xref: /linux/drivers/media/tuners/xc5000.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3  *
4  *  Copyright (c) 2007 Xceive Corporation
5  *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6  *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/workqueue.h>
29 #include <linux/dvb/frontend.h>
30 #include <linux/i2c.h>
31 
32 #include "dvb_frontend.h"
33 
34 #include "xc5000.h"
35 #include "tuner-i2c.h"
36 
37 static int debug;
38 module_param(debug, int, 0644);
39 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
40 
41 static int no_poweroff;
42 module_param(no_poweroff, int, 0644);
43 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
44 	"\t\t1 keep device energized and with tuner ready all the times.\n"
45 	"\t\tFaster, but consumes more power and keeps the device hotter");
46 
47 static DEFINE_MUTEX(xc5000_list_mutex);
48 static LIST_HEAD(hybrid_tuner_instance_list);
49 
50 #define dprintk(level, fmt, arg...) if (debug >= level) \
51 	printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
52 
53 struct xc5000_priv {
54 	struct tuner_i2c_props i2c_props;
55 	struct list_head hybrid_tuner_instance_list;
56 
57 	u32 if_khz;
58 	u16 xtal_khz;
59 	u32 freq_hz, freq_offset;
60 	u32 bandwidth;
61 	u8  video_standard;
62 	unsigned int mode;
63 	u8  rf_mode;
64 	u8  radio_input;
65 	u16  output_amp;
66 
67 	int chip_id;
68 	u16 pll_register_no;
69 	u8 init_status_supported;
70 	u8 fw_checksum_supported;
71 
72 	struct dvb_frontend *fe;
73 	struct delayed_work timer_sleep;
74 
75 	const struct firmware   *firmware;
76 };
77 
78 /* Misc Defines */
79 #define MAX_TV_STANDARD			24
80 #define XC_MAX_I2C_WRITE_LENGTH		64
81 
82 /* Time to suspend after the .sleep callback is called */
83 #define XC5000_SLEEP_TIME		5000 /* ms */
84 
85 /* Signal Types */
86 #define XC_RF_MODE_AIR			0
87 #define XC_RF_MODE_CABLE		1
88 
89 /* Product id */
90 #define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000
91 #define XC_PRODUCT_ID_FW_LOADED	0x1388
92 
93 /* Registers */
94 #define XREG_INIT         0x00
95 #define XREG_VIDEO_MODE   0x01
96 #define XREG_AUDIO_MODE   0x02
97 #define XREG_RF_FREQ      0x03
98 #define XREG_D_CODE       0x04
99 #define XREG_IF_OUT       0x05
100 #define XREG_SEEK_MODE    0x07
101 #define XREG_POWER_DOWN   0x0A /* Obsolete */
102 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
103 #define XREG_OUTPUT_AMP   0x0B
104 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
105 #define XREG_SMOOTHEDCVBS 0x0E
106 #define XREG_XTALFREQ     0x0F
107 #define XREG_FINERFREQ    0x10
108 #define XREG_DDIMODE      0x11
109 
110 #define XREG_ADC_ENV      0x00
111 #define XREG_QUALITY      0x01
112 #define XREG_FRAME_LINES  0x02
113 #define XREG_HSYNC_FREQ   0x03
114 #define XREG_LOCK         0x04
115 #define XREG_FREQ_ERROR   0x05
116 #define XREG_SNR          0x06
117 #define XREG_VERSION      0x07
118 #define XREG_PRODUCT_ID   0x08
119 #define XREG_BUSY         0x09
120 #define XREG_BUILD        0x0D
121 #define XREG_TOTALGAIN    0x0F
122 #define XREG_FW_CHECKSUM  0x12
123 #define XREG_INIT_STATUS  0x13
124 
125 /*
126    Basic firmware description. This will remain with
127    the driver for documentation purposes.
128 
129    This represents an I2C firmware file encoded as a
130    string of unsigned char. Format is as follows:
131 
132    char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB
133    char[1  ]=len0_LSB  -> length of first write transaction
134    char[2  ]=data0 -> first byte to be sent
135    char[3  ]=data1
136    char[4  ]=data2
137    char[   ]=...
138    char[M  ]=dataN  -> last byte to be sent
139    char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB
140    char[M+2]=len1_LSB  -> length of second write transaction
141    char[M+3]=data0
142    char[M+4]=data1
143    ...
144    etc.
145 
146    The [len] value should be interpreted as follows:
147 
148    len= len_MSB _ len_LSB
149    len=1111_1111_1111_1111   : End of I2C_SEQUENCE
150    len=0000_0000_0000_0000   : Reset command: Do hardware reset
151    len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767)
152    len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms
153 
154    For the RESET and WAIT commands, the two following bytes will contain
155    immediately the length of the following transaction.
