init_settings   = mi1320_init_settings;
352 		break;
353 
354 	case ID_MI2020:
355 		gspca_dev->sd_desc = &sd_desc_mi2020;
356 		cam->cam_mode = mi2020_mode;
357 		cam->nmodes = ARRAY_SIZE(mi2020_mode);
358 		dev_init_settings   = mi2020_init_settings;
359 		break;
360 
361 	case ID_OV2640:
362 		gspca_dev->sd_desc = &sd_desc_ov2640;
363 		cam->cam_mode = ov2640_mode;
364 		cam->nmodes = ARRAY_SIZE(ov2640_mode);
365 		dev_init_settings   = ov2640_init_settings;
366 		break;
367 
368 	case ID_OV9655:
369 		gspca_dev->sd_desc = &sd_desc_ov9655;
370 		cam->cam_mode = ov9655_mode;
371 		cam->nmodes = ARRAY_SIZE(ov9655_mode);
372 		dev_init_settings   = ov9655_init_settings;
373 		break;
374 	}
375 
376 	dev_init_settings(gspca_dev);
377 	if (AC50Hz != 0xff)
378 		((struct sd *) gspca_dev)->vcur.AC50Hz = AC50Hz;
379 
380 	return 0;
381 }
382 
383 /* This function is called at probe time after sd_config */
384 static int sd_init(struct gspca_dev *gspca_dev)
385 {
386 	struct sd *sd = (struct sd *) gspca_dev;
387 
388 	return sd->dev_init_at_startup(gspca_dev);
389 }
390 
391 /* This function is called before to choose the alt setting */
392 static int sd_isoc_init(struct gspca_dev *gspca_dev)
393 {
394 	struct sd *sd = (struct sd *) gspca_dev;
395 
396 	return sd->dev_configure_alt(gspca_dev);
397 }
398 
399 /* This function is called to start the webcam */
400 static int sd_start(struct gspca_dev *gspca_dev)
401 {
402 	struct sd *sd = (struct sd *) gspca_dev;
403 
404 	return sd->dev_init_pre_alt(gspca_dev);
405 }
406 
407 /* This function is called to stop the webcam */
408 static void sd_stop0(struct gspca_dev *gspca_dev)
409 {
410 	struct sd *sd = (struct sd *) gspca_dev;
411 
412 	if (!sd->gspca_dev.present)
413 		return;
414 
415 	return sd->dev_post_unset_alt(gspca_dev);
416 }
417 
418 /* This function is called when an image is being received */
419 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
420 			u8 *data, int len)
421 {
422 	struct sd *sd = (struct sd *) gspca_dev;
423 	static s32 nSkipped;
424 
425 	s32 mode = (s32) gspca_dev->curr_mode;
426 	s32 nToSkip =
427 		sd->swapRB * (gspca_dev->cam.cam_mode[mode].bytesperline + 1);
428 
429 	/* Test only against 0202h, so endianness does not matter */
430 	switch (*(s16 *) data) {
431 	case 0x0202:		/* End of frame, start a new one */
432 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
433 		nSkipped = 0;
434 		if (sd->nbIm >= 0 && sd->nbIm < 10)
435 			sd->nbIm++;
436 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
437 		break;
438 
439 	default:
440 		data += 2;
441 		len  -= 2;
442 		if (nSkipped + len <= nToSkip)
443 			nSkipped += len;
444 		else {
445 			if (nSkipped < nToSkip && nSkipped + len > nToSkip) {
446 				data += nToSkip - nSkipped;
447 				len  -= nToSkip - nSkipped;
448 				nSkipped = nToSkip + 1;
449 			}
450 			gspca_frame_add(gspca_dev,
451 				INTER_PACKET, data, len);
452 		}
453 		break;
454 	}
455 }
456 
457 /* This function is called when an image has been read */
458 /* This function is used to monitor webcam orientation */
459 static void sd_callback(struct gspca_dev *gspca_dev)
460 {
461 	struct sd *sd = (struct sd *) gspca_dev;
462 
463 	if (!_OV9655_) {
464 		u8 state;
465 		u8 upsideDown;
466 
467 		/* Probe sensor orientation */
468 		ctrl_in(gspca_dev, 0xc0, 2, 0x0000, 0x0000, 1, (void *)&state);
469 
470 		/* C8/40 means upside-down (looking backwards) */
471 		/* D8/50 means right-up (looking onwards) */
472 		upsideDown = (state == 0xc8 || state == 0x40);
473 
474 		if (upsideDown && sd->nbRightUp > -4) {
475 			if (sd->nbRightUp > 0)
476 				sd->nbRightUp = 0;
477 			if (sd->nbRightUp == -3) {