156 
157 */
158 struct XC_TV_STANDARD {
159 	char *name;
160 	u16 audio_mode;
161 	u16 video_mode;
162 };
163 
164 /* Tuner standards */
165 #define MN_NTSC_PAL_BTSC	0
166 #define MN_NTSC_PAL_A2		1
167 #define MN_NTSC_PAL_EIAJ	2
168 #define MN_NTSC_PAL_MONO	3
169 #define BG_PAL_A2		4
170 #define BG_PAL_NICAM		5
171 #define BG_PAL_MONO		6
172 #define I_PAL_NICAM		7
173 #define I_PAL_NICAM_MONO	8
174 #define DK_PAL_A2		9
175 #define DK_PAL_NICAM		10
176 #define DK_PAL_MONO		11
177 #define DK_SECAM_A2DK1		12
178 #define DK_SECAM_A2LDK3		13
179 #define DK_SECAM_A2MONO		14
180 #define L_SECAM_NICAM		15
181 #define LC_SECAM_NICAM		16
182 #define DTV6			17
183 #define DTV8			18
184 #define DTV7_8			19
185 #define DTV7			20
186 #define FM_RADIO_INPUT2		21
187 #define FM_RADIO_INPUT1		22
188 #define FM_RADIO_INPUT1_MONO	23
189 
190 static struct XC_TV_STANDARD xc5000_standard[MAX_TV_STANDARD] = {
191 	{"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
192 	{"M/N-NTSC/PAL-A2",   0x0600, 0x8020},
193 	{"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
194 	{"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
195 	{"B/G-PAL-A2",        0x0A00, 0x8049},
196 	{"B/G-PAL-NICAM",     0x0C04, 0x8049},
197 	{"B/G-PAL-MONO",      0x0878, 0x8059},
198 	{"I-PAL-NICAM",       0x1080, 0x8009},
199 	{"I-PAL-NICAM-MONO",  0x0E78, 0x8009},
200 	{"D/K-PAL-A2",        0x1600, 0x8009},
201 	{"D/K-PAL-NICAM",     0x0E80, 0x8009},
202 	{"D/K-PAL-MONO",      0x1478, 0x8009},
203 	{"D/K-SECAM-A2 DK1",  0x1200, 0x8009},
204 	{"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
205 	{"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
206 	{"L-SECAM-NICAM",     0x8E82, 0x0009},
207 	{"L'-SECAM-NICAM",    0x8E82, 0x4009},
208 	{"DTV6",              0x00C0, 0x8002},
209 	{"DTV8",              0x00C0, 0x800B},
210 	{"DTV7/8",            0x00C0, 0x801B},
211 	{"DTV7",              0x00C0, 0x8007},
212 	{"FM Radio-INPUT2",   0x9802, 0x9002},
213 	{"FM Radio-INPUT1",   0x0208, 0x9002},
214 	{"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
215 };
216 
217 
218 struct xc5000_fw_cfg {
219 	char *name;
220 	u16 size;
221 	u16 pll_reg;
222 	u8 init_status_supported;
223 	u8 fw_checksum_supported;
224 };
225 
226 #define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
227 static const struct xc5000_fw_cfg xc5000a_1_6_114 = {
228 	.name = XC5000A_FIRMWARE,
229 	.size = 12401,
230 	.pll_reg = 0x806c,
231 };
232 
233 #define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw"
234 static const struct xc5000_fw_cfg xc5000c_41_024_5 = {
235 	.name = XC5000C_FIRMWARE,
236 	.size = 16497,
237 	.pll_reg = 0x13,
238 	.init_status_supported = 1,
239 	.fw_checksum_supported = 1,
240 };
241 
242 static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id)
243 {
244 	switch (chip_id) {
245 	default:
246 	case XC5000A:
247 		return &xc5000a_1_6_114;
248 	case XC5000C:
249 		return &xc5000c_41_024_5;
250 	}
251 }
252 
253 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force);
254 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
255 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
256 static int xc5000_tuner_reset(struct dvb_frontend *fe);
257 
258 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
259 {
260 	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
261 			       .flags = 0, .buf = buf, .len = len };
262 
263 	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
264 		printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
265 		return -EREMOTEIO;
266 	}
267 	return 0;
268 }
269 
270 #if 0
271 /* This routine is never used because the only time we read data from the
272    i2c bus is when we read registers, and we want that to be an atomic i2c
273    transaction in case we are on a multi-master bus */
274 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
275 {
276 	struct i2c_msg msg = { .addr = priv->i2c_props.addr,
277 		.flags = I2C_M_RD, .buf = buf, .len = len };
278 
279 	if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
280 		printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
281 		return -EREMOTEIO;
282 	}
283 	return 0;
284 }
285 #endif
286 
287 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
288 {
289 	u8 buf[2] = { reg >> 8, reg & 0xff };
290 	u8 bval[2] = { 0, 0 };
291 	struct i2c_msg msg[2] = {
292 		{ .addr = priv->i2c_props.addr,
293 			.flags = 0, .buf = &buf[0], .len = 2 },
294 		{ .addr = priv->i2c_props.addr,
295 			.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
296 	};
297 
298 	if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
299 		printk(KERN_WARNING "xc5000: I2C read failed\n");
300 		return -EREMOTEIO;
301 	}
302 
303 	*val = (bval[0] << 8) | bval[1];
304 	return 0;
305 }
306 
307 static int xc5000_tuner_reset(struct dvb_frontend *fe)
308 {
309 	struct xc5000_priv *priv = fe->tuner_priv;
310 	int ret;
311 
312 	dprintk(1, "%s()\n", __func__);
313 
314 	if (fe->callback) {
315 		ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
316 					   fe->dvb->priv :
317 					   priv->i2c_props.adap->algo_data,
318 					   DVB_FRONTEND_COMPONENT_TUNER,
319 					   XC5000_TUNER_RESET, 0);
320 		if (ret) {
321 			printk(KERN_ERR "xc5000: reset failed\n");
322 			return ret;
323 		}
324 	} else {
325 		printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
326 		return -EINVAL;
327 	}
328 	return 0;
329 }
330 
331 static int xc_write_reg(struct xc5000_priv *priv, u16 reg_addr, u16 i2c_data)
332 {
333 	u8 buf[4];
334 	int watch_dog_timer = 100;
335 	int result;
336 
337 	buf[0] = (reg_addr >> 8) & 0xFF;
338 	buf[1] = reg_addr & 0xFF;
339 	buf[2] = (i2c_data >> 8) & 0xFF;
340 	buf[3] = i2c_data & 0xFF;
341 	result = xc_send_i2c_data(priv, buf, 4);
342 	if (result == 0) {
343 		/* wait for busy flag to clear */
344 		while ((watch_dog_timer > 0) && (result == 0)) {
345 			result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
346 			if (result == 0) {
347 				if ((buf[0] == 0) && (buf[1] == 0)) {
348 					/* busy flag cleared */
349 					break;
350 				} else {
351 					msleep(5); /* wait 5 ms */
352 					watch_dog_timer--;
353 				}
354 			}
355 		}
356 	}
357 	if (watch_dog_timer <= 0)
358 		result = -EREMOTEIO;
359 
360 	return result;
361 }
362 
363 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
364 {
365 	struct xc5000_priv *priv = fe->tuner_priv;
366 
367 	int i, nbytes_to_send, result;
368 	unsigned int len, pos, index;
369 	u8 buf[XC_MAX_I2C_WRITE_LENGTH];
370 
371 	index = 0;
372 	while ((i2c_sequence[index] != 0xFF) ||
373 		(i2c_sequence[index + 1] != 0xFF)) {
374 		len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
375 		if (len == 0x0000) {
376 			/* RESET command */
377 			result = xc5000_tuner_reset(fe);
378 			index += 2;
379 			if (result != 0)
380 				return result;
381 		} else if (len & 0x8000) {
382 			/* WAIT command */
383 			msleep(len & 0x7FFF);
384 			index += 2;
385 		} else {
386 			/* Send i2c data whilst ensuring individual transactions
387 			 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
388 			 */
389 			index += 2;
390 			buf[0] = i2c_sequence[index];
391 			buf[1] = i2c_sequence[index + 1];
392 			pos = 2;
393 			while (pos < len) {
394 				if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
395 					nbytes_to_send =
396 						XC_MAX_I2C_WRITE_LENGTH;
397 				else
398 					nbytes_to_send = (len - pos + 2);
399 				for (i = 2; i < nbytes_to_send; i++) {
400 					buf[i] = i2c_sequence[index + pos +
401 						i - 2];
402 				}
403 				result = xc_send_i2c_data(priv, buf,
404 					nbytes_to_send);
405 
406 				if (result != 0)
407 					return result;
408 
409 				pos += nbytes_to_send - 2;
410 			}
411 			index += len;
412 		}
413 	}
414 	return 0;
415 }
416 
417 static int xc_initialize(struct xc5000_priv *priv)
418 {
419 	dprintk(1, "%s()\n", __func__);
420 	return xc_write_reg(priv, XREG_INIT, 0);
421 }
422 
423 static int xc_set_tv_standard(struct xc5000_priv *priv,
424 	u16 video_mode, u16 audio_mode, u8 radio_mode)
425 {
426 	int ret;
427 	dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
428 	if (radio_mode) {
429 		dprintk(1, "%s() Standard = %s\n",
430 			__func__,
431 			xc5000_standard[radio_mode].name);
432 	} else {
433 		dprintk(1, "%s() Standard = %s\n",
434 			__func__,
435 			xc5000_standard[priv->video_standard].name);
436 	}
437 
438 	ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
439 	if (ret == 0)
440 		ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
441 
442 	return ret;
443 }
444 
445 static int xc_set_signal_source(struct xc5000_priv *priv, u16 rf_mode)
446 {
447 	dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
448 		rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
449 
450 	if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
451 		rf_mode = XC_RF_MODE_CABLE;
452 		printk(KERN_ERR
453 			"%s(), Invalid mode, defaulting to CABLE",
454 			__func__);
455 	}
456 	return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
457 }
458 
459 static const struct dvb_tuner_ops xc5000_tuner_ops;
460 
461 static int xc_set_rf_frequency(struct xc5000_priv *priv, u32 freq_hz)
462 {
463 	u16 freq_code;
464 
465 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
466 
467 	if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
468 		(freq_hz < xc5000_tuner_ops.info.frequency_min))
469 		return -EINVAL;
470 
471 	freq_code = (u16)(freq_hz / 15625);
472 
473 	/* Starting in firmware version 1.1.44, Xceive recommends using the
474 	   FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
475 	   only be used for fast scanning for channel lock) */
476 	return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
477 }
478 
479 
480 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
481 {
482 	u32 freq_code = (freq_khz * 1024)/1000;
483 	dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
484 		__func__, freq_khz, freq_code);
485 
486 	return xc_write_reg(priv, XREG_IF_OUT, freq_code);
487 }
488 
489 
490 static int xc_get_adc_envelope(struct xc5000_priv *priv, u16 *adc_envelope)
491 {
492 	return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
493 }
494 
495 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
496 {
497 	int result;
498 	u16 reg_data;
499 	u32 tmp;
500 
501 	result = xc5000_readreg(priv, XREG_FREQ_ERROR, &reg_data);
502 	if (result != 0)
503 		return result;
504 
505 	tmp = (u32)reg_data;
506 	(*freq_error_hz) = (tmp * 15625) / 1000;
507 	return result;
508 }
509 
510 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
511 {
512 	return xc5000_readreg(priv, XREG_LOCK, lock_status);
513 }
514 
515 static int xc_get_version(struct xc5000_priv *priv,
516 	u8 *hw_majorversion, u8 *hw_minorversion,
517 	u8 *fw_majorversion, u8 *fw_minorversion)
518 {
519 	u16 data;
520 	int result;
521 
522 	result = xc5000_readreg(priv, XREG_VERSION, &data);
523 	if (result != 0)
524 		return result;
525 
526 	(*hw_majorversion) = (data >> 12) & 0x0F;
527 	(*hw_minorversion) = (data >>  8) & 0x0F;
528 	(*fw_majorversion) = (data >>  4) & 0x0F;
529 	(*fw_minorversion) = data & 0x0F;
530 
531 	return 0;
532 }
533 
534 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
535 {
536 	return xc5000_readreg(priv, XREG_BUILD, buildrev);
537 }
538 
539 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
540 {
541 	u16 reg_data;
542 	int result;
543 
544 	result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &reg_data);
545 	if (result != 0)
546 		return result;
547 
548 	(*hsync_freq_hz) = ((reg_data & 0x0fff) * 763)/100;
549 	return result;
550 }
551 
552 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
553 {
554 	return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
555 }
556 
557 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
558 {
559 	return xc5000_readreg(priv, XREG_QUALITY, quality);
560 }
561 
562 static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr)
563 {