478 				sd->mirrorMask = 1;
479 				sd->waitSet = 1;
480 			}
481 			sd->nbRightUp--;
482 		}
483 		if (!upsideDown && sd->nbRightUp < 4) {
484 			if (sd->nbRightUp  < 0)
485 				sd->nbRightUp = 0;
486 			if (sd->nbRightUp == 3) {
487 				sd->mirrorMask = 0;
488 				sd->waitSet = 1;
489 			}
490 			sd->nbRightUp++;
491 		}
492 	}
493 
494 	if (sd->waitSet)
495 		sd->dev_camera_settings(gspca_dev);
496 }
497 
498 /*=================== USB driver structure initialisation ==================*/
499 
500 static const struct usb_device_id device_table[] = {
501 	{USB_DEVICE(0x05e3, 0x0503)},
502 	{USB_DEVICE(0x05e3, 0xf191)},
503 	{}
504 };
505 
506 MODULE_DEVICE_TABLE(usb, device_table);
507 
508 static int sd_probe(struct usb_interface *intf,
509 				const struct usb_device_id *id)
510 {
511 	return gspca_dev_probe(intf, id,
512 			&sd_desc_mi1320, sizeof(struct sd), THIS_MODULE);
513 }
514 
515 static void sd_disconnect(struct usb_interface *intf)
516 {
517 	gspca_disconnect(intf);
518 }
519 
520 static struct usb_driver sd_driver = {
521 	.name       = MODULE_NAME,
522 	.id_table   = device_table,
523 	.probe      = sd_probe,
524 	.disconnect = sd_disconnect,
525 #ifdef CONFIG_PM
526 	.suspend    = gspca_suspend,
527 	.resume     = gspca_resume,
528 	.reset_resume = gspca_resume,
529 #endif
530 };
531 
532 /*====================== Init and Exit module functions ====================*/
533 
534 module_usb_driver(sd_driver);
535 
536 /*==========================================================================*/
537 
538 int gl860_RTx(struct gspca_dev *gspca_dev,
539 		unsigned char pref, u32 req, u16 val, u16 index,
540 		s32 len, void *pdata)
541 {
542 	struct usb_device *udev = gspca_dev->dev;
543 	s32 r = 0;
544 
545 	if (pref == 0x40) { /* Send */
546 		if (len > 0) {
547 			memcpy(gspca_dev->usb_buf, pdata, len);
548 			r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
549 					req, pref, val, index,
550 					gspca_dev->usb_buf,
551 					len, 400 + 200 * (len > 1));
552 		} else {
553 			r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
554 					req, pref, val, index, NULL, len, 400);
555 		}
556 	} else { /* Receive */
557 		if (len > 0) {
558 			r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
559 					req, pref, val, index,
560 					gspca_dev->usb_buf,
561 					len, 400 + 200 * (len > 1));
562 			memcpy(pdata, gspca_dev->usb_buf, len);
563 		} else {
564 			gspca_err(gspca_dev, "zero-length read request\n");
565 			r = -EINVAL;
566 		}
567 	}
568 
569 	if (r < 0)
570 		pr_err("ctrl transfer failed %4d [p%02x r%d v%04x i%04x len%d]\n",
571 		       r, pref, req, val, index, len);
572 	else if (len > 1 && r < len)
573 		gspca_err(gspca_dev, "short ctrl transfer %d/%d\n", r, len);
574 
575 	msleep(1);
576 
577 	return r;
578 }
579 
580 int fetch_validx(struct gspca_dev *gspca_dev, struct validx *tbl, int len)
581 {
582 	int n;
583 
584 	for (n = 0; n < len; n++) {
585 		if (tbl[n].idx != 0xffff)
586 			ctrl_out(gspca_dev, 0x40, 1, tbl[n].val,
587 					tbl[n].idx, 0, NULL);
588 		else if (tbl[n].val == 0xffff)
589 			break;
590 		else
591 			msleep(tbl[n].val);
592 	}
593 	return n;
594 }
595 
596 int keep_on_fetching_validx(struct gspca_dev *gspca_dev, struct validx *tbl,
597 				int len, int n)
598 {
599 	while (++n < len) {
600 		if (tbl[n].idx != 0xffff)
601 			ctrl_out(gspca_dev, 0x40, 1, tbl[n].val, tbl[n].idx,
602 					0, NULL);
603 		else if (tbl[n].val == 0xffff)
604 			break;
605 		else
606 			msleep(tbl[n].val);
607 	}
608 	return n;
609 }
610 
611 void fetch_idxdata(struct gspca_dev *gspca_dev, struct idxdata *tbl, int len)
612 {
613 	int n;
614 