564 	return xc5000_readreg(priv, XREG_SNR, snr);
565 }
566 
567 static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain)
568 {
569 	return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain);
570 }
571 
572 static u16 wait_for_lock(struct xc5000_priv *priv)
573 {
574 	u16 lock_state = 0;
575 	int watch_dog_count = 40;
576 
577 	while ((lock_state == 0) && (watch_dog_count > 0)) {
578 		xc_get_lock_status(priv, &lock_state);
579 		if (lock_state != 1) {
580 			msleep(5);
581 			watch_dog_count--;
582 		}
583 	}
584 	return lock_state;
585 }
586 
587 #define XC_TUNE_ANALOG  0
588 #define XC_TUNE_DIGITAL 1
589 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
590 {
591 	int found = 0;
592 
593 	dprintk(1, "%s(%u)\n", __func__, freq_hz);
594 
595 	if (xc_set_rf_frequency(priv, freq_hz) != 0)
596 		return 0;
597 
598 	if (mode == XC_TUNE_ANALOG) {
599 		if (wait_for_lock(priv) == 1)
600 			found = 1;
601 	}
602 
603 	return found;
604 }
605 
606 static int xc_set_xtal(struct dvb_frontend *fe)
607 {
608 	struct xc5000_priv *priv = fe->tuner_priv;
609 	int ret = 0;
610 
611 	switch (priv->chip_id) {
612 	default:
613 	case XC5000A:
614 		/* 32.000 MHz xtal is default */
615 		break;
616 	case XC5000C:
617 		switch (priv->xtal_khz) {
618 		default:
619 		case 32000:
620 			/* 32.000 MHz xtal is default */
621 			break;
622 		case 31875:
623 			/* 31.875 MHz xtal configuration */
624 			ret = xc_write_reg(priv, 0x000f, 0x8081);
625 			break;
626 		}
627 		break;
628 	}
629 	return ret;
630 }
631 
632 static int xc5000_fwupload(struct dvb_frontend *fe,
633 			   const struct xc5000_fw_cfg *desired_fw,
634 			   const struct firmware *fw)
635 {
636 	struct xc5000_priv *priv = fe->tuner_priv;
637 	int ret;
638 
639 	/* request the firmware, this will block and timeout */
640 	dprintk(1, "waiting for firmware upload (%s)...\n",
641 		desired_fw->name);
642 
643 	priv->pll_register_no = desired_fw->pll_reg;
644 	priv->init_status_supported = desired_fw->init_status_supported;
645 	priv->fw_checksum_supported = desired_fw->fw_checksum_supported;
646 
647 
648 	dprintk(1, "firmware uploading...\n");
649 	ret = xc_load_i2c_sequence(fe,  fw->data);
650 	if (!ret) {
651 		ret = xc_set_xtal(fe);
652 		dprintk(1, "Firmware upload complete...\n");
653 	} else
654 		printk(KERN_ERR "xc5000: firmware upload failed...\n");
655 
656 	return ret;
657 }
658 
659 static void xc_debug_dump(struct xc5000_priv *priv)
660 {
661 	u16 adc_envelope;
662 	u32 freq_error_hz = 0;
663 	u16 lock_status;
664 	u32 hsync_freq_hz = 0;
665 	u16 frame_lines;
666 	u16 quality;
667 	u16 snr;
668 	u16 totalgain;
669 	u8 hw_majorversion = 0, hw_minorversion = 0;
670 	u8 fw_majorversion = 0, fw_minorversion = 0;
671 	u16 fw_buildversion = 0;
672 	u16 regval;
673 
674 	/* Wait for stats to stabilize.
675 	 * Frame Lines needs two frame times after initial lock
676 	 * before it is valid.
677 	 */
678 	msleep(100);
679 
680 	xc_get_adc_envelope(priv,  &adc_envelope);
681 	dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
682 
683 	xc_get_frequency_error(priv, &freq_error_hz);
684 	dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
685 
686 	xc_get_lock_status(priv,  &lock_status);
687 	dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
688 		lock_status);
689 
690 	xc_get_version(priv,  &hw_majorversion, &hw_minorversion,
691 		&fw_majorversion, &fw_minorversion);
692 	xc_get_buildversion(priv,  &fw_buildversion);
693 	dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n",
694 		hw_majorversion, hw_minorversion,
695 		fw_majorversion, fw_minorversion, fw_buildversion);
696 
697 	xc_get_hsync_freq(priv,  &hsync_freq_hz);
698 	dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
699 
700 	xc_get_frame_lines(priv,  &frame_lines);
701 	dprintk(1, "*** Frame lines = %d\n", frame_lines);
702 
703 	xc_get_quality(priv,  &quality);
704 	dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07);
705 
706 	xc_get_analogsnr(priv,  &snr);
707 	dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f);
708 
709 	xc_get_totalgain(priv,  &totalgain);
710 	dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256,
711 		(totalgain % 256) * 100 / 256);
712 
713 	if (priv->pll_register_no) {
714 		xc5000_readreg(priv, priv->pll_register_no, &regval);
715 		dprintk(1, "*** PLL lock status = 0x%04x\n", regval);
716 	}
717 }
718 
719 static int xc5000_tune_digital(struct dvb_frontend *fe)
720 {
721 	struct xc5000_priv *priv = fe->tuner_priv;
722 	int ret;
723 	u32 bw = fe->dtv_property_cache.bandwidth_hz;
724 
725 	ret = xc_set_signal_source(priv, priv->rf_mode);
726 	if (ret != 0) {
727 		printk(KERN_ERR
728 			"xc5000: xc_set_signal_source(%d) failed\n",
729 			priv->rf_mode);
730 		return -EREMOTEIO;
731 	}
732 
733 	ret = xc_set_tv_standard(priv,
734 		xc5000_standard[priv->video_standard].video_mode,
735 		xc5000_standard[priv->video_standard].audio_mode, 0);
736 	if (ret != 0) {
737 		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
738 		return -EREMOTEIO;
739 	}
740 
741 	ret = xc_set_IF_frequency(priv, priv->if_khz);
742 	if (ret != 0) {
743 		printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
744 		       priv->if_khz);
745 		return -EIO;
746 	}
747 
748 	dprintk(1, "%s() setting OUTPUT_AMP to 0x%x\n",
749 		__func__, priv->output_amp);
750 	xc_write_reg(priv, XREG_OUTPUT_AMP, priv->output_amp);
751 
752 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
753 
754 	if (debug)
755 		xc_debug_dump(priv);
756 
757 	priv->bandwidth = bw;
758 
759 	return 0;
760 }
761 
762 static int xc5000_set_digital_params(struct dvb_frontend *fe)
763 {
764 	int b;
765 	struct xc5000_priv *priv = fe->tuner_priv;
766 	u32 bw = fe->dtv_property_cache.bandwidth_hz;
767 	u32 freq = fe->dtv_property_cache.frequency;
768 	u32 delsys  = fe->dtv_property_cache.delivery_system;
769 
770 	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
771 		dprintk(1, "Unable to load firmware and init tuner\n");
772 		return -EINVAL;
773 	}
774 
775 	dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq);
776 
777 	switch (delsys) {
778 	case SYS_ATSC:
779 		dprintk(1, "%s() VSB modulation\n", __func__);
780 		priv->rf_mode = XC_RF_MODE_AIR;
781 		priv->freq_offset = 1750000;
782 		priv->video_standard = DTV6;
783 		break;
784 	case SYS_DVBC_ANNEX_B:
785 		dprintk(1, "%s() QAM modulation\n", __func__);
786 		priv->rf_mode = XC_RF_MODE_CABLE;
787 		priv->freq_offset = 1750000;
788 		priv->video_standard = DTV6;
789 		break;
790 	case SYS_ISDBT:
791 		/* All ISDB-T are currently for 6 MHz bw */
792 		if (!bw)
793 			bw = 6000000;
794 		/* fall to OFDM handling */
795 	case SYS_DMBTH:
796 	case SYS_DVBT:
797 	case SYS_DVBT2:
798 		dprintk(1, "%s() OFDM\n", __func__);
799 		switch (bw) {
800 		case 6000000:
801 			priv->video_standard = DTV6;
802 			priv->freq_offset = 1750000;
803 			break;
804 		case 7000000:
805 			priv->video_standard = DTV7;
806 			priv->freq_offset = 2250000;
807 			break;
808 		case 8000000:
809 			priv->video_standard = DTV8;
810 			priv->freq_offset = 2750000;
811 			break;
812 		default:
813 			printk(KERN_ERR "xc5000 bandwidth not set!\n");
814 			return -EINVAL;
815 		}
816 		priv->rf_mode = XC_RF_MODE_AIR;
817 		break;
818 	case SYS_DVBC_ANNEX_A:
819 	case SYS_DVBC_ANNEX_C:
820 		dprintk(1, "%s() QAM modulation\n", __func__);
821 		priv->rf_mode = XC_RF_MODE_CABLE;
822 		if (bw <= 6000000) {
823 			priv->video_standard = DTV6;
824 			priv->freq_offset = 1750000;
825 			b = 6;
826 		} else if (bw <= 7000000) {
827 			priv->video_standard = DTV7;
828 			priv->freq_offset = 2250000;
829 			b = 7;
830 		} else {
831 			priv->video_standard = DTV7_8;
832 			priv->freq_offset = 2750000;
833 			b = 8;
834 		}
835 		dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__,
836 			b, bw);
837 		break;
838 	default:
839 		printk(KERN_ERR "xc5000: delivery system is not supported!\n");
840 		return -EINVAL;
841 	}
842 
843 	priv->freq_hz = freq - priv->freq_offset;
844 	priv->mode = V4L2_TUNER_DIGITAL_TV;
845 
846 	dprintk(1, "%s() frequency=%d (compensated to %d)\n",
847 		__func__, freq, priv->freq_hz);
848 
849 	return xc5000_tune_digital(fe);
850 }
851 
852 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
853 {
854 	struct xc5000_priv *priv = fe->tuner_priv;
855 	int ret;
856 	u16 id;
857 
858 	ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
859 	if (ret == 0) {
860 		if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
861 			ret = -ENOENT;
862 		else
863 			ret = 0;
864 	}
865 
866 	dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
867 		ret == 0 ? "True" : "False", id);
868 	return ret;
869 }
870 
871 static void xc5000_config_tv(struct dvb_frontend *fe,
872 			     struct analog_parameters *params)
873 {
874 	struct xc5000_priv *priv = fe->tuner_priv;
875 
876 	dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
877 		__func__, params->frequency);
878 
879 	/* Fix me: it could be air. */
880 	priv->rf_mode = params->mode;
881 	if (params->mode > XC_RF_MODE_CABLE)
882 		priv->rf_mode = XC_RF_MODE_CABLE;
883 
884 	/* params->frequency is in units of 62.5khz */
885 	priv->freq_hz = params->frequency * 62500;
886 
887 	/* FIX ME: Some video standards may have several possible audio
888 		   standards. We simply default to one of them here.
889 	 */
890 	if (params->std & V4L2_STD_MN) {
891 		/* default to BTSC audio standard */
892 		priv->video_standard = MN_NTSC_PAL_BTSC;
893 		return;
894 	}
895 
896 	if (params->std & V4L2_STD_PAL_BG) {
897 		/* default to NICAM audio standard */
898 		priv->video_standard = BG_PAL_NICAM;
899 		return;
900 	}
901 
902 	if (params->std & V4L2_STD_PAL_I) {
903 		/* default to NICAM audio standard */
904 		priv->video_standard = I_PAL_NICAM;
905 		return;
906 	}
907 
908 	if (params->std & V4L2_STD_PAL_DK) {
909 		/* default to NICAM audio standard */
910 		priv->video_standard = DK_PAL_NICAM;
911 		return;
912 	}
913 
914 	if (params->std & V4L2_STD_SECAM_DK) {
915 		/* default to A2 DK1 audio standard */
916 		priv->video_standard = DK_SECAM_A2DK1;
917 		return;
918 	}
919 
920 	if (params->std & V4L2_STD_SECAM_L) {
921 		priv->video_standard = L_SECAM_NICAM;
922 		return;
923 	}
924 
925 	if (params->std & V4L2_STD_SECAM_LC) {
926 		priv->video_standard = LC_SECAM_NICAM;
927 		return;
928 	}
929 }
930 
931 static int xc5000_set_tv_freq(struct dvb_frontend *fe)
932 {
933 	struct xc5000_priv *priv = fe->tuner_priv;
934 	u16 pll_lock_status;
935 	int ret;
936 
937 tune_channel:
938 	ret = xc_set_signal_source(priv, priv->rf_mode);
939 	if (ret != 0) {
940 		printk(KERN_ERR
941 			"xc5000: xc_set_signal_source(%d) failed\n",
942 			priv->rf_mode);
943 		return -EREMOTEIO;
944 	}
945 
946 	ret = xc_set_tv_standard(priv,
947 		xc5000_standard[priv->video_standard].video_mode,
948 		xc5000_standard[priv->video_standard].audio_mode, 0);
949 	if (ret != 0) {
950 		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
951 		return -EREMOTEIO;
952 	}
953 
954 	xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
955 
956 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
957 
958 	if (debug)
959 		xc_debug_dump(priv);
960 
961 	if (priv->pll_register_no != 0) {
962 		msleep(20);
963 		xc5000_readreg(priv, priv->pll_register_no, &pll_lock_status);
964 		if (pll_lock_status > 63) {
965 			/* PLL is unlocked, force reload of the firmware */
966 			dprintk(1, "xc5000: PLL not locked (0x%x).  Reloading...\n",
967 				pll_lock_status);
968 			if (xc_load_fw_and_init_tuner(fe, 1) != 0) {
969 				printk(KERN_ERR "xc5000: Unable to reload fw\n");
970 				return -EREMOTEIO;
971 			}
972 			goto tune_channel;
973 		}
974 	}
975 
976 	return 0;
977 }
978 
979 static int xc5000_config_radio(struct dvb_frontend *fe,
980 			       struct analog_parameters *params)
981 
982 {
983 	struct xc5000_priv *priv = fe->tuner_priv;
984 