615 	for (n = 0; n < len; n++) {
616 		if (memcmp(tbl[n].data, "\xff\xff\xff", 3) != 0)
617 			ctrl_out(gspca_dev, 0x40, 3, 0x7a00, tbl[n].idx,
618 					3, tbl[n].data);
619 		else
620 			msleep(tbl[n].idx);
621 	}
622 }
623 
624 static int gl860_guess_sensor(struct gspca_dev *gspca_dev,
625 				u16 vendor_id, u16 product_id)
626 {
627 	struct sd *sd = (struct sd *) gspca_dev;
628 	u8 probe, nb26, nb96, nOV, ntry;
629 
630 	if (product_id == 0xf191)
631 		sd->sensor = ID_MI1320;
632 
633 	if (sd->sensor == 0xff) {
634 		ctrl_in(gspca_dev, 0xc0, 2, 0x0000, 0x0004, 1, &probe);
635 		ctrl_in(gspca_dev, 0xc0, 2, 0x0000, 0x0004, 1, &probe);
636 
637 		ctrl_out(gspca_dev, 0x40, 1, 0x0000, 0x0000, 0, NULL);
638 		msleep(3);
639 		ctrl_out(gspca_dev, 0x40, 1, 0x0010, 0x0010, 0, NULL);
640 		msleep(3);
641 		ctrl_out(gspca_dev, 0x40, 1, 0x0008, 0x00c0, 0, NULL);
642 		msleep(3);
643 		ctrl_out(gspca_dev, 0x40, 1, 0x0001, 0x00c1, 0, NULL);
644 		msleep(3);
645 		ctrl_out(gspca_dev, 0x40, 1, 0x0001, 0x00c2, 0, NULL);
646 		msleep(3);
647 		ctrl_out(gspca_dev, 0x40, 1, 0x0020, 0x0006, 0, NULL);
648 		msleep(3);
649 		ctrl_out(gspca_dev, 0x40, 1, 0x006a, 0x000d, 0, NULL);
650 		msleep(56);
651 
652 		gspca_dbg(gspca_dev, D_PROBE, "probing for sensor MI2020 or OVXXXX\n");
653 		nOV = 0;
654 		for (ntry = 0; ntry < 4; ntry++) {
655 			ctrl_out(gspca_dev, 0x40, 1, 0x0040, 0x0000, 0, NULL);
656 			msleep(3);
657 			ctrl_out(gspca_dev, 0x40, 1, 0x0063, 0x0006, 0, NULL);
658 			msleep(3);
659 			ctrl_out(gspca_dev, 0x40, 1, 0x7a00, 0x8030, 0, NULL);
660 			msleep(10);
661 			ctrl_in(gspca_dev, 0xc0, 2, 0x7a00, 0x8030, 1, &probe);
662 			gspca_dbg(gspca_dev, D_PROBE, "probe=0x%02x\n", probe);
663 			if (probe == 0xff)
664 				nOV++;
665 		}
666 
667 		if (nOV) {
668 			gspca_dbg(gspca_dev, D_PROBE, "0xff -> OVXXXX\n");
669 			gspca_dbg(gspca_dev, D_PROBE, "probing for sensor OV2640 or OV9655");
670 
671 			nb26 = nb96 = 0;
672 			for (ntry = 0; ntry < 4; ntry++) {
673 				ctrl_out(gspca_dev, 0x40, 1, 0x0040, 0x0000,
674 						0, NULL);
675 				msleep(3);
676 				ctrl_out(gspca_dev, 0x40, 1, 0x6000, 0x800a,
677 						0, NULL);
678 				msleep(10);
679 
680 				/* Wait for 26(OV2640) or 96(OV9655) */
681 				ctrl_in(gspca_dev, 0xc0, 2, 0x6000, 0x800a,
682 						1, &probe);
683 
684 				if (probe == 0x26 || probe == 0x40) {
685 					gspca_dbg(gspca_dev, D_PROBE,
686 						  "probe=0x%02x -> OV2640\n",
687 						  probe);
688 					sd->sensor = ID_OV2640;
689 					nb26 += 4;
690 					break;
691 				}
692 				if (probe == 0x96 || probe == 0x55) {
693 					gspca_dbg(gspca_dev, D_PROBE,
694 						  "probe=0x%02x -> OV9655\n",
695 						  probe);
696 					sd->sensor = ID_OV9655;
697 					nb96 += 4;
698 					break;
699 				}
700 				gspca_dbg(gspca_dev, D_PROBE, "probe=0x%02x\n",
701 					  probe);
702 				if (probe == 0x00)
703 					nb26++;
704 				if (probe == 0xff)
705 					nb96++;
706 				msleep(3);
707 			}
708 			if (nb26 < 4 && nb96 < 4)
709 				return -1;
710 		} else {
711 			gspca_dbg(gspca_dev, D_PROBE, "Not any 0xff -> MI2020\n");
712 			sd->sensor = ID_MI2020;
713 		}
714 	}
715 
716 	if (_MI1320_) {
717 		gspca_dbg(gspca_dev, D_PROBE, "05e3:f191 sensor MI1320 (1.3M)\n");
718 	} else if (_MI2020_) {
719 		gspca_dbg(gspca_dev, D_PROBE, "05e3:0503 sensor MI2020 (2.0M)\n");
720 	} else if (_OV9655_) {
721 		gspca_dbg(gspca_dev, D_PROBE, "05e3:0503 sensor OV9655 (1.3M)\n");
722 	} else if (_OV2640_) {
723 		gspca_dbg(gspca_dev, D_PROBE, "05e3:0503 sensor OV2640 (2.0M)\n");
724 	} else {
725 		gspca_dbg(gspca_dev, D_PROBE, "***** Unknown sensor *****\n");
726 		return -1;
727 	}
728 
729 	return 0;
730 }
731