985 	dprintk(1, "%s() frequency=%d (in units of khz)\n",
986 		__func__, params->frequency);
987 
988 	if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
989 		dprintk(1, "%s() radio input not configured\n", __func__);
990 		return -EINVAL;
991 	}
992 
993 	priv->freq_hz = params->frequency * 125 / 2;
994 	priv->rf_mode = XC_RF_MODE_AIR;
995 
996 	return 0;
997 }
998 
999 static int xc5000_set_radio_freq(struct dvb_frontend *fe)
1000 {
1001 	struct xc5000_priv *priv = fe->tuner_priv;
1002 	int ret;
1003 	u8 radio_input;
1004 
1005 	if (priv->radio_input == XC5000_RADIO_FM1)
1006 		radio_input = FM_RADIO_INPUT1;
1007 	else if  (priv->radio_input == XC5000_RADIO_FM2)
1008 		radio_input = FM_RADIO_INPUT2;
1009 	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
1010 		radio_input = FM_RADIO_INPUT1_MONO;
1011 	else {
1012 		dprintk(1, "%s() unknown radio input %d\n", __func__,
1013 			priv->radio_input);
1014 		return -EINVAL;
1015 	}
1016 
1017 	ret = xc_set_tv_standard(priv, xc5000_standard[radio_input].video_mode,
1018 			       xc5000_standard[radio_input].audio_mode, radio_input);
1019 
1020 	if (ret != 0) {
1021 		printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n");
1022 		return -EREMOTEIO;
1023 	}
1024 
1025 	ret = xc_set_signal_source(priv, priv->rf_mode);
1026 	if (ret != 0) {
1027 		printk(KERN_ERR
1028 			"xc5000: xc_set_signal_source(%d) failed\n",
1029 			priv->rf_mode);
1030 		return -EREMOTEIO;
1031 	}
1032 
1033 	if ((priv->radio_input == XC5000_RADIO_FM1) ||
1034 				(priv->radio_input == XC5000_RADIO_FM2))
1035 		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
1036 	else if  (priv->radio_input == XC5000_RADIO_FM1_MONO)
1037 		xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
1038 
1039 	xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
1040 
1041 	return 0;
1042 }
1043 
1044 static int xc5000_set_params(struct dvb_frontend *fe)
1045 {
1046 	struct xc5000_priv *priv = fe->tuner_priv;
1047 
1048 	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
1049 		dprintk(1, "Unable to load firmware and init tuner\n");
1050 		return -EINVAL;
1051 	}
1052 
1053 	switch (priv->mode) {
1054 	case V4L2_TUNER_RADIO:
1055 		return xc5000_set_radio_freq(fe);
1056 	case V4L2_TUNER_ANALOG_TV:
1057 		return xc5000_set_tv_freq(fe);
1058 	case V4L2_TUNER_DIGITAL_TV:
1059 		return xc5000_tune_digital(fe);
1060 	}
1061 
1062 	return 0;
1063 }
1064 
1065 static int xc5000_set_analog_params(struct dvb_frontend *fe,
1066 			     struct analog_parameters *params)
1067 {
1068 	struct xc5000_priv *priv = fe->tuner_priv;
1069 	int ret;
1070 
1071 	if (priv->i2c_props.adap == NULL)
1072 		return -EINVAL;
1073 
1074 	switch (params->mode) {
1075 	case V4L2_TUNER_RADIO:
1076 		ret = xc5000_config_radio(fe, params);
1077 		if (ret)
1078 			return ret;
1079 		break;
1080 	case V4L2_TUNER_ANALOG_TV:
1081 		xc5000_config_tv(fe, params);
1082 		break;
1083 	default:
1084 		break;
1085 	}
1086 	priv->mode = params->mode;
1087 
1088 	return xc5000_set_params(fe);
1089 }
1090 
1091 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
1092 {
1093 	struct xc5000_priv *priv = fe->tuner_priv;
1094 	dprintk(1, "%s()\n", __func__);
1095 	*freq = priv->freq_hz + priv->freq_offset;
1096 	return 0;
1097 }
1098 
1099 static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq)
1100 {
1101 	struct xc5000_priv *priv = fe->tuner_priv;
1102 	dprintk(1, "%s()\n", __func__);
1103 	*freq = priv->if_khz * 1000;
1104 	return 0;
1105 }
1106 
1107 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
1108 {
1109 	struct xc5000_priv *priv = fe->tuner_priv;
1110 	dprintk(1, "%s()\n", __func__);
1111 
1112 	*bw = priv->bandwidth;
1113 	return 0;
1114 }
1115 
1116 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
1117 {
1118 	struct xc5000_priv *priv = fe->tuner_priv;
1119 	u16 lock_status = 0;
1120 
1121 	xc_get_lock_status(priv, &lock_status);
1122 
1123 	dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
1124 
1125 	*status = lock_status;
1126 
1127 	return 0;
1128 }
1129 
1130 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force)
1131 {
1132 	struct xc5000_priv *priv = fe->tuner_priv;
1133 	const struct xc5000_fw_cfg *desired_fw = xc5000_assign_firmware(priv->chip_id);
1134 	const struct firmware *fw;
1135 	int ret, i;
1136 	u16 pll_lock_status;
1137 	u16 fw_ck;
1138 
1139 	cancel_delayed_work(&priv->timer_sleep);
1140 
1141 	if (!force && xc5000_is_firmware_loaded(fe) == 0)
1142 		return 0;
1143 
1144 	if (!priv->firmware) {
1145 		ret = request_firmware(&fw, desired_fw->name,
1146 					priv->i2c_props.adap->dev.parent);
1147 		if (ret) {
1148 			pr_err("xc5000: Upload failed. rc %d\n", ret);
1149 			return ret;
1150 		}
1151 		dprintk(1, "firmware read %Zu bytes.\n", fw->size);
1152 
1153 		if (fw->size != desired_fw->size) {
1154 			pr_err("xc5000: Firmware file with incorrect size\n");
1155 			release_firmware(fw);
1156 			return -EINVAL;
1157 		}
1158 		priv->firmware = fw;
1159 	} else
1160 		fw = priv->firmware;
1161 
1162 	/* Try up to 5 times to load firmware */
1163 	for (i = 0; i < 5; i++) {
1164 		if (i)
1165 			printk(KERN_CONT " - retrying to upload firmware.\n");
1166 
1167 		ret = xc5000_fwupload(fe, desired_fw, fw);
1168 		if (ret != 0)
1169 			goto err;
1170 
1171 		msleep(20);
1172 
1173 		if (priv->fw_checksum_supported) {
1174 			if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)) {
1175 				printk(KERN_ERR
1176 				       "xc5000: FW checksum reading failed.");
1177 				continue;
1178 			}
1179 
1180 			if (!fw_ck) {
1181 				printk(KERN_ERR
1182 				       "xc5000: FW checksum failed = 0x%04x.",
1183 				       fw_ck);
1184 				continue;
1185 			}
1186 		}
1187 
1188 		/* Start the tuner self-calibration process */
1189 		ret = xc_initialize(priv);
1190 		if (ret) {
1191 			printk(KERN_ERR
1192 			       "xc5000: Can't request Self-callibration.");
1193 			continue;
1194 		}
1195 
1196 		/* Wait for calibration to complete.
1197 		 * We could continue but XC5000 will clock stretch subsequent
1198 		 * I2C transactions until calibration is complete.  This way we
1199 		 * don't have to rely on clock stretching working.
1200 		 */
1201 		msleep(100);
1202 
1203 		if (priv->init_status_supported) {
1204 			if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck)) {
1205 				printk(KERN_ERR
1206 				       "xc5000: FW failed reading init status.");
1207 				continue;
1208 			}
1209 
1210 			if (!fw_ck) {
1211 				printk(KERN_ERR
1212 				       "xc5000: FW init status failed = 0x%04x.",
1213 				       fw_ck);
1214 				continue;
1215 			}
1216 		}
1217 
1218 		if (priv->pll_register_no) {
1219 			xc5000_readreg(priv, priv->pll_register_no,
1220 				       &pll_lock_status);
1221 			if (pll_lock_status > 63) {
1222 				/* PLL is unlocked, force reload of the firmware */
1223 				printk(KERN_ERR
1224 				       "xc5000: PLL not running after fwload.");
1225 				continue;
1226 			}
1227 		}
1228 
1229 		/* Default to "CABLE" mode */
1230 		ret = xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
1231 		if (!ret)
1232 			break;
1233 		printk(KERN_ERR "xc5000: can't set to cable mode.");
1234 	}
1235 
1236 err:
1237 	if (!ret)
1238 		printk(KERN_INFO "xc5000: Firmware %s loaded and running.\n",
1239 		       desired_fw->name);
1240 	else
1241 		printk(KERN_CONT " - too many retries. Giving up\n");
1242 
1243 	return ret;
1244 }
1245 
1246 static void xc5000_do_timer_sleep(struct work_struct *timer_sleep)
1247 {
1248 	struct xc5000_priv *priv =container_of(timer_sleep, struct xc5000_priv,
1249 					       timer_sleep.work);
1250 	struct dvb_frontend *fe = priv->fe;
1251 	int ret;
1252 
1253 	dprintk(1, "%s()\n", __func__);
1254 
1255 	/* According to Xceive technical support, the "powerdown" register
1256 	   was removed in newer versions of the firmware.  The "supported"
1257 	   way to sleep the tuner is to pull the reset pin low for 10ms */
1258 	ret = xc5000_tuner_reset(fe);
1259 	if (ret != 0)
1260 		printk(KERN_ERR
1261 			"xc5000: %s() unable to shutdown tuner\n",
1262 			__func__);
1263 }
1264 
1265 static int xc5000_sleep(struct dvb_frontend *fe)
1266 {
1267 	struct xc5000_priv *priv = fe->tuner_priv;
1268 
1269 	dprintk(1, "%s()\n", __func__);
1270 
1271 	/* Avoid firmware reload on slow devices */
1272 	if (no_poweroff)
1273 		return 0;
1274 
1275 	schedule_delayed_work(&priv->timer_sleep,
1276 			      msecs_to_jiffies(XC5000_SLEEP_TIME));
1277 
1278 	return 0;
1279 }
1280 
1281 static int xc5000_suspend(struct dvb_frontend *fe)
1282 {
1283 	struct xc5000_priv *priv = fe->tuner_priv;
1284 	int ret;
1285 
1286 	dprintk(1, "%s()\n", __func__);
1287 
1288 	cancel_delayed_work(&priv->timer_sleep);
1289 
1290 	ret = xc5000_tuner_reset(fe);
1291 	if (ret != 0)
1292 		printk(KERN_ERR
1293 			"xc5000: %s() unable to shutdown tuner\n",
1294 			__func__);
1295 
1296 	return 0;
1297 }
1298 
1299 static int xc5000_resume(struct dvb_frontend *fe)
1300 {
1301 	struct xc5000_priv *priv = fe->tuner_priv;
1302 
1303 	dprintk(1, "%s()\n", __func__);
1304 
1305 	/* suspended before firmware is loaded.
1306 	   Avoid firmware load in resume path. */
1307 	if (!priv->firmware)
1308 		return 0;
1309 
1310 	return xc5000_set_params(fe);
1311 }
1312 
1313 static int xc5000_init(struct dvb_frontend *fe)
1314 {
1315 	struct xc5000_priv *priv = fe->tuner_priv;
1316 	dprintk(1, "%s()\n", __func__);
1317 
1318 	if (xc_load_fw_and_init_tuner(fe, 0) != 0) {
1319 		printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1320 		return -EREMOTEIO;
1321 	}
1322 
1323 	if (debug)
1324 		xc_debug_dump(priv);
1325 
1326 	return 0;
1327 }
1328 
1329 static int xc5000_release(struct dvb_frontend *fe)
1330 {
1331 	struct xc5000_priv *priv = fe->tuner_priv;
1332 
1333 	dprintk(1, "%s()\n", __func__);
1334 
1335 	mutex_lock(&xc5000_list_mutex);
1336 
1337 	if (priv) {
1338 		cancel_delayed_work(&priv->timer_sleep);
1339 		if (priv->firmware) {
1340 			release_firmware(priv->firmware);
1341 			priv->firmware = NULL;
1342 		}
1343 		hybrid_tuner_release_state(priv);
1344 	}
1345 
1346 	mutex_unlock(&xc5000_list_mutex);
1347 
1348 	fe->tuner_priv = NULL;
1349 
1350 	return 0;
1351 }
1352 
1353 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
1354 {
1355 	struct xc5000_priv *priv = fe->tuner_priv;
1356 	struct xc5000_config *p = priv_cfg;
1357 
1358 	dprintk(1, "%s()\n", __func__);
1359 
1360 	if (p->if_khz)
1361 		priv->if_khz = p->if_khz;
1362 
1363 	if (p->radio_input)
1364 		priv->radio_input = p->radio_input;
1365 
1366 	if (p->output_amp)
1367 		priv->output_amp = p->output_amp;
1368 
1369 	return 0;
1370 }
1371 
1372 
1373 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1374 	.info = {
1375 		.name           = "Xceive XC5000",
1376 		.frequency_min  =    1000000,
1377 		.frequency_max  = 1023000000,
1378 		.frequency_step =      50000,
1379 	},
1380 
1381 	.release	   = xc5000_release,
1382 	.init		   = xc5000_init,
1383 	.sleep		   = xc5000_sleep,
1384 	.suspend	   = xc5000_suspend,
1385 	.resume		   = xc5000_resume,
1386 
1387 	.set_config	   = xc5000_set_config,
1388 	.set_params	   = xc5000_set_digital_params,
1389 	.set_analog_params = xc5000_set_analog_params,
1390 	.get_frequency	   = xc5000_get_frequency,
1391 	.get_if_frequency  = xc5000_get_if_frequency,
1392 	.get_bandwidth	   = xc5000_get_bandwidth,
1393 	.get_status	   = xc5000_get_status
1394 };
1395 
1396 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1397 				   struct i2c_adapter *i2c,
1398 				   const struct xc5000_config *cfg)
1399 {
1400 	struct xc5000_priv *priv = NULL;
1401 	int instance;
1402 	u16 id = 0;
1403 
1404 	dprintk(1, "%s(%d-%04x)\n", __func__,
1405 		i2c ? i2c_adapter_id(i2c) : -1,
1406 		cfg ? cfg->i2c_address : -1);
1407 
1408 	mutex_lock(&xc5000_list_mutex);
1409 
1410 	instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1411 					      hybrid_tuner_instance_list,
1412 					      i2c, cfg->i2c_address, "xc5000");
1413 	switch (instance) {
1414 	case 0:
1415 		goto fail;
1416 	case 1:
1417 		/* new tuner instance */
1418 		priv->bandwidth = 6000000;
1419 		fe->tuner_priv = priv;
1420 		priv->fe = fe;
1421 		INIT_DELAYED_WORK(&priv->timer_sleep, xc5000_do_timer_sleep);
1422 		break;
1423 	default:
1424 		/* existing tuner instance */
1425 		fe->tuner_priv = priv;
1426 		break;
1427 	}
1428 
1429 	if (priv->if_khz == 0) {
1430 		/* If the IF hasn't been set yet, use the value provided by
1431 		   the caller (occurs in hybrid devices where the analog
1432 		   call to xc5000_attach occurs before the digital side) */
1433 		priv->if_khz = cfg->if_khz;
1434 	}
1435 
1436 	if (priv->xtal_khz == 0)
1437 		priv->xtal_khz = cfg->xtal_khz;
1438 
1439 	if (priv->radio_input == 0)
1440 		priv->radio_input = cfg->radio_input;
1441 
1442 	/* don't override chip id if it's already been set
1443 	   unless explicitly specified */
1444 	if ((priv->chip_id == 0) || (cfg->chip_id))
1445 		/* use default chip id if none specified, set to 0 so
1446 		   it can be overridden if this is a hybrid driver */
1447 		priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0;
1448 
1449 	/* don't override output_amp if it's already been set
1450 	   unless explicitly specified */
1451 	if ((priv->output_amp == 0) || (cfg->output_amp))
1452 		/* use default output_amp value if none specified */
1453 		priv->output_amp = (cfg->output_amp) ? cfg->output_amp : 0x8a;
1454 
1455 	/* Check if firmware has been loaded. It is possible that another
1456 	   instance of the driver has loaded the firmware.
1457 	 */
1458 	if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
1459 		goto fail;
1460 
1461 	switch (id) {
1462 	case XC_PRODUCT_ID_FW_LOADED:
1463 		printk(KERN_INFO
1464 			"xc5000: Successfully identified at address 0x%02x\n",
1465 			cfg->i2c_address);
1466 		printk(KERN_INFO
1467 			"xc5000: Firmware has been loaded previously\n");
1468 		break;
1469 	case XC_PRODUCT_ID_FW_NOT_LOADED:
1470 		printk(KERN_INFO
1471 			"xc5000: Successfully identified at address 0x%02x\n",
1472 			cfg->i2c_address);
1473 		printk(KERN_INFO
1474 			"xc5000: Firmware has not been loaded previously\n");
1475 		break;
1476 	default:
1477 		printk(KERN_ERR
1478 			"xc5000: Device not found at addr 0x%02x (0x%x)\n",
1479 			cfg->i2c_address, id);
1480 		goto fail;
1481 	}
1482 
1483 	mutex_unlock(&xc5000_list_mutex);
1484 
1485 	memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1486 		sizeof(struct dvb_tuner_ops));
1487 
1488 	return fe;
1489 fail:
1490 	mutex_unlock(&xc5000_list_mutex);
1491 
1492 	xc5000_release(fe);
1493 	return NULL;
1494 }
1495 EXPORT_SYMBOL(xc5000_attach);
1496 
1497 MODULE_AUTHOR("Steven Toth");
1498 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1499 MODULE_LICENSE("GPL");
1500 MODULE_FIRMWARE(XC5000A_FIRMWARE);
1501 MODULE_FIRMWARE(XC5000C_FIRMWARE);
1502